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ABSTRACT
Understanding and modeling traffic demand characteristics in dat-
acenter networks is of great importance for datacenter network
optimization. However, prior traffic models are over-simplified
and insufficient in capturing the complex locality properties of
traffic demand. We analyze real-world traffic traces and discover
strong dependency between the spatial attributes (source, desti-
nation) and non-spatial attributes (interarrival time, flow size) of
traffic demand. We propose Lomas to model the joint distribution of
multi-dimensional traffic demand attributes and generate synthetic
traces. Lomas is a novel extension of hierarchical Bayes model that
can represent the relationships among these attributes as a depen-
dency graph. We validate Lomas by showing its ability to recreate
the flow-level traffic demand patterns of real-world traffic traces.
Our approach can be easily adapted to different datacenters with
heterogeneous traffic demand patterns, making it a convenient tool
for practitioners to utilize.
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1 INTRODUCTION
Understanding the network traffic demand patterns is critical for
datacenter network optimization. For example, the skewness of traf-
fic matrics should be considered when designing datacenter topolo-
gies to ensure high bandwidth utilization [1, 8, 18, 20, 21, 25, 40],
and flow-level characteristics (flow-size distributions, interarrival-
time distributions, etc.) are important for designing congestion
control [4, 22, 26, 28, 32, 33, 42], flow scheduling [2, 5, 7, 13] and
load balancing [3, 23].
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There is a battery of prior works focused on analyzing traffic
patterns, dating back to the 1990s. Some researchers developed a
number of models to capture the statistical temporal traffic patterns
(burstiness on different time scales) based on Poisson or ‘self-similar’
assumptions [14, 16, 27, 34, 39]. Others focused on statistical spatial
traffic patterns (skewness of traffic matrix) and studied how to mea-
sure and estimate the traffic matrix [31, 41]. However, most of these
models revolve around the statistical characteristics of entire traffic
matrices, which are deficient in accuracy and granularity. Recently,
an enlightening work was proposed to model the temporal and non-
temporal traffic characteristics simultaneously, the problem is that
it is on the packet level and it excludes well-concerned information
like packet size [6].

In datacenter optimization scenarios, systematically understand-
ing the multi-dimensional patterns of flow-level traffic demand
is more important, given that every attribute of traffic demand can
affect datacenter performance, e.g., Flow-Completion Time (FCT )
has a strong dependence on flow size [15]. Flow-level traffic demand
refers to the need to transfer data from one end-host to another
with arbitrary flow-size and interarrival-time attributes. By analyz-
ing traffic demand, researchers can learn traffic patterns exclude
the bias introduced by network protocols and algorithms (e.g., load
balancing) used during data collection.

Lacking an ideal model to help understand the flow-level traffic
demand patterns, researchers concede to the all-to-all communica-
tion pattern with equal interarrival-time and flow-size distribution
as a common practice [1–4, 8, 18, 23, 25, 28, 33], which is an easy-to-
use solution inspired by [1, 4, 18]. The assumption behind this ap-
proach is that spatial attributes (source, destination) and non-spatial
attributes (interarrival time, flow size) are independent, which is
contrary to the widely believed locality properties [6, 9, 37]. Besides,
even though the all-to-all pattern may be a good representation
for MapReduce/Hadoop applications [2], it’s unsuitable to be used
as a universal-adapted model considering the heterogeneous mix
of services across datacenters. Besides, an all-to-all pattern could
hardly be the worst case for scenarios like load balancing, where
unbalanced demand patterns are of greater concern. To address this
problem, researchers propose many other communicating patterns
to simulate real-world scenarios, such as stride for HPC applica-
tions and staggered-prob for intra, inter-rack differentiation [2].
However, all these common practices are over simplified.

In order to systematically understand the requirements for traffic
demand modeling, we carry out a comprehensive analysis of real-
world traces [9]. We find strong dependency between spatial at-
tributes (source, destination) and non-spatial attributes (interarrival
time, flow size) of flow-level traffic demand, resulting in complex
multivariate distribution and various locality properties. Traffic
demand within different src-dst pairs is quantitatively imbalanced
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and behaviorally heterogeneous, e.g., traffic demand among some
end-hosts is composed of dense elephant flows, while among others
are consist of sparse mice flows. These locality properties should be
considered in earnest when designing a traffic demand model. Our
findings show that independently modeling the marginal distribu-
tion of multi-dimensional traffic demand is unsuitable, and they
also reveal that the traffic demand modeling problem is complicated
and challenging (§ 2).

In this paper, we propose an approach (named Lomas) to model
and recreate the complex traffic demand patterns. Lomas is a gen-
erative model capable of learning the joint distribution of multi-
dimensional traffic demand attributes (source, destination, inter-
arrival time, flow size). Instead of assuming that all variables are
dependent on all other variables, which tend to overfit observed
data and be computationally infeasible, our approach represents
the complex probabilistic relationships among these attributes as
a commom-sensical and expressive dependency graph [35]. We
extend the hierarchical Bayes model utilizing a latent functional
space to capture the distribution of non-spatial attributes (interar-
rival time, flow size) for each src-dst pair, which simplifies the traffic
demand modeling problem by relating traffic demand patterns to
the latent functionalities of both sending-node and receiving-node
(§ 3).

We evaluate Lomas using two real-world traffic traces [9]. The
evaluation results prove Lomas can capture the complex locality
properties, and generate synthetic traces with closer distribution
distance to the ground truth compared with common practice (§ 4).
Lomas can be adapted to different datacenters to discover the flow-
level traffic demand patterns as well as the skewness of traffic
matrics, which is of great importance in designing network proto-
cols, algorithms, and datacenter topologies. Lomas is also useful to
generate synthetic benchmarks considering the limited amount of
publicly available traces (§ 5). We hope that our approach can serve
as a "handy tool" to the research community for better design and
evaluation before deployment.

2 MOTIVATION
In this section, we first describe the fine-grained locality properties
existing in real-world traces and the deficiency of common practice.
Then, we analyze the requirements for a traffic-demand model to
capture these locality properties.

2.1 Locality Properties in Real-world
Datacenter Traffic Traces

We derive the flow-level traffic demand from two publicly available
real-world packet traces (named EDU1 and EDU2) [9]. The term
flow in the context of this paper means the observed 4-tuple (src, dst,
interarrival time, flow size) with a chosen long inactivity timeout to
determine when a flow starts or ends [4], and the 4-tuple represents
the sending node, the receiving node, flow interarrival time, and
flow size respectively. Because of space constraints, we take EDU1
as an example to illustrate our analysis results, and EDU2 has similar
results.

Figure 1a visualizes a fraction of the trace within 16 represen-
tative src-dst pairs. In Figure 1a, each row represents one src-dst
pair with a corresponding color, and each rectangle represents a

flow-arrival event (a flow) within the given source and destination.
The width of each rectangle represents the flow size, and the blank
between two adjacent rectangles represents the interarrival time.
We observe significant difference in interarrival-time (Figure 1b)
and flow-size (Figure 1c) distributions across src-dst pairs. Besides,
we sum up the entries over the entire trace file, resulting in the
total demand distribution within these 16 src-dst pairs (Figure 1d),
which reveals the skewness of total demand [6], i.e., some src-dst
pairs transfer more data than others. Finally, we investigate the
degree (indegree plus outdegree) of each node in EDU1 (we plot a
subset in Figure 1e for space constraints), and the result shows that
the degree distribution is also highly skewed. We observe that the
majority of nodes have low degree but a few have relatively high
degree, indicating the degree distribution is right-skewed in this
case.

Conventionally, flows are generated assuming that the source
and the destination are chosen randomly. The interarrival time is
independently sampled from a 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 process with parameter 𝜆
equal to the empirical full-sample mean, and flow size is indepen-
dently sampled from the empirical cumulative distribution function
(CDF) [1–4, 8, 18, 23, 25, 28, 33]. These simple assumptions are
contrary to the fact that the multi-dimensional attributes of traffic
demand have heterogenous probability distributions across dif-
ferent src-dst pairs. As a result, the traffic demand generated by
common practice fails to capture the locality properties in real-world
traffic traces. Comparing Figure 2a to Figure 1a we can find obvious
and intuitive difference in interarrival-time and flow-size patterns.
And comparing Figures 2b, 2c, 2d and 2e with their counterparts in
Figures 1 respectively we can see the huge difference between the
common practice and the ground truth, which proves that the com-
mon practice is unsuitable to model the complexities of real-world
traffic demand in datacenter networks.

2.2 Requirements and Methodology for Traffic
Demand Modeling

Considering the complex and heterogeneous traffic demand pat-
terns in datacenter networks, we conclude that an ideal traffic-
demand model should have the ability to capture the following
locality properties:

(1). Heterogeneous arrival patternswithin differenct src-dst pairs:
traffic demand within different source nodes and destina-
tion nodes presents different interarrival-time and flow-size
distributions.

(2). Imbalanced total demand across different src-dst pairs: some
end-hosts tend to transfer more data to certain peers than
others.

(3). Asymmetric node degree distribution in datacenter networks:
some of the nodes have low degree while the other nodes
have relatively high degree.

These locality properties motivate us to consider the intrinsic
characteristics of source nodes and destination nodes in datacenters.
The difference of traffic demand patterns across src-dst pairs can
be related to the latent functionalities of both sending-nodes and
receiving-nodes. For example, inside the social-network datacenters,
the size of network flows sending from cache nodes are significantly
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(a) Visualization: real-world trace from EDU1

(b) Interarrival distribution (c) Size distribution
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(d) Total demand per src-dst
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Figure 1: Real-world traffic demand: (a) Per src-dst traffic demand in each row. Each rectangle represents a flow.Width represents
flow size. Blank represents interarrival time. Interarrival-time distributions within the 16 src-dst pairs are in (b), and flow-size
distributions are in (c). (d) shows total demand and (e) shows degree of each node.
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(a) Visualization: synthetic trace by common practice

(b) Interarrival distribution (c) Size distribution
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.0

0.5

1.0

1.5

2.0

R
e
la

ti
v
e

T
o
ta

l
D

e
m

a
n

d

(d) Total demand per src-dst
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(e) Degree of each node

Figure 2: Traffic demand generated by common practice
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(a) Visualization: synthetic trace by Lomas

(b) Interarrival distribution (c) Size distribution
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(e) Degree of each node
Figure 3: Traffic demand generated by Lomas

larger than Hadoop nodes; and per-second flow rates of cache
follower nodes are also much larger than Hadoop nodes [37].

Based on our observations, we utilize a hierarchical Bayesmethod
to learn the latent functionalities distribution of each src-dst pair
(a combination of sending-node and receiving-node) as well as the
distribution over the traffic demand patterns of each latent func-
tionality. In our model, a src-dst pair is represented by a distribution

of functionalities, and a functionality is featured by a distribution
of flow types. As a result, our model can inference the interarrival-
time and flow-size distribution for each src-dst pair based on the
latent functionalities, thus capturing the heterogeneous locality
properties. And introducing the latent space brings in the following
advantages:
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(1). Dimensionality reduction. We can use latent functionalities
as low-dimensional representations of a huge number of
src-dst pairs (proportional to the square of the number of
nodes), which makes it possible to tackle the scale of modern
datacenters.

(2). Transferability. The latent functionality distributions in data-
centers are tied to the datacenter services. Therefore, a traffic
demand model with latent functionality layer can be trans-
ferable to other datacenters provided no significant variation
in datacenter services.

Besides, we are not the first to use hierarchical Bayes method to
model the multivariable dependencies. Similar methodologies have
been applied to natural language processing, e.g., Latent Dirich-
let Allocation (LDA) is a three-level Bayes model mainly used for
document classification [11]. However, to the best of our knowl-
edge, such approaches have not been used in the context of traffic
demand modeling in datacenter networks.

3 DESIGN
In this section, we first formulate the traffic demand modeling
problem. Then, we go into details of our model (named Lomas)
design and training. Finally, we illustrate the generative process
using the trained model to get synthetic traces.

3.1 Problem Formulation
We organize the flow-level traffic demand as flow sequences (de-
noted by A) according to flow arrival time. Each flow is a 4-tuple
(src, dst, interarrival time, flow size). Both src and dst are discrete
variables, while interarrival time and flow size are continuous vari-
ables. Before we utilize Bayes method to build our model, we have
to address several challenges: 𝑖) how to infer the latent function-
alities of each src-dst pair using observed flow sequences; 𝑖𝑖) how
to deal with discrete and continuous variables simultaneously in
one model. All the notations used in this paper are summarized in
Table 1.

Table 1: Notations used in the paper
Symbol Explanation
𝑀 number of nodes in a datacenter
𝑅 number of src-dst pairs (equal to𝑀2)
A flow sequences in the entire trace
A𝑟 sending flows within src-dst pair 𝑟
𝑁𝑟 number of sending flows in A𝑟

𝑎𝑟,𝑛 n-th sending flow in A𝑟

𝑧𝑟,𝑛 functionality index for 𝑎𝑟,𝑛
𝑉 number of non-repeating sending flow types in A
𝐾 hyperparameter for the number of functionalities
𝛼 hyperparameter for functionality distribution 𝜃
𝜂 hyperparameter for flow-pattern distribution 𝛽
𝜃 a 𝑅 × 𝐾 matrix for the functionality distribution
𝛽 a 𝐾 × 𝑉 matrix for the flow-type distribution

In order to infer the latent functionality distributions of corre-
sponding src-dst pairs, we divide the entire traceA into subgroups
according to the src and dst attributes of every flow. We assume the
number of nodes in a datacenter is 𝑀 , and the number of src-dst
pairs is𝑀2. For each src-dst pair (denoted by 𝑟 , 𝑟 = 1, 2, . . . , 𝑅, and
𝑅 = 𝑀2), we observe a collection of sending flows (denoted by A𝑟 ,

a subset of A) which are sent from 𝑠𝑟𝑐𝑟 to 𝑑𝑠𝑡𝑟 . Considering the
sending flows in A𝑟 share the same src and dst attributes, we can
use a 2-tuple (interarrival time, flow size) to represent each sending
flow inA𝑟 . By doing so, we relate functionality distribution of each
src-dst pair to its sending flows, and therefor the sending flows can
be used for latent functionalities inference.

In order to deal with continuous variables, we discretize interar-
rival time and flow size attributes of every sending flow by creating
sets of contiguous quantile-based bins for computational simplifi-
cation, considering that minor fluctuations in these two variables
do not really make much difference in traffic demand patterns. We
index all the non-repeating discretized sending flows in A with
{1, . . . ,𝑉 } 1, and we take each sending flow as a distinct type of
flow (i.e., a certain size of flow that need to be sent at some interar-
rival time). Based on the finite flow types resulted by discretization,
we can represent sending flows using one-hot vectors. Thus, the n-th
sending flow in A𝑟 with flow-type 𝑣 is represented by a V-vector
𝑎𝑟,𝑛 such that 𝑎𝑣𝑟,𝑛 = 1 and 𝑎𝑢𝑟,𝑛 = 0 for 𝑢 ≠ 𝑣 .

3.2 Functionality-Based Modeling
Using the functionality-based hierarchical Bayes analysis frame-
work, the goal of Lomas is to find the probability distribution of
src-dst pairs in the latent functional space (𝜃 ) that can best explain
the observed traffic demand patterns. Assuming the dimensionality
of the latent space is K (K is a hyperparameter), the modeling pro-
cedure can be defined as follows, 𝑖) modeling the heterogeneous
mix of 𝐾 types of functionalities for each src-dst pair; 𝑖𝑖) revealing
the distribution of sending flow types for each functionality.

Assuming the dimensionality of latent space (K) is known and
fixed, the functional probability distributions for a datacenter with R
src-dst pairs are parameterized by a 𝑅×𝐾 matrix 𝜃 , and 𝜃𝑟 (r-th row
of 𝜃 ) is a K-dimensional vector with

∑𝐾
𝑘=1 𝜃

𝑘
𝑟 = 1, (𝑟 = 1, 2, . . . , 𝑅).

If there is no sending flows within src-dst pair 𝑟 , we set 𝜃𝑟 to ®0.
For each sending flow 𝑎𝑟,𝑛 of A𝑟 , our model assumes it belongs
to a latent functionality 𝑧𝑟,𝑛 where 𝑧𝑟,𝑛 follows a Multinominal
distribution with parameter 𝜃𝑟 . And 𝑧𝑟,𝑛 is a 𝐾-dimension one-
hot vector with 𝑧𝑘𝑟,𝑛 = 1 and 𝑧 𝑗𝑟,𝑛 = 0 for 𝑗 ≠ 𝑘 , which means the
functionality index of 𝑧𝑟,𝑛 is 𝑘 . Besides, the probability distributions
of sending flow types are parameterized by a 𝐾 ×𝑉 matrix 𝛽 where
𝛽𝑘,𝑣 ∝

∑𝑅
𝑟=1

∑𝑁𝑟

𝑛=1 𝑝 (𝑎
𝑣
𝑟,𝑛 = 1, 𝑧𝑘𝑟,𝑛 = 1). Both 𝜃 and 𝛽 are probability

matrices to be estimated.
And we use two hyperparameters 𝛼 and 𝜂 to specify our prior

beliefs about functionality sparsity for each src-dst pair 𝑟 and flow-
type sparsity for each functionality 𝑘 . Both 𝛼 and 𝜂 are associated
with Dirichlet distributions [38] and their values will influence the
way the Dirichlets generateMultinominal distributions of 𝜃 and 𝛽 . A
higher 𝛼 value will lead to distributions that center around averages
for 𝜃 , indicating src-dst pairs are made up of more functionalities.
While lower 𝛼 values will lead to distributions that are more dis-
persed. Parameter 𝜂 works in an analogous way for 𝛽 . Conditional
on the 𝛼 and 𝜂 parameters, the likelihood for 𝑁𝑟 sending flows (A𝑟 )
of a src-dst pair r is:

1𝑉 = (number of interarrival-time bins) × (number of flow-size bins).
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𝑝 (A𝑟 , 𝑧, 𝜃, 𝛽 |𝛼, 𝜂) =∬
𝑝 (𝛽 |𝜂)𝑝 (𝜃 |𝛼) (

𝑁𝑟∏
𝑛=1

∑︁
𝑧𝑟,𝑛

𝑝 (𝑧𝑟,𝑛 |𝜃 )𝑝 (𝑎𝑟,𝑛 |𝑧𝑟,𝑛, 𝛽))𝑑𝜃𝑑𝛽

For model training, we utilize the approximate inference tech-
nique named Gibbs Sampling [19] to estimate parameter 𝜃 and 𝛽 .
Gibbs Sampling is a special case of the Markov Chain Monte Carlo
method [12, 17]. And there are other approximate techniques ready
for use, like variational inference [24]. We choose Gibbs Sampling
for its flexibility and simpleness.

3.3 Generating Synthetic Traces
The generative process using our trained model is shown in Algo-
rithm 1. Lomas allows researchers to synthesize traces in different
settings (e.g., time windows, number of nodes), which is partic-
ularly useful given the limited and nonflexible historical traces.
For example, when a larger 𝑀 is chosen, our model will pad the
original 𝑅 × 𝐾 matrix 𝜃 into a larger 𝑅′ × 𝐾 matrix 𝜃 ′. Besides, our
model can be used to simulate different levels of traffic demand
(e.g., demand peaks in e-commerce datacenters during Shopping
Festival) by adjusting the interarrival time probability distribution
function.

Algorithm 1: Generative process of Lomas
input : time window 𝑡 ; number of nodes𝑀 .

1 for each sending-node 𝑖 do
2 for each receiving-node 𝑗 do
3 Initialization src-dst: r←𝑀 × (𝑖 − 1) + 𝑗 ;
4 Initialization time: cur_t← 0;
5 Initialization flow id: n← 1;
6 while cur_t < t do
7 Draw functionality index 𝑧𝑟,𝑛 ∼ Multinominal(𝜃𝑟 );
8 Draw sending flow type 𝑎𝑟,𝑛 ∼ Multinominal(𝛽𝑧𝑟,𝑛 );
9 Convert discretized interarrival time and flow size bins to

continuous values;
10 Update: cur_t← cur_t + interarrival time;
11 Update: n← n + 1;

output :a synthetic trace with the time window from 0 to 𝑡 .

In generating process, we iteratively generate R subgroups of
sending flow Â𝑟 to get the synthetic trace Â. For the n-th sending
flow (𝑎𝑟,𝑛) in Â𝑟 , we first sample its functionality index 𝑧𝑟,𝑛 from
the Multinominal distribution with parameter 𝜃𝑟 , and then the
sending flow 𝑎𝑟,𝑛 can be chosen conditioned on 𝑧𝑟,𝑛 and 𝛽 (line 7-8).
After that, we convert the discretized interarrival time bins and
flow size bins to continuous values by assuming these variables are
distributed evenly within each bin (line 9), and this method was
also used in [10]. Finally, we accumulate the interarrival time within
each Â𝑟 and move on to the next src-dst pair when the accumulated
time overran the given time window (line 10).

4 EVALUATION
In this section, we first describe the evaluation setups and our
model (Lomas) implementation. Then, we present the preliminary
evaluation results with different settings.

4.1 Setups
Datasets.We evaluate Lomas using two real-world traces (EDU1,
EDU2) [9]. We extract over 0.2 million flows from EDU1 and over 1
million flows from EDU2 (§ 2).
Metric. We choose Kolmogorov–Smirnov (KS) statistic [30] as a
preliminary metric to quantify the distance between the empiri-
cal distribution function of the ground truth A and the synthetic
trace Â. If distributions are identical, the KS-distance is 0, and its
maximum possible value is 1. For interarrival time and flow size
attributes, we calculate their average KS-distance across all src-dst
pairs respectively.
Implementation. Our model is implemented in Python using Gen-
sim [36]. We use 8 different 𝐾 values (number of latent function-
alities) to test the performance of Lomas. And we set both 𝛼 and
𝜂 to ‘auto’, which is a feature of Gensim that enable automatically
parameter learning.
Baseline.We compare Lomas with the common practice (abbrevi-
ated to ‘CP’), where the parameter 𝜆 for interarrival time equals to
the empirical full-sample average values, and the flow size follows
the empirical full-sample CDF.

4.2 Results
Figure 3 visualizes the generated flow-level traffic demand using
Lomas. Each row in Figure 3a represent the same src-dst pair as
Figure 1a, and we can see clearly from Figure 3a that our synthetic
trace has similar interarrival-time distribution and flow-size distri-
bution (Figure 3b and 3c) to the ground truth. And statisticaly, the
total demand within each src-dst pair and the degree of each node
(Figure 3d and 3e) are also similar to the ground truth.

The evaluation results using KS-distance in Figure 4 show two
main observations: 𝑖) The distributions of generated traces by Lo-
mas are closer to the ground truth (with lower KS values) compared
with common practice (CP), and the KS-distance decreases with
higher 𝐾 . We notice that the average KS-distance for flow size is
higher than interarrival time, and the reason is that our discretiza-
tion method underfits the irregular flow size distributions and there-
fore causes high discretization error. We will optimize it in future
work. 𝑖𝑖) A relatively small 𝐾 (e.g., 𝐾 = 25) is sufficient to model
the traffic demand generated by thousands of nodes, which proves
the applicability of Lomas to large scale datacenters.
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Figure 4: Evaluation Results

5 APPLICATION AND FUTUREWORK
Lomas is a generative model capable of learning the complex local-
ity properties of flow-level traffic demand in datacenter networks.
Given the limited amount of publicly available datasets, Lomas
can be particularly useful to generate synthetic benchmarks and
recreat representative traffic demand patterns. First, our approach
can help understand the flow-level locality properties and facilitate
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the design of datacenter network protocols and algorithms. Sec-
ond, Lomas can discover the skewness of traffic matrices, which
is helpful for optimizing the datacenter topologies to ensure high
bandwidth utilization. Finally, our trained models can generate
synthetic traces retaining the traffic demand patterns, and these
synthetic benchmarks can be used by researchers to evaluate their
designs in different settings (e.g., for longer traces or higher level
of traffic demand)..

Besides, there are several future directions we wish to explore.
First, we plan to reevaluate the existing datacenter optimization
proposals [2–4, 8, 18, 29, 33] using our synthetic benchmarks to un-
derstand the robustness and applicability of these popular designs.
Second, we will explore the possibilities to introduce new tech-
niques to enhance our model performance, e.g., a recurrent neural
networks (RNN ) module to capture inter-flow correlations. Finally,
we want to apply our approach to model more real-world traffic
traces (e.g., traces from Facebook [37]) and release our trained and
desensitized models to facilitate future research.

6 CONCLUSION
We present Lomas, an approach for traffic demand modeling in dat-
acenter networks. Preliminary evaluation results have shown that
Lomas holds promise for capturing the flow-level locality properties
in traffic demand as well as synthesizing traces. Besides, Lomas can
be easily adapted to different datacenters with heterogeneous traffic
demand patterns.
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