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ABSTRACT
In-vehicle intelligent agents (IVIAs) can provide versatile infor-
mation on vehicle status and road events and further promote
user perceptions such as trust. However, IVIAs need to be con-
structed carefully to reduce distraction and prevent unintended
consequences like overreliance, especially when driver interven-
tion is still required in conditional automation. To investigate the
effects of speech style (informative vs. conversational) and em-
bodiment (voice-only vs. robot) of IVIAs on driver perception and
performance in conditionally automated vehicles, we recruited 24
young drivers to experience four driving scenarios in a simulator.
Results indicated that although robot agents received higher system
response accuracy and trust scores, they were not preferred due to
great visual distraction. Conversational agents were generally fa-
vored and led to better takeover quality in terms of lower speed and
smaller standard deviation of lane position. Our findings provide a
valuable perspective on balancing user preference and subsequent
user performance when designing IVIAs.
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1 INTRODUCTION
Intelligent agents (IAs), who autonomously and intelligently help
users with given tasks [39], have been widely used as voice assis-
tants in people’s daily lives. Driving is one of the promising use
contexts that can greatly benefit from IAs. With IAs, drivers expe-
rience reduced visual distraction when interacting with in-vehicle
infotainment systems [1, 33]. However, driving involves more com-
plicated and safety-critical tasks; thus, solely query-and-answer
or request-and-execute interaction mode in conventional IAs may
no longer provide effective assistance. In-vehicle intelligent agents
(IVIAs) are expected to proactively engage in driving tasks on a
wider spectrum to secure road safety, supporting drivers in both
driving-related and non-driving-related activities [51].

As vehicle automation gradually progresses to maturity, drivers’
responsibilities will eventually fade away, switching them from ac-
tive operators to passive monitors. At that time, the roles of IVIAs
will transfer from ensuring safety to promoting drivers’ in-cabin
experience and their understanding of automation systems. IVIAs
can provide vehicle- and scenario-related information. This infor-
mation is critical to constructing explainable automation systems,
helping drivers establish appropriate mental models, calibrate their
trust towards automated vehicles (AVs), and facilitate technology
acceptance. In addition to semantic contents, social attributes of
IVIAs—such as speech style and embodiment—can also be manipu-
lated to facilitate trust in advanced AVs [5, 22, 25]. Agents sharing
more social attributes (e.g., conversational speech style, humanoid
appearance) are more anthropomorphic [14, 22, 32] and can elicit a
better driver experience. Conversational speech style is typically
favored in autonomous vehicles (i.e., full AVs), with higher ratings
on positive user perceptions such as trust [24, 25, 27], warmth [52],
perceived usefulness, and ease of use [30], and lower ratings on
negative perceptions such as cognitive demand and annoyance
when interacting with IVIAs [52]. On the contrary, research on
the influences of the embodiment has not reached an agreement.
Embodied agents were perceived with higher competence and were
preferred as companions in full AVs [32, 52], but they were not
always preferred even without introducing extra visual distraction
[8]. In any case, findings from existing empirical studies have shed
light on the promising future of IVIAs in fully autonomous driving
contexts.

However, full AVs are yet to enter the market soon, which will
leave conditional AVs on the road for the next decades [26]. IVIAs in
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conditional AVs are still expected to support driving-related tasks as
a functional objective to release drivers’ burden [31] because drivers
are required to take over the control from the automation systems
and intervene in critical events when AVs reach their operational
limits. This automation-to-driver authority transition process is
called a takeover process [36]. The smoothness and safety of the
takeover process are primarily determined by the timeliness of
the takeover requests (TORs) and the effectiveness of the driver
intervention [36]. If designed properly, IVIAs can play active roles in
providing timely TORs and assisting drivers in negotiating critical
events.

Existing research has investigated the design components of
IVIAs that contribute to the timeliness of TORs. Simply adding
IVIAs increased the likelihood of drivers making timely reactions
[34]. The time-to-collision at the time of the TOR, also known as the
lead time, also significantly impacts the driver reaction time as well
as the lateral and longitudinal posttakeover driver intervention [36].
Generally, longer lead times are associated with longer takeover
times [36, 58], while the crash rate shows a U-shaped relationship
as the lead time increases [58]. In addition to the temporal variable,
varying signal words, the tone, or the loudness of speech can con-
vey different levels of perceived urgency, which further influences
takeover reaction times [43, 45, 54, 58].

IVIAs can also assist drivers with intervention strategies because
they are capable of and versatile in carrying information. Effective
driver interventions are guarded by appropriate situation awareness
(SA) in drivers, which is largely compromised in conditional AVs.
Drivers in conditional AVs—as passive monitors—have declined
alertness caused by task disengagement, low workload, or passive
fatigue [34, 50]. Vehicle- and scenario-related information provided
by IVIAs can keep drivers in the loop, improve their SA, and prompt
future actions [16, 34, 35, 38]. For instance, the “how” message
announces the vehicle’s current action, and the “why” message
explains the reason for vehicle decisions [21], while the “what
will” message provides further recommendations in reaction to the
scenario [9]. The “what will” message was perceived as more useful
and easier to use compared to others in conditional AVs [9]. These
semantic contents are important to improve drivers’ SA and are
critical to communicating automation capabilities and limitations,
helping calibrate trust and avoid takeover failure due to system
misuse [28, 41]. Social attributes of IVIAs are also beneficial in
trust calibration in conditional AVs, which can further impact the
effectiveness of driver intervention.

Exactly due to their versatility, IVIAs should be carefully de-
signed. Subtle differences in speech interactions can significantly
impact driver preference [53], and most importantly, can influence
trust and reliance [28, 56]. Additionally, IVIAs can elicit distrac-
tions and annoyance due to their high social presence. While the
influences of semantic contents on the takeover process have been
researched widely in conditional AV contexts, the examination
of social attributes of IVIAs has been primarily practiced under
full AV conditions. Considering that drivers’ responsibilities al-
ter between full and conditional AVs [47], findings under fully
autonomous driving conditions cannot be widely generalized in
conditionally automated driving contexts. Drivers in full AVs are
not responsible for any driving tasks; instead, they are open to other
non-driving-related interactions. However, drivers in conditional

AVs are expected to make timely and effective actions when asked.
Thus, distractions and impairment in conditional AVs can be detri-
mental. In this case, how the social attributes of IVIAs influence
driver perception and further impact the takeover process in condi-
tional AVs remains ambiguous. To address this issue, the present
study aims to systematically evaluate the effects of speech style
and embodiment—as two characteristics contributing to social at-
tributes of IVIAs— and their interaction effect on driver perception
and takeover performance in conditional AVs. Two representative
speech styles—informative vs. conversational—were used to create
divergent perceptions: the informative style sounds commanding
due to its simplicity and directness, while the conversational one
is more suggestive and can create a feeling of being cared for [29].
The influence of the absence or presence of a physical body (voice-
only vs. robot) were examined to understand possible distraction
introduced by embodied agents, while also maximizing the anthro-
pomorphism provided by a humanoid robot [46, 59]. We adopted a
within-subjects factorial design, attempting to detach the effects
of two social attributes from each other and provide an unambigu-
ous view of their influential mechanisms. Based on the existing
evidence, we further hypothesize that:

H1: Drivers will prefer voice-only agents without visual distrac-
tion in conditional AVs over robot agents, while conversational
speech style will also be preferred in this context to enhance driver
experience and engagement.

H2: Drivers accompanied by conversational agents will have
better performance, specifically:

H2.1: Drivers will have better SA.
H2.2: Drivers will demonstrate safer takeover performance.
This research study leads to the following unique contributions.

First, shifting in driver experience, especially their preference to-
wards IVIAs, when compared with IVIA design in full AVs, uncov-
ers and supports the dynamic user needs and requirements as the
levels of automation alter. Further, user perception of the driver-
agent interaction provides insights on how to design agents to
promote driver experiences in conditional AVs, laying the founda-
tion for comparing IVIA designs and preferences across different
levels of automation. Finally, findings on the influence of different
types of IVIAs on the subsequent takeover process can help with
a balanced design between subjective preferences and unintended
consequences.

2 METHODS
2.1 Participants
Twenty-four participants (7 females) aged between 19 and 33 years
old (Mean = 23.12, SD = 4.49) with normal or corrected-to-normal
vision participated in our study. All participants had valid driver’s
licenses and had an average driving experience of 5.93 years (SD =

3.37), with an average driving frequency of 4.67 days per week (SD
= 2.22). Two participants had experience in partial AVs (i.e., Tesla
full self-driving) before their participation.

2.2 Experimental apparatus and stimuli
We conducted a driving simulator study in a motion-based driving
simulator (NervtechTM, Ljubljana, Slovenia), which consisted of
three 48” displays that created a 120˚ horizontal field of view, an
adjustable seat, a steering wheel, pedals for gas and brake, and
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Figure 1: Experimental setup with the NervTech driving sim-
ulator and Nao.

surrounding sound equipment. Driving scenarios programmed in
SCANeR studio were designed to simulate an SAE Level 3 Condi-
tional Driving Automation [47]. We developed four driving scenar-
ios, including straight and curved roads with traffic, traffic signals
and signs, and other road users (e.g., pedestrians and other vehi-
cles). The simulated ego vehicle had longitudinal and lateral control
while navigating along a predefined route and handling limited
road events such as stopping at a red light and crossing a controlled
intersection. When the system reached its limitation (e.g., limited
visibility due to weather, surprising event), a speech takeover re-
quest (TOR) along with a visual notification on the navigation panel
would be issued to mandate the participant to take over control
of the vehicle. The participant deactivated autonomous driving by
either using a toggle attached to the steering wheel or pressing the
brake. Upon exiting the takeover event zone, the system prompted
the participant to reengage the automated mode (i.e., “Please reen-
gage the auto-drive”). Each scenario consisted of four takeover
events and four non-takeover events, lasting approximately seven
minutes. The route and order of events were different among four
scenarios to minimize learning effects.

Speech messages regarding road events and TORs used in this
studywere converted via the text-to-speech engine in Amazon Polly
(name: Joanna, gender: female, nationality: USA). A humanoid robot,
NAO (V6 standard edition, height: 22", width: 10.8"), was used under
the embodied agent conditions. Figure 1 presents the experimental
setup for the driving simulator and NAO. To capture participants’
gaze fixation during the study, an eye-tracking device—Tobii Pro
Glasses 2—with a sampling rate of 50 Hz was used.

2.3 Experimental design
This study adopted a 2 (Speech style: informative vs. conversational)
x 2 (Embodiment: voice-only vs. robot) within-subjects factorial de-
sign. Thus, four types of in-vehicle intelligent agents (IVIAs) were
evaluated in this study: informative voice agent (IVA), informative
robot agent (IRA), conversational voice agent (CVA), and conver-
sational robot agent (CRA). Each participant was accompanied by
all four agents in four different driving scenarios, respectively. The
order of the agent conditions was counterbalanced across partici-
pants and with the matching scenarios. Thus, the same agent was
not always used in the same scenario to avoid the scenario as a
confounding variable.

The IVIAs issued TORs and provided information regarding road
events (see Table 1 for a complete list of events and scripts). All

road events shared similar elements across four scenarios but were
placed at different locations along the travel route to avoid learn-
ing effect. Thus, the difficulty of takeover events remained similar.
While informative agents present information in a simple manner
without additional information other than road events (e.g., “Exit
ahead”), conversational agents communicate the message in a dia-
logue style (e.g., “We are entering a new road.”). The TORs remained
the same between informative and conversational styles to control
the message length as a confounding variable that could impact
information processing time and further influence the takeover
reaction time under emergency situations. The length of takeover
request ranged from 2.41 to 3.00 seconds (Mean = 2.64, SD = 0.27)
across four events. For other road events, the length of informative
messages ranged from 0.86 to 1.31 seconds (Mean = 1.09, SD = 0.21)
and the length of conversational messages was between 1.13 to 4.08
seconds (Mean = 1.97, SD = 1.39).
The lead time was 4.5 seconds in this study. We selected a relatively
limited time budget for the following reasons. First, our pilot study
with a 7-second lead time for takeover events indicated a lower level
of task difficulty, which led to performance degradation or passive
fatigue due to boredom. Thus, we increased the task difficulty by
limiting the time budget to keep participants’ active engagement.
Second, an empirical study showed a 4.5-second time budget led
to a minimum crash rate and brake-to-maximum reaction time to
speech warnings among the lead time shorter than 7 seconds [58].

2.4 Dependent measures and analysis
Both subjective and objective dependent measures were considered.
Subjective measures included questionnaires to evaluate driver-
agent interaction experience and driver preference. Objective mea-
sures included situation awareness, eye-tracking measures, and
takeover performance. The following sections introduced the de-
pendent measures separately and explained the analysis method
afterward.

2.4.1 Subjective measures. Subjective measures included ratings
from three questionnaires collecting driver perception on the ac-
companying agent: the modified Subjective Assessment of Speech
System Interfaces (SASSI) [17] (the Habitability and Speed subscales
were removed due to their irrelevance to our agent setting), and
the Scale of Trust in Automated Systems [20]. In addition, partici-
pants’ preferences and reasons behind their first and least preferred
agents were also asked. A two-way repeated-measures analysis of
variance (ANOVA) was conducted to understand the influence of
speech style and embodiment and their interaction effect on each
factor of driver-agent interaction questionnaires. A Chi-square test
for each preference rank was conducted to identify differences in
preferred agents.

2.4.2 Situation awareness. Drivers’ situation awareness (SA) was
evaluated using the Situation Awareness Global Assessment Tech-
nique (SAGAT) [13]. To develop the SA queries, we conducted a
Goal-Directed Task Analysis (GDTA) to identify the SA require-
ments [12] needed for drivers under conditional automation to
make decisions if a TOR was issued. With a list of SA requirements,
six queries were constructed for each freeze point in the driving
scenario, consisting of two queries for each level of SA: perception,
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Table 1: Driving events and scripts in scenario

Event List Informative Script List Conversational Script List
Road construction Take over immediately. Road construction ahead.
Fog Take over immediately. Fog ahead.
Jaywalking Take over immediately. Jaywalker ahead.
Tunnel Take over immediately. Tunnel ahead.
Exit or enter a new road Exit ahead. We are entering a new road.
Waiting for a traffic signal Red light ahead. We are waiting for the signal to turn green.
Turning left/right Turning left/right ahead. We are turning left/right.
Two-way stop intersection This is a two-way stop. We’ve reached a two-way stop. We are waiting for

other cars to go first.

comprehension, and projection [10]. Each query had four options
with only one correct option. Participants’ overall accuracy rate for
each query was calculated. Queries with a lower than 25% accuracy
rate (N = 2) of guess level were removed from further analysis.
Then, the frequency of correctness (% correct) was calculated for
each scenario. Because data from queries scored as correct or in-
correct were binomial, the arcsine-root-square transformation was
applied as a correction factor to allow the ANOVA tests [4, 11].

2.4.3 Eye-tracking measures. The eye-tracking data were collected
and stored in the eye-tracking device. We primarily focused on gaze
fixation to identify any potential distraction due to introducing an
embodied agent. Specifically, we calculated distraction fixation
frequency and total distraction duration.

Gaze fixations on predefined areas of interest (AOIs) were iden-
tified in the Tobii Pro Lab software (v1.152) and classified into two
primary categories: driving-related fixations and distraction fixa-
tions. Driving-related fixations included fixations to the road, other
road users, road signs and signals, rear-view mirrors, and the in-
strument panel. Distraction fixations included fixations to NAO
in robot agent conditions and personal devices. The distraction
fixation frequency and total distraction duration was calculated
using the formula below [52, 57]:

𝐷𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑑𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑢𝑛𝑡𝑡𝑜𝑡𝑎𝑙
(1)

The total distraction duration was the sum of all distraction fixa-
tion duration in seconds. After the calculation, a two-way repeated-
measures ANOVA was performed to identify the effect of speech
style and embodiment.

2.4.4 Takeover performance. Takeover performance was further di-
vided into takeover time and quality (Table 2). Takeover timewas de-
fined as the time interval between the issue of TOR and the automa-
tion deactivation [7, 49], either by using the toggle or pressing the
brake. Takeover quality metrics examined in the present study were
speed-related measures (maximum, minimum, and average speed),
maximum lateral acceleration, and standard deviation of lane posi-
tion (SDLP; excluding the construction event, which required lance
changing). Smaller values in speed, acceleration, or SDLP indicate
smoother and safer takeover reactions. All takeover quality met-
rics were calculated during the manual control period between the
time participants initiated the manual control and the time when
they exited the takeover zone, which was a fixed point marked

in the scenario and did not depend on participants’ maneuver
variation.

Each participant experienced four takeover events in each of
four scenarios, resulting in a total of 384 data points for each
takeover performance measure. Values exceeding six standard de-
viations for each measure were revisited and corrected if a pro-
gramming error was detected or removed if a true outlier was
determined. No more than 3% of the total number of data points
were excluded from each measure, with the maximum lateral ac-
celeration having the largest number of points removed (n = 11)
– mainly because of the simulation running error. Because the
construction takeover event required a lane-changing maneuver,
measures for this event were analyzed separately. The measures
for the other three events were integrated and analyzed together. A
two-way repeated ANOVA was conducted to determine the effect
of speech style and embodiment on each measure for each event
category.

2.5 Procedure
Upon arrival at the lab space, participants signed the consent form
for this study approved by the university’s Institutional Review
Board. Participants were explained that there were four driving sce-
narios with conditional automation where they would not operate
the vehicle for most of the time. However, if the system asked them
to do so, they had to take over the control and drive for some time
before handing over the control back to the vehicle when prompted.
To simulate a natural driving situation, participants were allowed
to do any tasks of their choice during the drives, but they must be
ready to take over the control when asked. Participants were also
informed of the presence of the IVIAs, who would issue TORs and
provide information regarding other road events. Before the formal
drives, a simulation sickness test was administrated [15], where a
self-comfort checklist was completed before and after the 5-minute
test drive. During this process, participants experienced sample
takeover events and a pause for SAGAT with sample queries, while
also familiarizing themselves with the system control and simu-
lated scenarios. Then, demographical information was collected
if they were not suspected of simulation sickness. Before the first
drive, the eye-tracking glasses were put on participants and appro-
priately calibrated. During the drive, the experimenter paused the
scenario at two certain points—differed for each driving scenario—
and administrated the SAGAT queries. After finishing each drive,
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Table 2: Takeover performance measures

Category Dependent Measures Unit Definition
Temporal measures Takeover time Seconds Time between TOR and automation deactivation.
Takeover quality* Max/Min/Average speed m/s Maximum, minimum, or average speed during the

takeover event after automation deactivation.
Takeover quality Maximum lateral acceleration m/s2 Maximum lateral acceleration during the takeover event

after automation deactivation.
Takeover quality SDLP Meters Standard deviation of the lateral distance of the ego

vehicle regarding the middle of the lane.

* All takeover quality was calculated within the manual driving time frame within the takeover event zone defined along the route.

Table 3: Subjective ratings on driver-agent interaction

Scale Items/Factors Agent Type Main Effect
IVA CVA IRA CRA Speech Style Embodiment

SASSI System Response Accuracy 4.96 4.82 5.28 5.17 - V < R *
Likability 4.85 4.79 4.74 5.07 - -
Cognitive Demand 3.18 3.03 2.98 3.13 - -
Annoyance 3.33 3.10 3.43 3.16 - -

Trust in Automation Trust 5.14 5.00 5.36 5.21 - V < R *

* p < .05, I = informative, C = conversational, V = voice-only, R = robot.

participants completed the subjective questionnaires that collected
their driver-agent interaction experience. After completing all con-
ditions, participants ranked their preference towards four types of
IVIAs and their reasons for the first and least preferred agents. The
experiment lasted approximately 90 minutes.

3 RESULT
3.1 Driver-Agent Interaction
Table 3 summarizes the average rating score for each questionnaire
under each condition. Embodiment showed a significant main effect
in System Response Accuracy scale: F (1, 23) = 5.51, p < .05, 𝜂2𝑝 =

.19, and in Trust in Automation scale: F (1, 23) = 4.35, p < .05, 𝜂2𝑝 =

.16. Robot agents were perceived to have higher system response
accuracy and trust than voice-only agents, regardless of their speech
style.

No interaction effect between speech style and embodiment was
identified in any factors.

3.2 Agent preference
Table 4 presents the preference ranking and distribution for each
type of agent. A significant difference in participants’ 1st preferred
agent was found: 𝜒2(3) = 8.33, p < .05. The conversational voice
agent was preferred the most. When participants explained the
reasons behind their first preferred agent, explanatory or instructive
(N = 7), less distracting (N = 5), friendly (N = 4), and human-like (N
= 3) were the most frequently mentioned perceived characteristics
of the conversational voice agents:

“The conversational voice agent provides the right
information needed without being distracting as it

Table 4: Preference ranking for all agent conditions

Preference Agent Type
IVA CVA IRA CRA

1st 6 11 1 6
2nd 6 6 6 6
3rd 5 5 8 6
4th 7 2 9 6
Average Score 2.54 1.89 3.04 2.50
SD 1.18 1.02 0.91 1.14

Note: unit – number of participants

may be with the robot or condescending with the
strictly informative voice agent.” (P5)

“. . . remain relaxed and focused when having a
voice that spoke in a friendly manner.” (P10)

“Being conversational engages the driver and pro-
vides correct instructions to prevent any human
errors.” (P12)

“It is better to drive when the voice is more human-
like and less of a robot. Also, the conversation makes
it more lifelike as well. And explains more of what
you should do.” (P16)

When participants were asked to reason their least preferred agents,
impolite/commanding/robotic (N = 7) and lack of information (N =

6) were raised frequently for informative agents, while distracting
(N = 4) and uncomfortable (N = 3) were frequently mentioned for
robot agents:
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Figure 2: Standardized SAGAT scores across conditions (* p <
.05)

Figure 3: Distraction fixation frequency among all conditions
(* p < .05) [Error bars represent standard errors]

“The voice was very robotic and unpleasant to listen
to. Also, the robot sometimes stares at me, which was
distracting.” (P9, 4th choice: IRA)
“. . . the informative option was less ideal because it
simply stated things that were obvious from the sur-
roundings already.” (P12, 4th choice: IRA)
“I feel like the informative voice agent was telling me
what to do and not in a polite way. It felt like a
backseat driver, which can get annoying.” (P20, 4th
choice: IVA)

3.3 Situation awareness
A one-way ANOVA found that participants’ transformed SAGAT
scores differed significantly across scenarios: F (3, 69) = 10.44, p <
.001. Thus, transformed SAGAT scores were further converted to
Z-scores for each scenario before a two-way repeated ANOVA to
understand the influence of speech style and embodiment.

Significant main effects of speech style [F (1, 23) = 7.52, p < .05, 𝜂2𝑝
= .25] and embodiment [F (1, 23) = 5.05, p < .05, 𝜂2𝑝 = .18] were found
on participants’ standardized SAGAT scores. Participants had a
higher situation awareness score when accompanied by informative
agents or robot agents than when accompanied by conversational
agents or voice-only agents, respectively (Figure 2). There was
no interaction effect between speech style and embodiment on
participants’ situation awareness.

3.4 Eye-tracking measures
Results from two-way repeated-measures ANOVA indicated a sig-
nificantmain effect of embodiment on distraction fixation frequency
(Figure 3): F (1, 23) = 7.71, p < .05, 𝜂2𝑝 = .25. However, there was no
difference in total distraction fixation duration between voice-only
agent conditions (Mean = 293.37 sec, SD = 45.20 sec) and robot
agent conditions (Mean = 290.69 sec, SD = 61.41 sec). Speech style
did not influence the distraction fixation measures. When accompa-
nied by robot agents, participants made more frequent distracting
glances (Mean = 0.12, SD = 0.11) compared to when accompanied
by voice-only agents (Mean = 0.07, SD = 0.06), regardless of the
speech style, but the total distraction duration remained similar.

3.5 Takeover performance
Participants did not differentiate in their takeover methods (us-
ing a toggle attached to the steering wheel or pressing the brake)
across agent conditions: 𝜒2(3) = 2.30, p = .51. Thus, the subsequent
takeover performance analysis did not separate these two methods.

3.5.1 Takeover time. Speech style or embodiment did not have a
significant main effect on the takeover reaction time. The average
takeover time was 1.46 s (SD = 0.28s) and 1.40 s (SD = 0.21 s) for
the informative voice agent and the conversational voice agent,
respectively; and was 1.42 s (SD = 0.21 s) and 1.42 s (SD = 0.22
s) for the informative robot agent and the conversational robot
agent, respectively. Participants had a similar takeover reaction
time across all conditions.

3.5.2 Takeover quality. For the construction takeover event, there
was a significant interaction effect between speech style and embod-
iment on the maximum speed: F (1, 23) = 5.32, p < .05, 𝜂2𝑝 = .19, and
average speed: F (1, 23) = 5.49, p < .05, 𝜂2𝑝 = .19. A simple main effect
analysis indicated that when accompanied by voice-only agents,
participants had a numerically higher maximum speed (p = .067), a
significantly higher minimum speed (p < .05), and a significantly
higher average speed (p < .05) when the agent communicated in an
informative style compared to a conversational style (Figure 4).
Embodiment was found to have a significant main effect on the
maximum lateral acceleration, F (1, 21) = 4.36, p < .05, 𝜂2𝑝 = .17.
Participants had a larger maximum lateral acceleration under robot
conditions (Figure 5a). Speech style had a significant main effect on
the standard deviation of lane position (SDLP), F (1, 22) = 6.32, p <
.05,𝜂2𝑝 = .22.When accompanied by informative agents, participants
had a higher SDLP (Figure 5b).
In the non-lane changing takeover events (i.e., jaywalker, fog, and
tunnel), speech style or embodiment did not have any significant
main effect on the speed-related measures or SDLP. However,
speech style showed a significant main effect on the maximum
lateral acceleration, F (1, 22) = 6.32, p < .05, 𝜂2𝑝 = .22. Participants
had a larger maximum lateral acceleration under informative agent
conditions (Figure 6).

4 DISCUSSION
This study investigated the effects of speech style and embodi-
ment of in-vehicle intelligent agents (IVIAs) on drivers’ experience
and their takeover performance in a conditionally automated driv-
ing condition. Results indicate that although robot agents received
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Figure 4: Max/Min/Average speed after takeover for construction (* p < .05) [Error bars indicate standard errors]

Figure 5: Max lateral acceleration and SDLP after takeover for construction (* p < .05) [Error bars indicate standard errors]

Figure 6: Max lateral acceleration after takeover for other
events (* p < .05) [Error bars indicate standard errors]

higher ratings in driver-agent interaction questionnaires, they intro-
duced extra distraction, whichmight cause suboptimal performance
after the takeover. On the contrary, conversational agents gained
driver preference and demonstrated consistent contribution to safer
maneuvers after the takeover, compared to informative agents.

4.1 Speech style and embodiment on
driver-agent interaction

While conversational speech style did not outperform informative
one, the robot agents were rated more positively on subscales of sys-
tem response accuracy and trust in automated systems. Although

the information presented to drivers was the same between the
voice-only and robot conditions, with perfect accuracy, the mes-
sages delivered by robot agents were perceived as more accurate
and, therefore, met user expectations [17]. Thus, higher trust in the
embodied IVIAs was observed in our study as one of the benefits of
elevated perceived accuracy that was used to form appropriate trust
[3]. A previous study using the same robot found that NAO condi-
tions overall yielded higher trust than voice-only agents, while a
social NAO produced the highest trust score [22]. A review paper
also pointed out that embodied agents are consistently more trusted
[44].

4.2 User preference favored the conversational
voice agent

Findings from participants’ preference toward four types of agents
support our H1. Although participants rated robot agents higher
in driver-agent interaction, they preferred voice-only agents the
most (N = 17). Distraction and discomfort were two dominant
perceptions when participants explained their preferences. The au-
tonomous movement of NAO that made it “humanizing” (P4) was
perceived as distracting due to its motion and noise. In addition,
robot agents’ occasional gaze focusing on participants made them
uncomfortable. A long time being looked at by a robot counter-
part may increase discomfort [42]. Although the differences did
not reach a traditional statistically significant level, subjective rat-
ings on the subscale of discomfort (Table 3) were able to support
these statements: robot agents were rated numerically higher on
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discomfort (IRA = 2.30, CRA = 1.99) than voice-only agents (IVA =

1.74, CVA = 1.85). When looking into the ratings on robot agents
themselves, it seems that having a conversational speech style can
mitigate such discomfort.

In fact, conversational speech style was also preferred the most
(N = 17). Both the tone and contents provided by conversational
agents were favored. As opposed to informative agents in a per-
ceptually “condescending” style, participants preferred the con-
versational agents speaking in a “friendly manner”, which formed
a feeling of being accompanied by “another passenger”. In addi-
tion, participants preferred the “additional conversational part” that
could provide “more context to its (i.e., the vehicle’s) decisions”.
Thus, we could carefully speculate that conversational agents in our
study provided higher perceived system transparency by improving
drivers’ understanding of agents’ intentions [2, 37, 55]. However,
there was debating about whether the additional information was
necessary. Four participants claimed it was unnecessary because
drivers were not heavily engaged; thus, they only needed to know
the information when human input was required.

Overall, the conversational voice agent (CVA) as the most pre-
ferred agent (N= 11) retains the advantages of conversational agents
without the disadvantages of robot agents.

4.3 Situation awareness and gaze fixation
We observed an interesting influence of speech style and embodi-
ment on drivers’ situation awareness. Although the conversational
style was preferred the most and believed to provide additional
contents, drivers received lower SAGAT scores when advised by
conversational agents compared to when advised by informative
agents. Our H2.1 was not supported. Such performance decrement
in preferred conditions may result from overreliance [28, 41] and
complacency [40]. Drivers were comfortable around conversational
agents and satisfied with the information provided. Thus, they
might not allocate adequate attention to the scenarios but depend
on the agents to deliver information.

Similarly, although robot agents were commented to be distract-
ing and annoying, drivers performed better in SAGAT queries when
accompanied by robot agents. A potential explanation is that dri-
vers may be able to prevent task-unrelated distractions. Although
a higher distraction fixation frequency was observed under ro-
bot agent conditions, the presence of a robot only introduced a
minimum level of distraction because the overall distraction dura-
tion remained similar. Thus, such distraction was not detrimental
enough to compete with the driver’s monitoring tasks. In this way,
drivers were still able to overcome this interference and took com-
pensatory actions, for example, improving their vigilance to the
current situation in this study.

4.4 Conversational speech style produced
careful maneuver

The takeover reaction time did not differ across conditions, which
was not surprising because the TORs were delivered using the
same set of messages. However, the takeover quality for the lane-
changing event (i.e., construction) and non-lane-changing events
(i.e., jaywalker, fog, and tunnel) was impacted primarily by speech

style. At the same time, the embodiment also played a role inde-
pendently of and dependently on speech style. In general, drivers
advised by informative agents exhibit risky and unstable driving be-
haviors in terms of higher speed across all speed-related measures,
a larger standard deviation of lane position in the lane-changing
takeover event, and higher maximum lateral acceleration in non-
lane-changing takeover events. Only the effects on speed-related
measures were moderated by embodiment; the influence of speech
style diminished when the agent possessed a physical body. When
taking participants’ comments into account, the informative speech
style was, in general, “annoying” and “irritating”, which may create
angry drivers who tend to drive faster [19, 48]. Further, the dis-
comfort from the presence of the physical body was so strong that
it might weaken or even override the effects of speech style; for
instance, participants had a larger maximum lateral acceleration
when accompanied by robot agents than voice-only agents.

When taking all takeover quality measures as a big picture, con-
versational speech style overall yielded greater takeover quality,
which supports our H2.2. Although embodied agents were more
favored in subjective ratings, speech style was more decisive and
powerful in encouraging safer posttakeover driver intervention.

4.5 Implications, limitations, and future work
Findings from the present study are able to provide guidance on
designing IVIAs for conditional AVs to deliver road information and
issue TORs, which provide evidence on differentiating needs and re-
quirements of IVIAs in vehicles with different levels of automation
[51]. The balance between user preference and overreliance needs
to be considered to maximize user acceptance while minimizing
system misuse. Additional information explaining the system’s cur-
rent action is also critical to building explanatory and transparent
IVIAs, which are helpful in forming appropriate mental models [23].
In contrast to embodied IVIAs preferred in full AVs [25, 52], robot
agents lost their likability in conditional AVs, where drivers are
still required to take actions. Interaction and companionship are no
longer necessary in the form of a physical body but can be sufficient
in a polite and friendly speaking style without visual distractions.
Additionally, delivering information in a natural, equivalent, and
easy-going way, such as the conversational speech style, can pro-
mote user experience and elicit empathy in drivers, and further
lead to cautious driving behaviors. However, if a conversational
style is selected to prioritize user acceptance and experience, con-
tents included in the conversation should be carefully drafted to
avoid complacency. Future research is needed to manipulate con-
tent richness and identify the balance between user acceptance and
performance to present IVIAs for conditional AVs.

Even though our study has provided valuable findings leading to
promising implications, we acknowledge some limitations worth
further exploration. First, 50% of the speech prompts were TORs and
were delivered using the same prompts. While we controlled the
effect of prompt lengths on takeover reaction times, such a setting
may compromise the differentiation between the informative and
conversational agents, leading to equivalent momentary reactions
to the speech prompt and similar user perceptions of two speech
styles in driver-agent interactions. Second, although all driving
scenarios were similar in terms of route and environments, elements
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on the road prior to the SAGAT freeze point differed to some extent.
Such differences might introduce the scenario as a covariate when
evaluating the SAGAT score. Even though we balanced the match
between agent conditions and driving scenarios and standardized
scores prior to further analysis, such a variety in the difficulty levels
of SAGAT queries might impact user perception in an unforeseeable
manner.

As intelligent agents gradually penetrate our daily lives, some of
them have been applied to vehicles without any automation, where
driver tasks dramatically differ from vehicles with conditional or full
automation. As a consequence, IVIAs’ responsibilities also shifted.
Now that we have studies investigating the social attributes of
IVIAs across different levels of automation, future attempts could
be made to explore the variability in user perception and preference
towards IVIAs across automation levels. In addition, we found
a potential emotional reaction towards the IVIAs in the present
study. The capabilities of IVIAs to elicit emotional states could be
further evaluated and implied to mitigate performance decrements
in emotionally impaired drivers [6, 18].
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