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Abstract
As distributed applications become increasingly complex, so
do their scheduling requirements. This development calls
for cluster schedulers that are not only general, but also
evolvable. Unfortunately, most existing cluster schedulers are
not evolvable: when confronted with new requirements, they
needmajor rewrites to support these requirements. Examples
include gang-scheduling support in Kubernetes [6, 39] or
task-affinity in Spark [39]. Some cluster schedulers [14, 30]
expose physical resources to applications to address this.
While these approaches are evolvable, they push the burden
of implementing scheduling mechanisms in addition to the
policies entirely to the application.
ESCHER is a cluster scheduler design that achieves both

evolvability and application-level simplicity. ESCHER uses
an abstraction exposed by several recent frameworks (which
we call ephemeral resources) that lets the application express
scheduling constraints as resource requirements. These re-
quirements are then satisfied by a simple mechanism match-
ing resource demands to available resources. We implement
ESCHER on Kubernetes and Ray, and show that this ab-
straction can be used to express common policies offered by
monolithic schedulers while allowing applications to easily
create new custom policies hitherto unsupported.
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1 Introduction

With the end of Moore’s law and Dennard scaling, developers
are forced to distribute their applications to process an ever
growing amount of data. As a result, the past decade has seen
a proliferation of new distributed frameworks [6, 14, 23] to
handle a variety of workloads from big data (e.g., batch jobs,
interactive query processing) to AI applications (e.g., model
training and serving).
As the number of data and AI applications grows, so do

their scheduling requirements. Some examples of scheduling
policies are affinity (i.e., co-locate computation with data
to avoid costly data transfers), anti-affinity (i.e., schedule
tasks on different machines to avoid interference), and gang
scheduling (i.e., schedule a group of interdependent tasks si-
multaneously). For example, a hyperparameter search appli-
cation [17, 38] consists of multiple distributed training jobs,
each consisting of multiple parallel tasks. This requires anti-
affinity between jobs for high throughput, affinity within a
job to avoid unnecessary data transfers, and gang scheduling
to ensure multi-node jobs are not starved.
This diversity of policy requirements makes designing

schedulers for distributed frameworks challenging. There
is an inherent trade-off between simplicity and flexibility in
exposing different policies to applications. Different cluster
managers occupy different points in this trade-off space.

At one end of the spectrum (Figure 1a), monolithic cluster
managers like YARN [36] and Kubernetes [6] provide several
out-of-the-box policies for the application to chose from.
This simplifies the application’s task, but it compromises the
flexibility, as adding a new policy requires changes to the
scheduler and the cluster manager itself. Implementing a new
policy requires the developer to understand and modify the
source code of the cluster manager, not always an easy task
given their inherent complexity. And, once the new policy
is implemented, the developer is on the horns of a dilemma:
either fork the project and pay the cost of maintaining it
up-to-date as the project evolves, or wait many months for
the change to be merged in the main branch. Worse yet, if the
cluster manager is closed source, the application developer
has no choice but to wait and hope that the company behind
the cluster manager will implement the desired policy.

At the other end of the spectrum (Figure 1b), are schedulers
like Omega [30] and Mesos [14] that enable an application
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Figure 1: (a) A monolithic scheduler implements both scheduling and resource constraint matching [6, 12, 13, 15]. Some
schedulers allow applications to express and compose certain policies [6, 19, 35], but custom application policies may require
modifying the scheduler itself. (b) To maximize flexibility, some frameworks expose physical resources [14, 30], but require
applications to write custom schedulers that manage both policy and resource coordination [10, 27, 38]. (c) ESCHER. With
ephemeral resources, applications can express custom policies through ephemeral resources, while the cluster scheduler
provides just one service - satisfying per-task resource constraints.

to directly allocate resources and implement its own sched-
uling logic. This makes these cluster managers very flexible,
but dramatically increases the complexity of the application.
Implementing a scheduling policy in a distributed system
can be a daunting task, as it requires not only allocating re-
sources, but tracking the resource availability in the presence
of various failures and new nodes joining the system.

In this work, we present another point in the design space
that allows application developers to easily implement a
range of new scheduling policies. This design point is enabled
by a mechanism recently introduced by cluster managers
like Kubernetes and Ray which provides an interface for ap-
plications to dynamically create, modify, and destroy logical
resources. We call these resources ephemeral resources. Like
regular resources, ephemeral resources are pairs of labels
and count values which can be allocated to tasks. The sched-
uler treats ephemeral resources in the same way as physical
resources, subjecting them to admission control to ensure
they are not oversubscribed. This frees the applications from
performing admission control and tracking availability.
We find that a surprisingly large number of scheduling

policies can be expressed by dynamically creating, updat-
ing and destroying ephemeral resources. Consider a simple
scheduling constraint to colocate two tasks T1 and T2. To ex-
press this constraint, an application would submit T1, which
creates an ephemeral resource R1 during execution, and then
submit T2 with R1 as a resource requirement. The scheduler
is then forced to place T2 on the same node as T1, since
no other node has resource R1. While this is a very simple
example, it illustrates the underutilized power of ephemeral
resources for satisfying application-level scheduling con-
straints. In contrast, a monolithic cluster manager would
have to expose a primitive designed specifically for task-task
affinity, and a two-level scheduler application would have
to implement the entire policy themselves, choosing where
both T1 and T2 execute.

The key promise of ephemeral resources is that they en-
able an application to implement new scheduling policies not
supported by the underlying cluster manager. This increases
the velocity of deploying and iterating on new application
functionality. However, there are two natural questions that
follow. First, how general are the scheduling policies enabled
by ephemeral resources? Second, what are the costs in terms
of implementation complexity and overhead compared to na-
tively implementing the same policy in the cluster manager?
After all, if these overheads dominate, then an application
developer is better off building their own scheduler.
To answer these questions, we propose a scheduling ar-

chitecture for distributed applications called ESCHER 1. In
ESCHER, the application uses ephemeral resources to imple-
ment its scheduling policy instead of relying on the cluster
manager’s baked-in policies. The key insight of ESCHER is
that a broad class of heterogeneous scheduling constraints
can be cast as ephemeral resource requirements. The underly-
ing scheduler simply enforces these requirements. ESCHER
enables applications to implement a large number of sched-
uling policies by (1) dynamically creating new ephemeral
resources, and (2) specifying task resource requirements on
these ephemeral resources. We find that by using these two
simple primitives, we are able to satisfy a large set of sched-
uling constraints, without requiring any changes to the core
scheduler or significantly affecting application performance.
For instance, gang-scheduling in ESCHER can be written in
10x fewer lines of code with less than 2x overhead in sched-
uling latency compared to implementing the policy natively
in the core scheduler (section 6.2.1).
However, the flexibility of ephemeral resources does not

come for free. First, it increases the application complexity
compared to monolithic schedulers in which applications
just need to select one of the available policies. Implementing
certain policies, such as gang scheduling, requires the appli-
cation to implement additional mechanisms using ephemeral
1ESCHER stands for Expressive SCHeduling with Ephemeral Resources.
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resources such as ghost tasks, i.e., tasks whose sole purpose
is to signal when all required resources have been allocated.
Second, because ephemeral resources are created dynami-
cally, an application must handle infeasible requests explic-
itly. For example, if a task’s resource request cannot be satis-
fied, the task will hang and it must be explicitly terminated.
To alleviate the challenge of application complexity and

provide protection against invalid resource specifications,
ESCHER supports simple libraries to support common poli-
cies. We call these libraries ESCHER Scheduling Libraries
(ESLs). ESLs aim to provide the best of both worlds: the sim-
plicity of monolithic schedulers, and the flexibility of adding
new scheduling policies at the application level by either
extending an existing ESL or creating a new one. ESLs de-
couple application logic and policy by abstracting ephemeral
resource management for common high-level scheduling
policies, thus dramatically reducing development cost via
code reuse and enabling composition of simple policies into
more complex ones.
To evaluate ESCHER’s performance, we implement it on

both Kubernetes [6] and Ray [23] by leveraging their ex-
isting implementations for label-based scheduling, which
were originally intended to represent custom physical re-
sources rather than logical scheduling constraints. We run
ESCHER on a range of applications and policies, including
WordCount MapReduce with max-min fair sharing on Ku-
bernetes as well as AlphaZero [31] and distributed model
training on Ray [23]. We show that ESCHER does not im-
pact the end-to-end performance of most applications when
compared to a system that implements the same policies
in the core scheduler. Meanwhile, the application can use
ESCHER to express additional policies not supported by the
underlying core scheduler, e.g., composing gang scheduling
with affinity (Section 6.1.4).

Thus, ESCHER shows that one can take advantage of the
ephemeral resource abstraction, whose implementation is
already partially provided by some cluster managers, to ex-
press a surprisingly diverse set of scheduling policies at the
application level without having to touch the core sched-
uler. This allows users to quickly implement new policies, as
needed, to improve support for their applications.

In summary, we make the following contributions:
• ESCHER, a scheduling architecture that uses ephemeral
resources to express scheduling policies without mod-
ification to the core scheduler.

• Design and implementation of a wide class of schedul-
ing policies (§4) using the ephemeral resources API.

• ESLs: application-level scheduling libraries that enable
applications to easily compose and re-use policies.

2 Motivation

Table 1 lists some common scheduling policies required by
modern distributed applications and their off-the-shelf sup-
port across different frameworks and specialized schedulers.
None of the schedulers support all policies, and many were
built as a one-off solution to achieve a composition of these
policies. New applications which require a new policy must
find alternate methods of executing it - either by using some
mechanism provided by the scheduler, such as labels, or
writing their own scheduler from scratch. We now give a
motivating example that is insufficiently served by existing
schedulers and describe how ESCHER fills this gap.

2.1 Existing systems are hard to evolve

As applications become increasingly diverse, the cluster
schedulers must evolve to support novel scheduling policies
required by these applications. Consider distributed train-
ing, which has emerged as a dominant ML workload. Multi-
ple training jobs are often scheduled simultaneously due to
multi-tenancy and individual users submitting multiple train-
ing runs in parallel to evaluate different model architectures.
This requires several distinct scheduling policies:

• Anti-affinity: Evenly spread training jobs across the
cluster to ensure high throughput.

• Affinity: Co-locate all tasks of the same training job on
the same machine to avoid unnecessary data transfers.

• Gang scheduling: For multi-node jobs, schedule all
tasks of the job simultaneously to avoid starvation.

• Bin packing (dynamic): Monitor job utilization and
consolidate jobs to reduce resource fragmentation.

Many popular schedulers implement at least one of these
policies, but it is rare for them to support all four (Table 1),
never mind a composition of the policies. There are two
fundamental challenges that make it difficult or infeasible to
extend monolithic schedulers (Figure 1a) in this way. We use
Kubernetes [6] to illustrate these challenges.

First, the application must express its policy using the API
chosen by the framework scheduler. While some schedulers
support composition, it is difficult in general to design a
scheduler API that can capture all possible use cases. For
example, in Kubernetes, applications specify scheduling poli-
cies with static weights to resolve conflicts. This can be used
to express a composition of two policies that, for instance,
weights affinity over anti-affinity. However, the complexity
of composition is not linear in the number of policies. E.g., to
add bin packing and prioritize it, the application would have
to ensure that the weight of bin packing is always greater
than the sum of weights for affinity and anti-affinity.

Second, the scheduler implementation must extend to new
policies. This is difficult because the scheduler must ensure
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Task co-location
Place 𝑛 tasks on the same
physical machine.

✓ ✓/✓ ✗ ✓ ✓ ✓

Data locality
Place tasks with operands.

✓ ✓/✓ ✓ ✓ ✗ ✗

Elastic Load Balancing
Given an unknown number of
tasks, evenly spread them out
across𝑚 workers.

✓ ✓/✗ ✗ ✓ ✓ ✓

Bin-packing
Given an unknown number
of incoming tasks, minimize
the number of workers used
to complete the tasks.

✓ ✓/✗ ✗ ✗ ✓ ✗

Anti-affinity
Given two tasks, place them
on distinct nodes.

✓ ✓/✓ ✗ ✗ ✓ ✗

Gang scheduling
Given a set of tasks, enforce
all-or-none run semantics.

✗ ✗/✗ ✓ ✗ ✗ ✓

Weighted Fair Queuing[5]
Given a set of tasks, enforce
priority ordering.

✓ ✓/✗ ✓ ✓ ✗ ✗

Soft-constraints
For a priority ordering of re-
source constraints, schedule a
task with the highest possible
resource satisfiability.

✗ ✓/✗ ✗ ✗ ✗ ✗

Table 1: Common scheduling policies and off-the-shelf sup-
port from existing schedulers. Kubernetes comparision in-
cludes both modes of operation, using just the core sched-
uling functionality and using labels. In addition to these
policies, ephemeral resources allow applications to specify
and compose custom policies.

that each new policy interfaces correctly with all other ex-
isting policies. Adding another policy requires modifying
Kubernetes itself, which takes significant time and effort. Dy-
namic policies are even more difficult to support if the sched-
uler was not initially designed for it. For instance, adding
gang scheduling support in Kubernetes took months of dis-
cussions and the eventual feature was not mainlined and in-
stead implemented in an add-on scheduler [20–22]. Similarly,
Machine Learning pipelines involve multiple interdependent
tasks (e.g., data pre-processing, training, serving) defined
in a DAG. Scheduling DAGs is not natively supported in

Kubernetes, leading to the emergence of specialized plugins
such as Kubeflow [3].
Due to these limitations, applications must write custom

schedulers to maximize performance, as Gandiva [38] did for
distributed training. Unfortunately, this design requires the
application to implement both the policy and the scheduler
mechanism, maintaining resource state and handlers for task
and resource management, coordination, node addition and
deletion, etc. (Figure 1b). This is both difficult to build and
extend. E.g., Gandiva (built on Kubernetes) supports affinity,
anti-affinity, and dynamic bin-packing, but the addition of
gang scheduling would greatly increase the complexity of the
scheduler code. Thus, Gandiva remains limited to distributed
training jobs that fit on a single multi-GPU node.

2.2 Static labels are insufficient
Some frameworks [6, 14, 30, 36] already support static label
creation as string key-value pairs (e.g., "v100 GPU": 1) asso-
ciated with cluster nodes. This allows cluster operators to
tag nodes with physical resource attributes (e.g., CPU/GPU
architecture, rack affinity) at cluster launch time, which can
be requested by applications at execution time.
In ESCHER, we propose repurposing this API to express

custom application scheduling policies, in addition to physi-
cal resource requirements. Unlike physical resources, which
can be statically determined at a node’s launch time, logical
scheduling constraints may depend on run-time information.
Therefore, it is natural to extend existing static label creation
APIs to ephemeral resources that are dynamically created.

For example, to express task-task affinity between tasks
𝑇1 and 𝑇2, we must first learn where 𝑇1 was placed before
deciding the placement constraint for 𝑇2. This can be easily
done through ephemeral resources: 𝑇1 dynamically creates
a logical resource that is required by 𝑇2. With static labels,
the only option is for the application to pin 𝑇1 and 𝑇2 to a
predetermined node.

For the same reason, there are some inter-task constraints
that are fundamentally impossible to implement with static
labels, such as scheduling policies that depend on time. One
example is a DAG scheduling policy. At its core, this requires
a primitive that guarantees that some task 𝑇2 will not run
until another task 𝑇1 finishes. This is impossible to express
using static labels alone, which cannot reason about the
temporal ordering between two tasks.

3 ESCHER Design and Workflow
A scheduling policy is defined by a set of temporal and spatial
dependencies between tasks and nodes. We call these depen-
dencies scheduling constraints. The key idea in ESCHER is to
map these scheduling constraints to resource requirements
by introducing a new resource type, ephemeral resources.
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Node 1

Resources: {CPU: 8, my-resource: 1}

Node 3

Resources: {CPU: 8, GPU: 1}

Node 2

Resources: {CPU: 8}

ESCHER

Task 1

ResReq: {GPU: 1} 

Task 2

ResReq: {my-resource: 1} 

Figure 2: Example using ephemeral resources for task place-
ment. Applications create ephemeral resources (my-resource)
on the nodes where they wish to place a task and then launch
a task requestingmy-resource. The resource-matching sched-
uler ensures the task is placed on the desired node.

An ephemeral resource is a logical (i.e., non-physical) re-
source attribute that the application can dynamically asso-
ciate with a node. Like physical resources, ephemeral re-
sources have an associated capacity and can be acquired
and released by tasks. We call these resources ephemeral
because the application can create, modify, and destroy them
at runtime.

ESCHER uses ephemeral resources for implementing sched-
uling constraints by leveraging a common functionality pro-
vided by cluster schedulers: matching the application-specified
resource requirements with the cluster’s resource availabil-
ity. For instance, if an application task requires two GPUs,
the scheduler should schedule that task on a node that has
at least two available GPUs. With this resource-matching
capability, the scheduler treats an ephemeral resource like a
physical resource and aims to satisfy its capacity constraints.
The implementation of scheduling policies in ESCHER

follows a two-step pattern. First, the application creates
ephemeral resources or updates capacities of existing ephemeral
resources. This is done programmatically at runtime through
the ephemeral resource API. Second, the application asso-
ciates ephemeral resource requirements with tasks. Note
that these steps can happen in any order. This allows the
application to make targeted placement decisions (Figure 2)
to satisfy the policy’s scheduling constraints.

3.1 ESCHERWorkflow
Figure 3 describes the workings of an ESCHER scheduler.
ESCHER functionality, by design, is split between the appli-
cation and the resource management framework. The appli-
cation can specify scheduling policies through the ephemeral
resource API (Section 3.2), while the framework performs
resource matching and accounting over a set of underly-
ing physical resources. We envision that most applications
would specify and compose policies through the higher-level
ESCHER Scheduling Library (ESL) interface, which uses the
ephemeral resource API to encapsulate common policies.

When using ESLs, an interaction with the system typically
starts with an application requesting a scheduling policy
from the ESL (fig. 3). The ESL may interact with the resource
manager, e.g., by reading cluster state, and implements the
policy by creating the appropriate ephemeral resources. The
application then receives a resource specification 𝑅 from the
ESL. The application attaches 𝑅 to a task and submits it to
the resource manager for placement.

3.2 Ephemeral Resource API
In ESCHER, the resource management framework exposes
two simple API calls to manage ephemeral resources:
set_resource and get_cluster_status (Listing 1). Once cre-
ated, an ephemeral resource behaves as any regular physical
resource and can be acquired and released by tasks.

In addition to the required parameters resource label and
capacity, the set_resource call also allows the specification
of constraints node_spec where the resource must be created.
If node_spec is a resource vector, the resource is updated on
all nodes where the constraint resource vector is a subset of
the node’s available resource vector. Optionally, a num_nodes

field in the node_spec can specify howmany nodes to execute
set_resource on if multiple nodes satisfy the node_spec con-
straints. To make targeted set_resource calls, the node_spec
can contain a unique node identifier (e.g., IP address).
The get_cluster_status call returns a mapping of node

to local resource capacity and availability. These are not
required for all policies, but can be useful to handle node
additions and removals (Section 3.4).
The ESCHER scheduler’s responsibility is to provide the

minimal guarantees provided by any resource-matching sched-
uler: (1) A task whose resource requirements can be met by
a node in the cluster will eventually be scheduled, and (2)
A node is never allocated past its capacity. Together, these
imply that the scheduler implements: (1) task queuing and
dispatch, (2) node selection for each task, and (3) resource al-
location for each task. Note that the scheduler does not need
to satisfy any other constraints, such as a promise regarding
the node where a task is actually scheduled.

3.3 ESLs - ESCHER Scheduling Libraries
Controlling task placement through direct manipulation of
ephemeral resources can be burdensome for applications
with conventional scheduling requirements. To reduce the
application complexity and delineate scheduling policies
from the mechanisms to implement them, we propose ES-
CHER Scheduling Libraries (ESLs).
The role of an ESL is simple - given a set of tasks, gen-

erate and apply a set of ephemeral resource requirements
on the tasks which satisfy the desired scheduling policy.
ESLs achieve this by encapsulating the state management for
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Figure 3: ESCHER task submission workflow with an ESL
mediating the implementation. A task requests a supported
scheduling policy from the ESL, which invokes the ESCHER
API if necessary and returns the resource specification which
would satisfy the policy. The task is launched with the re-
turned resource specification.

ephemeral resources and providing a unified API for imple-
menting domain-specific scheduling policies. An application
requests a scheduling policy supported by an ESL, which
then makes the appropriate ESCHER API calls and returns
the resource specification the application must use to realize
its desired policy. In our implementations, ESLs are designed
as a daemon that can service scheduling requests made from
a single or multiple applications.
ESLs are similar in spirit to Library Operating Systems

(LibOS [16]) in the Exokernel [11] design. In the same way
that a LibOS encapsulates the complexity of direct resource
management exposed by an Exokernel, an ESL abstracts
the policy implementation and enables sharing across differ-
ent applications. Moreover, this design makes applications
portable across different cluster frameworks, e.g., Ray vs.
Kubernetes (Section 5), since ESLs separate the application
policy from the application code. Finally, ESLs can protect ap-
plications from invalid specification of ephemeral resources
by validating resource requests before launching tasks.
Since distributed applications can have widely varying

scheduling requirements, we anticipate the development of
domain-specific ESLs which can strike a balance between
generality and preserving domain-specific optimizations. As
an example, we describe and implement an ESL for hierarchi-
cal max-min fair sharing in Section 4.2.2 and Section 6.1.2.

3.4 Fault tolerance
In the event of a node failure, ESCHER works in tandem
with the fault-tolerance scheme of the underlying framework.
Most frameworks [6, 23] simply re-execute the tasks with the
same resource requirement. However, since these resource

# Create resource with name and capacity on a node
# where the 'node_spec' constraints are satisfied.
# node_spec can be a resource vector or node id.
# If node_spec = None, resource is set locally
def set_resource(name, capacity, node_spec)

# Returns cluster resource state as a list of
# node-wise map of local resource availability.
def get_cluster_status()

Listing 1: Ephemeral resource API

requests include ephemeral resources which no longer exist,
these re-executed tasks cannot be scheduled.

At the bare minimum, an ESL must ensure that ephemeral
resources are restored at some other eligible node. To do
this, ESCHER relies on the cluster framework to report failed
nodes through the get_cluster_statusAPI. Once failed nodes
are detected, an ESL can recreate the ephemeral resources
on suitable nodes by replaying the set_resource calls for the
failed resources. If a candidate node is found, the resource
is recreated, else the tasks must wait for the failed node to
recover before they can be rescheduled. When a node is
restored, its resources are also reinitialized, allowing any
waiting tasks to get rescheduled.

3.5 Evolvability and complexity in ESCHER
The ability to create ephemeral resources on targeted nodes
makes scheduling with ESCHER as flexible as letting the
application directly control task placement on cluster nodes.
Indeed, scheduling a task𝑇 on node𝑁 is equivalent to assign-
ing a uniquely-named ephemeral resource 𝑅𝑁 with capacity
1 to node 𝑁 , and having 𝑇 request one unit of resource 𝑅𝑁 .

While this targeted placement makes ESCHER highly
evolvable, what are its benefits over simply yielding place-
ment control over resources to the application directly? After
all, if the goal is to schedule a task on a particular node, ES-
CHER makes this operation arguably more complex as it
requires creating an ephemeral resource on the node.
The primary benefit of ESCHER is that policy and ESL

implementations do not need to reason about tasks. In a
framework with fully application-level scheduling, such as
Mesos or Omega [14, 30], the application scheduler has to
maintain possibly distributed state about the current set of
tasks. When a task is submitted and can’t yet be scheduled,
the scheduler queues the task. When a task starts, the sched-
uler must update the current resource availability to ensure
that resources do not become oversubscribed. On task com-
pletion, the scheduler must again update the current resource
availability and select a new task to run from the queue.

Of course, none of these functionalities are unique to ES-
CHER. Task to resource matching is a necessity to every
scheduler system, which is why it is the core responsibility
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that we assign to the ESCHER scheduler. Thus, in ESCHER,
an application that has no specific policy requirements can
use an ESCHER scheduler directly without implementing any
scheduling code. This is not possible in systems that expose
resources directly to the application, such as Mesos [14] or
Omega [30], as it is expected that the application will also
implement all mechanisms related to task scheduling.
For applications that do require a custom policy or an

ESL, this division of responsibilities still reduces the effort
required from the application developer, compared to im-
plementing a complete scheduler. For example, most of the
policies that we present in Table 2 do not require examining
the current cluster state; it is enough for a task to create a
resource on its local node or create resources on all nodes
that match a given resource spec. The exceptions are gang
scheduling, which requires reading the cluster state to roll
back a group of tasks in case of a failure, and load-balancing,
which computes the current load from the cluster state. In
contrast, a fully application-level scheduler must continually
update and reason about the current cluster state in order
to find a suitable node for each task. In the ESCHER design,
this responsibility is given to the system rather than the
application.

4 Scheduling with ESCHER
A scheduling policy is a mapping of tasks to resources which
satisfies any spatial ("where") and temporal ("when") con-
straints. We now describe how these constraints can be cast
as resource requirements with ESCHER.

4.1 Scheduling primitives in ESCHER
We present four scheduling primitives implemented using
ephemeral resources which can be used to express both spa-
tial and temporal constraints. We note that this is not an ex-
haustive set of primitives possible with ephemeral resources.
Applications have the flexibility to define their own primi-
tives through ephemeral resource manipulation.
[P1] Locality. Tasks must often be co-scheduled on the

same physical node as another task or must be co-located
with data. These spatial constraints can be easily expressed
in ESCHER. The target task for co-location creates a local
ephemeral resource 𝐸𝑟 with unbounded capacity when the
task starts or the data to be co-located with is created. The
constrained task then requests 1 unit of 𝐸𝑟 and, thus, auto-
matically gets scheduled on the same node.
[P2] Task Signaling. Distributed applications rely on

expensive RPCs to coordinate the execution of interdepen-
dent tasks. This is prevalent in directed acyclic graph (DAG)
task schedulers, where the ordering of tasks is critical for
correctness. These temporal constraints can be expressed
with ESCHER by creating ephemeral resources dynamically,
effectively using them as signals. E.g., if task T2 has any

“happens-before” dependency on task T1, T1 can create a
resource 𝐸𝑇 2 when it completes. T2 a priori requests 𝐸𝑇 2 as a
part of its resource requirements when launched, and thus is
scheduled as soon as 𝐸𝑇 2 is created by T1. Note that signals
in ESCHER are single-shot—all task requests are declara-
tively placed at the start, and tasks begin execution only
when their ephemeral resource demands are met by newly
created resources. More generally, barrier synchronization is
naturally supported. Given

{
𝑇 𝑖−1
𝑗

}
→ 𝑇 𝑖 for 𝑗 > 1, 𝑇 𝑖 could

simply request a single unit of resource created by each of
𝑇 𝑖−1
𝑗 upon their respective completion. Thus, semaphores

(and therefore, mutual exclusion) can also be implemented.
[P3] Queues.Many policies [5, 8] use one or more task

queues as a fundamental construct in their implementation.
The core ESCHER scheduler queues tasks until their resource
requirements (ephemeral and physical) can be satisfied. ES-
CHER allows the application to decide when to dequeue tasks
by increasing the capacity of an ephemeral resource. Creat-
ing a queue is simply creating a unique ephemeral resource
𝐸𝑞 with initial capacity 0 on any node. A task is enqueued
by launching it in a wrapper task requesting 1 unit of 𝐸𝑞
resource. The queue drain rate can be set by changing the ca-
pacity of 𝐸𝑞 . On acquiring the 𝐸𝑞 resource, the wrapper task
submits the contained task to the scheduler with its physical
resource requirement (e.g., 2 CPUs) and exits. Note that it’s
possible to implement batched scheduling by incrementing
the capacity of 𝐸𝑞 by the desired batch size.
[P4] Resource Locking. ESCHER enables a new sched-

uling construct where an ephemeral resource can be used
to acquire and lock one or more physical resources ("bun-
dle"). This reservation of resources is achieved with ghost
tasks - long-running tasks which acquire the bundle like
a regular task and create a local ephemeral resource to ac-
commodate new tasks. Ghost tasks create a pattern of in-
direction where tasks request ephemeral resources instead
of physical resources to get scheduled. We note that ghost
tasks achieve the same outcome as incremental locking pre-
sented in Omega [30]. This is useful when applications re-
quire atomic transactions on a group of resources, such as in
gang scheduling.

4.2 Scheduling policies with ESCHER
To illustrate the use of these scheduling primitive constructs,
we nowdescribe the implementation of an example application-
level policy and a cluster-level policy with ESCHER. Table 2
lists more policies and their implementation with ESCHER.

4.2.1 Application Policy: Gang Scheduling Distributed train-
ing [38] and reinforcement learning workloads [25] require
gang scheduling, where all tasks should start and run concur-
rently. This implies all-or-none scheduling semantics, where
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Policy Example Primitive used Implementation with ESCHER
Sequential: Run 𝑇2 after 𝑇1. Signaling 𝑇2 requests ephemeral resource 𝐸 created by 𝑇1 on completion.
Gang Scheduling: Run 𝑇1
and 𝑇2 simultaneously.

Locking, Signaling Two ghost tasks 𝑇𝑔

1 and 𝑇𝑔

2 request 1 CPU each, and each creates an ephemeral
resource 𝐸𝐶𝑃𝑈 of capacity one. When both 𝑇𝑔

1 and 𝑇𝑔

2 run, schedule 𝑇1 and 𝑇2,
each requesting one unit of 𝐸𝐶𝑃𝑈 .

Affinity: Run𝑇1 and𝑇2 on the
same node.

Locality A ghost task 𝑇𝑔 requests 2 CPUs, and creates an ephemeral resource 𝐸 with
capacity 2. 𝑇1 and 𝑇2 request one unit of 𝐸 each.

Anti-affinity: Run 𝑇1 and 𝑇2
on different nodes.

Queues Every node in the cluster creates anti-affinity resource 𝐸 with capacity 1. 𝑇1 and
𝑇2 request one unit of 𝐸 each.1

Load-balancing: Evenly
spread tasks across nodes.

Queues Create load-balancing resource 𝐿 with capacity 1 on each node. Each task requests
one unit of 𝐿 each. When all 𝐿 resources are exhausted, increase capacity by 1.

Data-locality: Run 𝑇 where
its input 𝐷 is stored.

Locality When storing 𝐷 , create ephemeral resource 𝐸𝐷 on the same node.𝑇 requests 𝐸𝐷 .

1 If𝑇1 and𝑇2 are long-running, the application cannot use the nodes they are running on for other anti-affinity placements. To avoid this, we have two
short-lived ghost tasks𝑇𝑔

1 and𝑇𝑔

2 request 1 unit of 𝐸 each, create ephemeral resources 𝐸1 and 𝐸2, and then terminate.𝑇1 requests 𝐸1 and𝑇2 requests 𝐸2.
Table 2: Expressing scheduling constraints with ephemeral resources

def soft_constraint_scheduler(task,

ordinal_resource_preferences):↩→
for res_pref in

ordinal_resource_preferences:↩→
if recv_heartbeat(task.task_id):
break

task.resources = res_pref
task.launch()
sleep(timeout)

def main():
res_prefs = [{gpu: 1}, {cpu: 1}]
soft_constraint_scheduler(task,

res_prefs)↩→

(a)

def task1(id):
set_resource(label=id, capacity=1)
...

def composite_scheduling():
# Create load-balancing resources
for node in cluster:
set_resource("load_balancing",

1, node)↩→
for i in range(0, task_count):
# Load balance task 1
task1.launch(id=i, resources =

{'load_balancing': 1})↩→
# Co-locate task 1 & 2
task2.launch(resources = {i: 1})

(b)

Figure 4: Scheduling with ESCHER. (a) Soft constraints with
ESCHER. (b) Composition of load-balancing and co-location
policies with ephemeral resources in ESCHER.

either all resources requested by all tasks are granted simul-
taneously, or no resources are granted.
In implementing all-or-none constraints, a common re-

quirement is to check whether sufficient resources are avail-
able to satisfy the policy and reserving them, if necessary.
To achieve this, ESCHER uses ghost tasks from the resource
locking primitive. For instance, gang-scheduling a pool of 8
tasks (each of which requires 1 CPU) can be done by launch-
ing a ghost task which requires 8 CPUs and creates 8 units
of gang-sched resource. If all ghost tasks are successful, each
task in the pool can then request 1 gang-sched resource and
0 CPUs to get scheduled. If any ghost task is unsuccessful, a
timeout in other ghost tasks executes a rollback and removes
the gang-sched resource. To avoid live-locks, either the ap-
plications can execute an exponential back-off [34] before
retrying, or an ESL can serialize all gang scheduling requests
through a common shared library. We discuss this design
space in Section 6.2.1.

4.2.2 Cluster Policy: Hierarchical Fair Sharing From a clus-
ter operator’s perspective, using ESCHER allows enforce-
ment of cluster-level scheduling goals, such as multi-tenancy,

while still supporting application-level scheduling policies
described above. For example, consider large organizations,
which typically have a cluster of resources shared among
teams. This sharing has three requirements. First, the sched-
uler must allow assigning resource sharing weights to users.
Second, to maximize resource utilization, the scheduler must
implementmax-min fairness [12], i.e., temporarily re-allocate
idle resources to oversubscribed users. Finally, teams need to
further partition their share of resources among sub-teams.
Hierarchical max-min fair sharing (HFS) can be imple-

mented as an ESL using a variant of the Queue primitive.
The HFS ESL is instantiated to operate on a specified domain
of nodes and provides a single call - create_user(id, weight

) - which returns a resource name unique to the user id.
On invoking this routine, the ESL executes a set_resource

call to create a unique resource (e.g., res_user1) with infi-
nite capacity for the user on each allocated node. When a
user submits a task, they must request a capacity of 1 their
unique resource label (e.g., res_user1) which ensures their
task is run only on the resources provisioned for them. Since
ephemeral resources can be updated at runtime, the ESL dy-
namically resizes user allocations by adding and removing
their ephemeral resources. Hierarchies in this setup can be
created by launching multiple instances of the ESL and re-
stricting their operating domain to the nodes granted by the
parent ESL.

4.2.3 Soft constraints with ESCHER The core scheduler en-
forces task resource requirements as a hard constraint, keep-
ing the core scheduling logic simple. However, some appli-
cations may demand relaxed scheduling semantics, where
some resource requirements can be specified as soft con-
straints. Ephemeral resources can be used to implement soft
constraints even when the scheduler only supports strict
matching of resource requirements. First, the application
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specifies the soft constraints as an ordinal set of resource set
preferences 𝑅 = [𝑟1, 𝑟2, ..., 𝑟𝑛], where 𝑟𝑖 is the 𝑖𝑡ℎ preferred
resource requirement set. For instance, an application which
prefers a GPU but will work without one would specify its
resource requirements as 𝑅 = [{𝑔𝑝𝑢 : 1}, {}].
The soft-constraints ESL then instruments the applica-

tion’s tasks with a lightweight heartbeat sent to the ESL to
notify it of successful scheduling when the task launches
(Listing 4a). The ESL then sequentially attempts to launch a
task, starting with resource requirement 𝑟1. If the ESL does
not receive the callback from the task within a certain time-
out 𝑡 , it implies the resource requirement was not matched.
The ESL then cancels and resubmits the task, now with a
resource requirement 𝑟2. This best-effort scheduling is at-
tempted for all resource preferences 𝑟 ∈ 𝑅 until the schedul-
ing succeeds or all preferences have been evaluated.

Objective functions. Soft constraints can be used to ap-
proximate policies that optimize a combined objective func-
tion. For instance, consider a policy which aims to balance
both CPU and memory utilization in a cluster. Formally,
given weights for memory and CPU utilization 𝛼 and 𝛽 , the
objective is to maximize the minimum of 𝛾𝑛 = 𝛼𝑀𝑛 + 𝛽𝐶𝑛

across all nodes, where𝑀𝑛 and𝐶𝑛 are the memory and CPU
utilization on node 𝑛 (ranging between 0 and 1).

To express this policy in ESCHER, the scheduler first cre-
ates the resource obj on each node with a capacity of 𝛼 + 𝛽 .
A task with memory and CPU requirements𝑚 and 𝑛 then
specifies the soft constraint 𝑅 = [{𝑜𝑏 𝑗 : 𝛾}, {𝑜𝑏 𝑗 : 𝛾

2 }, {𝑜𝑏 𝑗 :
𝛾

4 }, ...{𝑜𝑏 𝑗 :
𝛾

2𝑘 }], where 𝛾 = 𝛼𝑚 + 𝛽𝑛. The task also includes
the hard constraints {𝑀𝐸𝑀 : 𝑚,𝐶𝑃𝑈 : 𝑛}. This preference
places each task on the least utilized node, correct up to a
factor of 2, while guaranteeing that no node is overallocated.

4.2.4 Policy Composition Applications like hyperparame-
ter search require a hierarchical composition of other poli-
cies (Section 2.1). Scheduling policy compositions can be
logically expressed either as an AND conjunction or an OR
conjunction. AND constraints are expressed by concatenat-
ing the ephemeral resource vectors for two policies. OR con-
straints are supported using soft constraints. For instance, if
an application wants to co-locate 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘2 while load
balancing their groups across the cluster, it can simply apply
co-location on 𝑡𝑎𝑠𝑘1 and 𝑡𝑎𝑠𝑘2 and load balancing only on
𝑡𝑎𝑠𝑘1 as shown in fig. 4b. Similarly, cluster-level policies can
be composed with application-level policies (Section 6.1.2).
Conflicting compositions of policies may render a task

impossible to schedule. E.g., composing a cluster-level fair
sharing policy and an anti-affinity policy may result in a
infeasible task if the fair share of resources is insufficient. In
such situations, one can specify conflict resolutions by using
soft-constraints to relax scheduling policies. For instance,
a soft constraint vector [{fair_a: 1, anti_aff: 1}, {fair_a: 1}]

would try scheduling a task with fairness and anti-affinity,
and relax the anti-affinity constraint if a conflict arises.

5 Implementation
ESCHER is a design that can be applied to both centralized
and decentralized schedulers. We built two prototypes of
ESCHER, on Kubernetes [6], a container orchestration frame-
work with a centralized scheduler, and Ray [23], a distributed
execution framework with a decentralized scheduler.
ESCHER inherits the scheduling properties of the parent

cluster framework. For instance, it can utilize fractional and
heterogeneous resources on Ray and Kubernetes. Since Ray
and Kubernetes have a task-by-task scheduler, our current
implementation also schedules in a greedy, task-by-task man-
ner. However, ESCHER’s queuing primitive can be used to
extend a task-by-task scheduler to do batch scheduling.
Each framework handles isolation differently, which af-

fects how ghost tasks are implemented. Ray does not enforce
CPU affinity, so a ghost task can block the logical resource
for the actual task without blocking the physical CPU. Ku-
bernetes enforces isolation through cgroups. In this case, the
ghost task reserves the CPU for its cgroup and when the
actual task is scheduled, it is added to the same cgroup by
running cgclassify in the task’s preamble. The source code
is available at https://github.com/romilbhardwaj/escher.
Kubernetes Implementation. A Kubernetes task (pod)
specifies its constraints in the form of two sets: a set of
filtering policies, such as resource demands, to enforce hard
constraints and a set of weights for these built-in policies
to add soft constraints. The scheduler first finds a set of
candidate nodes, then computes a policy-weighted score for
each node to find the best fit.
Kubernetes also allows the definition of arbitrary string

and integer pairs associatedwith nodes known as extended re-
sources. Extended resources are identical to regular resources
in that they can be acquired and released by Pods, except
they can be defined as arbitrary key value pairs. The ex-
tended resources API has conventionally been used by clus-
ter operators for marking specialized hardware as a one-time
operation when the cluster is initialized. In fact, application
pods are not granted access to this API by default.

To implement the ESCHER set_resourceAPI, we change the
Kubernetes role-based access control to allow applications
to directly invoke the extended resources API in Kubernetes.
This grants applications the ability to create and update ex-
tended resources directly using the patch_node_status call.
From a security perspective, ESCHER applications require
access only to create and remove extended resources. The
Kubernetes API should deny write access to physical re-
sources. Additionally, we employ namespacing of resources
to enforce isolation and prevent malicious applications from
overriding other applications.
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To force the Kubernetes scheduler to act as a simple resource-
matching scheduler, the scheduler is invoked with only hard
resource constraints set in the filtering policy. Weights for
all other policies are set to zero. Thus, the combination of
extended resources API with hard resource constraints makes
it possible to implement ESCHER policies on Kubernetes
without making any changes to the core Kubernetes scheduler.
Ray Implementation.Ray runs a scheduler per node, which
collectively implement a bottom-up decentralized resource
matching mechanism [23]. Each node in the cluster has a
set of key-value pairs signifying resource labels and their
quantity, e.g., {"cpu": 8, "gpu": 1}. Each task specifies
its hard resource requirements with the same data structure.

Ray nodes share a centralized log of the total resource ca-
pacity at each node, where each entry represents the capacity
at a node. The Ray scheduler matches a task to resources
by storing resource availabilities from other nodes in a map
and allocating the first node which can satisfy the task’s re-
source request. Since a scheduler’s view of the global state is
only eventually consistent, it can correct previous decisions
by running the same logic to find another eligible node. To
support ESCHER, we extend the Ray core to permit updates
to each node’s resource capacity at runtime. We restructure
Ray’s centralized log so that each entry stores only a delta,
instead of the absolute capacity at that node. This guarantees
no race conditions occur between resource updates, while
avoiding expensive coordination, e.g., via a distributed lock.

6 Evaluation
In this section, we evaluate the following questions:

• Can existing distributed applications be ported to use
ESCHER and what are its implications?

• What are the tradeoffs with implementing scheduling
policies in the application space vs in the framework?

• What are the overheads of scheduling with ephemeral
resources?

All evaluations use Amazon EC2 m5.12xlarge, m5.4xlarge
or p3.8xlarge instances. Kubernetes clusters are provisioned
using Amazon EKS running version 1.19.

6.1 End-to-end Evaluation
6.1.1 WordCount with MapReduce WordCount counts the
number of words in large text datasets and is often imple-
mented with MapReduce [10]. To avoid expensive data trans-
fers, data locality is essential. We implement the map and
reduce tasks as independent operators running in containers.
The input files are chunks of a file with random words, each
hosted by one of 100 nodes. The total input size is varied
from 50 GB to 500 GB. We implement ESCHER on Kuber-
netes, using an ESL for data locality (Section 4), and compare
against Kubernetes’s built-in data-locality policy [2] and a
locality-unaware random policy.

Unsurprisingly, Figure 5a shows that as the input size
increases, the overhead of transferring chunks over the net-
work dominates the mapper computation time for the no-
locality policy, taking up to 58.3% of the total job time when
the input size is 500 GB. Meanwhile, ESCHER on Kubernetes
provides the same performance as Kubernetes itself, but with-
out modifying the core scheduler framework. Furthermore,
Figure 5b shows that ESCHER can also scale with the cluster
size. Throughout different scales, ESCHER performs compa-
rably with the core Kubernetes scheduler, with its makespan
staying within 1.9% of the baseline Kubernetes scheduler..
Implementing data locality with ESCHER required adding
only two lines: a set_resource call during data generation
to create a local data-<id> resource and a line to specify a
data-<id> resource requirement for the mapper tasks.

6.1.2 Hierarchical max-min fair sharing Hierarchical Max-
Min Fair Sharing (Section 4) allocates resources proportion-
ate to a user’s weight in a hierarchical organization. Users
submit jobs at different times, so their ideal absolute resource
share is dynamic, making it impossible to maximize overall
resource utilization with static labels. For example, consider
a two-team organization: Sub-Org1 with users A and B of
weights 2:3, and Sub-Org2 with user C. To ensure fairness
with static labels, the only option is to allocate each user a
fixed proportionate share, leading to under-utilization when
only one user is submitting work.

Because ephemeral resources can be dynamically created
and destroyed, an HFS policy ensures fairness while also
maximizing overall utilization as users enter and leave the
system (Figure 5c). We deploy a HFS policy on a 100 node
cluster running WordCount. We use a parent ESL for the
teams and two children ESLs for Sub-Orgs 1 and 2 to create
a hierarchy of ESLs. An HFS ESL tracks idle resources and
reallocates resources between teams or users. The workload
in Figure 5c starts with only user A submitting tasks to the
scheduler. Since other users’ resources are idle, the HFS ESLs
re-allocate all idle resources to A to achievemax-min fairness.
At time 𝑡=60, user B starts submitting tasks. This causes the
Sub-Org 1 ESL to reclaim resources from A to re-allocate to
B, in proportion to their weights. B’s warmup time causes
a small dip in net throughput at 𝑡=60. Finally at time 𝑡=120,
user C starts submitting tasks and the parent ESL reallocates
resources to Sub-Org2. Since Sub-Org 2 and Sub-Org 1 have
equal weights, C’s resource allocation is equal to the sum
of A and B’s allocation. Ephemeral resources also enable
composition: the application composes its custom policy (in
this case, data locality for WordCount) with the two HFS
ESLs by concatenating all the resource requirements.

6.1.3 AlphaZero AlphaZero [32] is a reinforcement learn-
ing application for the board game Go. We demonstrate ES-
CHER’s flexibility by porting an implementation [1] onto Ray
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(a)

Scheduler
Nodes Generic Kubernetes ESCHER

10 183.32 ± 0.51 54.69 ± 0.46 55.24 ± 0.39
50 113.71 ± 0.49 44.02 ± 0.27 44.71 ± 0.44
100 51.90 ± 0.31 35.08 ± 0.31 35.76 ± 0.49

(b) (c)

Figure 5: Data locality and hierarchical max-min fair sharing for WordCount. (a) Makespan of WordCount running on a
100-node Kubernetes cluster, comparing a random placement policy, ESCHER on Kubernetes with data locality, and Kubernetes’
native data locality. (b) Makespan of WordCount MapReduce jobs in seconds across varying cluster sizes. (c) Hierarchical
max-min fair sharing with ESCHER. A and B are in Sub-Org1 with weights 2:3; C is in Sub-Org2. A, B, and C begin submitting
tasks at 𝑡 =0, 60, and 120, respectively.

without compromising performance relative to the optimal
hard-coded (but inflexible) placement.
AlphaZero executes a Monte Carlo Tree Search on the

game state space in a CPU-intensive BoardAggregator pro-
cess. The search is guided by a PredictorAgent running a
neural network on a GPU which evaluates a board and pre-
dicts the associated reward. Co-locating BoardAggregators
and their corresponding PredictorAgents on the same physi-
cal node is thus desirable to avoid network overheads from
transferring board states. These pairings also require anti-
affinity for load balancing and to avoid interference [38].
With ephemeral resources, this composed policy can be spec-
ified in 5 lines of code (fig. 6a): we apply a load-balancing
policy (Table 2) to the PredictorAgent and a co-location policy
to the BoardAggregator and PredictorAgent.
We ran 10k iterations of AlphaZero on a 32-node cluster

(128 GPUs total). We compare three setups: (a) co-location
with hard-coded placement, (b) co-location with ephemeral
resources, and (c) a baseline policy with no co-location. Fig-
ure 6b plots the CDF for board exploration time. Co-location
is important for performance, outperforming no-colocation
by 15.4% in median latency and 20% in P95 latency. Addition-
ally, co-location with ephemeral resources adds insignificant
overheads of <1%, while requiring less developer effort: the
application code (Figure 6a) does not need to match Predic-
torAgent-BoardAggregator pairs to specific nodes.

6.1.4 Distributed Training For a distributed training job,
worker placement is critical to performance, as co-locating
workers reduces the cost of model synchronization at each
step. Gandiva [38] is a scheduler for deep learning jobs
that aims to optimize training job performance. It composes
a higher level load-balancing policy and a lower-level co-
location policy to evenly spread jobs across machines while
reducing intra-job communication overhead. To demonstrate
ESCHER’s flexibility, we augment Gandiva’s [38] worker
co-location and migration policy with Gang Scheduling to
support distributed training jobs, and integrate the policy

into Tune [18], an open source distributed training library
built on Ray [23], which we will refer to as EscherTune. We
modified the Trial abstraction in Tune to be wrapped in
a ghost task that ensures gang scheduling and applied co-
location on tasks belonging to the same Trial. EscherTune
triggers a migration whenever it detects sufficient available
resources to place all workers of a job on the same node. To
execute a worker migration, EscherTune checkpoints the cur-
rent job using application-specific checkpoint functionality
and destroys all current workers. Then, EscherTune assigns
ephemeral resources to the new target node, and relaunches
all worker tasks of the training job without modifying their
ephemeral resource requests.

We compare EscherTune with Tune’s open-source policy
on a cluster of 12 GPUs. We launch 5 short-running train-
ing jobs (short-jobs), each requiring 1 GPU, followed by 1
long-running training job requiring 4 GPUs (long-job). Each
training job is training a ResNet-101 model on CIFAR-10
with a batch-size of 64 images per device.

Initially, the short-jobs are load-balanced across the clus-
ter, while the 4 workers of the long-job are spread across
the cluster depending on GPU availability. This is a sub-
optimal placement, so EscherTune migrates the long-job to
colocate its tasks as soon as resources become available from
a short-job completion, resulting in 36.3% higher through-
put (Figure 6c). Meanwhile, Tune uses a static placement, so
the long-job’s throughput remains the same. Furthermore,
EscherTune’s implementation consists of only 50 lines of
Python, with no changes to Tune or the Ray scheduler.

6.2 Microbenchmarks

6.2.1 Overhead of application-level policies ESCHER sched-
uling policies can be implemented either in the application
space for evolvability or in the framework for performance.
We evaluate the trade-offs involved in this choice by com-
paring three distinct designs of gang scheduling, all with
ephemeral resources on Ray.
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class

PredictorAgent():
def

__init__(id):
# Create

co-location
resource.

set_resource(
name=id,
capacity=1)

...

def main():
# Create load-balancing resources
for node in cluster: set_resource("load_bal", 1, node)
for i in range(0, num_agents):
p = PredictorAgent(resources = {"GPU": 1, "load_bal":

1}).launch(id=i)
# The predictor creates a resource with label i
# This resource is used by the BoardAgg to co-locate.
b = BoardAggregator(resources = {i: 1}).launch(p)

(a) (b) (c)

Figure 6: AlphaZero and distributed training on ESCHER. (a) Implementing AlphaZero policy with ESCHER, composing
co-location with load-balancing. (b) A CDF of AlphaZero board exploration latency, and (c) Throughput comparison of a
distributed training workload with a mix of short-running and long-running jobs. EscherTune is an augmentation of the
hyperparameter search framework Tune [18], using ESCHER to dynamically re-schedule jobs as others complete. The red X
indicates the completion of a short job.

Figure 7: Request latency for gang scheduling imple-
mented in the application space, with (LibSpace) and with-
out (AppSpace) coordination, versus the framework space
(FrameSpace). FrameSpace is 1624 lines of code (LoC), Lib-
Space with 261 LoC and AppSpace with 78 LoC.

AppSpace uses ghost tasks to atomically reserve resources
(Section 4.2). While this policy is simple to integrate, the lack
of coordination between applications can lead to deadlock,
which must be resolved through timeouts. LibSpace avoids
this by using a shared library: a shared service in the cluster
that serializes gang scheduling requests across applications.
LibSpace thus avoids live lock entirely but requires deploying
a separate shared service. Finally, FrameSpace modifies the
Ray scheduler to expose a gang scheduling API. Internally, a
centralized service within Ray directly reserves and creates
ephemeral resources. Since it has direct access to the re-
source table, FrameSpace avoids using ghost tasks, reducing
overheads from worker allocation and task dispatch.
Figure 7 compares the request latency of these designs

on a 32-node cluster with 256 CPUs. While the mean la-
tency of AppSpace and LibSpace is similar, AppSpace has
higher variance and a longer tail because it uses timeouts to
break deadlocks. LibSpace incurs overhead from serializing
requests at a separate service, resulting in a higher mini-
mum latency. On average, FrameSpace is nearly 2× faster
than AppSpace and LibSpace because it directly reserves re-
sources instead of using ghost tasks. However, we note that

for long-running tasks such as model training and batch pro-
cessing workloads, the absolute scheduling latency is still a
tiny fraction (<1s) compared to the runtime of the workloads
(multiple hours). Moreover, implementing FrameSpace is a
significant effort, requiring a deep understanding of the Ray
scheduler and modifying 1624 lines of Ray code. To compare,
LibSpace and AppSpace are implemented in 261 and 78 lines
of application-level code, respectively.

6.2.2 Overheads of Ephemeral Resources We evaluate the
time to create resources and propagate their availability
throughout the cluster. Since the set_resource call is asyn-
chronous, we verify that the resources have been created and
are available for use by launching no-op tasks that request
these newly created resources. Figure 8a compares the mean
latency of creating an equal number of resources on each
node in a 50-node Ray cluster. We show that even when
creating 1000 ephemeral resources, we can maintain 1ms la-
tency per request. As more resources are created, the cost of
resource creation is amortized and the per-resource creation
cost decreases to 0.72ms. In general, the overhead of creat-
ing or deleting an ephemeral resource should be roughly
equivalent to that of a key-value store request.
Ephemeral resources and scheduling latency. The cre-
ation of ephemeral resources may add burden to the sched-
uler, as it must consider a greater number of attributes during
resource matching. Therefore, we analyze the effect of re-
source creation on task scheduling latency. We create an
equal number of resources across 50 Ray nodes in a clus-
ter using the set_resource API. We then evaluate two cases
based on the resource requirements of the tasks involved.

First, in Figure 8b, we launch 10,000 tasks, none of which
require any ephemeral resources to be scheduled. As the
tasks do not have any specific resource requirements, the
scheduler execution time and workload makespan are not
affected by the number of ephemeral resources present.
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(a) (b) (c)
Figure 8: ESCHERmicrobenchmarks. (a) Mean per-resource creation latency in Ray. Creating ephemeral resources in ESCHER
is a low-cost operation that scales linearly with the number of resources created. (b) Scheduling latency overheads from presence
of ephemeral resources. Makespan of a 10000 task workload remains unaffected by the count of ephemeral resources in the
cluster. (c) Effect of task resource requirements on scheduling latency in an environment with 10000 resources.

Second, when tasks do request ephemeral resources, the
core scheduler must match the task’s requirements to a set
of candidate nodes. To evaluate the overheads introduced
by this matching, we setup a 50 node Ray cluster and create
1000 unique ephemeral resources evenly spread across nodes.
Figure 8c highlights the scalability of the scheduler as the
number of ephemeral resources requested by a task grows.
The the task scheduling latency grows only from 1.1ms to
1.2ms when requesting 1 vs. 100 ephemeral resources, re-
spectively. We note that all policies described in this work
require only a few ephemeral resources to express.

7 Discussion
Why use ESCHER? For common scheduling policies, ES-
CHER’s primary benefit compared to a monolithic cluster
manager is not performance. Rather, it’s the ease to specify
and implement new policies without requiring any changes
to the cluster scheduler. This unlocks developing new appli-
cations with sophisticated scheduling constraints that are not
yet supported by the underlying scheduler. One example is
the composition of affinity and gang scheduling policies used
in the distributed training example in Section 6.1.4, which
is not supported by Ray’s native scheduling primitives. An-
other example is DAG-based scheduling, which is offered
natively by Ray but not Kubernetes. DAG-based scheduling
can be implemented by leveraging the task signaling prim-
itive (Section 4.1). Effectively, ESCHER expands the set of
policies a monolithic cluster manager can support.
Two-level schedulers [14, 30] achieve the same goal by

exporting scheduling control directly to applications, but
in doing so they also require applications to implement the
entire scheduler themselves (Section 3.5). ESCHER on the
other hand requires minimal changes to application code: it
required adding only two lines of code to MapReduce, five
lines to AlphaZero and fifty lines to EscherTune, each of
which had widely varying policy requirements. For policy
composition especially, this ease of development is due in
part to the use of ESLs.
Limitations. A key goal of ephemeral resources is to pro-
vide a simple and narrow API that is easy to implement by

most cluster managers. As a result, ESCHER eschews ab-
stractions that would require complex implementations such
as transaction support [30] (which would allow to trivially
implement gang scheduling) or utilization-based scheduling,
such as load balancing (Section 4.2.3). While the application
can still implement these policies using ghost tasks, these im-
plementations have inherently a higher overhead. Of course,
if applications require higher scheduling performance, we
can eventually implement these policies in the cluster man-
ager. Even in this case, ESCHER remains valuable as it can
bridge the gap by enabling the applications to implement
these policies before the cluster manager does.
Another limitation of ESCHER is that it doesn’t expose

the resource availability to the application, which means that
the only way for an application to learn that there are not
enough resources available is by submitting a task which
hangs. As a result, the application might have to explicitly
kill the tasks that hang, adding to the complexity. We do
not expose resource availability is because it would not fully
solve the problem: there is still a race condition when two
tasks on different machines simultaneously request more
than the available resources (e.g., a single GPU is available
and two tasks simultaneously request one GPU each). This
problem is exacerbated by the fact that ephemeral resources
can be dynamically created, modified, or destroyed. One
solution to this problem is providing transaction semantics,
which, as mentioned above, ESCHER eschews due to its
complex implementation. An avenue for future work would
be to alleviate the challenges of handling such a dynamic
environment, e.g., by using lazy execution or extending the
API to allow constraints on ephemeral resources.

8 Related Work

Monolithic schedulers. Monolithic cluster schedulers aim
to implement both the scheduling policy and mechanism
for a distributed application. Some provide a single generic
scheduling discipline, such as fair sharing [12, 15], gang
scheduling [13], or delay scheduling [40]. These schedulers
provide little control to the application beyond the ability to
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set some configuration knobs, such as the time to wait before
scheduling a task on a node that doesn’t store its inputs [40].
Other monolithic schedulers aim for generality and pro-

vide APIs to allow applications to express scheduling con-
straints. Examples are YARN [36], Condor’s ClassAds [19],
and Kubernetes [6]. Their monolithic design makes it hard
to add support for new policies and their compositions. For
instance, adding support for gang scheduling to Kubernetes
requires deep structural and API changes, and was eventu-
ally implemented as a standalone system [22]. Often the API
they provide is complex as well, since it must be expressive
enough to capture complex constraints such as composition.
For instance, the specification of ClassAds [29] is 35 pages [?
]. ESCHER achieves both simplicity and evolvability by decou-
pling policy specification and the resource-matching mecha-
nism.

Like ESCHER, DCM [33] also aims to maximize extensibil-
ity of framework schedulers by using a declarative model for
applications to specify their desired policy behavior as SQL
queries. In doing so, DCM deploys a custom scheduler and
optimizer running with Kubernetes. While this is well suited
for policies which optimize for global objectives, express-
ing application-level constraints requires users to create and
maintain a table in cluster state database, which can be chal-
lenging in a distributed environment. ESCHER’s emphasis
lies on supporting application-level scheduling goals, allow-
ing it to easily handle task-task dependencies (Primitive P2
in section 4.1). Moreover, ESCHER reuses existing virtual
resource implementations, thus requiring no additional ser-
vices or schedulers to be deployed in the cluster framework.

Rayon [9] is a space-time reservation admission system,
allowing applications to reserve a skyline of resource capac-
ity, 𝑐 (𝑡), as a function of time. ESCHER can implement a
discrete version of this by having a ghost task evaluate 𝑐 (𝑡)
and update ephemeral resources to match 𝑐 (𝑡) at any instant.
Two-level schedulers. Rather than trying to implement
application level policies, some cluster management frame-
works are designed explicitly to give all resource manage-
ment and scheduling control to the application. Many of
these frameworks employ a two-level hierarchy [14, 36],
where the first level manages only resource isolation be-
tween applications, while the second level exposes physi-
cal resources to applications. These applications are then
responsible for building their own scheduler. Omega [30] fol-
lows a similar separation by providing transaction semantics
on a shared cluster state for distributed schedulers. While
this approach grants maximum flexibility to applications,
it adds significant complexity to application code since the
application must now handle both scheduling policy and the
mechanisms to ensure resource coordination between tasks.
Some popular frameworks, such as Spark [41] and Flink [7]
obviate the need for distributed coordination by designating

a special node (e.g., master) to spawn all tasks. However,
they too have monolithic designs that are not evolvable. In
contrast, ESCHER focuses on providing a generic scheduling
framework where the application only focuses on the sched-
uling policy. Indeed, ESCHER can be used in tandem with
two-level schedulers by launching an ESCHER scheduler to
manage resources allocated by the top-level scheduler.
Label-based and declarative scheduling. [6, 29, 30, 36, 37]
provide mechanisms to annotate nodes with resource types
and use these labels (e.g., "GPU:Nvidia:V100") for placement
constraints. In some cases, these labels do not have an associ-
ated capacity (e.g., string key-value pairs), rendering infeasi-
ble implementation of policies with quantitative conditions.
In other cases, quantitative labels are static. TetriSched [35]
operates on labelled resources by allowing declarative re-
source constraint specification and composition. Wrasse [28]
uses the bins and balls abstraction along with user-defined
utilization functions to come up with a specification lan-
guage. However, neither of these provide support for dy-
namic scheduling policies, e.g., making inter-task constraints
hard to implement in a single shot. The expressivity of declar-
ative schedulers is restricted to information known a pri-
ori (i.e., static label information). Circular inter-task depen-
dencies ([24]) are fundamentally impossible to implement
without a dynamic mechanism to unroll the dependency
(Section 2.2). We note, however, that declarative schedulers
([33, 35]) are synergistic with ESCHER. Ephemeral resources
can be used as an intermediate representation (IR) for their
frontend API (e.g., SQL [33] and STRL [35]).

Some existing schedulers provide the ability to configure
non-physical resources, e.g., the extended resources API in
Kubernetes [4]. The original purpose of this mechanism is
for the cluster operator to add accounting for custom re-
sources (e.g., accelerators). Meanwhile, generic application-
level scheduling policies like affinity and load balancing are
still implemented in the Kubernetes core. In contrast, ES-
CHER obviates the need to implement these policies in the
core scheduler, deferring it to the application level via the
mechanism of ephemeral resources. In fact, the ESCHER im-
plementation on Kubernetes repurposes extended resources
to implement all scheduling policies and simplifies the Ku-
bernetes scheduler to only resource matching. Finally, the
ability to dynamically update ephemeral resources at runtime
enables expressing previously inexpressible, e.g., inter-task
“happens-before” relationships and iterative task graphs.
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