
Distillation from Heterogeneous Models
for Top-K Recommendation

SeongKu Kang1‡, Wonbin Kweon1, Dongha Lee2, Jianxun Lian3, Xing Xie3, Hwanjo Yu1∗
1Pohang University of Science and Technology (POSTECH), South Korea

2Yonsei University, South Korea 3Microsoft Research Asia, Beijing, China
{seongku, kwb4453, hwanjoyu}@postech.ac.kr, donalee@yonsei.ac.kr, jianxun.lian@outlook.com, xingx@microsoft.com

ABSTRACT
Recent recommender systems have shown remarkable performance
by using an ensemble of heterogeneous models. However, it is ex-
ceedingly costly because it requires resources and inference latency
proportional to the number of models, which remains the bottleneck
for production. Our work aims to transfer the ensemble knowledge
of heterogeneous teachers to a lightweight student model using
knowledge distillation (KD), to reduce the huge inference costs
while retaining high accuracy. Through an empirical study, we
find that the efficacy of distillation severely drops when transfer-
ring knowledge from heterogeneous teachers. Nevertheless, we
show that an important signal to ease the difficulty can be obtained
from the teacher’s training trajectory. This paper proposes a new
KD framework, named HetComp, that guides the student model
by transferring easy-to-hard sequences of knowledge generated
from the teachers’ trajectories. To provide guidance according to
the student’s learning state, HetComp uses dynamic knowledge
construction to provide progressively difficult ranking knowledge
and adaptive knowledge transfer to gradually transfer finer-grained
ranking information. Our comprehensive experiments show that
HetComp significantly improves the distillation quality and the
generalization of the student model.

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking;Rec-
ommender systems; Retrieval efficiency.

KEYWORDS
Knowledge distillation, Model compression, Easy-to-hard learning
ACM Reference Format:
SeongKuKang,Wonbin Kweon, Dongha Lee, Jianxun Lian, XingXie, Hwanjo
Yu. 2023. Distillation from Heterogeneous Models for Top-K Recommen-
dation. In Proceedings of the ACM Web Conference 2023 (WWW ’23), May
1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3543507.3583209

∗Corresponding author
‡Work is done during the internship at Microsoft.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583209

1 INTRODUCTION
Recommender system (RS) has been deployed in various applica-
tions to facilitate decision-making [9]. The core of RS is to provide
a personalized ranking list of items to each user. In the past decades,
a variety of models with different architectures and loss functions,
from matrix factorization [36] to graph neural networks [9], have
been studied to generate high-quality ranking lists. It is known that
these heterogeneous models possess different inductive biases that
make the model prefer some hypotheses over others [1, 51], and ac-
cordingly, they better capture certain user/item preferences that bet-
ter fit the bias of each model [19, 54, 56]. As a result, utilizing their
multi-faceted knowledge via model ensemble often achieves signif-
icantly increased accuracy over a single model [19, 32, 45, 51, 54].
However, the fundamental limitation is that its computational cost
for inference can be many times greater than that of a single model,
which makes it impracticable to apply to real-time services.

An increasingly common way to reduce inference latency is to
compress a large model into a smaller model via knowledge distilla-
tion (KD) [11]. KD trains a compact model (student) by transferring
the knowledge from a well-trained heavy model (teacher), effec-
tively narrowing the performance gap between them. Inspired by
its huge success in computer vision, KD has been actively stud-
ied to compress the ranking model. Recent ranking matching ap-
proach [5, 15, 25, 34, 41] adopts listwise learning that trains the
student to emulate the permutations of items (i.e., ranking list) from
the teacher. This approach has shown remarkable performance in
many ranking-oriented applications such as top-𝐾 recommenda-
tion [15, 25, 41], document retrieval [34, 52], and person identifi-
cation [5]. Nevertheless, they mostly focus on distillation from a
homogeneous teacher that has the same model type as the student.
Cross-model distillation from heterogeneous teachers, which have
distinct architectures and loss functions, has not been studied well.

From our analysis, we observe that the efficacy of the prior KD
methods significantly drops when transferring knowledge from
heterogeneous teacher models, which eventually prevents the stu-
dent from retaining their ensemble accuracy. To be specific, we
investigate discrepancies between ranking predictions from the
student and the teacher, and we observe that the student learning
from the heterogeneous teacher has a notably large discrepancy
compared to the student learning from the homogeneous teacher.
Fortunately, we find that an important clue that can help to reduce
the discrepancy can be obtained from the teacher’s intermediate
training states; the students learning from the teacher’s earlier train-
ing states have considerably lower discrepancies than the student
learning from the final converged teacher, regardless of the type
of teacher model. This indicates that during the teacher’s training,
the teacher’s knowledge gets gradually harder for the student to

ar
X

iv
:2

30
3.

01
13

0v
1

 [
cs

.I
R

]
 2

 M
ar

 2
02

3

https://doi.org/10.1145/3543507.3583209
https://doi.org/10.1145/3543507.3583209
https://doi.org/10.1145/3543507.3583209

WWW ’23, May 1–5, 2023, Austin, TX, USA SeongKu Kang et al.

Figure 1: A comparison of (left) the existing KD approach and (right) our proposedHetComp. HetComp supervises the student
model by using an easy-to-hard sequence of ranking knowledge along with the adaptive distillation objective.

learn. Indeed, we empirically show that the teacher’s predictions
become increasingly complex, as the latter predictions contain more
diversified and individualized item rankings.

Motivated by the observation, our key idea for improving the
distillation efficacy is to dynamically transfer knowledge in an easy-
to-hard sequence by using the teacher models’ training trajectories
(Figure 1). As the teachers’ knowledge is gradually becoming harder
during their training, we aim to supervise the student model to grad-
ually follow such sequences for easing the difficulties of learning
from the converged teachers. Our approach is based on the easy-
to-hard learning paradigm [2, 13, 43] which has been extensively
studied in various fields of machine learning. It trains the model by
using easy samples first and progressively more difficult samples
so that the model can leverage previously seen concepts to ease
the acquisition of more difficult ones [2, 13]. Following the idea, we
start distillation with relatively easy knowledge from the teachers’
early training stage, then gradually increase the difficulty along
the teachers’ trajectories, reducing the huge discrepancy incurred
when learning from heterogeneous teachers.

In this work, we present a new KD framework, termed as Het-
Comp, that effectively compresses the valuable but difficult ensem-
ble knowledge of heterogeneous models, generating a lightweight
model with high recommendation performance. HetComp con-
cretizes the easy-to-hard distillation in the following aspects:
• What to transfer: HetComp supervises the student model via
dynamic knowledge construction which provides the easy-to-hard
sequence of permutations considering the student’s learning state.
It first identifies proper knowledge from the trajectory of each
teacher, and then dynamically constructs the target knowledge
to guide the student model.

• How to transfer: HetComp uses adaptive knowledge transfer
which adjusts the distillation objective according to the student’s
learning state. It trains the student model to first focus on the
overall relations in the target permutations, and gradually move
on to learning to rank the fine-grained orders of the preferable
items. Furthermore, we introduce a new transfer strategy to
exploit the knowledge of both observed and unobserved user-
item interactions, which has been not considered in prior works.

Our contributions are summarized as follows:
• We reveal the difficulty of the ranking knowledge transfer from
heterogeneous models and tackle the issue from the perspective
of easy-to-hard distillation, which is new for recommendation.

• We propose HetComp, a new KD framework that effectively com-
presses the ensemble of heterogeneous models into a compact

model. HetComp can significantly ease the huge computational
burdens of the model ensemble while retaining its high accuracy.

• Wevalidate the superiority of HetComp by extensive experiments
on real-world datasets. We also provide a comprehensive analysis
of our proposed approach.

2 RELATEDWORK
Knowledge Distillation. Knowledge distillation (KD) has been
actively studied for model compression in various fields [5, 11, 17,
37, 48, 55]. KD transfers the knowledge captured by a teacher model
through large capacity into a lightweight student model, signifi-
cantly lowering the inference cost while maintaining comparable
performance. Pointing out that the knowledge from a single teacher
model is insufficient to provide accurate supervision, many recent
studies [8, 28, 42, 45, 50, 51, 54] employ multiple teacher models
and show great effectiveness in further improving a student model.
Notably, the state-of-the-art methods [8, 45, 51] exploit heteroge-
neous teacher models varying in configurations, architectures, loss
functions, and many other factors to incorporate their complemen-
tary knowledge, which can provide more comprehensive guidance
than a single view from a single or homogeneous teacher model.
Knowledge Distillation for Ranking. KD has been also studied
for ranking problems. Many studies [4, 20, 22, 40, 54] transfer point-
wise importance on each user-item pair (or query-document pair).
However, the point-wise approach cannot consider the relations of
multiple items simultaneously, which leads to the limited ranking
performance [5, 15, 41]. Recent methods [5, 15, 25, 34, 41, 52] formu-
late the distillation process as a ranking matching task. They utilize
the ranking orders from the teacher as supervision and train the stu-
dent to preserve the teacher’s permutation. By directly transferring
the ranking knowledge, this approach has shown state-of-the-art
performance in various ranking-oriented applications such as top-
𝐾 recommendation [15, 16, 25, 41], document retrieval [34, 52], and
person identification [5]. Further, the ranking matching approach
can be flexibly applied to knowledge transfer between heteroge-
neous models having distinct output score distributions to which
the point-wise approach cannot be directly applied [19].
Easy-to-hard Learning. Inspired by the learning process of hu-
mans, easy-to-hard learning has been extensively studied in various
fields of machine learning [2, 6, 13, 21, 27, 29, 43, 46]. It has been
widely used when direct optimization of a non-convex objective
function may converge to poor local minima and has been proven to
play an important role in achieving a better generalization [2]. Cur-
riculum learning [2, 43] trains a model by gradually including data

Distillation from Heterogeneous Models
for Top-K Recommendation WWW ’23, May 1–5, 2023, Austin, TX, USA

samples in ascending order of difficulty defined by prior knowledge.
On the other hand, self-paced learning [21] makes the curriculum
dynamically adjusted during the training, usually based on training
loss [21] or performance on the validation set [6, 49]. The easy-to-
hard learning has been applied to KD to improve the distillation
efficacy in computer vision [14, 39] and natural language processing
[52, 55]. [3, 14, 39] exploit the teacher’s optimization route to form
a curriculum for the student, [52] gradually includes an increasing
number of fine-grained document pairs during the training.
Remarks. The existing KD methods for RS focus on distillation
from a homogeneous teacher that has the same model type to the
student model. Distillation from heterogeneous teachers, which
have distinct architectures and learning objectives to the student
model, has not been studied well. In this work, we show the ne-
cessity and difficulty of distilling the ensemble of heterogeneous
teachers and apply the easy-to-hard learning to cope with the prob-
lem. Further, the prior KD works with the easy-to-hard learning
focus on classification [14, 31, 39] or rely on domain-specific fea-
tures [55], which makes them hard to apply to the ranking problem
and recommender system. Our work provides a solution tailored to
compress ranking models by distilling an easy-to-hard sequence of
ranking knowledge considering the student’s learning state.

3 PRELIMINARIES
3.1 Problem Formulation
Let U and I denote the user and item sets, respectively. Given im-
plicit user-item interaction (e.g., click) history, a recommendation
model 𝑓 : U × I → R learns the ranking score of each user-item
pair. Based on the predicted scores, the recommender system pro-
vides a ranked list of top-𝐾 unobserved items for each user, called as
top-𝐾 recommendation. Given a set of cumbersome teacher models
F = {𝑓 1, 𝑓 2, ..., 𝑓𝑀 }, our goal is to effectively compress an ensem-
ble of the teachers into a lightweight student model 𝑓 . The student
model has a significantly reduced computational cost for inference,
and thus it is more suitable for real-time services and resource-
constrained environments. We pursue a model-agnostic solution,
which enables any kind of recommendation model can be flexibly
used for both teacher and student, allowing service providers to
use any preferred model according to their environments.

We exploit heterogeneous teacher models with various architec-
tures and loss functions. In this work, we choose six representative
types of models extensively studied for RS: MF (Matrix Factoriza-
tion) [36], ML (Metric Learning) [12], DNN (Deep Neural Network)
[10], GNN (Graph Neural Network) [9], AE (AutoEncoder) [26], I-
AE (Item-based AE) [38]. A detailed analysis of the teacher models
and their ensemble is provided in Appendix A.2.
Notations. Given a ranked list (i.e., permutation of items) 𝜋 , 𝜋𝑘
denotes the 𝑘-th item in 𝜋 , and 𝑟 (𝜋, 𝑖) denotes the ranking of item 𝑖

in 𝜋 where a lower value indicates a higher position, i.e., 𝑟 (𝜋, 𝑖) = 0
is the highest ranking. Note that 𝜋 is defined for each user 𝑢. For
notational simplicity, we omit 𝑢 from 𝜋 throughout the paper.

3.2 Ranking Matching Distillation
Ranking matching distillation [5, 15, 25, 34, 41] trains the student
model to emulate the teacher’s permutation. A dominant strategy
is to associate a probability with every permutation based on the

Plackett-Luce model [30], then train the student to maximize the
likelihood of the teacher’s permutations [47]. Given the teacher’s
permutation 𝜋𝑡 on a user𝑢, the recent studies [15, 25, 34] match the
ranking of top-ranked items (𝑃) while ignoring the ranking of the
remaining items (𝑁). The listwise KD loss is defined as the negative
log-likelihood of permutation probability of [𝑃 ;𝑁] as follows:

L𝐹 (𝑃, 𝑁) = − log
|𝑃 |∏
𝑘=1

exp 𝑓 (𝑢, 𝑃𝑘)∑ |𝑃 |
𝑗=𝑘

exp 𝑓 (𝑢, 𝑃 𝑗) +
∑ |𝑁 |
𝑙=1 exp 𝑓 (𝑢, 𝑁𝑙)

(1)

𝑃 and𝑁 aremostly chosen to be a few top-ranked items and a subset
of items randomly drawn from the numerous remaining items,
respectively [15, 34]. By minimizing the loss, the student model
learns to preserve the fine-grained orders in 𝑃 , while penalizing
items in 𝑁 below the lowest ranking of items in 𝑃 . It is worth noting
that the orders of items within 𝑁 are not necessarily preserved.

3.3 Study on Ranking Knowledge Distillation
We present our analysis showing the difficulty of our task that com-
presses the ensemble knowledge of heterogeneous teacher models.
Further, we show that a clue that helps to ease the difficulty can
be obtained from the teachers’ intermediate training states. Here,
we use MF with embedding size 6 as the student model, and all
teacher models have embedding size 64. Similar results are also
observed with other types of students. We train the student solely
with distillation (Eq.1). Please refer to Sec.5 for the detailed setup.
3.3.1 Discrepancy. Since recommendation accuracy only reveals
the efficacy of KD in an indirect way, we introduce a new metric for
directly assessing how closely the studentmodel learns the teacher’s
permutation 𝜋𝑡 . Let 𝜋 denote the permutation predicted by the
student model. We define the discrepancy between 𝜋 and 𝜋𝑡 by

𝐷@𝐾 (𝜋, 𝜋𝑡) = 1 − 𝑁𝐷𝐶𝐺@𝐾 (𝜋, 𝜋𝑡), (2)

where 𝐷@𝐾 (𝜋, 𝜋𝑡) = 0 indicates the student model perfectly pre-
serves top-𝐾 ranking of 𝜋𝑡 .𝑁𝐷𝐶𝐺 is a widely used listwise ranking
evaluation metric [44]. Here, we consider 𝜋𝑡 as the optimal ranking.

NDCG@K(𝜋, 𝜋𝑡) = DCG@K(𝜋)
DCG@K (𝜋𝑡) , DCG@K(𝜋) =

𝐾∑︁
𝑘=1

2𝑦𝜋𝑘 − 1
log(𝑘 + 1) (3)

The relevance of each item 𝑖 (i.e.,𝑦𝑖) is mostly defined as ratings (for
explicit feedback) or binary values (for implicit feedback). To put a
higher emphasis on a top-ranked item in 𝜋𝑡 , we use the parametric
geometric distribution [35], i.e., 𝑦𝑖 = exp(−𝑟 (𝜋𝑡 , 𝑖)/_) if 𝑖 is within
the top-𝐾 of 𝜋𝑡 , otherwise 0. _ ∈ R+ is the hyperparameter that
controls the sharpness of the distribution.
3.3.2 Observations and analyses. We train the student model
(MF) by distillation from various ranking supervisions and analyze
the discrepancy between the student and the supervision. In Table 1,
(a) denotes a homogeneous teacher, which has the same model type
(i.e., MF) to the student, as used in most previous work. (b) and (c)
denote the ensemble of six homogeneous teachers with different
initialization and the ensemble of six heterogeneous teachers, re-
spectively. ‘NLL’ denotes the negative log-likelihood of the student
model for the given supervision (Eq.1) where a lower value implies
the student better emulates the given supervision. We compute
the metrics for each user and report the average value. In Table 1,

WWW ’23, May 1–5, 2023, Austin, TX, USA SeongKu Kang et al.

Table 1: Discrepancy to the given supervision after KD.

Dataset Supervision (Teacher) Discrepancy
Type Recall@50 D@10 D@50 NLL

(a) Single-teacher (MF) 0.2202 0.6640 0.5167 0.5805
Amusic (b) Ensemble (MF) 0.2396 0.6699 0.5162 0.6048

(c) Ensemble (Het) 0.2719 0.7417 0.5958 0.7206
(a) Single-teacher (MF) 0.2604 0.5101 0.3716 0.5962

CiteULike (b) Ensemble (MF) 0.2763 0.5373 0.3910 0.5977
(c) Ensemble (Het) 0.3144 0.6983 0.5269 0.6906

Figure 2: Discrepancy to various supervisions from interme-
diate training states (E1/E2/E3) and the final converged state
(E4) of each teacher model. We also annotate Recall@50 of
each converged teacher model below the x-axis.
we observe that compressing (c) incurs a notably large discrepancy
compared to compressing (a) and (b). In other words, the efficacy
of distillation is severely degraded when we transfer the ensemble
knowledge of heterogeneous teachers. This is an interesting obser-
vation showing that items’ ranking orders in permutations bring a
huge difference to learning difficulty.

To investigate where such a large discrepancy originated from,
we analyze the cases of learning from each teacher in (c). We in-
dependently train the student model (MF) with distillation from
each converged teacher and its intermediate training states1. Then,
we present the discrepancy to each supervision in Figure 2. We
observe that compared to the case of the homogeneous model (i.e.,
MF with E4), distillation from a heterogeneous model (i.e., others with
E4) consistently incurs a larger discrepancy. It is known that het-
erogeneous models possess different inductive biases that make
the model prefer some hypotheses over others [1, 19, 51]. In this
sense, learning from heterogeneous teachers can be particularly
challenging since it needs to learn relationships that do not fit well
with the student model. Interestingly, higher teacher accuracy does
not necessarily result in a larger discrepancy. For example, on the
CiteULike dataset, GNN achieves higher accuracy and AE achieves
comparable accuracy compared to MF. However, the discrepancy is
much higher in the case of learning from AE.

On the one hand, the discrepancy gradually gets larger during
the teachers’ training (from E1 to E4), regardless of the model type.
That is, the teachers’ knowledge gets more difficult to emulate dur-
ing their training process. As will be shown in Sec.5.2, a model
tends to learn overall patterns first, then gradually learns personal-
ized preferences. We also show that teachers’ knowledge becomes
increasingly complex during the training, as the latter predictions
contain more diverse and individualized item rankings for each
user. These observations motivate us to utilize the teachers’ training
trajectories as a natural curriculum for the student model.
1For each teacher, we use 4 training states (or checkpoints), from E1 to E4, each of which
corresponds to the checkpoint at 25%, 50%, 75%, and 100% of the converged epochs.
I-AE shows similar results to AE, and its results are omitted due to the limited space.

4 METHODOLOGY
HetComp (Heterogeneous model Compression for RS) framework
supervises the student model using the teachers’ training trajecto-
ries, based on the idea of easy-to-hard learning. HetComp consists
of the two major components designed for easy-to-hard distillation:
• (Sec.4.1) Dynamic knowledge construction dynamically gen-
erates knowledge with appropriate difficulty, considering the
student’s learning state. It first identifies proper knowledge from
the trajectory of each teacher and constructs target knowledge
to guide the student model. This process is applied in a person-
alized manner to transfer each user’s recommendation result
considering their different learning difficulties.

• (Sec.4.2) Adaptive knowledge tranfer adjusts the distillation
objective according to the student’s learning state. It trains the
student to first focus on the overall relations in the target per-
mutations and gradually move on to learning to rank the fine-
grained orders of the preferable items. Furthermore, we propose
a new strategy to transfer the knowledge of both observed and
unobserved interactions which is ignored in the previous works.

The overall training process of HetComp is provided in Sec.4.3.

4.1 Dynamic Knowledge Construction
The goal of our knowledge construction is to generate target knowl-
edge to be transferred from the teachers’ training trajectories, based
on the student’s state. This process has tomeet the following desider-
ata: (1) it should reflect the different learning difficulties of knowl-
edge from each teacher model and each user; our analysis shows
that the learning difficulty varies across teacher models, and further,
ranking with respect to each user naturally has different difficulties.
(2) it should work in a model-agnostic manner so that it can han-
dle any kind of teacher/student model. For this reason, we avoid
using statistics that differ for each model type (e.g., training loss)
for deciding on knowledge to be transferred. We also avoid using a
performance metric on additional held-out data, as it is difficult to
obtain enough interactions of each user due to the high sparsity.

Let T = {𝑇𝑥 }𝑥 ∈{1,...,𝑀 } denote the teachers’ training trajec-
tories. For each teacher 𝑓 𝑥 , we use its predictions (i.e., rankings
of unobserved items) at 𝐸 different training states2, i.e., 𝑇𝑥 =

[𝜋𝑥,1, ..., 𝜋𝑥,𝐸]. The last permutation 𝜋𝑥,𝐸 corresponds to the final
prediction after convergence. Our analysis shows that the teacher’s
knowledge is getting harder during its training, so that 𝜋𝑥,𝑒 is easier
to emulate than 𝜋𝑥,𝑒+1. So, we start from 𝜋𝑥,1 and then gradually
move to 𝜋𝑥,𝐸 . We use 𝑣 to denote the𝑀-dimensional selection vec-
tor where each element 𝑣 [𝑥] ∈ {1, ..., 𝐸} indicates which training
state of the teacher 𝑓 𝑥 is currently selected to guide the student
model. During the training, we identify proper knowledge from
each teacher’s trajectory 𝑇𝑥 , then construct the dynamic super-
vision 𝜋d by consolidating them based on 𝑣 . The overview of the
knowledge construction is provided in Algorithm 1.

To control the difficulty of distillation, we use the discrepancy
between ranking predictions from the student and teachers. Our
key idea is to use the earlier predictions to ease the learning diffi-
culty of the latter predictions. For each teacher trajectory 𝑇𝑥 , we

2In this work, we set 𝐸 as 4 and evenly distribute them across each teacher’s trajectory.
We empirically found that 𝐸 hardly affects the final performance as long as they are
well distributed over the teacher training process (Appendix A.3).

Distillation from Heterogeneous Models
for Top-K Recommendation WWW ’23, May 1–5, 2023, Austin, TX, USA

Algorithm 1: Dynamic Knowledge Construction
Input :Teachers’ trajectories T , student model 𝑓 , current

selection variable 𝑣 with discrepancies 𝑑
Output :New dynamic target permutation 𝜋d

1 Predict 𝜋 by student model 𝑓
2 foreach teacher 𝑥 ∈ {1, ..., 𝑀} do
3 if (𝑣 [𝑥] < 𝐸) and (𝛾𝑥 > 𝛼) then
4 𝑣 [𝑥] = 𝑣 [𝑥] + 1
5 𝑑 [𝑥] = 𝐷@𝐾 (𝜋, 𝜋𝑥,min(𝑣 [𝑥]+1, 𝐸))

6 Generate 𝜋d = 𝑔({𝜋𝑥,𝑣 [𝑥] }𝑥 ∈{1,...,𝑀 })

keep tracking the discrepancy to the permutation from the next
training state 𝐷@𝐾 (𝜋, 𝜋𝑥,(𝑣 [𝑥]+1)), and move to the next state if
the discrepancy decreases to a certain degree. To this end, we define
the relative discrepancy ratio as follows:

𝛾𝑥 =
𝑑 [𝑥]

𝐷@𝐾 (𝜋, 𝜋𝑥,(𝑣 [𝑥]+1))
, (4)

where 𝑑 [𝑥] denotes the initial discrepancy to 𝜋𝑥,(𝑣 [𝑥]+1) computed
when the student begins to learn 𝜋𝑥,𝑣 [𝑥] . Note that 𝑑 [𝑥] is treated
as a constant and 𝐷@𝐾 (𝜋, 𝜋𝑥,(𝑣 [𝑥]+1)) decreases as the student
evolves during the training. 𝛾𝑥 reveals the degree to which the
learning difficulty of 𝜋𝑥,(𝑣 [𝑥]+1) is lowered. Then, we employ a
greedy strategy that moves to the next teacher state if 𝛾𝑥 becomes
larger than the threshold 𝛼 . 𝛼 ≥ 1 is a hyperparameter controlling
the transition speed where a lower value incurs a faster transition.
Our greedy strategy based on the discrepancy provides an efficient
curriculum considering both the student’s learning state and the
varying difficulties of the teachers. Also, as the discrepancy can be
measured for any model, it works in a model-agnostic manner.

After updating the selection variable 𝑣 , we generate the target
permutation by

𝜋d = 𝑔({𝜋𝑥,𝑣 [𝑥] }𝑥 ∈{1,...,𝑀 }) (5)
where 𝑔 is the ranking ensemble function to consolidate the per-
mutations. Here, various ensemble techniques [32], from a simple
averaging to a more sophisticated one with learnable importance,
can be flexibly used in HetComp. In this work, we use a simple tech-
nique, which leverages the consistency of prediction as importance,
widely used in recent work [7, 19] (Appendix A.2.3).

Once 𝑣 [𝑥] equals 𝐸 for all 𝑥 , the knowledge becomes equiva-
lent to the final ensemble knowledge used in the conventional KD.
However, the key difference is that the student model is now more
capable of learning from the more difficult knowledge.

4.2 Adaptive Knowledge Transfer
We present how we transfer the dynamically-constructed permuta-
tion 𝜋d to the student. We first introduce our distillation objective
which is adaptively adjusted according to the student’s learning
state in Sec 4.2.1. Then, we explain our strategy to transfer ranking
knowledge of both observed and unobserved items in Sec 4.2.2.

4.2.1 Adaptive distillation objective. Considering the target
permutation varies during the student’s training, learning the de-
tailed ranking in the earlier phase is not only unnecessary but
also daunting. We first train the student model to learn the overall

relations in the target permutation by L𝑂 . Then, once the target
permutation is constructed from the final converged predictions
(i.e., 𝑣 [𝑥] equals 𝐸, ∀𝑥), we move on to learning to rank the fine-
grained ranking orders by L𝐹 . By modifying Eq.1, we define the
distillation objective to transfer the overall relations as follows:

L𝑂 (𝑃, 𝑁) = − log
|𝑃 |∏
𝑘=1

exp 𝑓 (𝑢, 𝑃𝑘)
exp 𝑓 (𝑢, 𝑃𝑘) +

∑ |𝑁 |
𝑙=1 exp 𝑓 (𝑢, 𝑁𝑙)

, (6)

It simply pushes the items in 𝑃 to be ranked higher than items in
𝑁 without imposing any constraint among the items in 𝑃 .

4.2.2 Transferring knowledge of observed/unobserved items.
The prior KDmethods [15, 25, 40] mostly transfer the ranking of un-
observed items without considering the ranking of observed items.
We argue that the relative priorities among the observed items are
also valuable knowledge of user preference. A straightforward way
to exploit the knowledge of observed items is to transfer a permuta-
tion of the whole item set constructed from the teachers. However,
because RS models are mostly trained by collaborative filtering
(CF) losses (e.g., BCE [10], BPR [36] loss) penalizing unobserved
items to have lower scores than the observed items, “relevant but
not-yet-observed” items are likely to have lower ranks compared
to their true relevance in the permutation of whole item set. We
observe that if we directly distill the whole item permutation, this
causes some not-yet-observed items to be overly penalized in the
student’s prediction, which hinders the learning of preferences.

We propose a new strategy to exploit both observed and unob-
served ranking knowledge effectively. We independently transfer
the ranking of observed items and top-ranked unobserved items
to prevent such over-penalizing. Let 𝑃− denote the ranking of top-
ranked unobserved items and 𝑁 denote the remaining unobserved
items obtained from 𝜋d. We additionally define 𝑃+, the ranking of
observed items3. The distillation loss is defined as follows:

L = L𝐾𝐷 (𝑃+, 𝑁) + L𝐾𝐷 (𝑃−, 𝑁), (7)
where L𝐾𝐷 is either L𝑂 (Eq.6) or L𝐹 (Eq.1) depending on the
student’s learning state. Note that our strategy does not enforce the
top-ranked unobserved items (𝑃−) to be located below the observed
items (𝑃+), preventing pushing the not-yet-observed items away
from the top ranking. Instead, it enables some unobserved items
with high relevance to be naturally mixed with the observed items
near the top of the ranking list.L𝐾𝐷 (𝑃+, 𝑁) is distinguishable from
the CF losses in that (1) it transfers the ranking of observed items,
and (2) it does not penalize top-ranked unobserved items.

4.3 The Overall Training Process
Algorithm 2 summarizes thewhole training process. The knowledge
construction is applied in a personalized manner for each user 𝑢.
Also, the knowledge construction and L𝑂 are applied until the
student learns from the final converged teachers (i.e., 𝑣 [𝑥] equals 𝐸,
∀𝑥). We conduct the knowledge construction every 𝑝 epoch, since
changing the target permutation every epoch is time-consuming
and unnecessary. In this work, we set 𝑝 as 10. A detailed analysis
of HetComp’s offline training costs is provided in Appendix A.3.
3𝑃+ is obtained by the ensemble of the converged teachers on the observed items. It is
worth noting that 𝑃+ needs to be generated only once before the student’s training as
the set of observed items is fixed and L𝑂 doesn’t transfer their detailed ranking.

WWW ’23, May 1–5, 2023, Austin, TX, USA SeongKu Kang et al.

Algorithm 2: Training Procedure of HetComp
Input :Teachers’ trajectories T, student 𝑓 , an update period 𝑝
Output :Trained student model 𝑓

1 Randomly initialize student model 𝑓
2 Initialize selection variables 𝑣𝑢 [𝑥] = 1 and 𝑑𝑢 [𝑥] ∀𝑥, ∀𝑢
3 Obtain 𝑃+𝑢 by the ensemble of converged teachers ∀𝑢
4 for 𝑖 = 1, ..., 𝑒𝑝𝑜𝑐ℎ𝑚𝑎𝑥 do
5 foreach user 𝑢 ∈ U do
6 if (𝑖 % 𝑝 == 0) and not (𝑣𝑢 [𝑥] == 𝐸 , ∀𝑥) then
7 Update 𝑣𝑢 , 𝑑𝑢 , and 𝜋d

𝑢 via dynamic knowledge
construction (Algorithm 1)

8 if not (𝑣𝑢 [𝑥] == 𝐸 , ∀𝑥) then
9 L = L𝑂 (𝑃+𝑢 , 𝑁𝑢) + L𝑂 (𝑃−𝑢 , 𝑁𝑢)

10 else
11 L = L𝐹 (𝑃+𝑢 , 𝑁𝑢) + L𝐹 (𝑃−𝑢 , 𝑁𝑢)
12 Update student model 𝑓

5 EXPERIMENTS
Experiment settings. We use three real-world datasets: Amazon-
music (Amusic), CiteULike, and Foursquare. We randomly divide
each user’s interactions into train/valid/test sets in a 60%/20%/20%
split [12]. We use two top-𝐾 ranking metrics: Recall@𝐾 (R@𝐾) and
NDCG@𝐾 (N@𝐾)4. For the student model, we use MF, ML, and
DNN [15, 22, 25]. We set the user/item embedding dimension (or
the bottleneck size for autoencoder) as 64 for all teacher models and
6 for all student models so that the student has roughly one-tenth of
the learning parameters used by the teacher as done in [15, 22, 25].
Baseline methods. We compare HetComp with various distilla-
tion methods. All compared methods except MTD transfer the en-
semble ranking of the converged heterogeneous teachers (denoted
as Ensemble) which is generated in the same way as HetComp.
The first group of baselines includes a point-wise KD approach.
• RD [40] transfers the importance of top-ranked items. The im-
portance is defined by each item’s ranking position.

The second group includes ranking matching KD methods (Sec.3.2).
• RRD [15] is a ranking matching method proposed for the recom-
mender system. It uses listwise loss focusing on top-ranked items.

• MTD (Multi-Teacher Distillation): We note that multi-teacher
KD methods in other fields [8, 23, 28, 54] commonly use the train-
able importance of each teacher on each data instance. Borrowing
the idea, we develop MTD that transfers the knowledge with the
trainable importance of each teacher on each user’s ranking.

The third group includes the state-of-the-art KD methods for rank-
ing that use advanced schemes to improve the distillation quality.
• CL-DRD [52] is the state-of-the-art KD method for document
retrieval. It applies curriculum learning where the learning diffi-
culty is predefined by the absolute ranking position.

• DCD [25] is the state-of-the-art KD method for recommender
system. It uses the dual correction loss, which corrects what the
student has failed to accurately predict, along with RRD.

Note that KD methods [11, 22, 48, 54] that directly use predicted
scores are not applicable, as the output score distributions of the
teachers and the student are very different in our task.

4Here, NDCG is computed for implicit feedback. To avoid confusion, we use NDCG to
refer to the recommendation accuracy in the experiment section.

5.1 Distillation Effects Comparison
Table 2 presents the recommendation performance of the student
models trained by different KD methods. Also, Table 4 summarizes
the discrepancy values of the best baseline (i.e., DCD) and Het-
Comp. ‘Best Teacher’ denotes the teacher model showing the best
performance among all heterogeneous teachers on each dataset.
• For all datasets and student models, HetComp significantly out-
performs all baselines, effectively improving the performance of
the student5. Further, in terms of the number of recommended
items (𝐾), HetComp shows larger improvements for R@10/N@10
compared to R@50/N@50, which is advantageous for real-world
services that aim to provide the most preferred items to their
users. Also, Table 4 shows that HetComp indeed achieves con-
siderably lower discrepancy compared to the best baseline.

• Compared to the point-wise KD approach (i.e., RD), the other KD
methods that directly transfer the ranking orders consistently
show higher performances, which again shows the importance
of ranking knowledge in the top-𝐾 recommendation. On the one
hand, MTD shows limited performance compared to RRD. Due
to the high sparsity of interaction data, the user-wise learnable
importance can be easily overfitted.

• Ranking KD methods with advanced schemes (i.e., CL-DRD,
DCD) improve the distillation effectiveness to some extent. How-
ever, for CL-DRD, we observe considerable variations for each
dataset and student model. One possible reason is that it uses
predefined rules for defining the difficulty and controlling the dif-
ficulty level without considering the student’s state. On the other
hand, DCD directly transfers what the student model has failed
to predict, achieving consistently higher performance than RRD.

• Table 5 presents the number of parameters and inference latency
of the ensemble and HetComp.We increase the size of the student
(MF) until it achieves comparable performance to the ensemble.
Compared to the ensemble that incurs high inference costs due to
the multiple model forwards, HetComp can significantly reduce
the costs by distilling knowledge into the compact student model.

Further comparison on model generalization. As the easy-to-
hard learning paradigm is known to yield a more generalizable
model [13], we further assess how accurately the student model
captures the user preferences when the knowledge from the teach-
ers is severely limited. We randomly split the set of users into two
sets with 80%/20% ratio (i.e.,U𝑔1 ,U𝑔2). Then, we train all teacher
models by using only 80% of training interactions ofU𝑔1 , i.e., the
teachers have limited knowledge of U𝑔1 and are not aware of U𝑔2 .
Finally, we train the student model by using all training data with
the distillation onU𝑔1

6. That is, the student model is required to
learn from the data by itself with incomplete guidance from the
teachers. In Table 3, we observe that HetComp achieves significant
improvements compared to DCD in all cases. These results show
that the student model trained by HetComp has a better general-
ization ability and can find more accurate hidden preferences by
itself. We believe this can be advantageous in settings where new
interactions are constantly being added, and we leave the study of
applying HetComp to the continual learning [33] in the future work.

5We also tried KD from various teachers (e.g., Best Teacher/Homogeneous teacher
ensemble). HetComp improves the distillation efficacy in all cases (Appendix A.4).
6For training interactions not used for the teachers’ training, we use the original CF loss.

Distillation from Heterogeneous Models
for Top-K Recommendation WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 2: The recommendation performance comparison. 𝐼𝑚𝑝 denotes the improvement of HetComp over the best baseline.

Method Amusic CiteULike Foursquare
R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50

Best Teacher 0.0972 0.0706 0.2475 0.1139 0.1337 0.0994 0.2844 0.1392 0.1147 0.1085 0.2723 0.1635
Ensemble 0.1096 0.0820 0.2719 0.1273 0.1550 0.1156 0.3144 0.1571 0.1265 0.1213 0.2910 0.1786

Student
Model:
MF

w/o KD 0.0449 0.0303 0.1451 0.0594 0.0568 0.0422 0.1372 0.0634 0.0726 0.0666 0.1806 0.1047
RD 0.0522 0.0387 0.1602 0.0693 0.0610 0.0472 0.1514 0.0725 0.0778 0.0703 0.1921 0.1153
RRD 0.0890 0.0659 0.2353 0.1077 0.0973 0.0740 0.2422 0.1113 0.0982 0.0905 0.2539 0.1446
MTD 0.0901 0.0649 0.2279 0.1043 0.0993 0.0749 0.2425 0.1118 0.0955 0.0890 0.2402 0.1394

CL-DRD 0.0883 0.0648 0.2375 0.1071 0.1033 0.0794 0.2512 0.1175 0.1001 0.0933 0.2528 0.1464
DCD 0.0956 0.0675 0.2380 0.1079 0.1106 0.0851 0.2640 0.1246 0.1034 0.0965 0.2547 0.1491

HetComp 0.1036* 0.0747* 0.2469* 0.1157* 0.1379* 0.1031* 0.2814* 0.1396* 0.1118* 0.1036* 0.2722* 0.1594*
Imp 8.37% 10.67% 3.74% 7.23% 24.68% 21.15% 6.59% 12.04% 8.12% 7.36% 6.87% 6.91%

Student
Model:
ML

w/o KD 0.0447 0.0310 0.1522 0.0623 0.0210 0.0148 0.0859 0.0323 0.0184 0.0139 0.0804 0.0356
RD 0.0706 0.0507 0.1874 0.0840 0.0835 0.0615 0.1914 0.0890 0.0729 0.0677 0.1811 0.1059
RRD 0.0903 0.0643 0.2422 0.1074 0.0981 0.0701 0.2529 0.1116 0.0925 0.0813 0.2505 0.1366
MTD 0.0843 0.0590 0.2293 0.1003 0.0944 0.0690 0.2519 0.1098 0.0909 0.0811 0.2440 0.1347

CL-DRD 0.0866 0.0621 0.2409 0.1061 0.0989 0.0718 0.2583 0.1131 0.0931 0.0825 0.2541 0.1387
DCD 0.0928 0.0653 0.2466 0.1086 0.1003 0.0724 0.2592 0.1144 0.0943 0.0845 0.2530 0.1399

HetComp 0.1020* 0.0751* 0.2470 0.1156* 0.1251* 0.0916* 0.2686* 0.1287* 0.1039* 0.0962* 0.2645* 0.1521*
Imp 9.91% 15.01% 0.16% 6.45% 24.73% 26.52% 3.63% 12.50% 10.18% 13.85% 4.09% 8.72%

Student
Model:
DNN

w/o KD 0.0460 0.0324 0.1396 0.0597 0.0414 0.0339 0.1095 0.0518 0.0693 0.0665 0.1608 0.0987
RD 0.0531 0.0378 0.1545 0.0670 0.0584 0.0445 0.1440 0.0671 0.0746 0.0683 0.1820 0.1060
RRD 0.0851 0.0613 0.2255 0.1016 0.1034 0.0792 0.2552 0.1186 0.1016 0.0939 0.2584 0.1484
MTD 0.0802 0.0563 0.2210 0.0958 0.0982 0.0710 0.2322 0.1058 0.0888 0.0797 0.2321 0.1305

CL-DRD 0.0889 0.0623 0.2365 0.1047 0.1083 0.0816 0.2575 0.1183 0.1039 0.0983 0.2635 0.1536
DCD 0.0919 0.0646 0.2404 0.1071 0.1114 0.0838 0.2668 0.1240 0.1060 0.1017 0.2671 0.1576

HetComp 0.1045* 0.0768* 0.2534* 0.1190* 0.1381* 0.1050 * 0.2864* 0.1413* 0.1136* 0.1079 * 0.2759* 0.1642*
Imp 13.71% 18.89% 5.41% 11.11% 23.97% 25.30% 7.35% 13.95% 7.17% 6.10% 3.29% 4.19%

∗ denotes significance from the paired t-test (0.05 level) against the best baseline.

Table 3: The recommendation performance comparison of DCD and HetComp on the generalization setup.
User Method Amusic CiteULike Foursquare
group R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50

U𝑔1
Best Teacher 0.0741 0.0562 0.2075 0.0948 0.1065 0.0789 0.2276 0.1111 0.1024 0.0977 0.2401 0.1457
Ensemble 0.0972 0.0691 0.2344 0.1089 0.1304 0.0955 0.2805 0.1346 0.1141 0.1079 0.2655 0.1601

Student
Model:
MF

U𝑔1

w/o KD 0.0452 0.0307 0.1460 0.0600 0.0551 0.0430 0.1351 0.0642 0.0736 0.0683 0.1811 0.1063
DCD 0.0784 0.0548 0.2126 0.0933 0.0955 0.0724 0.2256 0.1056 0.0984 0.0937 0.2317 0.1401

HetComp 0.0903* 0.0661* 0.2313* 0.1059* 0.1096* 0.0834* 0.2547* 0.1206* 0.1050 * 0.0993* 0.2483* 0.1494*
Imp 15.18% 20.62% 8.80% 13.50% 14.76% 15.19% 12.90% 14.20% 6.71% 5.98% 7.16% 6.64%

U𝑔2

w/o KD 0.0434 0.0286 0.1411 0.0570 0.0555 0.0427 0.1389 0.0649 0.0728 0.0676 0.1808 0.1058
DCD 0.0567 0.0370 0.1706 0.0699 0.0722 0.0517 0.1785 0.0805 0.0738 0.0717 0.1839 0.1087

HetComp 0.0668* 0.0465* 0.1841* 0.0788* 0.0801* 0.0558* 0.2008* 0.0876* 0.0880* 0.0829* 0.2088* 0.1227*
Imp 17.81% 25.68% 7.91% 12.73% 10.94% 7.93% 12.49% 8.82% 19.24% 15.62% 13.54% 12.88%

Student
Model:
ML

U𝑔1

w/o KD 0.0442 0.0308 0.1518 0.0623 0.0209 0.0148 0.0856 0.0322 0.0201 0.0158 0.0860 0.0386
DCD 0.0817 0.0585 0.2179 0.0970 0.0861 0.0618 0.2214 0.0974 0.0891 0.0799 0.2289 0.1288

HetComp 0.0908* 0.0641* 0.2284* 0.1027* 0.1110* 0.0831* 0.2445* 0.1173* 0.1025* 0.0960* 0.2499* 0.1475*
Imp 11.14% 9.57% 4.82% 5.88% 28.92% 34.47% 10.43% 20.43% 15.04% 20.15% 9.17% 14.52%

U𝑔2

w/o KD 0.0468 0.0318 0.1537 0.0627 0.0208 0.0147 0.0869 0.0324 0.0201 0.0156 0.0861 0.0384
DCD 0.0532 0.0368 0.1601 0.0680 0.0522 0.0371 0.1644 0.0665 0.0631 0.0562 0.1826 0.0976

HetComp 0.0651* 0.0453* 0.1906* 0.0805* 0.0806* 0.0560* 0.2012* 0.0868* 0.0709* 0.0626* 0.2052* 0.1099*
Imp 22.37% 23.10% 19.05% 18.38% 54.41% 50.94% 22.38% 30.53% 12.36% 11.39% 12.38% 12.60%

Student
Model:
DNN

U𝑔1

w/o KD 0.0463 0.0329 0.1398 0.0602 0.0408 0.0335 0.1088 0.0514 0.0691 0.0665 0.1606 0.0986
DCD 0.0805 0.0579 0.2118 0.0947 0.0882 0.0675 0.2177 0.1010 0.0914 0.0854 0.2231 0.1314

HetComp 0.0902* 0.0664* 0.2308* 0.1063* 0.1106* 0.0841* 0.2527* 0.1206* 0.1014* 0.0960* 0.2472* 0.1438*
Imp 12.05% 14.68% 8.97% 12.25% 25.40% 24.59% 16.08% 19.41% 10.94% 12.41% 10.80% 9.44%

U𝑔2

w/o KD 0.0450 0.03034 0.1385 0.05795 0.0435 0.0352 0.1121 0.0532 0.0698 0.0671 0.1615 0.0993
DCD 0.0501 0.0342 0.1551 0.0642 0.0586 0.0440 0.1516 0.0673 0.0670 0.0621 0.1686 0.0974

HetComp 0.0647* 0.0448* 0.1829* 0.0751* 0.0780* 0.0572* 0.1901* 0.0833* 0.0820* 0.0778* 0.2001* 0.1188*
Imp 29.14% 30.99% 17.92% 16.98% 33.11% 30.00% 25.40% 23.77% 22.39% 25.28% 18.68% 21.97%

∗ denotes significance from the paired t-test (0.05 level) against the best baseline.

Table 4: Discrepancy comparison of DCD and HetComp.

Method Amusic CiteULike Foursquare
D@10 D@50 D@10 D@50 D@10 D@50

M
F

w/o KD 0.8984 0.8028 0.7668 0.6608 0.6211 0.4625
DCD 0.6610 0.5286 0.4433 0.3184 0.2856 0.1690

HetComp 0.5929 0.4709 0.3401 0.2359 0.2135 0.1210
Imp 10.30% 10.92% 23.28% 25.91% 25.25% 28.40%

M
L

w/o KD 0.9072 0.8149 0.9583 0.8936 0.9532 0.8654
DCD 0.6699 0.5283 0.5272 0.3659 0.3429 0.1967

HetComp 0.5967 0.4756 0.3856 0.2693 0.2653 0.1481
Imp 10.93% 9.98% 26.86% 26.40% 22.63% 24.71%

D
N
N

w/o KD 0.9070 0.8232 0.8225 0.7330 0.6438 0.5119
DCD 0.6862 0.5462 0.4836 0.3427 0.2377 0.1315

HetComp 0.5338 0.4170 0.2942 0.2101 0.2014 0.1110
Imp 22.21% 23.65% 39.16% 38.69% 15.27% 15.59%

Table 5: Accuracy-efficiency trade-off. Time (s) indicates the
average wall time for generating each user’s recommenda-
tion.We use PyTorchwithCUDA fromRTXA5000 andXeon
Gold 6226R CPU.

Dataset Method Accuracy Efficiency
R@10 N@10 #Params (emb.size) Time

Amusic Ensemble 0.1096 0.0820 5.79M (64) 10.57s
HetComp 0.1102 0.0817 0.27M (18) 0.82s

CiteULike Ensemble 0.1550 0.1156 11.72M (64) 22.10s
HetComp 0.1548 0.1150 0.45M (15) 1.10s

Foursquare Ensemble 0.1265 0.1213 18.52M (64) 35.47s
HetComp 0.1263 0.1214 0.96M (20) 2.12s

WWW ’23, May 1–5, 2023, Austin, TX, USA SeongKu Kang et al.

5.2 Study of HetComp
We provide in-depth analysis to provide a deeper insight of Het-
Comp. Supplementary results including the hyperparameter study
and the ablation study are provided in Appendix A.4.

5.2.1 Why are teachers’ training trajectories helpful? To get
clues to the question, we analyze what knowledge is revealed from
the teachers’ intermediate states (i.e., E1-E4, E4: the converged
state). All reported results correspond to the average value from all
teachers for each intermediate state. For intuitive understanding,
we report the relative ratio to the value from E4.
• We investigate the items included in the ranking list from each
intermediate state. In the union of all users’ top-50 ranking lists,
we count (1) how many unique items exist and (2) how many
items belong to unpopular items.7 Table 6 presents the ratios
of the number of unique items and unpopular items from each
teacher training state. We observe that the items included in the
recommendations are gradually diversified during the training.
In addition, the proportions of unpopular items, which reflect
more personalized preferences than popular items, are also pro-
gressively increasing.

• We analyze each state’s capability of capturing the group-level
and user-level preferences. To assess the group-level preference,
we identify 50 user groups by 𝑘-means on interaction history,
then find top-50 test items frequently consumed by each group.
We use the group-level test items for the evaluation of each
user in the group. The user-level preference corresponds to the
original recommendation task. We use R@50 for evaluating the
recommendation accuracy of both levels. Figure 3 summarizes
the ratios of the group-level and user-level preferences from each
teacher training state. We observe that the early states capture
a limited user-level preference, but a fairly accurate group-level
preference. That is, although teachers’ earlier predictions include
less personalized (fine-grained) preferences, they reveal overall
group-level (coarse-grained) patterns.

To sum up, in HetComp, by using the teachers’ intermediate states,
the items making up the knowledge are gradually changed so that
it progressively reveals more diverse and personalized preferences.
This aligns well with the idea of curriculum learning that first
focuses on the overall concept and gradually learns specific patterns
[2]. It is worth noting that all our baselines transfer fixed knowledge
throughout the student’s training.

5.2.2 Study of dynamic knowledge construction (DKC). We
provide a detailed analysis of DKC. Here, we use MF (student) on Ci-
teULike dataset. Fig.4(left) presents how users’ average knowledge
selections (i.e., E𝑥 [𝑣𝑢 [𝑥]]) change. During the student’s training,
the discrepancy to the final ranking is lowered by learning earlier
predictions, and HetComp gradually moves toward more difficult
knowledge following the teachers’ trajectories. Also, the knowledge
selection differs for each user, which reflects different learning dif-
ficulties for each user’s knowledge. In Fig.4(right), we compare two
variants of DKC: ‘DKC-g’ uses a global selection variable computed
by averaging user-wise selection, ‘DKC-e’ uses a simple rule that
moves to the next state after a certain epoch interval. The interval
is determined by equally dividing the epoch when DKC ends by
7We regard items with the lowest 30% of interaction numbers as unpopular items.

Table 6: The relative ratios of the number of unique items
and unpopular items in top-50 ranking lists from the
teacher models.

Teacher Amusic CiteULike
training states unique unpopular unique unpopular

E1 0.8386 0.7205 0.7055 0.7190
E2 0.8863 0.8618 0.8207 0.8366
E3 0.9479 0.9254 0.9230 0.9191
E4 1.0 1.0 1.0 1.0

Figure 3: The relative ratio of the capability to capture group-
level and user-level preference (Metric: R@50).

Figure 4: (left) the average selection distributions at epoch
10/30/130 of the student model. (right) 𝐷@50 curves with
variants of dynamic knowledge construction. The discrep-
ancy is computed to the ensemble ranking from converged
teacher models.
3. Compared to the variants, DKC provides more efficient curric-
ula for the student model. DKC-e rather increases the discrepancy
(around epoch 100) because it cannot reflect the student’s learning
state. These results show the benefits of considering both varying
user-wise learning difficulties and the learning status of the student
model in DKC.

6 CONCLUSION
We propose a new HetComp framework to compress the ensemble
knowledge of heterogeneous recommendation models into a light-
weight model, so as to reduce the huge inference costs while retain-
ing high accuracy. From our analysis, we show that distillation from
heterogeneous teachers is particularly challenging and teachers’
training trajectories can help to ease such high learning difficul-
ties. Based on the idea of easy-to-hard learning, HetComp uses
dynamic knowledge construction to provide progressively difficult
ranking knowledge and adaptive knowledge transfer to gradually
transfer finer-grained ranking information. We provide extensive
experiments showing that HetComp significantly improves the dis-
tillation efficacy and the generalization of the student model. Based
on its great compatibility with existing models, we expect that our
HetComp framework can be a solution for the accuracy-efficiency
trade-off of the recommender system.

Distillation from Heterogeneous Models
for Top-K Recommendation WWW ’23, May 1–5, 2023, Austin, TX, USA

Acknowledgments.We thank Sang-Wook Kim, Minsu Cho, Dong-
woo Kim, and Chanyoung Park for their insightful feedback. This
work was supported by Microsoft Research Asia and IITP (No.2022-
00155958), IITP grant funded by MSIT (No.2018-0-00584, 2019-0-
01906), NRF grant funded by MSIT (No.2020R1A2B5B03097210).
DOI. https://doi.org/10.5281/zenodo.7594882

REFERENCES
[1] Samira Abnar, Mostafa Dehghani, and Willem Zuidema. 2020. Transferring

inductive biases through knowledge distillation. arXiv preprint arXiv:2006.00555
(2020).

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum Learning. In ICML.

[3] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and
Jun-Yan Zhu. 2022. Dataset distillation by matching training trajectories. In CVPR.
4750–4759.

[4] Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie Li,
and Irwin King. 2022. Learning Binarized Graph Representations with Multi-
faceted Quantization Reinforcement for Top-K Recommendation. In KDD.

[5] Yuntao Chen, NaiyanWang, and Zhaoxiang Zhang. 2018. Darkrank: Accelerating
deep metric learning via cross sample similarities transfer. In AAAI.

[6] Yudong Chen, Xin Wang, Miao Fan, Jizhou Huang, Shengwen Yang, and Wenwu
Zhu. 2021. Curriculum Meta-Learning for Next POI Recommendation. In KDD.

[7] JingtaoDing, YuhanQuan, Quanming Yao, Yong Li, andDepeng Jin. 2020. Simplify
and Robustify Negative Sampling for Implicit Collaborative Filtering. In NeurIPS.

[8] Takashi Fukuda, Masayuki Suzuki, Gakuto Kurata, Samuel Thomas, Jia Cui, and
Bhuvana Ramabhadran. 2017. Efficient Knowledge Distillation from an Ensemble
of Teachers.. In Interspeech. 3697–3701.

[9] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network
for Recommendation. In SIGIR.

[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015. Distilling the knowledge
in a neural network. NIPS (2015).

[12] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In WWW.

[13] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G Hauptmann.
2015. Self-paced curriculum learning. In AAAI.

[14] Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan,
and Xiaolin Hu. 2019. Knowledge distillation via route constrained optimization.
In CVPR. 1345–1354.

[15] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. 2020. DE-
RRD: A Knowledge Distillation Framework for Recommender System. In CIKM.

[16] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. 2021. Item-
side ranking regularized distillation for recommender system. Information Sci-
ences 580 (2021), 15–34. https://doi.org/10.1016/j.ins.2021.08.060

[17] SeongKu Kang, Junyoung Hwang, Wonbin Kweon, and Hwanjo Yu. 2021. Topol-
ogy Distillation for Recommender System. In KDD.

[18] SeongKu Kang, Junyoung Hwang, Dongha Lee, and Hwanjo Yu. 2019. Semi-
supervised learning for cross-domain recommendation to cold-start users. In
CIKM.

[19] SeongKu Kang, Dongha Lee, Wonbin Kweon, Junyoung Hwang, and Hwanjo
Yu. 2022. Consensus Learning from Heterogeneous Objectives for One-Class
Collaborative Filtering. In WWW.

[20] SeongKu Kang, Dongha Lee, Wonbin Kweon, and Hwanjo Yu. 2022. Personalized
Knowledge Distillation for Recommender System. Knowledge-Based Systems 239
(2022), 107958. https://doi.org/10.1016/j.knosys.2021.107958

[21] M Kumar, Benjamin Packer, and Daphne Koller. 2010. Self-paced learning for
latent variable models. In NeurIPS.

[22] Wonbin Kweon, SeongKu Kang, and Hwanjo Yu. 2021. Bidirectional Distillation
for Top-K Recommender System. In WWW.

[23] xu lan, Xiatian Zhu, and Shaogang Gong. 2018. Knowledge Distillation by On-
the-Fly Native Ensemble. In NeurIPS.

[24] Dongha Lee, SeongKu Kang, Hyunjun Ju, Chanyoung Park, and Hwanjo Yu.
2021. Bootstrapping User and Item Representations for One-Class Collaborative
Filtering. In SIGIR.

[25] Youngjune Lee and Kee-Eung Kim. 2021. Dual Correction Strategy for Ranking
Distillation in Top-N Recommender System. In CIKM.

[26] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW.

[27] Weiwei Liu, Ivor W Tsang, and Klaus-Robert Müller. 2017. An easy-to-hard
learning paradigm for multiple classes and multiple labels. The Journal of Machine
Learning Research 18 (2017).

[28] Yuang Liu, Wei Zhang, and Jun Wang. 2020. Adaptive multi-teacher multi-level
knowledge distillation. Neurocomputing 415 (2020), 106–113.

[29] Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Training curricula for open domain answer
re-ranking. In SIGIR. 529–538.

[30] John I Marden. 1996. Analyzing and modeling rank data. CRC Press.
[31] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Mat-

sukawa, and Hassan Ghasemzadeh. 2020. Improved knowledge distillation via
teacher assistant. In AAAI. 5191–5198.

[32] Samuel EL Oliveira, Victor Diniz, Anisio Lacerda, Luiz Merschmanm, and Gisele L
Pappa. 2020. Is rank aggregation effective in recommender systems? an experi-
mental analysis. ACM Transactions on Intelligent Systems and Technology (TIST)
11, 2 (2020), 1–26.

[33] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan
Wermter. 2019. Continual lifelong learning with neural networks: A review.
Neural Networks 113 (2019). https://doi.org/10.1016/j.neunet.2019.01.012

[34] Sashank Reddi, Rama Kumar Pasumarthi, Aditya Menon, Ankit Singh Rawat,
Felix Yu, Seungyeon Kim, Andreas Veit, and Sanjiv Kumar. 2021. Rankdistil:
Knowledge distillation for ranking. In AISTATS. PMLR.

[35] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In WSDM.

[36] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[37] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550 (2014).

[38] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
Autorec: Autoencoders meet collaborative filtering. In WWW. 111–112.

[39] Wenxian Shi, Yuxuan Song, Hao Zhou, Bohan Li, and Lei Li. 2021. Follow
your path: a progressive method for knowledge distillation. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
596–611.

[40] Jiaxi Tang and Ke Wang. 2018. Ranking distillation: Learning compact ranking
models with high performance for recommender system. In KDD.

[41] Haoyu Wang, Defu Lian, and Yong Ge. 2019. Binarized collaborative filtering
with distilling graph convolutional networks. In IJCAI.

[42] Kai Wang, Yu Liu, Qian Ma, and Quan Z Sheng. 2021. Mulde: Multi-teacher
knowledge distillation for low-dimensional knowledge graph embeddings. In
WWW. 1716–1726.

[43] X. Wang, Y. Chen, and W. Zhu. 2021. A Survey on Curriculum Learning. IEEE
Transactions on Pattern Analysis & Machine Intelligence (2021). https://doi.org/
10.1109/TPAMI.2021.3069908

[44] Markus Weimer, Alexandros Karatzoglou, Quoc Le, and Alex Smola. 2007. COFI
RANK - Maximum Margin Matrix Factorization for Collaborative Ranking. In
NIPS.

[45] Chuhan Wu, Fangzhao Wu, and Yongfeng Huang. 2021. One Teacher is Enough?
Pre-trained Language Model Distillation from Multiple Teachers. In Findings of
the Association for Computational Linguistics: ACL-IJCNLP 2021. 4408–4413.

[46] XiaoxiaWu, Ethan Dyer, and Behnam Neyshabur. 2021. When do curricula work?
ICLR (2021).

[47] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In ICML.

[48] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Guandong Xu, and Quoc
Viet Hung Nguyen. 2022. On-Device Next-Item Recommendation with Self-
Supervised Knowledge Distillation. In SIGIR.

[49] Liuyu Xiang, Guiguang Ding, and Jungong Han. 2020. Learning from multiple
experts: Self-paced knowledge distillation for long-tailed classification. In ECCV.
Springer, 247–263.

[50] Shan You, Chang Xu, Chao Xu, and Dacheng Tao. 2017. Learning from multiple
teacher networks. In KDD. 1285–1294.

[51] Fei Yuan, Linjun Shou, Jian Pei, Wutao Lin, Ming Gong, Yan Fu, and Daxin Jiang.
2021. Reinforced multi-teacher selection for knowledge distillation. In AAAI.

[52] Hansi Zeng, Hamed Zamani, and Vishwa Vinay. 2022. Curriculum Learning for
Dense Retrieval Distillation. In SIGIR. 1979–1983.

[53] Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. 2020. Time-consistent self-
supervision for semi-supervised learning. In ICML.

[54] Jieming Zhu, Jinyang Liu, Weiqi Li, Jincai Lai, Xiuqiang He, Liang Chen, and
Zibin Zheng. 2020. Ensembled CTR Prediction via Knowledge Distillation. In
CIKM.

[55] Qingqing Zhu, Xiuying Chen, Pengfei Wu, JunFei Liu, and Dongyan Zhao. 2021.
Combining Curriculum Learning and Knowledge Distillation for Dialogue Gen-
eration. In EMNLP.

[56] Ziwei Zhu, Jianling Wang, and James Caverlee. 2019. Improving Top-k Recom-
mendation via Joint Collaborative Autoencoders. In WWW.

https://doi.org/10.5281/zenodo.7594882
https://doi.org/10.1016/j.ins.2021.08.060
https://doi.org/10.1016/j.knosys.2021.107958
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1109/TPAMI.2021.3069908

WWW ’23, May 1–5, 2023, Austin, TX, USA SeongKu Kang et al.

A APPENDIX
A.1 Experiment Setup
The source code of HetComp is publicly available through the
author’s GitHub repository8.
A.1.1 Dataset. We use three real-world datasets: Amazon-music
(Amusic), CiteULike, and Foursquare. These datasets are publicly
accessible and also widely used in previous work [15, 18, 22, 24, 25].
We follow the preprocessing of [24] (CiteULike, Foursquare) and
apply 10-core filtering (Amusic). Table 7 provides the data statistics.

Table 7: Statistics of the datasets.
Dataset User # Item # Interaction # Density

Amazon-music 5,729 9,267 65,344 0.001231
CiteULike 5,219 25,181 125,580 0.000956
Foursquare 19,465 28,593 1,115,108 0.002004

A.1.2 Experiment details. For all experiments and inferences,
we use PyTorch with CUDA from RTX A5000 and Xeon Gold 6226R
CPU. We report the average value of five independent runs. For
all baselines, we use the public implementations provided by the
authors. However, as done in [52], we found that their sampling
processes for top-ranked unobserved items (i.e., 𝑃−) are unneces-
sary, and removing the processes gave considerable performance
improvements for the ranking matching KD methods. For this rea-
son, we remove the sampling process for all ranking matching
methods in our experiments. In D@𝐾 , _ that controls the sharpness
of the exponential function is set to 10. For dynamic knowledge
construction, we use D@50, 𝑝 is set to 10, and 𝛼 is set to 1.05. As the
student model gradually converges, we adopt a simple annealing
schedule that decreases the value 𝛼 = 𝛼 × 0.995 every 𝑝 epoch. We
set 𝐸 as 4, each of which corresponds to the checkpoint at 25%, 50%,
75%, and 100% of the converged epoch for each teacher. Lastly, |𝑃− |
is set to 50. For baseline-specific hyperparameters, we tune them
in the ranges suggested by the original papers.

A.2 Study on the Ensemble of Teacher Models
A.2.1 Recommendation models for teacher. In this work, we
use six recommendation models with different architectures and
learning objectives. These models are the representative models for
each model type and have shown competitive performance.
• MF (BPR [36]): a matrix factorization-based model trained by a
pair-wise ranking loss. The ranking score is defined by the inner
product of the user and item latent factors.

• ML (CML [12]): a metric learning-based model trained by a pair-
wise hinge loss. The ranking score is defined by the Euclidean
distance in the unit-ball metric space.

• DNN (NeuMF [10]): a deep neural network-based model trained
by binary cross-entropy. The ranking score is computed by the
non-linear function of multi-layer perceptrons.

• GNN (LightGCN [9]): a graph neural network-basedmodel trained
by a pair-wise loss. The ranking score is computed by aggregating
the user and item representations from multiple GNN layers.

• AE (VAE [26]): a variational autoencoder-based model. The rank-
ing score is computed by the generative module (i.e., decoder).

8https://github.com/SeongKu-Kang/HetComp_WWW23

• I-AE: a variant of VAE that learns item-side interactions [38, 56].
It is known that the item-side autoencoder captures complemen-
tary aspects to its user-side counterpart [56].

The best ensemble performance is achieved by using all six models,
and we provide empirical evidence supporting our configuration in
the next subsection.
A.2.2 Necessity of heterogeneous teachers. Table 8 presents
an empirical study on the configuration of the teacher models. ‘Best
Teacher’ denotes the teacher model showing the best performance
on each dataset. ‘Ensemble’ denotes the ensemble results of six het-
erogeneous models. ‘Ensemble-id’ denotes the ensemble of six iden-
tical models having different initialization9. ‘w/o model’ denotes
the ensemble of five models excluding the model from ‘Ensemble’.

First, Ensemble consistently shows higher performance than
Ensemble-id and the best teacher model. We investigate the corre-
lations of model predictions for Ensemble and Ensemble-id10. The
former shows 23% (Amusic), 20% (CiteULike), and 38% (Foursquare)
lower prediction correlations compared to the latter. It is well
known that models with high diversity boost the overall ensem-
ble accuracy, and the lower correlations of Ensemble support its
higher performance to some extent. This observation also aligns
with the recent studies of the ensemble [32] and the multi-teacher
KD [8, 45, 51] showing that the diversity of models is a key factor of
performance. Lastly, the best performance of Ensemble is achieved
by consolidating all six models; all cases of five models (i.e., w/o
model) show limited performance compared to Ensemble.
A.2.3 Ensemble technique. We now describe our choice of the
ensembling function, 𝑔 for ranking knowledge construction. Since
each teacher model better predicts certain user-item interactions
than others, it is vital to selectively reflect their knowledge into
the ensemble. We note that the consistency of model prediction is
a key factor revealing the reliability of the prediction [53]. This
factor has been successfully employed for RS for obtaining reliable
negative samples [7] and for consolidating multiple heads of the
multi-task learning model [19]. More sophisticated techniques can
be considered, but we empirically obtain satisfactory performance
with our choice. We provide comparisons with the technique using
trainable importance in the experiments.
𝑔 generates an ensemble ranking 𝜋d by consolidating a set of

permutations Π = [𝜋1, 𝜋2, ..., 𝜋𝑀]. For top-𝐾 of each permutation
𝜋𝑥 , each ranking prediction 𝑟 (𝜋𝑥 , 𝑖) has an importance score 𝑐𝑥

𝑖
:

𝑐𝑥𝑖 = exp(−𝑟 (𝜋𝑥 , 𝑖)/_) + exp(− std[𝑟 (𝜋𝑥 , 𝑖)]/_) (8)
The first term put the higher score on items with a higher ranking,
and the second term uses the variance of predictions to favor items
that the model makes consistent predictions. Following [7], we
define the consistency based on the variance of the latest 5 epochs:

std
[
𝑟 (𝜋𝑥 , 𝑖)

]
=

√√√ 𝑡∑︁
𝑠=𝑡−4

([𝑟 (𝜋𝑥 , 𝑖)]𝑠 −Mean [𝑟 (𝜋𝑥 , 𝑖)])2 /5,

Mean
[
𝑟 (𝜋𝑥 , 𝑖)

]
=

𝑡∑︁
𝑠=𝑡−4

[
𝑟 (𝜋𝑥 , 𝑖)

]
𝑠
/5.

(9)

9We use the model showing the best performance on each dataset.
10We compare test interactions included in the top-50 ranking of each model. We
compute the correlation of all pairs of models for each user and compare the average
value. We use the Matthews correlation coefficient (MCC) provided in sklearn.

https://github.com/SeongKu-Kang/HetComp_WWW23

Distillation from Heterogeneous Models
for Top-K Recommendation WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 8: Ensemble Study. The best performance is achieved by using six heterogeneous models.

Method Amusic CiteULike Foursquare
R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50

Best Teacher 0.0972 0.0706 0.2475 0.1139 0.1337 0.0994 0.2844 0.1392 0.1147 0.1085 0.2723 0.1635
Ensemble 0.1096 0.0820 0.2719 0.1273 0.1550 0.1156 0.3144 0.1571 0.1265 0.1213 0.2910 0.1730

Ensemble-id 0.1013 0.0736 0.2569 0.1181 0.1511 0.1130 0.2952 0.1505 0.1215 0.1174 0.2853 0.1709
w/o MF 0.1091 0.0826 0.2634 0.1266 0.1545 0.1161 0.3128 0.1564 0.1206 0.1124 0.2883 0.1708
w/o ML 0.1050 0.0798 0.2574 0.1232 0.1541 0.1137 0.3085 0.1541 0.1222 0.1181 0.2854 0.1746
w/o DNN 0.1074 0.0819 0.2642 0.1263 0.1543 0.1147 0.3134 0.1560 0.1193 0.1099 0.2855 0.1678
w/o GNN 0.1085 0.0823 0.2634 0.1259 0.1544 0.1150 0.3117 0.1557 0.1197 0.1124 0.2857 0.1703
w/o AE 0.1032 0.0776 0.2520 0.1204 0.1482 0.1101 0.3046 0.1508 0.1177 0.1102 0.2775 0.1658
w/o I-AE 0.1040 0.0797 0.2613 0.1243 0.1519 0.1129 0.3046 0.1528 0.1204 0.1150 0.2812 0.1710

where [𝑟 (𝜋𝑥 , 𝑖)]𝑠 denotes the ranking prediction at epoch 𝑠 . Finally,
the ensemble ranking is generated by reranking items based on the
overall importance, i.e., E𝑥 [𝑐𝑥𝑖]. Note that the consistency is pre-
computed only once before the distillation and incurs no additional
costs for HetComp.

A.3 Offline Training Cost of HetComp
HetComp requires additional space and computation costs mostly
for the knowledge construction process. For the teachers’ training
trajectories T , we store the permutations of top-ranked (𝐾) unob-
served items. Note that the rankings of the remaining unobserved
items are unnecessary. Also, we use the permutations of observed
items. In sum, HetComp uses (𝐾 × 𝐸) + |𝑃+𝑢 | space for user 𝑢 on
each teacher. 𝐾 and |𝑃+𝑢 | usually have small values in many recom-
mendation scenarios, and we empirically obtain satisfactory results
with 𝐸 around 3 as long as they are well distributed (Figure 5).

Table 9: The average time cost of each epoch during the of-
fline training.

Method Amusic CiteULike Foursquare
RRD 0.69s 2.27s 8.12s
DCD 1.38s 3.74s 12.01s

HetComp 1.15s 3.08s 11.81s

Table 9 presents the average time cost of HetComp and ranking
matching KD baselines. We use MF as the student model, and simi-
lar results are also observed with other base models. Compared to
RRD which uses basic listwise learning, DCD and HetComp incur
additional training costs as they require further computations for
the distillation. However, unlike DCD which requires such compu-
tation throughout the training, our knowledge construction mostly
occurs at the earlier training of the student model. As a result, Het-
Comp shows lower average time costs compared to DCD. Also, they
show similar convergence behavior. As shown in Section 5, Het-
Comp can significantly improve the distillation quality by reducing
the discrepancy to the teachers. In this regard, HetComp can be
considered an effective solution to reduce the online inference costs
at the expense of some extra computations in offline training.

A.4 Supplementary Experiment Results
Ablation study. Table 10 provides comparison with various abla-
tions.We report the results of MF (student) on the CiteULike dataset.
First, (a-b) shows that our two components (i.e., DKC and ADO) de-
signed for the easy-to-hard learning effectively improve the student
model. Also, we compare diverse ways of transferring knowledge
of observed items (𝑃+); (c) shows that utilizing 𝑃+ is indeed ben-
eficial to improve the student, and (d), which corresponds to the
naive approach transferring the whole item permutation, shows

that ranking transfer without separating 𝑃+ and 𝑃− has adverse
effects as discussed in Sec.4.2.2. Lastly, (e) shows that penalizing all
unobserved items to have lower ranks than observed items is not
effective. These results support the superiority of our strategy that
independently transfers 𝑃+ and 𝑃−.

Table 10: Ablation study. DKC: dynamic knowledge con-
struction (Sec.4.1), ADO: adaptive distillation objective
(Sec.4.2.1).
Ablation R@10 N@10 R@50 N@50 Imp.R@10

HetComp 0.1379 0.1031 0.2814 0.1396 -
(a) w/o DKC (i.e., KD from Ensemble) 0.1264 0.0951 0.2711 0.1308 9.10%
(b) w/o ADO (i.e., only L𝐹) 0.1311 0.0992 0.2765 0.1360 5.19%
(c) w/o L𝐾𝐷 (𝑃+, 𝑁) 0.1303 0.0994 0.2754 0.1349 5.83%
(d) L𝐾𝐷 ({𝑃+, 𝑃−}, 𝑁) 0.1241 0.0903 0.2796 0.1314 11.12%
(e) L𝐾𝐷 (𝑃+, {𝑃−, 𝑁 }) + L𝐾𝐷 (𝑃−, 𝑁) 0.1262 0.0950 0.2665 0.1310 9.27%

Hyperparameter study. Figure 5 presents the recommendation
performance of HetComp (Student: MF) with varying 𝛼 which
controls the transition speed in the dynamic knowledge construc-
tion. The best performance is observed at around 1.03-1.05 on both
datasets.

Figure 5: R@10 comparison with varying 𝛼 and 𝐸.

KD from various teachers. Table 11 presents the performance of
DCD and HetComp when transferring knowledge of various teach-
ers. We use MF (student) and the CiteULike dataset. We observe that
HetComp effectively improves the distillation quality and achieves
the best recommendation performance in all settings, from (a-b)
homogeneous model distillation to (c-d) cross-model distillation,
and (e) distillation from the ensemble of heterogeneous models.
Table 11: Performance comparison with various teachers.

R@10 N@10 R@50 N@50 D@10
(a) Teacher: MF 0.1249 0.0915 0.2604 0.1273 -

DCD 0.0937 0.0698 0.2206 0.1044 0.3831
HetComp 0.1092 0.0794 0.2373 0.1128 0.3247

(b) Teacher: Ensemble (MF) 0.1395 0.1037 0.2763 0.1395 -
DCD 0.1004 0.0749 0.2307 0.1088 0.4044

HetComp 0.1194 0.0878 0.2584 0.1237 0.3286
(c) Teacher: LightGCN 0.1337 0.0994 0.2844 0.1392 -

DCD 0.1041 0.0778 0.2367 0.1120 0.4164
HetComp 0.1228 0.0896 0.2510 0.1230 0.3590

(d) Teacher: Ensemble (LightGCN) 0.1511 0.1130 0.2952 0.1505 -
DCD 0.1108 0.0838 0.2495 0.1186 0.4180

HetComp 0.1305 0.0973 0.2630 0.1255 0.3377
(e) Teacher: Ensemble 0.1550 0.1156 0.3144 0.1571 -

DCD 0.1106 0.0851 0.2640 0.1246 0.4433
HetComp 0.1379 0.1031 0.2814 0.1396 0.3401

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 Ranking Matching Distillation
	3.3 Study on Ranking Knowledge Distillation

	4 METHODOLOGY
	4.1 Dynamic Knowledge Construction
	4.2 Adaptive Knowledge Transfer
	4.3 The Overall Training Process

	5 Experiments
	5.1 Distillation Effects Comparison
	5.2 Study of HetComp

	6 Conclusion
	References
	A Appendix
	A.1 Experiment Setup
	A.2 Study on the Ensemble of Teacher Models
	A.3 Offline Training Cost of HetComp
	A.4 Supplementary Experiment Results

