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Much research on software engineering relies on experimental studies based on fault injection. Fault injection,
however, is not often relevant to emulate real-world software faults since it “blindly” injects large numbers
of faults. It remains indeed challenging to inject few but realistic faults that target a particular functionality
in a program. In this work, we introduce iBiR, a fault injection tool that addresses this challenge by exploring
change patterns associated to user-reported faults. To inject realistic faults, we create mutants by re-targeting
a bug-report-driven automated program repair system, i.e., reversing its code transformation templates. iBiR
is further appealing in practice since it requires deep knowledge of neither code nor tests, just of the pro-
gram’s relevant bug reports. Thus, our approach focuses the fault injection on the feature targeted by the bug
report. We assess iBiR by considering the Defects4J dataset. Experimental results show that our approach out-
performs the fault injection performed by traditional mutation testing in terms of semantic similarity with the
original bug, when applied at either system or class levels of granularity, and provides better, statistically sig-
nificant estimations of test effectiveness (fault detection). Additionally, when injecting 100 faults, iBiR injects
faults that couple with the real ones in around 36% of the cases, while mutation testing achieves less than 4%.
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1 INTRODUCTION

A key challenge of fault injection techniques (such as mutation analysis) is to emulate the effects
of real faults. This property of representativeness of the injected faults is of particular importance
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since fault injection techniques are widely used by researchers when evaluating and comparing
bug finding, testing, and debugging techniques, e.g., test generation, bug fixing, fault localization,
and so forth [60]. This means that there is a high risk of mistakenly asserting test effectiveness in
case the injected faults are non-representative.

Typically, fault injection techniques introduce faults by making syntactic changes in the target
programs’ code using a set of simple syntactic transformations [14, 33, 51], usually called mutation
operators. These transformations have been defined based on the language syntax [4] and are
“blindly” mutating the entire codebase of the projects, injecting large numbers of mutants, with
the hope to inject some realistic faults. This means that there is a limited control on the fault types
and the locations where to inject faults. In other words, the appropriate “what” and “where” to
inject faults in order to make representative fault injection have been largely ignored by existing
research.

Fault injection techniques may also draw on recent research that mines fault patterns [8, 70]
and demonstrate some form of realism w.r.t. real faults. These results indicate that the injected
faults may carry over the realism of the patterns, a fact that removes a potential validity threat.
However, at the same time, they are limited as they do not provide any control on the locations
and target functionality, thus impacting fault representativeness [9, 51, 62].

This is an important limitation especially for large real-world systems for the following two rea-
sons: (1) injecting faults everywhere escalates the application cost due to the large number of mu-
tants introduced and (2) the results could be misleading since a tiny ratio of the injected faults are
coupled to the real ones [62] and the injected set of faults does not represent the likelihood of faults
appearing in the field [51]. Therefore, representativeness of the injected faults in terms of fault
types and locations is of utmost importance w.r.t. both application cost and accuracy of the method.

To bypass these issues, one could use real faults (mined from the projects’ repositories) or di-
rectly apply the testing approach to a set of programs and manually identify potential faults. While
such a solution brings realism into the evaluations, it is often limited to a few fault instances (of
limited diversity), requires an expensive manual effort in identifying the faults, and fails to offer
the experimental control required by many evaluation scenarios.

We advance in this research direction by bringing realism in the fault injection via leverag-
ing information from bug reports. Bug reports often include sufficient information for debugging
techniques in order to localize [84], debug [61], and repair faults [30] that happened in the field.
Therefore, together with specially crafted defect patterns (mined through systematic examination
of real faults), such information can guide fault injection to target critical functionality, mimic
real faulty behavior, and make realistic fault injection. Perhaps more importantly, the use of bug
reports removes the need for knowledge of the targeted system or code.

Our method starts from the target project and a bug report (BR) written in natural language.
It then applies Information Retrieval (IR)-based fault localization [84] in order to identify the
relevant places where to inject faults. It then injects recurrent fault instances (fault patterns) that
were manually crafted using a systematic analysis of frequent bug fixes, prioritized according to
their position and type. This way our method performs fault injection, using realistic fault patterns,
by targeting the features described by the bug reports. Moreover, by applying our method on many
programs and BRs (injecting few bugs per BR), one gets fault pools to be used for test and fault
tolerance assessment.

We implemented our approach in a system called iBiR and evaluated its ability to imitate
280 real faults. In particular, we evaluated (1) the semantic similarity of real and injected faults,
(2) the coupling1 relation between injected and real faults, and (3) the ability of the injected faults

1Injected faults couple with the real ones when injected faults are detected only by test cases that detect the real faults.
This implies that the injected faults provide good indications on whether tests are capable of detecting the coupled faults.
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to indicate test effectiveness (fault detection) when tested with different test suites. Our results
show that iBiR manages to imitate the targeted faults, with a median semantic similarity value of
0.577, which is significantly higher than the 0.134 achieved by using traditional mutation testing
when injecting the same number of faults.

Interestingly, we found that iBiR injects faults that couple with the real ones in around 36% of the
targeted cases. This is achieved by injecting 100 faults per target (real) fault, and it is approximately
nine times higher than the coupled mutants produced by mutation testing. Fault coupling is one of
the most important testing properties [28, 57], here indicating that one can use the injected faults
instead of the real ones.

Another key finding of our study is that the injected faults provide much better indication on test
effectiveness (fault detection) than mutation testing as their detection ratios discriminate between
actual failing and passing test suites, while mutant detection rates cannot. This implies that the
use of iBiR yields more accurate results than the use of traditional mutation testing.

2 SCOPE AND MOTIVATION

iBiR aims at injecting realistic faults, i.e., faults imitating the behavior of previously reported ones,
to be used for test and fault tolerance assessment. As such, it injects faults in a current stable (fixed)
version of the same system where test techniques are assessed with respect to (1) fault revelation
potential, in the case of test assessment, and (2) the reaction of the system under unexpected (faulty)
behavior to support controlled studies. This means that we assume the existence of relatively stable
projects with Fixed/Closed bug reports. In principle, iBiR could be use to guide testing toward open
bug reports or to support the discovery of bugs that are similar to those reported. However, these
two use cases regard the fault revelation ability of the fault injection campaigns (the test guidance
provided by fault injection) and not the realistic fault injection problem (the ability of injecting
faults to imitate the behavior of real ones) that we are aiming at. Therefore, we have left them
open for future research.

2.1 Assessment of Testing Techniques

Fault injection is used extensively by researchers as a tool to evaluate the fault-revealing capa-
bility of automated test techniques such as automated test generation techniques. This approach
was found to be used by approximately 19% of all software testing studies published in major SE
conferences by a bibliometric analysis performed in 2016 [59]. This is because real and diverse bug
datasets are hard to collect and make it hard to perform controlled studies as they usually result in
faulty versions including single faults. Fault injection is thus a fast and convenient way to perform
control studies since it avoids the costly and tedious work of creating fault datasets. In such cases,
the realism of the injected faults is a major validity question that may impact the results of the
experiments. Recent studies [62] have shown that conventional mutation testing doesn’t perform
well in this regard as it introduces many faults that are unrealistic. To deal with such cases, we
develop iBiR and show that it injects more semantically similar faults than traditional mutation
testing.

2.2 Fault Tolerance Assessment

Fault injection is also frequently used to evaluate the system’s performance under faulty test exe-
cutions. In such a case, the injected faults simulate the effects of real ones by performing arbitrary
code changes everywhere. To this end, iBiR guides the injection toward specific error-prone tar-
gets/features and fault types. This is particularly important in order to improve the realism of
the analysis. Interestingly, previous research on fault tolerance assessment [51] has shown that
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fault injection realism can be improved by appropriately controlling the locations and types of the
injected faults. We therefore propose a way to do so by leveraging information from bug reports.

3 BACKGROUND

3.1 Fault Localization

Fault localization is the activity of identifying the suspected fault locations, which will be trans-
formed to generate patches. Several automated fault localization techniques have been pro-
posed [80], such as slice based [79], spectrum based [2], statistics based [37], mutation based [61],
and so forth.

Fault localization techniques based on Information Retrieval (IR) [12, 18, 44, 67] exploit
textual bug reports to identify code chunks relevant to the bug, without relying on test cases.
IR-based fault localization tools extract tokens from the bug report to formulate a query to be
matched with the collection of documents formed by the source code files [42, 65, 75, 77, 81, 84].
Then, they rank the documents based on their relevance to the query, such that source files ranked
higher are more likely to contain the fault. Recently, automated program repair methods have
been designed on top of IR-based fault localization [30]. They achieve comparable performance
to methods using spectrum-based fault localization, yet without relying on the assumption that
test cases are available.

We leverage IR-based fault localization to achieve a different goal; instead of localizing the re-
ported bug, we aim at injecting faults at code locations that implement a functionality similar to
the one described by the bug report.

3.2 Mutation Testing

Mutation testing is a popular fault-based testing technique [60]. It operates by inserting artificial
faults into a program under test, thereby creating many different versions (named mutants) of the
program. The artificial faults are injected through syntactic changes to all program locations in
the original program, based on predefined rules named mutation operators. Such operators can, for
instance, invert relational operators (e.g., replacing ≥ with <).

Mutants can be used to indicate the strengths of test suites, based on their ability to distinguish
the mutants from the original program. If there exists a test case distinguishing the original pro-
gram from a particular mutant, then the mutant is said to be killed. Then, we term a mutant to be
“coupled” with respect to a particular fault if the test cases that kill it are a subset of the test cases
that can also detect that fault (make the program fail by exerting the fault).

Previous research has shown that the choice of mutation operators and location can affect the
fault-revealing ability of the produced mutants [5, 35]. Thus, it is important to select appropriate
mutation testing strategies. Nevertheless, previous research has shown that random mutant sam-
pling achieves comparable results with the mutation testing state of the art [9, 32], making the
random mutant sampling a natural baseline to compare with.

Another issue with mutation testing regards its application cost. The problem stems from the
vast number of faults that are injected, which need to be executed with large test suites, thereby
requiring expensive computational resources [60]. Unfortunately, the mutant execution problem
becomes intractable when test execution is expensive or the test suites involve system-level tests,
thereby often limiting mutation testing application to unit level. This is a major problem when
performing fault tolerance [51] or large-scale testing campaigns. Recent studies aim at reducing
the computational demands of the mutant execution through a combination of static and dynamic
metrics [82], but these methods cannot be applied for fault tolerance assessment and do not identify
which mutants are realistic and which are not. Thus, it remains an open question to identify the
few but realistic mutants.
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Fig. 1. The iBiR fault injection workflow.

We fill this gap by using bug-report-driven fault injection. In essence, we leverage IR-based fault
localization techniques to identify the locations where fault injection should happen, i.e., locations
relevant to the targeted functionality described in the bug report, and apply frequent fault patterns
to produce mutants that behave similarly to real faults.

3.3 Fix Patterns

In automated program repair [22], a common way to generate patches is to apply fix patterns [26]
(also named fix templates [38] or program transformation schemes [23]) in suspicious program
locations (detected by fault localization). Patterns used in the literature [15, 23, 26, 31, 38, 38, 39,
46, 66] have been defined manually or automatically (mined from bug fix datasets).

Instead of fix patterns, we use fault patterns that are fix patterns inverted. Since fix patterns were
designed using recurrent faults, their related fault patterns introduce them. This helps injecting
faults that are similar to those described in the bug reports. iBiR inverts and uses the patterns
implemented by TBar [40] as we detail in the following section.

4 APPROACH

We propose iBiR, the first fault injection approach that utilizes information extracted from bug
reports to emulate real faults. A high-level view of the way iBiR works is shown in Figure 1 and
a step-by-step overview of IBIR’s approach is illustrated in Algorithm 1. Our approach takes as
input (1) the source code of the program of interest and (2) a bug report of that program, written
in natural language. The objective is to inject artificial faults in the program (one by one, creating
multiple faulty versions of the program) that imitate the original bug. To do so, iBiR proceeds in
three steps.

First step: iBiR identifies relevant locations to inject the faults. It applies IR-based fault localiza-
tion to determine, from the bug report, the code locations (statements) that are likely to be relevant
to the target fault. These locations are ranked according to their likelihood to be the feature de-
scribed by the bug report, and hence are relevant to inject faults.

Second step: iBiR applies fault patterns on the identified code locations. We build our patterns
by inverting fix patterns used in automated program repair approaches [40]. Our intuition is that,
since fix patterns are used to fix bugs, inverted patterns may introduce a fault similar to the original
bug. For each location, we apply only patterns that are syntactically compatible with the code
location. This step yields a set of faults to inject, i.e., pairs composed of a location and a pattern.

Third step: our method ranks the location-pattern pairs w.r.t. the location likelihood and priority
order of the patterns. Then iBiR takes each pair (in order) and applies the pattern to the location,
injecting a fault in the program. We repeat the process until the desired number of injected faults
has been produced or until all location-pattern pairs have been considered.
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ALGORITHM 1: IBIR approach algorithm

Require: buдReport ,projectRepository,numberO f Faults
1: patterns[]← loadListOfPatterns()
2: patches[]← []
3: result[]← []
4: rankedSuspeciousFiles[]← fileLevelIRFL(buдReport ,projectRepository)
5: f irst20RankedSuspeciousFiles[]← head(rankedSuspeciousFiles, 20)
6: rankedSuspeciousStatements[]← statementLevelIRFL(buдReport , f irst20RankedSuspeciousFiles[])
7: for statement in rankedSuspeciousStatements[] do

8: f ileAstTree ← loadAstTree(statement .containinдFile )
9: statementNodes[]← parseTree(tree, statement )

10: for astNode in statementNodes[] do

11: for pattern in patterns[] do

12: if patternIsAppliableOnNode(pattern,astNode ) then

13: patch ← createPatch(pattern,astNode, f ileAstTree )
14: add(patch,patches[])
15: end if

16: end for

17: end for

18: end for

19: for patch in patches[] do

20: f aultyVersion ← apply(patch,projectRepository)
21: if isCompilable( f aultyVersion) then

22: add(patch, result[])
23: end if

24: if numberO f Faults == length(result[]) then

25: return result[]
26: end if

27: end for

28: return result[]

4.1 Bug-report-driven Fault Localization

IR-based fault localisation (IRFL) [63, 74] leverages potential similarity between the terms used
in a bug report and the program source code to identify relevant buggy code locations. It typically
starts by extracting tokens from a given bug report to formulate a query to be matched in a search
space of documents formed by the collections of source code files and indexed through tokens
extracted from source code [42, 65, 75, 77, 78, 84]. IRFL approaches then rank the documents based
on a probability of relevance. Top-ranked files are likely to contain the buggy code.

We follow the same principle to identify promising locations where to inject realistic faults. We
rely on the information contained in the bug report to localize the code location with the highest
similarity score. Most IRFL techniques have focused on file-level localization, which is too coarse-
grained for our purpose of fault injecting. Thus, we rather use a statement-level IRFL approach
that has been successfully applied to support program repair [30].

It is to be noted that, contrary to program repair, we do not aim to identify the exact bug location.
We are rather interested in locations that allow injecting realistic faults (similar to the bug). This
means that IRFL may pinpoint multiple locations of interest for fault injection even if those were
not buggy code locations.

To identify fault injection locations that are relevant to the targeted bug report, we leverage
an existing IRFL tool that was originally developed as part of the iFixR [30] tool. The IRFL works
by matching words of a bug report with source code file(s) using 17 features. These features are
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Table 1. IR Features Collected from Bug Reports and Source Code Files

Bug Report Features

Feature description

summary The summary/title part of the bug report
description The description part of the bug report
rawBugReport The whole bug report as in textual form
stackTraces The stack traces in the bug report
codeElements Code snippets in the bug reports
summaryHints Code-related terms in summary
descriptionHints Code-related terms found by parsing description text

Source Code Features

Feature description

packageNames The parsed package names of the source code files
classNames The parsed class names of the source code files
methodNames The parsed method names of the source code files
methodInvocations The parsed method invocation of the source code files
formalParameters The parsed formal parameters of the source code files
memberReferences The parsed member references of the source code files
documentation The parsed class names of the source code files
rawSource Source file as a text
hunks The hunks from the commits on the file
commitLogs The commit logs of the file

extracted from the bug report (7 features) and the source code git repository (10 features) and are
listed in Table 1.

For every feature, the tokenizer applies a lexical analysis where (1) it extracts tokens from the
retrieved text; (2) then drops stopwords to reduce the noise, i.e., caused by the programming lan-
guage keywords; and (3) applies stemming on all tokens to create homogeneity with the root of
the token. The tokens are extracted by considering both white space and source-code-specific sep-
arators, such as punctuation and camel case splitting; i.e., calculateMaximum is split to calculate
and Maximum. The tokens are then checked against the WordNet [16] dictionary to discard all
unknown ones. An additional sanity check is then applied to detect stack-traces and source code
elements using specific regular expressions.

The IRFL calculates then the similarity coefficient (Cosine [64]) between the bug report and
a source code file using a revised Vector Space Model (rVSM) [85] based on the occurrence
frequency of the extracted tokens in the preprocessing tokenization step (the vectors are calculated
using t f − id f [47]).

Next, an ensemble of classification models provided by D&C [29] was used in order to rank the
source code files according to their suspiciousness. This ensemble takes as input the calculated
7 × 10 weights of all pairs <bug report, source code file> and outputs their averaged prediction re-
sults. This ensemble was used as it has been shown to work well on a diverse set of bug reports [29]
since every classifier of the ensemble model was trained on a different set of data.

In a last step, as iFixR [30], the IRFL localizes suspicious statements from the 20 most suspicious
files based on their rVSM cosine-similarity [64] with the given bug report (the vectors are calcu-
lated using t f − id f [47]) and outputs these statements in a list of statements ranked according
to their suspiciousness. Further details on the IRFL can be found in the D&C work [29] and our
implementation [1].
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Table 2. iBIr Fault Injection Patterns

Pattern Context Category Bug Injection Pattern Example Input Example Output

Insert Statement
Insert a method call,
before or after the localized statement.

someMethod(expression);
someMethod(expression);

method(expression);

Insert a return statement,
before or after the localized statement.

statement;
statement;

return VALUE;

Wrap a statement with a try-catch. statement;

try{

statement;

} catch (Exception e){ ... }

Insert an if checker: wrap a
statement with an if block.

statement;
if (conditional_exp) {

statement; }

Mutate Class Instance Creation
Replace an instance creation call by
a cast of the super.clone() method call.

... new T(); ... (T) super.clone();

Mutate Conditional Expression Remove a conditional expression. condExp1 && condExp2 condExp1

Insert a conditional expression. condExp1 condExp1 && condExp2

Change the conditional operator. condExp1 && condExp2 condExp1 | | condExp2

Mutate Data Type Change the declaration type of a variable. T1 var ...; T2 var ...;

Change the casting type of an expression. ... (T1) expression ...; ... (T2) expression ...;

Mutate Float or Double Division Remove a float or a double cast ... dividend / (float) divisor ...; ... dividend / divisor ...;
from the divisor. ... intVarExp / 10d ...; ... intVarExp / 10 ...;

Remove a float or a double cast ... (float) dividend / divisor ...; ... dividend / divisor ...;

from the dividend. ... 1.0 / var ...; ... 1 / var ...;

Replace float or double multiplication ... (1.0 / divisor) * dividend ... ... dividend / divisor ...;

by an int division. ... 0.5 * intVarExp ...; ... intVarExp / 2 ...;

Mutate Literal Expression

Change Boolean, number, or string
literals in a statement by another literal
or expression of the same type.

... string_literal1 ...

... int_literal ...

... string_literal2 ...

... int_expression ...

Mutate Method Invocation Replace a method call by another one. ... method1(args) ... ... method(args) ...

Replace a method call argument by another one. ... method(arg1, arg2) ... ... method(arg1, arg3) ...

Remove a method call argument. ... method(arg1, arg2) ... ... method(arg1) ...

Add an argument to a method call. ... method(arg1) ... ... method(arg1, arg2) ...

Mutate Return Statement Replace a return expression by another one. return expr1; return exp2;

Mutate Variable
Replace a variable by another variable
or an expression of the same type.

... var1 ...

... var1 ...

... var2 ...

... exp ...

Move Statement Move a statement to another position.
statement;

...

...

statement;

Remove Statement Remove a statement.
statement;

...
...

Remove a method. method(args){ statement; } ...

Mutate Operators Replace an Arithmetic operator. ... a + b ... ... a - b ...

Replace an Assignment operator. ... c += b ... ... c -= b ...

Replace a Relational operator. ... a < b ... ... a > b ...

Replace a Conditional operator. ... a && b ... ... a | | b ...

Replace a Bitwise or a Bit Shift operator. ... a & b ... ... a | b ...

Replace a Unary operator. a++ a--

Change arithmetic operations order. a + b * c c + b * a

4.2 Fault Patterns

We start from the fix patterns developed in TBar [40], a state-of-the-art pattern-based program
repair tool. Any pattern is described by a context, i.e., an AST node type to which the pattern ap-
plies, and a recipe, a syntactical modification to be performed similar to program repair techniques
[76]. For each pattern, we define a related fault injection pattern that represents the inverse of that
pattern. For instance, inverting the fix pattern that consists of adding an arbitrary statement yields
a remove statement fault pattern. Interestingly, some fix patterns are symmetric in the sense that
their inverse pattern is also a fix pattern, e.g., inverting a Boolean connector. These patterns can
thus be used for both bug fixing and fault injection. Table 2 enumerates the resulting set of fault
injection patterns used by our approach.
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Given a location (code statement) to inject a fault into, we identify the patterns that can be
applied to the statement. To do so, our method starts from the AST node of the statement and
visits it exhaustively, in a breadth-first manner. Each time it meets an AST node that matches
the context of a fault pattern, it memorizes the node and the pattern for later application. Then
the method continues until it has visited all AST nodes under the statement node. This way, we
enumerate all possible applications of all fault patterns onto the location.

Since more than one pattern may apply to a given location, we prioritize them by leveraging
heuristic priority rules previously defined in automated program repair methods (these were in-
ferred from real-world bug occurrences [40]). This means that every fault injection pattern gets
the priority order of its inverse fix pattern.

4.3 Fault Injection

The last step consists of applying, one by one, the fault patterns to inject faults at the program
locations identified by IRFL. Locations of higher ranking are considered first. Within a location,
pattern applications are ordered based on the pattern priority. By applying a pattern to a corre-
sponding AST node of the location, we inject a fault within the program before recompiling it. If
the program does not compile, we discard the fault and restart with the next one. We continue
the process until it reaches the desired number of (compilable) injected faults or all locations and
patterns have been considered.

4.4 Demonstration Example

Figures 2 and 3 illustrate the execution steps of iBiR when injecting faults in commons-math
project, based on the content of the bug report MATH-329.2

iBiR starts by parsing the bug report and extracting its relevant information: the summary (1),
the summary hints (2), the description (3), the description hints (4), code elements (5), and the raw
bug report. This example bug report does not contain any stack-trace as the corresponding bug
causes a misbehavior but does not trigger any crash or throw any exception.

iBiR loads also all the required information from the project’s repository (6) and then uses all
of these features to find the code locations that are the most likely related to the input bug report.
This search happens in two steps—file-level then statement-level localization—and ends by the
output of a sorted list of source-code lines (7), as detailed in Section 4.1.

iBiR parses these lines one by one starting with the highest rank. In this example, the
first rank is attributed to the line number 303 of the file src/main/java/org/apache/
commons/math/stat/Frequency.java (8), which corresponds to a return statement that invokes
the method getPctwith a variable v, which is cast to the type Comparable. iBiR selects all compati-
ble fault patterns with this statement’s AST and applies them one by one on the source code, induc-
ing multiple faults. In Figure 3 we illustrate the modified source code corresponding to five faults in-
jected in the line 303 of the Frequency.java file (9): Faults 1 and 2 are injected by invoking respec-
tively the methods getCumPct and getCumFreq instead of getPct. In fault 3, the method getPct
is invoked with the field this.freqTable as variable instead of v. Faults 4 and 5 are injected by
inserting additional method calls before the return statement, respectively addValue(v); and
clear();.

iBiR continues parsing the sorted source code locations by the IRFL until all of them are treated
or the requested number of faults has been injected.

2Bug report link: https://issues.apache.org/jira/browse/MATH-329.
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Fig. 2. Example of iBiR’s input: the bug report MATH-329 (1, the summary; 2, the summary hints; 3, the
description; 4, the description hints; 5, code elements) and the Commons-Math git repository (6).

5 RESEARCH QUESTIONS

Our approach aims at injecting faults that imitate real ones by leveraging the information included
in bug reports. Therefore, a natural question to ask is how well iBiR’s faults imitate the targeted
(real) ones. Thus, we ask:

RQ1 (Imitating bugs): Are the iBiR faults capable of emulating, in terms of semantic similarity,
the targeted (real) ones? How do they compare with mutation testing?

To answer this question, we check whether any of the injected faults imitate well the targeted
ones. Following the recommendations from the mutation testing literature [62], we approximate
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Fig. 3. Example of iBiR’s execution on the bug report MATH-329: the IRFL extracts tokens from the bug
report and the projects repository. Then, it outputs a list of statements ranked by their suspiciousness (7, the
two first ranked statements by iBiR). The mutator loads every statement in this list, parses its AST, selects
the applicable patterns, and applies them one by one to inject faults (8, the statement with the highest
suspiciousness; 9, faults injected when processing the first statement).

the program behavior through the project test suites and compare the behavior similarity of the test
cases w.r.t. their pass and failing status using the Ochiai similarity coefficient. This is a typical way
of computing the semantic similarity of mutants and faults in mutation-based fault localization
[50, 61].

We then compare these results with the mutation testing ones by injecting mutants using the
standard operators employed by mutation testing tools [28] and measuring their semantic simi-
larity with the targeted faults. To make a fair comparison, we inject the same number of faults
per target. For iBiR we selected the top-ranked mutants, while for mutation testing we randomly
sampled mutants across the entire project code-base. Random mutant sampling forms our baseline
since it performs comparably to the alternative mutant selection methods [9, 32]. Also, since we
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are interested in the relative differences between the injected fault sets, we repeat our experiments
multiple times using the same number of faults (mutants).

Our approach identifies the locations where bugs should be injected through an IR-based fault
localization method. This may give significant advantages when applied at the project level, but
these may not carry on individual classes. Such class-level granularity may be well suited for some
test evaluation tasks, such as automatic test generation [20]. To account for this, we performed
mutation testing (using the traditional mutation operators) at the targeted classes (classes where
the faults were fixed). To make a fair comparison we also restricted iBiR to the same classes and
compared the same number of mutants. This leads us to the following question:

RQ2 (Comparison at the target class): How does iBiR compare with mutation testing, in terms
of semantic similarity, when restricted to particular classes?

We answer this question by injecting faults in only the target classes using the iBiR bug patterns
and the traditional mutation operators. Then we compare the two approaches the same way as we
did in RQ1.

Up to this point, the answers to the posed questions provide evidence that using our approach
yields mutants that are semantically similar to the targeted bugs. Although this is important and
demonstrates the potential of our approach, it does not necessarily mean that the injected faults
are strongly coupled with the real ones.3 Mutant and fault coupling is an important property for
mutants that significantly helps testing [25]. Therefore, we seek to investigate:

RQ3 (Mutant and fault coupling): How does iBiR compare with mutation testing with respect
to mutant and fault coupling?

To answer this question, we check whether the faults that we inject are detected only by the
failing tests, i.e., only by the tests that also reveal the target fault. Compared to similarity metrics,
this coupling relation is stricter and stronger.

After answering the above questions, we turn our attention to the actual use of mutants in test
effectiveness evaluations. Therefore, we are interested in checking the correlations between the
failure rates of the sets of the injected faults we introduce and the real ones. To this end, we ask:

RQ4 (Failure estimates): Are the injected faults leading to failure estimates that are represen-
tative of the real ones? How do these estimates compare with mutation testing?

The difference of RQ4 from the other RQs is that in RQ4, a set of injected faults is evaluated,
while in the previous RQs, only isolated mutant instances are evaluated.

6 EXPERIMENTAL SETUP

6.1 Dataset and Benchmark

To evaluate iBiR we needed a set of benchmark programs, faults, and bug reports. We decided to
use Defects4J [24] since it is a benchmark that includes real-world bugs and it is quite popular in
software engineering literature.

6.1.1 Linking the Bugs with Their Related Reports. We used the bug report to revision-id (com-
mit) mapping provided by the Defects4J dataset. Unfortunately, none of the provided revision-ids
for the projects Lang and Math were pointing to the actual git repositories, as the projects have
been migrated into GitHub but the revision-ids didn’t get updated in the dataset. So for these two
projects, to identify which bug report describes a given bug in Defects4J, we followed the same

3Mutants are coupled with real faults if they are killed only by test cases that also reveal the real faults.
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process as in the study of Koyuncu et al. [30]. We used the bug linking strategies that are imple-
mented in the Jira issue tracking software and used the approach of Fischer et al. [17] and Thomas
et al. [69] to map the sought bugs with the corresponding reports. Precisely, we crawled the rele-
vant bug reports and checked their links. We selected bug reports that were tagged as “BUG” and
marked as “RESOLVED” or “FIXED” and have a “CLOSED” status. Then we searched the commit
logs to identify related identifiers (IDs) that link the commits with the corresponding bug.

Additionally, because of the limitations in our current IRFL implementation, we included only
the projects that are using Jira as issue tracking software.

Our resulting bug dataset included the 316 faults of Defect4J related to the Cli (39), Codec (18),
Collections (4), Compress (47), Csv (16), JxPath (22), Lang (64), and Math (106) projects. We dis-
carded 36 defects because they were sharing the same bug report and we could not map the correct
one with its related issue, issues with the buggy program versions such as missing files from the
repository, or execution issues at the reporting time. This leaves us with a total of 280 faults.

6.2 Experimental Procedure

To compare the fault injection techniques we need to set a common basis for comparison. We
set this basis as the number of injected faults since it forms a standard cost metric [53] that puts
the studied methods under the same cost level. We used sets of 5, 10, 30, and 100 injected faults
since our aim is to equip researchers with few representative faults, per targeted fault, in order to
reach reasonable execution demands. To reduce the arbitrariness due to the stochastic nature of
mutation testing, we reproduced the injection 15 times, and then we sorted the executions by their
average Ochiai coefficient (for every bug separately) and we reported the mean execution. On the
other hand, we run iBiR only once as its approach does not depend on random decisions.

To measure how well the injected faults imitate the real ones (answer RQ1 and RQ2) we use
a semantic similarity metric (Ochiai coefficient) between the test failures on the injected and real
(targeted) faults. Precisely, let f TSM and f TSB be the sets of failing tests when executing a test suite
TS correspondingly on a mutantM and a buggy project B; the Ochiai coefficient is 0 if any of f TSM

or f TSB is empty, or else is calculated as Ochiai (M,B) =
|f T SM∩f T SB |√
|f T SM |. |f T SB |

, where |set | denotes the

set size. In our study, as we’re executing the fixed-version test suites provided by Defects4J, every
targeted bug breaks at least one test, and thus, f TSB is never empty. This coefficient quantifies
the similarity level of the program behaviors exercised by the test suites and is often used in
mutation testing literature [62]. The metric takes values in the range [0, 1], with 0 indicating
complete difference and 1 exact match. We treated the injected faults that were not detected by
any of the test suites as equivalent mutants [6, 58]. This choice does not affect our results since we
approximate the program behaviors through the projects test suites; i.e., they are never killed.

To measure whether the injected faults couple with the existing ones (answer RQ3), we followed
the process suggested by Just et al. [25] and identified whether there were any injected faults that
were killed by at least one failing test (test that detects the real fault) and not by any passing test
(test that does not detect the real fault). In RQ4 we randomly sampled 50 test suites, random subsets
of the accompanied test suites, that included between 10% and 30% test cases of the original test
suite (provided by Defects4J). Thus, we ensure that the selected samples (1) are smaller than the
original test suite, (2) have different sizes, and (3) have different ratios of killing the mutants and
detecting the targeted bug. Then we recorded the ratios of the injected faults that are detected
when injecting 5, 10, 30, and 100 faults. We also recorded binary variables indicating whether or
not each test suite detects the targeted fault. This process simulates cases where test suites of
different strengths are compared. Based on these data, we computed two statistical correlation
coefficients, the Kendall and Pearson.
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To further validate whether the two approaches provide sufficient indicators on the effectiveness
of the test suites, we check whether the detection ratios of the injected faults are statistically higher
when test suites detect the targeted faults than when they do not.

To reduce the influence of stochastic effects we used the Wilcoxon test with a significance level
of 0.05. This helped in deciding whether the differences we observe can be characterized as sta-
tistically significant. Statistical significance does not imply sizable differences, and thus, we also
used the Vargha Delaney effect size Â12 [71]. In essence, the Â12 values quantify the level of the
differences. For instance, a value Â12 = 0.5 can be interpreted as a tendency of equal value of
the two samples. Â12 > 0.5 suggests that the first set has higher values, while Â12 < 0.5 suggests
the opposite.

6.3 Implementation

To perform our experiments, we implemented iBiR’s approach as described in Section 4: we have
used the IRFL implementation proposed in iFixR [30] and implemented the mutator component
that is responsible for injecting faults in specific locations, as a java standalone application. Second,
for the mutation testing, denoted as “Mutation” in our experiments, we used randomly sampled
mutants from those produced by typical mutation operators, coming from the mutation testing
literature. In particular, we implemented the muJava intra-method mutation operators [43], which
are the most frequently used [28]. Third, to reduce the noise from stillborn mutants, i.e., mutants
that do not compile, we discarded without taking into any consideration, i.e., prior to our experi-
ment, every mutant that did not compile or whose execution with the test suite exceeded a timeout
of 5 minutes. Fourth, when answering the RQ1, we found out that there were many cases where
iBiR injected fewer than 100 faults. To perform a fair comparison, we discarded these cases (for
both approaches). This means that we always report results where both studied approaches man-
age to inject the same number of faults.

7 RESULTS

7.1 RQ1: Semantic Similarity between iBiR Injections and the Targeted Real Faults

To check whether the injected faults imitate well the targeted ones, we measured their behavior
(semantic) similarity w.r.t. the project test suites (please refer to Section 6 for details). Figure 4
shows the distribution of the similarity coefficient values that were recorded in our study. As can
be seen, iBiR injects hundreds of faults that are similar to real ones, whereas mutation testing
(denoted as “Mutation” in Figure 4) did not manage to generate any. At the same time, as typically
happens in mutation testing [62], a large number of injected faults have low similarity. This is
evident in our data, where mutations have 0 similarity.

To investigate whether iBiR successfully injects any fault that is similar (semantically) to the
targeted ones, we collected the best similarity coefficients, per targeted fault, when injecting 5, 10,
30, and 100 faults. Figure 5 shows the distribution of these results. For more than half of the targeted
faults, iBiR yields a best similarity value higher than 0.5 when injecting 100 faults, indicating that
iBiR’s faults imitate relatively well the targeted ones. We also observe that in many faults the best
similarity values are above 0 by injecting just 10 faults. This is important since it indicates that
iBiR successfully identifies relevant locations for fault injection.

To establish a baseline and better understand the value of iBiR, we need to contrast iBiR’s per-
formance with that of mutation testing when injecting the same number of faults. Mutation testing
forms the current SoA of fault injection and thus a related baseline. As can be seen from Figure 5,
the similarity values of mutation testing are significantly lower than those of iBiR.
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Fig. 4. Distribution of semantic similarities of 100 injected faults per targeted (real) fault.

iBiR injects faults that resemble those described in Bug Reports. iBiR injects a fault that
imitates the real targeted one significantly better than traditional mutation testing.

Figure 6 shows the distribution of the semantic similarities, between real and injected faults,
when injecting 5, 10, 30, and 100 faults. As can be seen from the boxplots, the trend is that a large
portion of faults injected by iBiR have positive similarity scores with the targeted ones.
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Fig. 5. Semantic similarity per targeted (real) fault, top values. iBiR injects faults with higher similarity
coefficients than mutation testing.

Fig. 6. Semantic similarity of all injected faults. iBiR injects faults with higher similarity coefficients than
mutation testing.

Interestingly, in mutation testing, only outliers have their similarity above 0. In particular, mu-
tation testing injected faults with similarity values higher than 0 in 87, 112, 145, and 189 of the
targeted faults (when injecting 5, 10, 30, and 100 faults), while iBiR injected in 130, 156, 190, and
226 of the targeted faults, respectively.

To validate this finding, we performed a statistical test (Wilcoxon paired test) on the data of
both Figures 5 and 6 to check for significant differences. Our results showed that the differences
are significant, indicating the low probability of this effect to be happening by chance. The size of
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Fig. 7. Semantic similarity of injected faults at particular classes. iBiR injects faults with higher similarity
coefficients than mutation testing (at class-level granularity).

the difference is also big, with iBiR yielding Â12 values between 0.64 and 0.68, indicating that iBiR
injects faults with higher semantic similarity to real ones in the great majority of the cases. Due to
the many cases with 0 similarity values, the average similarity value of iBiR’s faults is 0.163, while
for mutation it is 0.010, indicating the superiority of iBiR.

iBiR injects faults that better resemble real faults than traditional mutation testing in 64%
to 68% of the cases.

7.2 RQ2: iBiR vs. Mutation Testing at Particular Classes

To check the performance of iBiR at the class level of granularity we repeated our analysis by
discarding, from our priority lists, every mutant that is not located on the targeted classes, i.e.,
classes where the targeted faults have been fixed. Figure 7 shows the distribution of the semantic
similarities when injecting 5, 10, 30, and 100 faults at a particular class. As expected, mutation
testing scores are higher than those presented before, but still mutation testing falls behind.

To validate this finding, we performed a statistical test and found that the differences are signif-
icant. The size of the difference is between 0.62 and 0.65, meaning that iBiR scores more than 60%
times higher than mutation testing. The average similarity values of the iBiR faults is 0.217, while
for mutation it is 0.066, indicating that iBiR is better.

iBiR outperforms traditional mutation testing, imitating real faults, even when restricted
to a particular (target) class. The difference is significant, with iBiR scoring more than 60%
of the time higher than mutation testing.

7.3 RQ3: Fault Coupling

The coupling between the injected and the real faults forms a fundamental assumption of the
fault-based testing approaches [24]. An injected fault is coupled to a real one when a test case that
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Fig. 8. Percentage of real faults that are coupled to injected ones when injecting 5 to 1,000 faults.

reveals the injected fault also reveals the real fault [24]. This implies that revealing these coupled
injected faults results in revealing potential real ones. We therefore check this property in the
faults we inject and contrast it with the baseline mutation testing approach.

Figure 8 shows the percentage of targeted faults where there is at least one injected fault that is
coupled to a real one. This is shown for the scenarios where 5, 10, 30, and 100 faults per target are
injected. As we can see from these data, iBiR injects coupled faults for approximately 16% of the
target faults when it aims at injecting 5 faults. This percentage increases to 36% when the number
of injected faults is increased to 100.

Perhaps surprisingly, mutation testing did not perform well (it injected coupled faults for around
4% of the target, when injecting 100 faults per target). These results differ from those reported by
previous research [25, 62], because (1) previous research only injected faults at the faulty classes
and not the entire project and (2) previous research injected all possible mutant instances and not
100 as we do.

iBiR injects coupled faults for approximately 16% to 36% of the cases, while mutation test-
ing does it in around 4%. This is achieved by injecting 5 to 100 faults.

7.4 RQ4: Fault Detection Estimates

The results presented so far provide evidence that some of the injected faults imitate well the
targeted ones, though the question of whether the injections provide representative results of real
faults remains, especially since we observe a large number of faults with low similarity values.
Therefore, we check the correlations between the failure rates of the sets of injected faults and the
real faults when executed with different test suites (please refer to Section 6 for details).

Figure 9 shows the distribution of the correlation coefficients when injecting different numbers
of faults. Interestingly, the results on both figures show a trend in favor of iBiR. This difference is
statistically significant, shown by a Wilcoxon test, with an effect size of approximately 0.6. Table 3
records the effect size values, Â12, for the examined strategies. In essence, these effect sizes mean
that iBiR outperforms the mutant injection in 60% of the cases, suggesting that iBiR could be a
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Table 3. Vargha and Deianey Â12 (iBiR vs. Mutation) of Kendall
and Pearson Correlation Coefficients

Number of Injected Faults 5 10 30 100

Kendall 0.605 0.620 0.681 0.655

Pearson 0.580 0.612 0.627 0.652

much better choice than mutation testing, especially in cases of large test suites with expensive
test executions.

To further validate whether iBiR’s faults provide good indicators (estimates) of test effectiveness
(fault detection) we split our test suites between those that detect the targeted faults and those that
do not. We then tested whether detection ratios of the injected faults in the test suite group that
detects the real faults are significantly (statistically) higher than those in the group that does not
detect it. In case this happens, we have evidence that our injected faults favor test suites capable
of detecting real faults. This is important when comparing test generation techniques, where the
aim is to identify the most effective (at detecting faults) technique.

Figure 10 records the number of faults where (real) fault-detecting test suites detect a statistically
higher number of injected faults than those test suites that do not detect them. As can be seen by
these results, iBiR has a big difference from mutation; i.e., it distinguishes between passing and
failing test suites in 126 faults, while mutation does so in 55 faults. We also measured the Vargha
and Delaney Â12 effect size values on the same data, recorded in Figure 11. Of course it does not
make sense to contrast insignificant cases, so we only performed that on the results where iBiR has
a statistically significant difference. Interestingly, big differences are recorded (in approximately
80% of the cases) in favor of our approach.

iBiR injects faults that provided better fault detection estimates than traditional mutation
testing in approximately 80% of the cases.

8 DISCUSSION

The effectiveness of iBiR in generating faults that are similar to real ones is endorsed by its two
main components: the IRFL and the mutator. The IRFL indicates where the faults need to be in-
jected, and the mutator decides what changes should be made depending on the AST tree of each
location.

Particularly, compared to conventional mutation testing, we can see that the IRFL is narrowing
down the area of injection to the source-code features described by the bug report, while the pat-
terns set of iBiR extends the injection possibilities in that area. On the other hand, conventional
mutation testing targets all the source code and injects faults only in statements where their opera-
tors are applicable. For instance, applying the typical mutation operators—the Mutate Operators
and Remove Statement ones—on a specific area of code would not induce any fault, if no state-
ment can be removed without breaking the compilation or there is no operator to mutate. In such
case, iBiR may inject faults by applying other patterns like mutating the method invocation or the
used parameters or inserting a statement.

8.1 Injecting Large Number of Faults

Figure 8 shows that iBiR injects many more faults that couple with the real ones than conventional
mutation testing. In fact, it achieves a higher coupling percentage when injecting only 10 faults
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Fig. 9. Correlation coefficients of test suites (samples from the original project test suite). The two related
variables are (a) the percentage of injected faults that were detected by the sampled test suites and (b)
whether the targeted fault was detected or not by the same test suites.

than the percentage achieved by conventional mutation testing when injecting 1,000 faults. We
can see also that when injecting 1,000 faults we achieve the coupling percentages of 61.1% and
18.2% for, respectively, iBiR and mutation testing. This is obviously because the more faults we
inject, the more chances we have to inject faults that couple with the real ones. Considering that
injecting more faults comes with a considerable consequent cost increase, as the practitioners will
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Fig. 10. Number of (real) faults where injected faults provided good indications of fault detection, particularly
number of cases with statistically significant difference, in terms of ratios of injected faults detected, between
failing and passing test suites (w.r.t. real faults).

Fig. 11. Vargha and Delaney values for iBiR. Â12 values are computed on the detection ratios of injected
faults of the test suites that detect and do not detect the (real) faults.

need more time to analyze the produced mutants, this option is often not favored in practice, where
it is better to have few relevant faults than many.

To have a better understanding of the impact of injecting multiple faults, we illustrate in
Table 4 the averaged faults coupling success rates when injecting 5, 10, 30, 100, 200, 500, and 1,000
faults with iBiR and mutation testing. We define the success rate as the percentage of coupled
faults among all the injected ones. As an example, a coupling success rate of 5% corresponds to 5
coupled faults when injecting 100 faults. In our study, iBiR achieves a much higher success rate
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Table 4. Percentage of Injected Faults That Are Coupled to Real Ones When Injecting 5
to 1,000 Faults

Number of Injected Faults 5 10 30 100 200 500 1000

IBIR 5.93% 5.61% 5.78% 5.23% 4.57% 3.43% 2.57%
Mutation 0.29% 0.04% 0.05% 0.06% 0.06% 0.07% 0.07%

Fig. 12. Distribution of the patterns inducing mutants with an Ochiai coefficient higher than 0.8 for iBiR
when injecting 1,000 faults.

than mutation testing: 20, 87, 49, and 36.7 times higher when injecting 5, 100, 500, and 1,000 faults.
Even if the coupling percentage increases by injecting more faults (Figure 8), we can see that the
more we inject faults, the more the success rate decreases for iBiR. This is a direct consequence
of the decrease of the injection-locations likelihood to be related to the targeted bug report. As
we explain further in Section 4, iBiR starts by injecting faults in the highly ranked code locations
found by its IRFL, then iterates further until all locations are treated or the requested number of
faults has been injected. So the higher the requested number of injected faults is, the more faults
in lower-ranked locations are injected. On the other hand, we see that the success rate of con-
ventional mutation testing remains relatively low and far behind the one of iBiR. For instance, it
remains at 0.07% even when doubling the number of injected faults from 500 to 1,000. In Table 4,
we notice that injecting five faults with mutation testing achieves a success rate of 0.29%, which
is much higher than the ratios achieved when injecting more faults by the same technique. This
is caused by the randomness in the conventional mutation testing results.

8.2 Distribution of the Patterns Inducing Most Effective Injections

To understand better the impact of the used patterns in injecting faults that are similar to real
ones, we grouped the faults by their creating patterns and compared the sizes of each group.
Figure 12 illustrates the proportion of every pattern’s induced faults that have high Ochiai Co-
efficients (more than 0.8) when injecting 1,000 faults by IBIR in the current dataset. Clearly, more
than 70% of the faults with high similarity coefficients have been generated by patterns that are
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not commonly used in conventional mutation testing techniques: mainly by adding conditional
expressions (42.3%) or by mutating variables (29.5%). This is significantly higher than the 15.3%
generated with the commonly used conventional mutation operators (10.4% by mutating opera-
tors and 4.9% by removing statements). This highlights the fact that iBiR’s patterns are bringing a
clear advantage over mutation testing.

These percentages and the general performance of every pattern depend on the targeted bug
report and the project nature. For instance, the low percentages of multiple patterns in Figure 12
can be the consequence of multiple factors, such as (1) the fact that some faults are occurring
less frequently in the current dataset, (2) the fact that some patterns are only applicable on a few
specific statement ASTs, or (3) that some patterns produce relatively more mutants in the same
location and thus have higher percentages (i.e., the “Mutate Method Invocation,” which induced
Fault 1 and Fault 2 in the same statement in Figure 3 in Section 4.4).

8.3 iBiR vs. Typical Mutation Operators

Early research on mutation testing defined mutation operators based on all possible simple re-
movals or replacements of programming language elements [3, 27]. This practice was then adopted
when defining mutation operators for other languages, such as Java, and in defining object-
oriented related mutants [43, 54]. To reduce the number of mutants involved, many tool developers
applied a restrictive set of mutation operators, usually referred to as the 5-operator set, based on
the selective mutation testing studies performed by Offutt et al. [53, 55] with the result that the
majority of modern mutation testing tools implement a version of this 5-operator set together with
some deletion operators [34, 60].

In view of the above, all the iBiR injections that involve addition of code elements, i.e., “Insert
Statement” and “Mutate Return Staement” categories of Table 2, are fundamentally different from
what has been used in mutation testing studies over the years. The “Mutation Literal Expression”
category is also something that has not been used by mutation testing studies. The rest of the
operators have some similarities with operators used in some studies overall differing significantly
from the operators used by any single tool or study. In the following we provide a detailed list of
iBiR operators and their related similarities (or novelties) with respect to other studies.

Operators that have not been used by other studies:

• Insert Statement: Insert a method call, Insert a return statement, Wrap a statement with a

try-catch, Insert an if checker.
• Mutate Conditional Expression: Insert a conditional expression.
• Mutate Float or Double Division: Remove a float or a double cast from the divisor, Remove a

float or a double cast from the dividend, Replace float or double multiplication by an int division.
• Mutate Literal Expression: Change Boolean, number, or string literals in a statement by another

literal or expression of the same type.
• Mutate Return Statement: Replace a return expression by an other one.

Operators that have similarities with those used by other studies:

• Mutate Class Instance Creation: Replace an instance creation call by a cast of the super.clone()

method call. Similar to the class mutation operators of MuJava [54].
• Mutate Data Type: Change the declaration type of a variable, Change the casting type of an

expression. Similar to the interface mutation in C [3, 13].
• Mutate Method Invocation: Replace a method call by another one, Replace a method call ar-

gument by another one, Remove a method call argument, Add an argument to a method call.
Similar to the interface mutation [13].
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• Mutate Variable: Replace a variable by another variable or an expression of the same type.
Similar to the variable mutations in C [3].
• Move Statement: Move a statement to another position. Similar to the move out of a loop

operators in C [3, 13].

Operators that are frequently used by other studies:

• Mutate Conditional Expression: Remove a conditional expression, Change the conditional op-

erator [3, 27].
• Remove Statement: Remove a statement, Remove a method [5, 27, 34].
• Mutate Operators: Replace an Arithmetic operator, Replace an Assignment operator, Replace

a Relational operator, Replace a Conditional operator, Replace a Bitwise or a Bit Shift operator,

Replace a Unary operator, Change arithmetic operations order [5, 27, 34].

8.4 Project Size and iBiR’s Effectiveness

Considering the fault injection as a search task where the target is injecting faults similar to real
ones and the search space is the combination of the source code locations and mutation possibil-
ities, we were interested in assessing iBiR’s performance for different project sizes. Figures 13(a)
and 13(b) show the scatter plots of the semantic similarity by the project size in terms of number
of classes. Figures 13(a) and 13(b) consider respectively all the injected faults and the faults hav-
ing an Ochiai coefficient higher than zero. We can see that the project size has no impact on the
effectiveness of iBiR.

9 THREATS TO VALIDITY AND LIMITATIONS

The question of whether our findings generalize forms a typical threat to the validity of empirical
studies. To reduce this threat, we used real-world projects, developer test suites, real faults, and
their associated bug reports from an established and independently built benchmark. Still, though,
we have to acknowledge that these may not be representative of projects from other domains. In
addition, as the approach’s injection depends on the input bug reports, its effectiveness may be
impacted by the content of the reports, such as partial/incomplete or vague descriptions. To reduce
this threat, we have run our experiments with all available bug reports in the studied dataset
without any particular selection and gotten encouraging results. We acknowledge though that the
results may vary depending on the information provided in the reports. In practice, one should
make a careful selection of bug reports based on which iBiR could be applied to avoid such cases.
Nevertheless, the appropriate selection of bug reports falls outside the scope of this work and has
been left open for future research.

Other threats may also arise from the way we handled the injected faults and mutants that were
not killed by any test case. We believe that this validation process is sufficient since the test suites
are relatively strong and somehow form the current state of practice; i.e., developers tend to use
this particular level of testing. In case the approach is put into practice though, things might be
different. We also applied our analysis on the fixed program version provided by Defects4J. This
was important in order to show that we actually inject the actual targeted faults. Our results might
not hold on the cases that the code has drastically changed since the time of the bug report though.
We believe that this threat is not of actual importance as we are concerned with fault injection at
interesting program locations, which should be pinpointed by the fault localization technique we
use. Still, future research should shed some light on how useful these locations and faults are.

Furthermore, some implementation changes of iBiR may improve its usability. For instance,
adding an advanced integrity check before applying the patterns would shorten the execution time
of the tool. As currently the generated faulty programs are mainly validated via the compilation,
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Fig. 13. Correlation between the semantic similarities and the project size (100 injected faults per targeted
(real) fault).

only 52% of the mutants are compilable and thus outputted, while the rest are discarded. Also, one
can consider using the same approach with different IRFL techniques. This would eliminate the
training cost and reduce the eventual risk of threats that may be induced by the machine learning
module currently used to rank the suspicious files. In fact, some of the projects in our evaluation
set have been used during the training phase of the latter. Although we did not notice any bias
or bad impact on our results, we are aware that this can be considered as an additional threat
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to validity. However, these threats concern only the file-level localization of the IRFL and not the
statement-level one; thus, they would not impact its results. This is because the IRFL is performing
a VSM cosine similarity to rank the suspicious statements without involving any machine learning
technique in this step, as explained in Section 4.1.

Finally, our evaluation metrics may induce some additional threats. Our comparison basis mea-
surement, i.e., number of injected faults, approximates the execution cost of the techniques and
their chances to provide misleading guidance [62], while the fault couplings and semantic similar-
ity metrics approximate the effectiveness of the approaches. These are intuitive metrics, used by
previous research [9, 32], and aim at providing a common ground for comparison.

10 RELATED WORK

Software fault injection [73] has been widely studied since the 1970s. Injected faults have been
used for the purpose of testing [60], debugging [41, 61], assessing fault tolerance [51], risk analysis
[11, 72], and dependability evaluation [7].

Despite the many years of research, the majority of previous research is focused on the fault
types. In mutation testing research, mutation operators (fault types) are usually designed based on
the grammar of the targeted language [4, 60], which are then refined through empirical analysis,
aiming at reducing the redundancy between the injected faults [45, 53]. The most prominent mu-
tant selection approach is that of Offutt et al. [53], which proposed a set of five mutation operators.
This set has been incorporated in most of the modern mutation testing tools [28] and is the one
that we use in our baseline.

Brown et al. [8] aimed at inferring fault patterns from bug fixes. Their results showed that a large
number of mutation operators could be inferred. Along the same lines, Tufano et al. [70] developed
a neural machine translation tool that learns to mutate through bug fixes. Key assumptions of these
methods are (1) the availability of a comprehensive number of clean bug fixing commits and (2) the
absence of fault couplings [52], which are often not met and can often be reduced to what simple
mutations do. For instance, the study of Brown et al. found that with few exceptions, almost all
mutation operators designed based on the C language grammar appeared in the inferred operator
set. Perhaps more importantly, the studies of Natella et al. [51] and Chekam et al. [9] found that
the pair of mutant location and type is what makes mutants powerful and not the type itself.
Nevertheless, the iBiR goal is complementary to the above studies as it aims at injecting faults
that mimic specifically targeted faults, those described in bug reports. This way, one can inject the
most important and severe faults experienced.

Some studies attempt to identify the program locations where to inject faults. Sun et al. [68]
suggested injecting faults in diverse places within different program execution paths. Gong et al.
[21] used graph analysis to inject faults in different and diverse locations of the program spectra.
Mirshokraie et al. [48] employed complexity metrics together with actual program executions to
inject faults at places with good observability. These strategies aim at reducing the number of
injected faults and not to mimic any real fault as our approach. Moreover, their results should be
resembled by the random mutant sampling baseline that we use.

Random mutant sampling forms a natural cost reduction method proposed since the early days
of mutation testing [14]. Despite that, most of the mutant selection methods fail to perform better
than it. Recently, Kurtz et al. [32] and Chekam et al. [9] demonstrated that selective mutation
and random mutant sampling perform similarly. From this, it should be clear that despite the
advances in selective mutation, the simple random sampling is one of the most effective fault
injection techniques. This is the reason we adopt it as a baseline in our experiments. There are
also attempts to combine random and selective mutation [83], but they are not relevant for us as
they inject numerous mutants.
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Natella et al. [51] used complexity metrics as machine learning features and applied them on a
set of examples in order to identify (predict) which injected faults have the potential to emulate
well the behavior of real ones. Chekam et al. [9] also used machine learning, with many static
mutant-related features to select and rank mutants that are likely fault revealing (have high chance
to couple with a fault). These studies assume the availability of historical faults and do not aim at
injecting specific faults as done by iBiR.

The relationship between injected and real faults has also received some attention [60]. The
studies of Papadakis et al. [62], Just et al. [25], and Andrews et al. [6] investigated whether mutant
kills and fault detection ratios follow similar trends. The results show the existence of a correlation
and, thus, that mutants can be used in controlled experiments as alternatives to real faults. In the
context of testing, i.e., using mutants to guide testing, injected faults can help identify corner cases
and reveal existing faults. The studies of Frankl et al. [19], Li et al. [36], and Chekam et al. [10]
demonstrated that guidance from mutants leads to significantly higher fault revelation than that
of other test techniques (test criteria).

11 CONCLUSION

We presented iBiR; a bug-report-driven fault injection tool. iBiR (1) equips researchers with faults
(to inject) targeting the critical functionality of the target systems, (2) mimics real faulty behavior,
and (3) makes relevant fault injection.

iBiR’s use case is simple: given a program and some bug reports, it injects faults emulating the
related bugs; i.e., iBiR generates few faults per target bug report. This allows constructing realistic
fault pools to be used for test or fault tolerance assessment.

This means that iBiR’s faults can be used as substitutes of real faults, in controlled studies. In
a sense, iBiR can bring the missing realism into fault injection and therefore support empirical
research and controlled experiments. This is important since a large number of empirical studies
rely on artificially injected faults [59], the validity of which is always in question.

While the use case of iBiR is in research studies, the use of the tool can have applications in
a wide range of software engineering tasks. It can, for instance, be used for asserting that future
software releases do not introduce the same (or similar) kind of faults. Such a situation occurs
in large software projects [56], where iBiR could help by checking for some of the most severe
faults experienced. Testers could also use iBiR for testing all system areas that could lead to similar
symptoms as the ones observed and resolved. This will bring benefits when testing software clones
[49] and similar functionality implementations.

Another potential application of iBiR is fault tolerance assessment, by injecting faults similar
to previously experienced ones and analyzing the system responses and overall dependability. We
hope that we will address these points in the near future.

To support this research and enable reproducibility, we have made our data and code avail-
able [1].
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