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ABSTRACT
Wikidata has grown to a knowledge graph with an impressive size.
To date, it contains more than 17 billion triples collecting informa-
tion about people, places, films, stars, publications, proteins, and
many more. On the other side, most of the information on the
Web is not published in highly structured data repositories like
Wikidata, but rather as unstructured and semi-structured content,
more concretely in HTML pages containing text and tables. Find-
ing, monitoring, and organizing this data in a knowledge graph is
requiring considerable work from human editors. The volume and
complexity of the data make this task difficult and time-consuming.
In this work, we present a framework that is able to identify and
extract new facts that are published under multiple Web domains
so that they can be proposed for validation by Wikidata editors.
The framework is relying on question-answering technologies. We
take inspiration from ideas that are used to extract facts from tex-
tual collections and adapt them to extract facts from Web pages.
For achieving this, we demonstrate that language models can be
adapted to extract facts not only from textual collections but also
from Web pages. By exploiting the information already contained
in Wikidata the proposed framework can be trained without the
need for any additional learning signals and can extract new facts
for a wide range of properties and domains. Following this path,
Wikidata can be used as a seed to extract facts on the Web. Our
experiments show that we can achieve a mean performance of 84.07
at F1-score. Moreover, our estimations show that we can potentially
extract millions of facts that can be proposed for human validation.
The goal is to help editors in their daily tasks and contribute to the
completion of the Wikidata knowledge graph.

CCS CONCEPTS
• Information systems→ Data extraction and integration.
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1 INTRODUCTION
Knowledge Graphs (KGs) are data structures that allow us to orga-
nize and aggregate structured information about heterogeneous en-
tities. Known examples of such knowledge graphs are Freebase [2],
NELL [3], DBpedia [1], Yago [14] and more recently Wikidata [20].
While knowledge graphs likeWikidata contain an incredible amount
of information, most of the knowledge on the Web is published on
HTML websites in structured, semi-structured, and unstructured
content. Aggregating this information in knowledge graphs is ben-
eficial since one can interlink Web resources, and further allow the
machine to exploit them for Natural Language Processing (NLP)
tasks such as entity linking [15], query expansion [5], co-reference
resolution [17], and question answering [6]. This work builds upon
Wikidata, a public and open source knowledge graph currently re-
lying on 23, 362 active users1 to ingest and maintain its knowledge.
Wikidata has grown to a knowledge graph with an impressive size
with 17 billion triples with 10, 329 properties, collecting structured
information about people, places, films, stars, publications, proteins,
and many more. Finding, modeling, monitoring, and organizing
this data in a knowledge graph requires considerable work from
human editors as a whole.

For a single editor, it is certainly difficult to keep track of the
knowledge that is published on the Web and to follow the infor-
mation that could be changing over time. The sheer volume and
complexity of the data make it a demanding and time-consuming
task. For instance, Evzen Amler is a researcher who corresponds
to the Wikidata item Q484289742. At the same time, this researcher
has the ORCID 0000-0002-0977-89223. There might be information
published on https://orcid.org/ by the researcher that is not on
Wikidata, like the affiliation or information about the education.

1https://www.wikidata.org/wiki/Wikidata:Statistics
2https://www.wikidata.org/wiki/Q994013
3https://orcid.org/0000-0002-0977-8922
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Similarly, this could happen for Google Scholar or Facebook. It is dif-
ficult for editors to identify this external information and to monitor
their modifications over time. Another example is the music group
Deskadena that corresponds to the Wikidata item Q1135850634
which has also a link to Musicbrainz where it has artist ID f6afb1cc-
8799-41cf-8fa8-2745eeab36e65. MusicBrainz might contain infor-
mation like the founding year or the country that is not contained
in Wikidata. Needless to say that it is difficult for editors to locate
this information by human effort and insert it in Wikidata.

A common approach to alleviate these issues is the development
of domain-specific scrappers. The first bottleneck is the need to
create scrapers one by one and maintain them, which hardly scales.
A second crucial issue is their inability to extract “subtags expres-
sions”. For instance, in Musicbrainz Web page6 of Deskadena, the
founding year is provided in HTML as follows:
<dd class="begin-date">1997<!—->(25 years ago)</dd>
In the DOM tree, the actual content between <dd> and </dd> tags
would be the text span “1997<!– –> (25 years ago)” which is
not the expected answer, that is, 1997. This concrete problem can
be solved using a regular expression provided it is hard-coded for
that property. Moreover, in the broader textual value case, such
extraction may yield a larger text span rather than the actual an-
swer that we are looking to integrate into Wikidata. For example,
extracting the employer of Yann LeCun from his Google Scholar
page using Wikidata property 𝑃19607 (Google Scholar author ID )
and a tag-based scraper would yield the text span “Chief AI Scientist
at Facebook & Silver Professor at the Courant Institute, New York
University”. This candidate is broader than the expected answer
(“Facebook" or “ New York University") and also contains his occu-
pations (Wikidata property occupation8) which is not desirable
and prone to downstream process errors.

In this paper, we propose to explore this problem in a completely
different manner. We cast domain-specific scraping as an open
Question Answering (henceforth denoted as QA) task in order to
identify new facts with high accuracy. We present a machine learn-
ing framework that usesWikidata as a seed to train neural networks
to identify new structured knowledge on external Websites. The
extraction framework relies on the external identifiers provided
by Wikidata. Our approach does not need any additional training
data, except the data already contained in Wikidata that can serve
as a seed to train our algorithms. We demonstrate that this pipeline
adapts to multiple websites and can extract facts that are contained
in structured, semi-structured, or unstructured parts of the external
website without any particular adaptation.
Wikidata contains 7, 424 external identifiers which point, via the
formatter URL property P1630, to 7, 220 unique domains. We esti-
mate that we can extract millions of facts using this technique.

Our main contributions are the following:
• We show that language models can be trained to extract facts
from HTML content without additional labeling than what
is already offered by Wikidata by casting the Web scraping
task as an extractive Question Answering one,

4https://www.wikidata.org/wiki/Q113585063
5https://musicbrainz.org/artist/f6afb1cc-8799-41cf-8fa8-2745eeab36e6
6https://musicbrainz.org/artist/f6afb1cc-8799-41cf-8fa8-2745eeab36e6
7https://www.wikidata.org/wiki/Property:P1960
8https://www.wikidata.org/wiki/Property:P106

• We show in different experiments the zero-shot, few-shot and
supervised learning performance of our extraction frame-
work.

• We propose an extraction framework that covers both struc-
tured, semi-structured, and unstructured Web data provided
in HTML content,

• We publish RoBERTa-Base-WebExtractor, a deep learning
model adapted to perform Web extraction in zero and few-
shot scenarios with high accuracy.

• We present a technique to link textual evidence to Wikidata
entities.

The paper is structured as follows. In section 2 we describe
related works. In section 3 we describe our approach for question
answering based on fact HTML extraction. In section 4 we present
different experiments showing the performance of our approach
for different domains, properties, and training data availability
scenarios. In section 5 we give an estimation of how many facts
can be extracted via this approach. We conclude with section 6.

2 RELATEDWORK
This work is mostly related to two different areas of research namely
knowledge graph completion andWeb Extraction. knowledge graph
completion encompasses KG completion via link prediction and KG
completion via free-text. The first aims at inferring new knowledge
from the KG itself by reasoning over existing knowledge [4, 8,
11, 16, 19]. For example a newspaper located in Paris has some
high probability to be a newspaper in French. The second one
tries to extract knowledge from text corpora like Wikipedia or the
Web. This includes works like NELL [3] or the knowledge vault [7].
The first is tailored only to text resources, while the second offers
different extractors for different types of information (free-text,
HTML tables, ...). Both approaches aggregate and score text snippets
to extract the knowledge.

Besides knowledge graph completion and Web extraction, there
exist two prior works that make use of question-answering tech-
nologies to extract knowledge from free text, namely [12] and [10].
The extraction task is applied to a text document. For example, the
extraction of the property "place of birth" can be expressed as the
task of answering the question "Where was [ENTITY] born?". Both
works use Wikipedia as a text corpus to extract knowledge. In our
work, we expand this document-level extractive QA technique to
extract knowledge over HTML websites and generalize it on several
Web domains. This is, to our knowledge, the first time this approach
is applied to HTML content, which is scientifically challenging for
several reasons, including code diversities and lack of annotated
training data.

Finally, other popular knowledge graphs like DBpedia [15] and
YAGO [14] also largely rely on extraction frameworks to build the
underlying knowledge. DBpedia is tailored to the semi-structured
information contained in the info-boxes of Wikipedia. These are
extracted via multiple rule-based pipelines that are matching recur-
rent patterns appearing in the info-boxes. Similarly, YAGO extracts
the info-boxes of Wikipedia and combines them with theWikipedia
categories and with information derived from WordNet. The cor-
responding knowledge has a manually verified accuracy of 95%.
In this work, we do not try to extract information solely from

https://www.wikidata.org/wiki/Property:P106
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Wikipedia, but from external Web domains which are linked to the
Wikidata knowledge graph.

3 WEBEXTRACTOR: A FRAMEWORK TO
EXTRACT FACTS FROMWEBSITES

This section describes the workflow of how we build the framework
WebExtractor with the goal of extracting new facts from websites.
The whole process is represented in Figure 1.

To begin with, in Wikidata, entities involved in triples can be
associated with external identifiers9. Such external identifiers point
to external websites describing the corresponding Wikidata entity.
Examples of such external identifiers include ORCID, Musicbrainz,
Twitter, Facebook, and the German National Library. Our aim is to
identify subjects in Wikidata that are not complete (i.e. where some
statements are missing) and identify the corresponding information
in one of the associated external websites.

In the following, we describe the process in detail. We assume
that we want to complete Wikidata using information from an
external identifier 𝑥 which is pointing to an external domain. This
is indicated by the presence of the property formatter URL (P1630)
which indicates how to map the external identifier to an external
URL. As a running example, we take the external identifier ORCID
(P496) which has as a formatter URL value of "https://orcid.org/$1".

3.1 Knowledge Selection
We first want to identify which properties can be completed using
the external resources associated with 𝑥 . We use the following
rationale: entities associated with an external identifier 𝑥 have some
common patterns. For example, entities with the ORCID external
identifier are researchers and share some properties that one can
probably identify on the corresponding ORCID page.

Therefore we extract a sample of entities 𝑒1, ...., 𝑒𝑛 which have
𝑥 as an external identifier. In our example, the entity 𝑒 is "Evzen
Amler" (Q994013) 𝑥 is ORCID. Then, for each of the identified
entities we consider all properties associated with them, i.e. all
properties 𝑝 for which there is a triple (𝑒𝑖 , 𝑝, 𝑜), here 𝑜 represents
the object in the triple. We take all these properties and list them in
ascending order based on their usage between 𝑒1, ...., 𝑒𝑛 and obtain
a list of properties P ⟨𝑝1, 𝑝2, ..., 𝑝𝑘 ⟩. For our running example, this
list contains the property "employer" (P108) and the property "given
name" (P735).

Our aim is therefore to complete Wikidata entities E which have
𝑥 as associated external identifiers but which are missing one of
the properties in P. In our running example, we want to complete
"Evzen Amler" (Q994013) with properties like "employer" (P108)
and "given name" (P735).

3.2 Data cleaning
For the sake of completion, we report here our two-fold data clean-
ing approach, including curation of Web domains and HTML clean-
up.

9External identifier (different from Uniform Resource Identifiers(URI)) is a property
type used in Wikidata. Properties of this type are used to point to identifiers used in
external systems. Generally, these identifiers can be used to build a URL that exists on
the Web and that describes the corresponding Wikidata entity.

Curation of the Web domains: for each of the external iden-
tifiers we want to complete, we use Selenium library to download
the full content of the websites. During the curation of websites,
we skip the domains which blocked our requests.

HTML clean-up: due to the diversity of the Web design pat-
terns and libraries applied, the plain HTML content of the websites
can differ a lot. Therefore we apply a general pre-processing step
to the websites. This includes extracting the body node from the
HTML structure, removing tags that do not contain important in-
formation (such as <script>, <style>, and <img>), and also replace
the unknown tags with <start>, <end> tokens.

3.3 Relation extraction via QA
We solve the Web extraction task by mapping it to an extractive
question-answering task. This task identifies for a given question
and context the start and end position of the answer in the context.
We take inspiration from similar works [10, 12] over purely textual
document collections like Wikipedia.

The input is an incomplete triplet (𝑠, 𝑝, _) where 𝑠 represents
the subject entity in the triplet and 𝑝 represents the property or
so-called relation between subject and object. Also, the input is
accompanied by an external website about the subject entity in
plain HTML format. Based on these, our goal is to find the missing
object entity. Therefore, to fill the blank in the triplet, we consider
the problem as a QA task, where the website serves as the context
and the semantic names of the property serve as questions after a
simple reformulation. More concretely, we generate the questions
as follows: first, we find all semantic names of the property, then
we compose the question simply with each name and a question
mark ? with a space between them. In our running example, an
incomplete triple is ("Evzen Amler", "employer", _) and one of the
corresponding questions is "employer ?".

To solve the QA task, we use a pre-trained language model and
append a dense layer that is adapted to solve the QA task. Further-
more, we fine-tune it on SQuAD [18], a large QA dataset in order
to have a baseline QA model. The experiments will show that this
model is unable to extract facts from websites. The trained model is
able to solve the QA task, but it is not trained to read websites, only
plain text. Therefore, we extract from Wikidata additional training
data to further fine-tune our model. The training data is generated
as follows for a pair (𝑥, 𝑝) of an external identifier and a property.
We extract from Wikipedia a sample of triples of the form (𝑠𝑖 , 𝑝, 𝑜𝑖 )
where 𝑠𝑖 is an entity with associated external identifier 𝑥 pointing
to a website. By string matching, we search in the website labels
and aliases of 𝑜𝑖 . If we find a mention of 𝑜𝑖 we use this as a training
example for the QA task. Note that this process is unsupervised
and uses the information that is already contained in Wikidata to
construct training data adapted to the task.

The training data is used to further fine-tune the SQuAD fine-
tuned language model. In the experiment section 4 below we ana-
lyze the performance of the model in different training scenarios,
for different domains and different properties.

At prediction time, we formulate the question for the incomplete
triple in the same way as at training time. We use our pre-trained
model to pinpoint a good answer from thewebsites. In the following,
we want to describe 3 examples of successful extraction.
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Figure 1: Diagram that demonstrates the main pipeline of our framework WebExtractor. The framework consists of different
modules namely (clock-wise): knowledge selection (which identifies facts to be completed), data cleaning (which fetches
websites that can contain the underlying fact and perform general cleaning), relation extraction (which extracts the actual fact
from a website), object-linking (which links the identifies object to a Wikidata item), WikidataComplete integration (which
proposes extracted facts to users for fact verification).

Structured example: among the websites from domain name
clinicaltrials.gov, all have a fixed structured format storing
the information. Figure 2 shows how the property P8363 (Study
type) is completed. The goal of the QA model is to find ’Observa-
tional’ as the answer.

Semi-structured example: thewebsites from the domain orcid.com
also have a fixed structured format for the data, but the layout of
the data display makes the information semi-structured. As shown
in Figure 3 the employer of "Evzen Amler" is "Charles University".
However, the website presents this information as "2nd Faculty
of Medicine, Charles University, Prague, CZ". Therefore, the goal
of the QA model here is to locate firstly the correct position from
the website, and then extract the right answer "Charles University"
(and not the whole string displayed for the employer’s name).

Unstructured example: the websites accessible under the domain
musicbrainz.org are composed of structured information as well
as unstructured information. As shown in Figure 4, it is not possible
to extract the property P106 (Occupation) from structured fields.
Using our QA model fine-tuned for HTML extraction, we are able
to find that the "occupation" of "Victor Noriega" is "pianist".

3.4 Object Linking
In order to ingest information in Wikidata, one needs not only to
identify the textual evidence but also to link it to the correct entity

Figure 2: Web extraction from a well-structured field in the
website Clinicaltrials.gov. The "study type" for the clinical
trial "Klinik - Intelligent Patient Flow Management" is ex-
tracted.

in Wikidata. The biggest problem with this task is that the textual
entity can be ambiguous. As a concrete example, imagine that while
searching for the value of the property "educated at" (P69) we iden-
tify the textual evidence "Oxford". In Wikidata there are multiple
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Figure 3: Web extraction from a semi-structured field in the
website ORCID. We extract the "employer" of the researcher
"Evzen Amler".

Figure 4: Web extraction from an unstructured field in the
website MusicBrainz. We extract the "occupation" of "Victor
Noriega".

entities that are named Oxford, like the "collegiate research univer-
sity in Oxford" (Q34433) which is the one that we are searching
for, the "city in Oxfordshire" (Q34217), and the "association football
club in Oxford" (Q48946). In these cases, it is clear that we would
like to predict the university since a person is neither educated by
a city nor a football association. Based on this idea we designed
the following linking strategy for textual evidence "t" and a given
property 𝑃𝑖 . We construct a machine learning-based linker with
the following training strategy:

• We extract from Wikidata a sample of the objects of 𝑃𝑖 , that
we denote with 𝑛1, ...., 𝑛𝑘 . For the property P69, for exam-
ple, the object Q34433, i.e. Oxford the "collegiate research
university in Oxford".

• For each object 𝑛𝑖 we identify all nodes in Wikidata with
the same label or alternative label. We denote these nodes
as𝑚𝑖,1, ....,𝑚𝑖,𝑙 . We assume that 𝑛𝑖 = 𝑚𝑖,1 For our running
example these are for example the entities Q34217 "city in
Oxfordshire" and Q48946 "association football club in Ox-
ford".

• For each of the nodes𝑚𝑖 we collect all items that are con-
nected to them via an outgoing link. For Oxford (Q34433) this
is for example the concept of "public university" (Q875538),

"Radcliffe Science Library" (Q7280038), and so on. We con-
sider each of these items as a feature for a learning-to-rank
task.

• We train a learning-to-rank model which ranks the features
associated to𝑚𝑖,1, ....,𝑚𝑖,𝑙 so that𝑚𝑖,1 = 𝑛𝑖 is ranked first.
The idea is that the learning to the rank model should learn
that a "public university" has a higher chance to be a good
candidate than a "football club". This is exactly following the
intuition we presented above.

Once the property is trained, we simply follow the same procedure
used at training time to predict for textual evidence "t" the entity
in Wikidata that is most likely corresponding to it.

3.5 WikidataComplete Integration
The extracted facts might be of different quality. Depending on the
extraction domain and the property, the extraction can be simpler
or more difficult. Errors are inevitable in both cases. To avoid intro-
ducing errors to Wikidata, we propose not to ingest the predicted
facts directly to Wikidata, but to validate them by Wikidata editors.
Therefore, we donate the facts to WikidataComplete [9], an easy-
to-use and user-friendly Wikibase plugin that presents new facts to
Wikidata editors. A fact is presented directly on the Wikidata page
corresponding to the subject of the fact. A screenshot is shown in
Figure 5.

Figure 5: WikidataComplete: a Wikidata gadget that is in-
tended to help users in adding more facts to the Wikidata
knowledge base. In the statement section, a user can see state-
ments to approve or reject. A reference is given in order to
understand on which website the fact was found and what is
the evidence for the underlying fact.

4 EXPERIMENTS
In this section, we perform an exhaustive experimental analysis of
our framework WebExtractor.
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Given a domain 𝐷 and a property 𝑃 , that we want to complete
with the information contained in 𝐷 , different situations can occur.
We consider the following:

• Supervised Learning: this situation occurs if we can gener-
ate from 256 to 500 examples for a domain/property pair (𝐷 ,
𝑃 ). Note that this is a relatively frequent case. If Wikidata
has good completeness with respect to property 𝑃 we can
easily collect this amount of examples in the unsupervised
way we described in Section 3.

• Few-Shot: this scenarios occurs if we can generate from 8
to 128 examples per domain and property. This occurs in
situations when the property 𝑃 is very incomplete, or when
entities linked to the domain are incomplete with respect to
𝑃 .

• Zero-Shot: for new external identifiers, it is possible that
one can not collect any existing training data fromWikidata.
This can happen if the property was newly created or if all
entities linked to the domain 𝐷 do not contain the property
𝑃 .

To take into account all of these situations we designed different
experiments that study the performance of the approach we pro-
pose. We fine-tuned in total 512 QA models and conducted 1, 737
evaluation runs to study how our framework performs in different
experimental settings.

# of Domains # of properties # of train data # of test dataAvg Total

54 2.981 161 500 500

Table 1: Statistics of the dataset we used in the experiments.
We indicate the number of domains, the number of proper-
ties, and the amount of training and test data

4.1 Statistics of the dataset
We collected our training dataset using the methods described in
Section 3.1. From the top 200 most frequent external identifiers, we
select 54 unique Web domains. We excluded many domains since
website scraping is often challenging due to technical hurdles put in
place by the website providers – this includes Linkedin or Facebook
for example.
For each domain 𝐷 we computed the most used properties between
all entities that are linked to the domain 𝐷 . For example for all
entities in Wikidata linked to MusicBrainz, frequent properties are
"occupation" (𝑃106), "place of birth" (𝑃19), "given name" (𝑃735). To
be able to investigate all 3 scenarios (supervised, few-shot, zero-
shot) we restrict to properties for which we would generate at least
1, 000 examples, 500 for training, and 500 for testing. In the case of
the MusicBrainz domain these are the properties "sex and gender"
(𝑃21), "occupation" (𝑃106), "country of citizenship" (𝑃27), "genre"
(𝑃136) for which we have 1, 000 examples each, 500 for training and
500 for testing.

On average, our dataset contains 2.981 properties for each of
the considered domains. Statistics about the dataset we created

are shown in Table 1. The datasets will be published online for
downloading after the review period.

4.2 Experiment Settings
For the baseline QA model, we choose the pre-trained, 12-layers,
768-hidden, 12-heads, 125M parameters language model RoBERTa-
Base [13] fine-tune on the SQuAD [18] dataset. Before further fine-
tuning, we append to the vocabulary of the language model some
tokens to represent HTML basic tags such as <div>, <p>, <h1> to
<h6>, <ul>, <li>. Besides, we also add <start> token and <end>
token to represent all the boundaries of unknown tags.

We use the AdamW optimizer with a learning rate 2𝑒 − 5 and
batch size 48. All QA models were fine-tuned for 2 epochs.

As evaluation metrics, we report F1-score for the performance
of the QA models and Hit@1 for the object-linking performance
which is also the final end-to-end performance.

4.3 Experiment Results
In what follows, we present and discuss the results obtained in our
experiments for the different scenarios mentioned above.

Supervised Learning In this setting, we take the RoBERTa-Base
language model pre-trained on SQuAD and we fine-tune it on our
dataset prepared on 54 external domains. We fine-tune a QA model
separately for each of the external domains but by merging the
training data for all properties (note that for each domain we have
on average 2.981 properties). The goal of this fine-tuning step is that
the model learns to extract information from a specific domain and
at the same time learns to extract specific properties. Preliminary
experiments show that training for all properties at the same time
is beneficial because the language model has more training data to
adapt to a specific domain.

After fine-tuning the QA model in our framework with the cre-
ated dataset, we achieve across the 54 domains an average F1-score
of 84.07 on the test set. This high performance demonstrates that
our framework WebExtractor can extract from a wide range of
different domains and properties.

We report the results for each domain/property pair in Table 3
and Table 4 of the appendix. We report that the performance is sig-
nificantly fluctuating between domain/property pairs. For example,
the model is not able to learn to extract the property "cast member"
(P161) from the domain IMDb ID (P345) where the performance
is 9.5 at F1-score. This is because, for movie entries in the domain
IMDb, the cast members are usually more than one actor/actress.
However, after fine-tuning the QA model, it only predicts the first
one of the cast member list. On the other hand, for the property sex
or gender (P21) of the domain MusicBrainz (P434) the performance
is 99.2 at F1-score. We noticed that the model is good when the
pattern to learn is simple and has less good performance when the
data is more unstructured.

The end-to-end performance after linking drops to 65.3 % Hit@1.
This is due to the ambiguity of the linked terms. For example, under
the domain Canmore ID (P718), when we search for the property
value of "is located in" (P131) we find the textual value "highland".
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Figure 6: Performance of the framework after the relation-extraction (blue curve) and the object-linking step (orange curve)
for different amounts of training data when evaluated on 54 domains. We show the performance for zero-shot (0 examples),
few-shot (8, 16, 32, 64, 128) and full-training (256, 384, 500) scenarios.

It actually matches the label of the object we want to fill. How-
ever, after the object linking step, we have the object Highlands
"borough of New Jersey, United States"(Q1086265) as the linked
entity, which is not the target entity Highlands "council area in
the Scottish Highlands" (Q208279) which we are searching for. Our
analysis shows that ambiguity is the main reason that causes the
drop in overall performance.

Zero-Shot/Few-shot Learning In the following, we analyze the
performance of the framework in the cases where there are no, to
very few training examples. The results are presented in Figure 6.
Each data-point corresponds to the average performance on the
54 domains for 0, 8, 16, 32, 64, 128, 256, 384, 500 training examples
per property – the test set remains the same (500 properties). The
blue line indicates the performance after the relation extraction
step (F1-score), and the orange line to the performance after the
object-linking step (Hit@1).

In a zero-shot scenario, the framework performs tediously. This
shows that the task of Web extraction is far from the QA task on
which the model is originally fine-tuned.

On the other side, the language model is able to quickly learn
the new task with just a few examples. With 8 examples, the query
performance of the relation extraction (blue line) jumps from 12.23
to 48.66 (an increase of 36 at the F1-score). This indicates that a
small annotation effort can lead to an important performance boost.
There is in general a clear trend when increasing the budget size
from 8 to 64. With 64 examples the performance reaches 78 at F1-
score. Taken together, these results suggest that the Web extraction

task is different from traditional QA tasks, but the adaptation from
the QA task to the website extraction task can be achieved via few-
shot learning. After adding more than 128 training examples per
property, there is no significant improvement in the performance.
The performance only increased by 2.65 % with a ×3 annotation
effort in training data collection.

Pre-trained QA model for Web extraction. Overall the language
model needs to learn:

(1) The task of Web extraction is far from the QA task on which
it is fine-tuned as shown in our experiments.

(2) Patterns that are specific to a domain
(3) Patterns that are specific to the property that is extracted.
While (2) and (3) are knowledge that can only be injected into the

language model with suitable training data, one can try to create a
language model that is more suited to (1). Our experiments in the
zero-shot and few-shot scenarios also show that a language model
is able to learn quickly the task. To assess how pre-training the
language model for Web extraction can affect our framework, we
design an additional experiment. We split our dataset consisting of
54 domains into 2 parts. We use 44 domains (and all their properties)
to train a language model for the Web extraction task and left 10
domains (and all their properties) for testing. This corresponds to
an 80/20 split of the overall dataset. The objective is to estimate the
performance of a model that would be trained on (close to) to all
available Wikidata information for the community to use on new
unseen domains.
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The experimental setup is as follows:

• First we pre-train the baseline QA model with all training
data we collected for the 44 domains which we denote as
RoBERTa-Base-WebExtractor.

• Second we repeat the experiments we did in the few-shot
learning setup using RoBERTa-Base-WebExtractor. The eval-
uation will be performed on the hold-out set only.

• Third, we compare the results we collected before in the few-
shot learning and supervised learning experiments using
RoBERTa-Base fine-tuned on SQuAD (by restricting only to
the 10 domains we kept for testing).

The result is shown in Table 2. The left part contains the results
for the baseline QA model while the right part contains the results
for the language model pre-trained for Web extraction.

From Table 2, we observed a significant performance boost after
pre-training the QA model. As discussed above, the QA models
fail to perform the Web extraction task in the zero-shot scenario.
However, with pre-training, the RoBERTa-Base-WebExtractor model
is able to achieve a 38.08 F1-score boost in the zero-shot setting. It
is worth mentioning that with only 8 examples of few-shot fine-
tuning, RoBERTa-Base-WebExtractor is able to achieve 64.91 F1-score
against 79.85 F1-score in the case of full training with 500 examples.
This means that the model is able to achieve with only 8 examples
already 82.29% of the performance the fully trained model can
achieve.

The results in this section indicate that, with RoBERTa-Base-
WebExtractor as the starting point, the framework can achieve good
performance already with very few examples. This is, in particular,
beneficial when one needs to perform Web extraction in zero-shot
and few-shot scenarios. We will publish the pre-trained model
Roberta-Base-WebExtractor for downloading and further research
usage after the review period.

Without Pre-training With Pre-training

Budget (K=) After RE After OL After RE After OL

0 12.23 0.05 50.31 36.24

8 48.66 35.67 64.91 49.44
16 55.67 40.84 70.68 55.99
32 65.34 50.18 73.26 58.55
64 71.31 55.67 74.81 60.02
128 73.61 58.14 77.00 61.76

256 78.37 63.04 78.95 63.55
384 78.78 63.57 79.53 64.68
500 79.54 63.87 79.85 64.53

Table 2: Evaluation on the hold-out set (10 domains): we
evaluate the performance of QA models with and without
pre-training on 10 new domains QA models haven’t seen
before. We present the performance from two stages inside
the pipeline: after relation extraction (After RE) and after
object linking (After OL).

5 ESTIMATION OF POTENTIAL
CONTRIBUTION FORWIKIDATA

In this section, we estimate the number of facts that can be con-
tributed via WebExtractor to Wikidata. We consider the 54 do-
mains from the dataset we created – since we remove domains that
can be hardly crawled, the estimate will be a lower bound. For each
domain/property pair (𝐷, 𝑃), we can calculate how many entities
in Wikidata linked to a website in 𝐷 have property 𝑃 . We denote
this by #𝑙𝑖𝑛𝑘𝑠 (𝐷,𝑃 ) For example there are 223, 281 Wikidata entities
linked to MusicBrainz (external identifier 𝑃434). Of these 65, 074
have no associated property "sex or gender" (𝑃21), i.e. are incom-
plete with respect to this property. Moreover, for each pair (𝐷, 𝑃)
we can calculate how often we find the value of 𝑃 in the domain 𝐷 ,
we denote this ratio by 𝑓 𝑟𝑒𝑞 (𝐷,𝑃 ) . For example, if we sample 100
MusicBrainz websites we can find in 94 of them the value of the
"sex or gender". Our experiments give the Web extraction accuracy
(after object linking) for each of the pair (𝐷, 𝑃) which we denote by
𝑎𝑐𝑐 (𝐷,𝑃 ) . After object linking the accuracy for (𝑀𝑢𝑠𝑖𝑐𝑏𝑟𝑎𝑖𝑛𝑧, 𝑃21)
is 19.4%. We can therefore estimate the total number of facts we
can complete using the following formula:

#𝑓 𝑎𝑐𝑡𝑠 (𝐷,𝑃 ) = #𝑙𝑖𝑛𝑘𝑠 (𝐷,𝑃 ) · 𝑓 𝑟𝑒𝑞 (𝐷,𝑃 ) · 𝑎𝑐𝑐 (𝐷,𝑃 )

For (𝑀𝑢𝑠𝑖𝑐𝑏𝑟𝑎𝑖𝑛𝑧, 𝑃21) we can expect to extract 65, 074 × 94
100 ×

19.4% = 11, 866 facts. Overall our estimations show that just for
the 54 considered domains we should be able to extract 7, 543, 444
facts. Considering that Wikidata has 7, 220 external identifiers, we
estimate that we can extract millions of new facts from the Web for
approval to Wikidata editors.

6 CONCLUSION
This study set out to simplify the process of finding, monitoring and
organizing heterogeneous data from the Web to build or complete
highly structured data repositories.

For this matter, we presented WebExtractor, a framework that
uses Wikidata as a seed to extract facts from the Web. We have
shown that by using QA technologies it is possible to generate, with
distant supervision, extractors for website domains connected to
Wikidata to aggregate knowledge across the Web. Despite hand-
crafted extractors, QA extractors:

(1) Can be trained using the data already present in Wikidata
and does not need any human intervention,

(2) Can extract not just content contained between HTML tags,
but exploit the natural language understanding capabilities
of language models to extract more fine-grained information.

To the best of our knowledge, this is the first study to per-
form Web extraction using Wikidata as a seed for extractive QA,
that is machine comprehension over HTML pages without human-
annotated dataset but using existing Wikidata entries as seeds.

Our experiments show how this technique performs under differ-
ent training data scenarios. In full-trained settings, we can achieve
high performances.Moreover, ourmodel Roberta-Base-WebExtractor
fine-tuned for Web extraction can achieve good performances also
for few-shot and zero-shot scenarios.

Coupled with a new entity linking strategy we can create ex-
traction pipelines that can discover millions of new statements in
order to help Wikidata editors and make Wikidata more complete.
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We plan to extend the number of domains for extraction and then
donate these to Wikidata. Moreover, we want to investigate how
these techniques perform in multilingual settings and study how to
close the gap between performances before and after object linkage.
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A APPENDIX

External Identifier (PID) F1-Score Domain Avg F1

MusicBrainz artist ID (P434) P21 P106 P27 P136 - - - 78.599.2 55.1 96.0 63.7 - - -

MusicBrainz release group ID (P436) P136 P175 P264 - - - - 78.761.0 92.6 82.6 - - - -

ClinicalTrials.gov ID (P3098) P6153 P4844 P8005 P8363 P1050 P921 P17 57.159.5 44.5 57.3 88.7 59.4 24.5 65.9

UniProt protein ID (P352) P682 P703 P702 P681 P680 - - 49.515.1 99.9 85.3 14.6 32.7 - -

Geni.com profile ID (P2600) P21 P25 P735 P22 P40 P734 - 83.489.0 89.0 94.3 93.2 45.7 88.9 -

Library of Congress authority ID (P244) P734 P735 - - - - - 91.193.7 88.5 - - - - -

Open Library ID (P648) P734 P735 P1412 - - - - 83.891.9 90.5 67.5 - - - -

Entrez Gene ID (P351) P703 P279 P688 P684 - - - 82.498.6 49.9 92.9 88.2 - - -

IMDb ID (P345) P19 P735 P495 P161 P27 P364 - 77.493.7 96.8 86.9 9.5 89.2 88.2 -

OpenStreetMap relation ID (P402) P131 P150 - - - - - 60.897.8 23.8 - - - - -

CERL Thesaurus ID (P1871) P21 P735 P19 P734 P20 P27 P1412 88.095.8 74.8 88.6 91.6 86.2 93.2 85.8

GND ID (P227) P735 P19 P734 - - - - 90.087.1 91.5 91.5 - - - -

Tropicos ID (P960) P105 P171 - - - - - 98.999.4 98.4 - - - - -

ORCID (P496) P108 P735 - - - - - 85.874.5 97.0 - - - - -

EUNIS ID for species (P6177) P105 P171 - - - - - 98.196.4 99.9 - - - - -

Encyclopedia of Life ID (P830) P105 P171 - - - - - 96.197.6 94.6 - - - - -

Internet Archive ID (P724) P1433 P407 - - - - - 99.6100.0 99.2 - - - - -

IdRef ID (P269) P734 P735 - - - - - 92.292.1 92.2 - - - - -

iNaturalist taxon ID (P3151) P105 P171 - - - - - 94.799.0 90.4 - - - - -

PlantList-ID (P1070) P105 P171 - - - - - 97.8100.0 95.6 - - - - -

ADS bibcode (P819) P921 P1433 - - - - - 76.654.2 98.9 - - - - -

Observation.orgID (P6105) P171 P105 - - - - - 97.699.6 95.6 - - - - -

Palissy ID (P481) P131 - - - - - - 100.0100.0 - - - - - -

ČSFDfilm ID (P2529) P344 P161 P58 P57 - - - 61.988.9 8.6 65.8 84.4 - - -

MRAuthor ID (P4955) P735 - - - - - - 98.298.2 - - - - - -

Fatcat ID (P8608) P921 P1433 P50 - - - - 58.947.9 99.9 29.0 - - - -

BIBSYS ID (P1015) P734 P735 - - - - - 94.698.1 91.2 - - - - -

Table 3: Experiment results of supervised learning scenario
i.e. 500 examples per property per domain. (PART 1)
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External Identifier (PID) F1-Score Domain Avg F1

Olympedia people ID (P8286) P734 P641 P27 P735 P21 P1344 P19 93.695.7 96.2 96.4 84.9 99.8 89.1 92.8

Ensembl gene ID (P594) P688 P684 P703 P2548 - - - 97.799.4 91.4 100.0 100.0 - - -

SNACARK ID (P3430) P735 P1412 P734 - - - - 83.083.6 74.2 91.2 - - - -

Terezín Memorial Database ID (P9300) P551 P20 P735 P734 - - - 93.894.6 99.4 99.5 81.5 - - -

MycoBank taxon name ID (P962) P105 P171 - - - - - 98.998.0 99.8 - - - - -

OFDb film ID (P3289) P3578 P1343 P5166 P9072 P3432 - - 78.530.2 85.5 90.4 96.9 89.7 - -

Ensembl transcript ID (P704) P688 P2548 P684 - - - - 97.799.8 100.0 93.2 - - - -

Index Fungorum ID (P1391) P105 P171 - - - - - 65.932.4 99.4 - - - - -

National Diet Library ID (P349) P734 P735 P27 - - - - 96.695.4 94.3 100.0 - - - -

Libris-URI (P5587) P291 P735 P50 - - - - 94.197.0 87.9 97.4 - - - -

Discogs master ID (P1954) P264 P175 - - - - - 88.684.0 93.3 - - - - -

NBIC taxon ID (P8707) P171 - - - - - - 96.596.5 - - - - - -

Indian Financial System Code (P4635) P137 P17 - - - - - 50.0100.0 0.0 - - - - -

eBiodiversity ID (P6864) P171 P105 - - - - - 99.999.8 100.0 - - - - -

NBN System Key (P3240) P171 P105 - - - - - 95.693.7 97.6 - - - - -

New Zealand Organisms Register ID (P2752) P171 P105 - - - - - 97.695.1 100.0 - - - - -

Find A Grave memorial ID (P535) P734 P735 P20 P19 - - - 83.985.9 77.3 85.1 87.3 - - -

ČSFD person ID (P2605) P735 P734 P19 - - - - 97.498.7 98.1 95.4 - - - -

Ensembl protein ID (P705) P527 P702 - - - - - 76.253.5 98.8 - - - - -

ROR ID (P6782) P159 P355 P17 P131 - - - 81.095.5 38.0 96.8 93.8 - - -

Filmportal ID (P2639) P19 P735 P57 P161 - - - 71.093.6 92.4 86.5 11.5 - - -

RKDartists ID (P650) P20 P19 P735 P937 - - - 86.089.5 93.8 91.5 69.3 - - -

NLA Trove ID (P1315) P734 P735 - - - - - 91.493.7 89.1 - - - - -

CONOR.SI ID (P1280) P734 P735 - - - - - 94.194.5 93.7 - - - - -

Dyntaxa ID (P1939) P171 - - - - - - 93.493.4 - - - - - -

SIREN number ID (P1616) P159 P1001 - - - - - 99.099.0 99.0 - - - - -

Canmore ID (P718) P131 P1343 P7959 - - - - 99.3100.0 100.0 97.9 - - - -

Table 4: Experiment results of supervised learning scenario
i.e. 500 examples per property per domain. (PART 2)
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