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ABSTRACT

Optical data center networks show promise to serve as the next-

generation cloud infrastructure especially with their cost and power

benefits. The need to set up dedicated optical circuits between end-

points before they can exchange data, however, delays latency-

sensitive (“mice”) flows. We find the state-of-the-art solution to

reducing flow latency produces sub-optimal paths. To address this

issue, we leverage programmable switches to realize Hop-On Hop-

Off (HOHO) routing, where mice flows are forwarded along the

minimal-latency paths. We prove the optimality and robustness

of our algorithm and sketch an implementation on programmable

switches. In our packet-level simulations, HOHO routing reduces

the flow-completion times for mice flows by up to 35% and the av-

erage path length by 15% compared to the state-of-the-art solution.

CCS CONCEPTS

• Networks → Data center networks; Programmable net-

works; Routing protocols.
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1 INTRODUCTION

Data-center-network (DCN) designs have largely benefited from the

Moore’s law for networking—the bandwidth of electrical switches

doubles every two years at the same cost and power [25]. As this

bandwidth scaling is slowing down, the networking community

has started exploring high-radix passive optical network intercon-

nects, which have lower per-port cost and consume less power than

electrical switches. The latest optical-DCN designs deliver up to
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4-times the bandwidth [18] and consume only 23%− 26% power [2]

of a cost-equivalent electrical DCN.

A typical optical DCN fabric comprises of a number of optical

switches that interconnect electrical top-of-rack switches (ToRs)

and end servers (refer Fig. 1). The fabric uses circuit switching to

establish dedicated optical circuits that are time-shared amongst

the different ToR pairs. The delays incurred in establishing the

circuits, however, substantially affect latency-sensitive traffic (or

“mice” flows) that then use these circuits. In this paper, we focus on

minimizing the impact of these delays on latency-sensitive traffic.

Prior attempts at solving this problem either use an electrical-

optical hybrid network and send mice flows over the “always-on”

electrical network [4, 26], or reduce the circuit-establishment delays

using novel optical switching hardware [2]. The electrical-optical

dual-fabric, however, doubles the deployment and maintenance

costs of DCNs, while the latter requires extensive customizations

to commercial network devices and the standard network stack,

e.g., to adapt to the 1 ns optical switching speed in Sirius [2]. In

contrast to such prior work, we propose a simple solution that

leverages programmable switches: a routing algorithm with the

specific objective of accelerating mice flows.

The idea of leveraging routing to accelerate latency-sensitive

flows has been used in prior work, albeit within a narrow scope.

Opera pursued a meticulous co-design of the optical network topol-

ogy and routing for guaranteeing that mice flows always have
(multi-hop) optical paths available via intermediate ToRs [18]. Sim-

ilar to prior designs, Opera assumes, however, that packets must

be buffered on end servers, as optical switches are bufferless. As

soon as an optical path is available, packets hop on that path and

ride it until the destination. They cannot hop off at intermediate

ToRs even if a different optical path later offers an earlier arrival

time (at the destination). Routing in Opera is, hence, sub-optimal:

It searches for non-stop paths, rather than the fastest paths. We
offer support for packets to “hop-off” at ToRs by rethinking packet
buffering on ToRs.

Buffering at ToRs was deemed impossible due to the limited

packet buffer on switches, the difficulty in synchronizing switches

to coordinate with optical circuit configurations, and the lack of

processing logic for scheduling packet transmissions at precise

times. Recent programmable switches offer rich functionalities to

clear these technical obstacles. Switches can, for example, provide

temporal buffering for a small number of packets [5, 21], be time-

synchronized at nanosecond-level precision [12], and provide time-

based scheduled packet transmission via calendar queues [24].

We exploit the recent technological innovations in programmable

switches to realize a novel routing algorithm for minimizing the
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Figure 1: Illustration of an optical DCN where ToRs connect

to an optical network fabric. If it takes one unit of time to

traverse one hop, a packet leaving the source ToR at 𝑡 = 5 (the

notation shows departure times) reaches the target at 𝑡 = 9

in Opera, which only supports non-stop paths. In HOHO, in

contrast, the same packet waits at the first hop from 𝑡 = 6 to

𝑡 = 7 to choose the best path and arrive earlier at 𝑡 = 8.

delays experienced by latency-sensitive flows and summarize our

contributions as follows: (a) we present a Hop-On Hop-Off (HOHO)

routing algorithm that provides the fastest paths—packets can “hop

on” and “hop off” at intermediate ToRs to select the best optical

paths that minimize their arrival time at the destination; (b) we

prove the optimality and robustness of the HOHO routing algo-

rithm, and sketch its implementation on programmable switches,

including the time synchronization, routing lookup, and packet

buffering mechanisms; (c) in our packet-level simulations with real

DCN traffic, HOHO routing reduces the flow completion times

(FCTs) of latency-sensitive flows by up to 35% and reduces the

average path length by 15% compared to Opera. HOHO routing

uses at most 7 queues per egress port and a packet buffer of about

3.24MB, which is far below the capacity limit of commercial switch

ASICs [7, 22].

2 BACKGROUND AND OVERVIEW

An optical DCN fabric (Fig. 1) uses circuit switching to construct

dedicated optical circuits between different ToR pairs. The optical

switches continuously change the circuits to interconnect different

ToR pairs, and each circuit lasts for a fixed interval of time, called a

time slice. The ToRs connected by a circuit have exclusive access to

it (i.e., no contention with other ToRs) during the time slice. With

today’s mainstream optical switches, circuit establishment incurs

delays varying between several nanoseconds to tens of microsec-

onds [1, 2, 19]. A sequence of time slices, each connecting some

subset of ToR pairs, constitutes an optical schedule. The switch re-

peats the schedule continuously and guarantees that each ToR pair

is assigned at least one circuit per repetition (or cycle).
The goal of HOHO routing is to forward a packet from a source

to a destination ToR via the fastest path. We define the fastest path

in an optical DCN as the path that requires the minimum number

of time slices. Depending on when a packet arrives at a ToR (i.e.,

its arrival time slice) and the optical schedule, the fastest path may

“hop” through intermediate ToRs. HOHO routing consists of an of-

fline routing algorithm (§3), which computes the fastest paths, and

a runtime system (§4), which orchestrates packet forwarding along

these paths. The HOHO routing algorithm is agnostic to optical

DCN architectures and is general to a wide range of time slice dura-

tions. Given a cyclic optical schedule, the offline routing algorithm

first computes the fastest paths for all source-destination ToR pairs,

for all corresponding arrival time slices. The full paths are then

converted into next-hop lookup tables for ease of implementation

in the switch dataplane. Logically, for each ToR, there is a next-hop

lookup table per arrival time slice. At run time, when a ToR receives

a packet within a particular time slice, it looks up in the next-hop

lookup table corresponding to that (arrival) time slice to get the

egress port and the send time slice within which to transmit the

packet. If the send time slice is later than the arrival time slice, the

switch temporarily buffers the packet until the send slice, i.e., the
time slice when the packet should be transmitted.

In designing HOHO routing, we assume that packets always

arrive at the beginning of a time slice and that there is no queu-

ing delay at the ToRs. These assumptions effectively decouple the

design of the static routing algorithm and the runtime on-switch

system. In practice, if breaking these assumptions renders a packet

to miss the planned send time slice to reach the next hop, we per-

form run-time adjustments to match it to the next time slice. We

prove that this mechanism finds the next optimal path (§3.2).

The runtime system on ToRs (§4) detects upcoming slice-miss
events based on a fair estimation of the packet egress time from

the packet arrival time and the queuing delay. The cost function

in the HOHO routing algorithm only takes transmission latency

as the cost at the moment. To reduce slice-miss events, we could

revise this cost function, for example, to include queueing delays.

We then need a reasonable measurement or estimation of queuing

delays across different paths network-wide, which can be collected

through network telemetry. Since the tradeoff between performance

improvement and system complexity is, debatably, unclear, we leave

this discussion to future work.

3 HOP-ON HOP-OFF ROUTING

In this section, we describe the design of the HOHO routing al-

gorithm and prove three critical properties of the algorithm. The

proofs provide evidence that it is a sound decision to implement

the algorithm as next-hop lookup with run-time adjustments on

the ToR system (§2).

3.1 Algorithm Design

The (optical) circuits in an optical DCN are analogous to “buses”:

the circuits (buses) transport packets (people) from a source ToR to

a destination ToR. The time slices of circuits are simply “deadlines”

to get on the “buses”. The earliest time to arrive at a destination

ToR is (as illustrated in Fig. 2) completely determined by the earliest

time slice of the last-hop ToR, i.e., when the “bus” from the last

“stop” departs for the destination (e.g., t=5 in Fig. 2). To find the

fastest path, we must find the earliest “bus” at the last hop to the

destination (step 1). We then plan an “itinerary” from the source

ToR to the last-hop ToR that satisfies the “deadlines” for making

all the “transitions” (step 2): arriving at the next-hop ToR either

earlier than the time slice to hop onward (e.g., waiting for the next

“bus”) or in the same time slice (e.g., being on time for the next

“bus”). In Fig. 2, a packet arriving from S→B in the t=3 slice to

reach D must, for instance, wait at B for 2 time units, whereas one
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Figure 2: Illustration of the backtracking algorithm forHOHO

routing (Alg. 1). We denote the time slices of optical circuits

as absolute values, with the arrival time slice being 𝑡 = 0. The

destination callsRouting to find the earliest last hops (A and

B with 𝑡 = 5), which then call Subpath to find the shortest

feasible path through them from the source (S→B→D). We

prune out paths violating various constraints (see explana-

tions in red) from this backtracking search.

from G→B in the t=5 slice is “on time” to use the B→D circuit.

Once we choose the last-hop ToR in step 1, the arrival time does not

change no matter how complicated the “itinerary” is in step 2, albeit

we prefer a shorter path with fewer “transitions”. Following this

intuition, we design a backtracking algorithm (Alg. 1) for HOHO

routing that comprises two procedures: Routing and Subpath,

which correspond to steps 1 and 2, respectively.

For a packet that arrives at the source ToR in a particular time

slice, the Routing procedure finds the fastest optical path to the

destination ToR. It finds the last-hop ToR that provides the earliest

arrival at the destination ToR, by sorting the time slices of all candi-

date ToRs connecting to this destination (line 2). For each candidate

ToR, it calls the Subpath procedure to find a feasible sub-path from

the source ToR (line 20). The procedure exits on finding the first

valid path (line 6) or when the search ends (line 11). Since each

ToR pair is guaranteed a circuit in the optical schedule (refer §2),

Routing will always find a path—the direct path (S→D in Fig. 2) in

the worst case, if no faster path exists. When multiple fastest paths

(via A and B in Fig. 2) exist, the shortest path is chosen (lines 9-10).
The Subpath procedure finds a feasible sub-path from the source

ToR to an intermediate ToR recursively. The procedure can ter-

minate in two ways: (i) when it fails (lines 13-14) to find a path of

length at most the maximum hop count, e.g., S→H→E→A→D in

Fig. 2, or (ii) when it finds a connection from the source ToR and its

time slice can make the “deadline” for the next-hop transmission

(lines 15-16). In Fig. 2, for instance, S→B→D meets this condition,

as the time slice t=3 for S→B is earlier than the time slice t=5
for B→D, while S→A→D violates this condition. No matter how

many hops are traversed, the path must start from the source ToR.

So, a path is found if and only if the source ToR is directly connected

to the current intermediate ToR. Otherwise, Subpath calls itself

to search onward to other intermediate ToRs not already in the

sub-path and finds feasible sub-paths that constantly meet “dead-

lines” (lines 18-22). If Subpath find multiple feasible sub-paths, we

select the shortest one (line 23). In Fig. 2, A→F→A→D is filtered

Algorithm 1 Hop-On Hop-Off Routing Algorithm

Require:

𝑀 ← max hop count

𝑠𝑟𝑐 , 𝑑𝑠𝑡 ← source ToR, destination ToR

𝑆0 ← the packet arrival time slice at 𝑠𝑟𝑐

𝑆 (𝑠,𝑑 ) ← the earliest time slice when ToR 𝑠 and ToR 𝑑 are connected,

where 𝑆 (𝑠,𝑑 ) ≥ 𝑆0 must hold

⊲ Find the fastest path per ToR pair per time slice

1: procedure Routing(𝑠𝑟𝑐 , 𝑑𝑠𝑡 , 𝑆0)

2: Sort all ToRs by 𝑆 (𝑡𝑜𝑟,𝑑𝑠𝑡 ) in ascending order

3: 𝑝𝑎𝑡ℎ = ∅,𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 = 𝑆 (𝑇𝑜𝑅 [0],𝑑𝑠𝑡 ) ,𝑚𝑖𝑛_ℎ𝑜𝑝 = ∞
4: for each 𝑡𝑜𝑟 in ToRs do

5: if 𝑆 (𝑡𝑜𝑟,𝑑𝑠𝑡 ) >𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 and 𝑝𝑎𝑡ℎ ≠ ∅ then
6: return 𝑝𝑎𝑡ℎ

7: 𝑚𝑖𝑛_𝑡𝑖𝑚𝑒 = 𝑆 (𝑡𝑜𝑟,𝑑𝑠𝑡 )
8: 𝑝𝑎𝑡ℎ′ = Subpath(𝑠𝑟𝑐 , 𝑡𝑜𝑟 , 𝑆 (𝑡𝑜𝑟,𝑑𝑠𝑡 ) , 1, {𝑑𝑠𝑡 })
9: if 𝑝𝑎𝑡ℎ′ ≠ ∅ and ℎ𝑜𝑝 (𝑝𝑎𝑡ℎ′ ) <𝑚𝑖𝑛_ℎ𝑜𝑝 then

10: 𝑝𝑎𝑡ℎ = 𝑝𝑎𝑡ℎ′ ,𝑚𝑖𝑛_ℎ𝑜𝑝 = ℎ𝑜𝑝 (𝑝𝑎𝑡ℎ′ )
11: return 𝑝𝑎𝑡ℎ

⊲ Find the shortest feasible subpath through an intermediate ToR

12: procedure Subpath(𝑠𝑟𝑐 , 𝑡𝑜𝑟 , 𝑆 , 𝑙𝑒𝑣𝑒𝑙 , 𝑠𝑢𝑏𝑝𝑎𝑡ℎ)

13: if 𝑙𝑒𝑣𝑒𝑙 > 𝑀 then

14: return ∅
15: if 𝑆 (𝑠𝑟𝑐,𝑡𝑜𝑟 ) ≤ 𝑆 then

16: return 𝑠𝑟𝑐 + 𝑠𝑢𝑏𝑝𝑎𝑡ℎ
17: 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = {}
18: for each 𝑡𝑜𝑟 ′ in ToRs and 𝑡𝑜𝑟 ′ not in 𝑠𝑢𝑏𝑝𝑎𝑡ℎ do

19: if 𝑆 (𝑡𝑜𝑟 ′,𝑡𝑜𝑟 ) ≤ 𝑆 then

20: 𝑝 = Subpath(𝑠𝑟𝑐 , 𝑡𝑜𝑟 ′ , 𝑆 (𝑡𝑜𝑟 ′,𝑡𝑜𝑟 ) , 𝑙𝑒𝑣𝑒𝑙 +1, 𝑡𝑜𝑟 +𝑠𝑢𝑏𝑝𝑎𝑡ℎ)
21: if 𝑝 ≠ ∅ then
22: 𝑝 → 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒

23: return 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 (𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ) or ∅

for repetitive “A”s, and S→B→D is chosen ultimately because it is

shorter than the other feasible path S→G→B→D.

3.2 Algorithm Properties

Below, we discuss and prove HOHO’s three key properties.

Property 1: The HOHO routing algorithm is optimal: the chosen path
is the shortest that leads to the minimal latency.

Proof. Let 𝑝 be the selected path whose last-hop ToR to 𝑑𝑠𝑡

is 𝑟 and path length is 𝑙 . The time slice of the optical connection

between 𝑟 and 𝑑𝑠𝑡 is 𝑠 . If there exists a better path 𝑝 from 𝑠𝑟𝑐 to

𝑑𝑠𝑡 with the last-hop ToR 𝑟 at slice 𝑠 and the path length is
ˆ𝑙 , then

either 𝑠 > 𝑠 , or 𝑠 = 𝑠 and 𝑙 > ˆ𝑙 . We prove by contradiction:

Case I: 𝑠 > 𝑠 . In Routing, last-hop ToRs are traversed by their

time slices to 𝑑𝑠𝑡 ascendingly. So, 𝑝 must be found earlier than 𝑝 ,

which is a contradiction.

Case II: 𝑠 = 𝑠 and 𝑙 > ˆ𝑙 . When Routing breaks the tie on the

same time slice, 𝑝 would overwrite 𝑝 and be chosen (lines 9-10),
which is a contradiction. □

HOHO routing produces full paths, including every hop along the

way, but the routing lookup on each intermediate ToR is based only

on the immediate next hop. Now, we prove that this implementation

preserves the optimal paths.

Property 2: Per-hop lookups yield the optimal path.
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Figure 3: We use DPTP [12] for time synchronization, imple-

ment HOHO routing lookup using a custom match-action

table, and use calendar queues [24] to achieve packet buffer-

ing and scheduled transmission.

Proof. Let 𝑝 be the selected path whose first-hop ToR from 𝑠𝑟𝑐

is 𝑟 , last-hop ToR to 𝑑𝑠𝑡 is 𝑟 ′, the optical connection between 𝑠𝑟𝑐

and 𝑟 is at time slice 𝑠 , the connection between 𝑟 ′ and 𝑑𝑠𝑡 is at

slice 𝑠′, and the path length is 𝑙 . The residual path from 𝑟 to 𝑑𝑠𝑡

is 𝑝′ = 𝑝 − 𝑠𝑟𝑐 , the arrival time at 𝑟 is 𝑠 , and the path length is

𝑙 ′ = 𝑙 − 1. We prove 𝑝′ is an optimal path for Routing(𝑟 , 𝑑𝑠𝑡 , 𝑠).

If there exists a better path
ˆ𝑝′ than 𝑝′ from 𝑟 to 𝑑𝑠𝑡 at slice 𝑠 ,

whose last-hop ToR to 𝑑𝑠𝑡 is ˆ𝑟 ′, the optical connection between
ˆ𝑟 ′

to 𝑑𝑠𝑡 is ˆ𝑠′, and the path length is
ˆ𝑙 ′, then 𝑠′ > ˆ𝑠′, or 𝑠′ = ˆ𝑠′ and

𝑙 ′ > ˆ𝑙 ′. For either case, because ˆ𝑝′ starts at slice 𝑠 where 𝑠𝑟𝑐 and 𝑟
are connected, there must be a path 𝑝 = 𝑠𝑟𝑐 + ˆ𝑝′ from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 ,

which arrives at 𝑑𝑠𝑡 at slice ˆ𝑠′, and the path length is
ˆ𝑙 = ˆ𝑙 ′ + 1.

Comparing 𝑝 to 𝑝 , we have 𝑠′ > ˆ𝑠′, or 𝑠′ = ˆ𝑠′ and 𝑙 > ˆ𝑙 . So, 𝑝 is

better than 𝑝 , which contradicts Property 1 that the chosen path 𝑝

is optimal.

Now that 𝑝′ is optimal, since Routing selects a single path out of

the feasible paths, Routing(𝑟 , 𝑑𝑠𝑡 , 𝑠) may return a different optimal

path
ˆ𝑝′ equivalent to 𝑝′, that is 𝑠′ = ˆ𝑠′ and 𝑙 ′ = ˆ𝑙 ′. Then for the full

paths 𝑝 and 𝑝 from 𝑠𝑟𝑐 , 𝑠′ = ˆ𝑠′ and 𝑙 = ˆ𝑙 . So, 𝑝 is also optimal.

Repeating the above proof hop by hop until 𝑑𝑠𝑡 , we have hop-

wise lookups produce the optimal path. □

If a packet misses its planned time slice, the switch system adjusts

at runtime to reroute the packet by the next available time slice

(§2). We prove our runtime adjustment is robust to find the next

optimal path starting from the current ToR.

Property 3: Rerouting after missing a planned send time slice gives
the next optimal path.

Proof. Let 𝑝 be the optimal path from 𝑠𝑟𝑐 to 𝑑𝑠𝑡 , 𝑅 be the set

of intermediate ToRs along 𝑝 , and 𝑆 be the time slices set for ToR

connections of adjacent hops. Assume 𝑆𝑖 is missed at 𝑅𝑖 and the

current time slice is 𝑆𝑐 (𝑆𝑐 > 𝑆𝑖 ). By per-hop lookup, we get a path

𝑝′ from 𝑅𝑖 to 𝑑𝑠𝑡 at slice 𝑆𝑐 . According to Property 2, 𝑝′ is optimal

w.r.t. the current time slice 𝑆𝑐 . □

4 SWITCH SYSTEM SKETCH

In this section, we outline the system design to demonstrate the

feasibility of realizing HOHO routing in practice.

For the HOHO routing scheme (§3) to work, each ToR requires

three key functionalities. (i) Time synchronization. For an ar-

riving packet, the next hop (egress port) determined by HOHO

routing depends on the packet’s arrival time slice. Therefore, each

ToR switch would need to keep track of the current time slice by

time synchronizing with the optical network fabric. (ii) HOHO

Routing lookup. Each ToR needs to implement a routing table,

which can match on the packet’s arrival time slice and the desti-

nation ToR, and look up the egress port (next hop) and the send

slice. (iii) Packet buffering and time-scheduled transmission.

A ToR also needs to implement time-scheduled packet transmission

such that each packet can be transmitted precisely within the send

slice determined by HOHO routing.

Time synchronization. A controller machine usually reconfig-

ures circuits on an optical DCN fabric as per the optical schedule.

To synchronize the ToRs with the optical schedule, we plan to

use the DPTP time synchronization protocol [12]. DPTP supports

both switch-to-host and switch-to-switch synchronization in the

dataplane, at the precision of tens of nanoseconds. The ToR con-

nected to the network controller is designated as the lead ToR (see

Fig. 3) and synchronizes with the network controller. During the

bootstrapping stage of the optical DCN fabric, we make a circuit

connection between the lead ToR and every other ToR individually

to synchronize them one by one. After the initial synchronization,

the optical fabric becomes operational and thereafter DPTP syn-

chronization is performed with the lead ToR once every optical

schedule cycle to correct for the clock drifts.

HOHORouting lookup. For a given optical schedule, the HOHO

routing algorithm is run offline per time slice per source-destination

ToR pair. The output paths are then encoded as static routes for

next-hop lookups in a HOHO routing table on each ToR. The HOHO

routing table is a simple match-action table where the match fields

are the packet’s arrival time slice and the destination ToR while the

lookup (action) data returned consists of the egress port and the

send slice when the packet should be transmitted to the next hop.

Note that HOHO routing generates per arrival time slice routing

tables assuming that the packets always arrive at the beginning of

a time slice and therefore can finish transmission in the same time

slice. In practice, however, this is not always the case due to the

pipeline processing and queuing delays on the switch as well as

the serialization and propagation delays on the fiber. Fortunately,

the next generation programmable switches such as Intel Tofino2

provide queuing delay information in the ingress pipeline [14],

while the remaining delays are deterministic given a packet size.

Therefore, appropriate correction can be applied to the arrival time

slice of a packet such that the HOHO routing lookup is performed

based on the time slice in which the packet would complete its

transmission.

Packet buffering and time-scheduled transmission. If the

send slice determined by the HOHO routing lookup is later than

the current time slice, the packet must be buffered temporarily for

time-scheduled transmission. To this end, we propose to build on

top of the calendar queues framework [24] where a “calendar day”

corresponds to a time slice and is mapped to a FIFO queue. The

rank for a packet is simply the difference between the send slice

and the current time slice, i.e., how far in the future the packet’s

transmission is scheduled. We perform queue rotation each time
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Figure 4: Performance comparison with Opera. (a) FCT reduction with 8 packets per queue. (b) FCT reduction with unbounded

queues. (c) Queue occupancy distribution with unbounded queues.

the current time slice is updated, which in turn is updated in a

time-driven manner using the on-chip packet generator [11]. We

keep track of the queue corresponding to the current time slice

using a SRAM-based register, which is updated per queue rotation.

Since packets are always dequeued from the queue corresponding

to the current time slice, an enqueued packet would be dequeued

during its send slice.

With Intel Tofino2, it is now possible to escalate queue priorities

dynamically from the switch dataplane through queue pausing [14].

5 EVALUATION

We now compare the performance of HOHO routing with Opera,

the latest optical DCN design optimized for mice flows. We con-

ducted packet-level simulations using the Opera simulator [18]

and extended the simulator with the routing algorithm (§3) and

the runtime switch system (§4) for evaluating mice flows. For ele-

phant flows, we retained the original direct-path routing and on-

NIC packet buffering. To perform a fair comparison, we reused

the experimental setup and flow classification heuristics in the

Opera paper [18]. We simulated a network comprising 108 ToRs

and 648 servers. Each ToR has 6 10Gbps downlinks to servers and

6 10Gbps uplinks to the optical DCN fabric containing 6 108-port

optical switches. We used the data-mining traffic workload from

Microsoft [8], scaled to a value between 1% and 40% load to match

the link utilizations in production DCNs [23]. Opera uses the con-

gestion control protocol (CCP) from NDP [9] with a cap of 8 packets

per queue, and we use this configuration as such. We mostly stick

to Opera’s time slices of 60.5 µs, but vary the time slices later to

demonstrate the flexibility of our solution.

Low latency. Fig. 4(a) shows that flow completion times (FCTs)

for mice flows in HOHO routing are substantially smaller (up to

23%) than those in Opera. The improvements are also substantial

for high traffic loads. Since HOHO routing is more effective than

Opera at finding shorter paths, it alleviates packet queuing per ToR

especially for heavy loads. The FCT reduction is amortized over the

longer FCT for larger flows, which is consistent with our design

purpose of improving mice flows. HOHO routing does not degrade

the performance of elephant flows, albeit we omit elephant flows in

Fig. 4(a) due to the neglible the difference in FCTs between HOHO

routing and Opera for these flows.

Robustness to congestion. Opera typically generates long

paths and it relies on NDP for congestion control. We removed

the queue occupancy cap of 8 packets in NDP to mimic the scenario

where such advanced CCPs are unavailable. Per Fig. 4(b), HOHO

routing reduces the FCT by up to 35% in such scenarios. When we

scrutinized the flows in Opera, we observed many packet drops: As

queues build up, the queuing delay causes packets to miss the sched-

uled send slice and be sent over non-existent circuits. With shorter

paths than Opera, HOHO routing reduces the queue occupancy in

the first place. Furthermore, the runtime adjustment on the switch

system (§4) detects the upcoming slice miss and postpones the

packet to a later send slice rather than dropping it. This robustness

to misses also demonstrates the benefit of per-hop lookups (§3.2).

Low queue occupancy. While Opera uses two separate queues

for elephant and mice flows, HOHO uses 𝑁 calendar queues as

needed for mice flows and another queue for elephant flows. Fig. 4(c)

plots the occupancy across all queues for mice flows (labelled “sum

queue occupancy”) per port in the unbounded queues setting. In

general, HOHO routing andOpera both consumemanageable queue

space. HOHO routing has a noticeable reduction in the queue occu-

pancy, regardless of the need to buffer packets during path transi-

tions. In particular, the median queue occupancy in HOHO is 5%

lower at 25% load and 10% lower at 40% load. These improvements

stem from HOHO’s short paths and highlight HOHO’s potential to

serve high traffic loads.

Flexible time slice duration. In Opera, as packets must stick

to fixed (and usually long) paths, the time slice duration is lower-

bounded by the worst-case one-way delay along the multi-hop

paths. The paths in Opera can have up to 5 hops, and each hop

queues up to 8 packets. The propagation and queuing delays require

a minimal time slice duration of 60.5 µs, although the trend in

optical switching delays indicates a shift from microseconds to

nanoseconds. HOHO routing reduces the minimal slice duration

to the one-hop delay, as packets can “hop off” optical paths freely.

Considering empty queues and optical switching delays, the one-

hop delay and thus the minimal achievable time slice duration in

our 10Gbps setup is 2.269 µs. However, we suggest using 12.1 µs
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Figure 5: HOHO routing under varying time slot durations. (a) Path length distribution compared with Opera. (b) Maximum

number of queues per port. (c) Queue occupancy with unbounded queues.

time slices in our 10Gbps setting to consider the queuing delay of

8 packets per queue as in Opera.

Short paths. Fig. 5(a) shows that HOHO routing yields shorter

paths (i.e., fewer hops) than Opera. The advantage becomes more

prominent as the time slice duration decreases, since for short time

slices the benefits of waiting at a ToR for the next slice far outweigh

the transmission delay over an extra hop. Notably, our suggested

slice duration of 12.1 µs retains 99.99% of paths under 4 hops and

84.39% paths under 3 hops. It reduces the average path length from

3.11 in Opera to 2.80, and a slice duration of 2.269 µs reduces it

further to 2.65.

Practically feasible. HOHO routing uses 𝑁 calendar queues

per port to buffer mice flows. Whether commercial switches have

sufficient physical queues and packet buffer to hold the buffered

packets is naturally a concern. Fig. 5(b) alleviates this concern by

showing the maximum number of queues needed under different

slice durations. HOHO routing needs 7 queues per port at most

(including one queue for elephant flows), which is well below the

capacity of today’s commercial switch ASICs [6]. We plot in Fig. 5(c)

the aggregate occupancy of all queues for mice flows under the

highest (40% traffic) load with unbounded queues (as in Fig. 4). Long

time slices results in higher queue occupancy, as it takes longer to

clear packets for future slices. For the suggested 12.1 µs time slices,

the average queue occupancy is 50.6 KB per port. With a high-end

128-port ToR with half ports connected to the optical fabric, we

need a total buffer of size 3.24MB. In the extreme case of 60.5 µs

slices, the average queue occupancy is 69.4 KB per port, requiring

4.44MB of total buffer. These sizes are significantly below the buffer

size of commercial switch ASICs [22].

6 RELATEDWORK

Several optical DCN architectures have been proposed to improve

traditional electrical DCNs, e.g., to increase the network bandwidth,

enable flexible topologies, and reduce deployment cost and power

consumption [2–4, 16, 18–20, 26]. Few of these proposals aim at

optimizing the flow latency [2, 4, 18, 26], and HOHO routing is a

direct improvement over them. Unlike Opera [18], HOHO allows

packets to “hop off” from the current path and choose a better one,

resulting in shorter and faster paths than Opera in our simulations.

We designed HOHO for optical-only DCNs and to be compatible

with different optical hardware. It is thus easier and more eco-

nomical to deploy HOHO than electrical-optical hybrid networks

like Helios [4] and c-Through [26], and Sirius [2], which requires

sweeping changes from optical transceivers to the network stack.

Our unconventional approach of packet buffering on ToRs is

motivated by the recent successes of in-network computing [7, 10,

13, 15, 17, 27–30]. Particularly, we leverage DPTP [12] to synchro-

nize ToRs with the optical network controller, and we leverage

calendar queues [24] for temporal buffering and time-scheduled

packet transmission. Once fully realized, HOHO routing will join

this family of tools to enable radical network designs in the future.

7 CONCLUDING REMARKS

The delays incurred in setting up circuits in an optical DCN poses

a significant barrier for supporting today’s ultra-low latency cloud

applications, including disaggregated computing, machine-learning

inference, and cloud gaming. To address this issue, we presented the

design of the Hop-On Hop-Off (HOHO) routing algorithm, sketched

an implementation on programmable switches, and demonstrated

the design’s benefits through packet-level simulations. By showing

the feasibility of and potential behind a radical (long deemed infea-

sible) idea—buffering packets on ToRs for optical DCNs—this paper

opens up two new vistas of research. First, it urges the networking

community to fundamentally alter the way we approach optical

DCN designs and creates opportunities for novel architectures. Sec-

ond, since HOHO routing’s design is agnostic to optical hardware

structure and time-slice durations, it can serve as a universal rout-

ing algorithm for comparative evaluations of different optical DCN

architectures.
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