
8 COMMUNICATIONS OF THE ACM | AUGUST 2022 | VOL. 65 | NO. 8

Follow us on Twitter at http://twitter.com/blogCACM

The Communications website, http://cacm.acm.org,
features more than a dozen bloggers in the BLOG@CACM
community. In each issue of Communications, we’ll publish
selected posts or excerpts.

of experience, but might still be operat-
ing at a competent—but still junior—
level if they don’t continue growing.

Domain vs. Technical
Specialization vs. Organization
A software engineer on Wall Street
needs to learn about financial instru-
ments. A data scientist working for a
hospital needs to learn about health-
care. Those are domain skills and are
important for functional delivery. As
for technical skills, there are a plethora
of topics to consider as new program-
ming languages, frameworks, and
techniques keep appearing. Technical
professionals need to be competent in
many areas, but it takes a lot of time to
become an expert in something, and
this is where focusing on a thing means
not focusing on something else—or not
sleeping—as there are only so many
hours in the day. There are no “wrong”
decisions on specialization, as long as
those decisions line up with personal
goals and interests.

There are some potentially mutually
exclusive specialization scenarios to be
aware of. For example, if an engineer
chooses to specialize in Framework X
in an organization and the organization
decides to prefer competing Frame-

work Y for future efforts, the engineer
has a decision to make to either learn
Framework Y, or find an organization
that prefers Framework X. Or perhaps
an engineer specializes in Domain X,
but there are massive changes in that
domain causing instability. The engi-
neer now has choices to make in terms
of whether to stick with a particular do-
main/industry or to make a transition
to something new. These are not easy
decisions and there are no pat answers.

Managing Up
Learning how to “manage your man-
ager” is an important skill, and some-
thing that is not frequently taught. The
traditional top-down way of thinking
is that the manager initiates conversa-
tion and the employee responds, and
employees that initiate conversation
are either wasting their manager’s
time or are suck-ups. That viewpoint
isn’t helpful or in anyone’s interest.

Individual contributors should pe-
riodically check in with their managers
seeking feedback. Don’t assume a man-
ager is going to actively manage your
career. Likewise, individual contribu-
tors need to state their needs to their
manager: don’t ask, don’t get. There is
a balancing act of not being too chatty,
of course, but going radio silent on
your manager until annual review time
is worse.

How Long To Stay?
How long one should remain an indi-
vidual contributor is a tough question.
I would recommend not rushing up the
ladder. Get as much experience hands-

Doug Meil
Developing
Technical Leaders
https://bit.ly/3x4aJiv
April 4, 2002
How does one get to Carn-

egie Hall? Practice, practice, practice, so
the saying goes. How does one become
a technical leader? Practice is certainly
important, but at what? This post de-
scribes tiers of technical hierarchy with
major topics to consider at each level.

Individual Contributor
This is the tier where everybody starts,
and most people likely stay their entire
careers. Staying an individual contribu-
tor is hardly a bad thing, it just depends
on personal interest and career goals.

Individual contributors generally
go through three phases: early-career/
junior, mid-level, and senior, with the
differentiating attributes of the latter
phases being able to design, estimate,
and implement from a “whole prob-
lem” perspective, the ability to look
around corners, and mentor others.
Experience is critical in being able to
make this transition to greater engi-
neering responsibility, but years of ser-
vice is not the only determining factor.
Some developers might have 15 years

Advancing in the
Technical Hierarchy
Doug Meil considers the steps to becoming a technical leader.

DOI:10.1145/3542813 http://cacm.acm.org/blogs/blog-cacm

http://dx.doi.org/10.1145/3542813
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3542813&domain=pdf&date_stamp=2022-07-21

AUGUST 2022 | VOL. 65 | NO. 8 | COMMUNICATIONS OF THE ACM 9

blog@cacm

on as possible, in as many products/
projects as possible, in as many release
cycles as possible. The experience—and
scar tissue—with help down the road.

Technical Lead
“Technical lead” is often a position
that people fall into; it has elements of
a senior individual contributor, a large
heaping of project manager, and “man-
ager-lite” duties. It also is used as a test-
ing ground for being a manager, both in
terms of whether people are effective at
the role, and whether they want to do it.

Being a technical lead is the hardest
transition in leading people because it
is the first time where one is required to
delegate to be effective. A seven-person
team that delivers successfully, but
where the technical lead is doing 80% of
the work, isn’t sustainable. In that sce-
nario, the technical lead might still be
able to play the role of “hero” for a time,
but that is bound to produce resent-
ment in the rest of the team (such as,
“What are we doing on this project? Are we
a fan club?”), if not burning out the lead.

Managing Up and Down
The technical lead needs to be able to
manage communication up to a man-
ager, and down to the team. That means
the entire team, not just a few people.

Leads Who Code
Technical leads typically want to stay
hands-on, understandable given that
is what they were previously doing as
senior individual contributors. It’s rea-
sonable for a technical lead to have some
committed deliverables for project or
release, but the lead shouldn’t overdo it.

Technical Reskilling
Getting back into full-time hands-on
work can sometimes be a challenge, de-
pending on how long one has been in
this position, so plan ahead for refresh-
ing technical skills being a tad painful.
It’s always surprising how quickly skills
that are taken for granted can get rusty.

Manager
On top of responsibility of operational
execution, roadmap prioritization, bud-
gets, and customer/stakeholder esca-
lations, there is all the other “manager
stuff,” such as performance reviews, sal-
ary increases and promotions, oversee-
ing growth plans for employees, hiring

(for growth and replacement), expense
approvals, staying on top of compliance
and regulatory topics, chasing down ap-
provals for all hardware and software
needed by the team, as well as estab-
lishing relationships with the rest of the
organization, to name a few. Having fun
yet? Interested? Who wants in? Man-
agement is a lot of responsibility and
doing it effectively is hard, but essential
for organizational success.

Managing Up, Down, and Sideways
Managers also have the up and down
communication challenge, but don’t
get to use the “I’m just a technical lead”
excuse. People expect managers to know
what’s going on and to have answers,
and if they don’t, to go find them.

Managers Who Code
“Managers who code” is almost a trope in
the technical community. It’s a badge.
It’s a signal the manager still has tech-
nical chops. But there is a tremendous
difference between a manager review-
ing designs and code or participating
in an occasional experimental project,
and a manager who has committed de-
liverables on a real timeline. The latter
could work under a few specific con-
ditions, such as the team being rela-
tively small, the team is seasoned, the
product or framework being relatively
stable, and the organization being rela-
tively stable. It can happen.

If any of those are not present, a
“manager who codes” is a huge red flag.

Technical Reskilling
Technical re-skilling for hands-on work
after years in management is hard. It’s
not impossible, but certainly hard.

Director
Many people have the director title; even
some individual contributors have the
title. The traditional definition of a di-
rector is a “manager of other managers,”
thus the responsibilities of a director are
like those of a manager, plus more.

A director’s most important tasks are
stakeholder coordination, prioritiza-
tion, resourcing, and clearing obstacles
to delivery, in that order. While delivery
is certainly important, it doesn’t mean
anything if it’s not something people
want, let alone when they need it.

Directors tend to live in a PowerPoint
universe of planning and proposals, and

it takes a lot of effort to stay grounded in
reality, so watch out for that.

Managing Up, Down, and Sideways
Directors have all the communication
responsibility of a manager, plus more.
Effective directors need to be 360-de-
gree communicators, and preferably
information radiators.

Lastly, never underestimate the value
of approachability. It’s important at all
levels, but especially important at this
level as directors should be building al-
liances, agreements, and consensus, ab-
sence of which makes things very pain-
ful for the teams, and everybody suffers.

Directors Who Code
With the above caveats regarding
what “coding” and “director” mean,
this should never be a thing. Directors
should be directing. If they are not, then
something has gone horribly wrong.

Technical Reskilling
Never say never, I guess.

Other Food For Thought:
People Join Companies,
But Quit Teams And Leaders
Truer words have never been spoken.

Team subculture will have a greater
influence on an individual’s experience
than any larger “corporate culture.”

Keep Going
Healthy projects and products deliver,
and keep delivering. Don’t get stuck in
a “perfect prioritization” or “reprioriti-
zation” rut. as it drives technical folks
both nuts and out of organizations.

Further Reading

Management/Leadership Books That
Technical Folks Should Read:
“Extreme Ownership,” by Jocko Willink
“The Phoenix Project,” by Kim et al.
“Great At Work,” Morten Hansen

Relevant BLOG@CACM Posts:

Anna Karenina on Development: The
importance of continued delivery.
What Happened to Watson Health?: A case
study in portfolio management and what
happens when a business doesn’t have
stakeholders and priorities aligned.

Doug Meil is a portfolio architect at Ontada. He also
founded the Cleveland Big Data Meetup in 2010.

© 2022 ACM 0001-0782/22/8 $15.00

