
Bipartite Graph Convolutional Hashing for Effective and
Efficient Top-N Search in Hamming Space

Yankai Chen
1
, Yixiang Fang

2
, Yifei Zhang

1
, Irwin King

1

{ykchen, yfzhang, king}@cse.cuhk.edu.hk fangyixiang@cuhk.edu.cn

1
The Chinese University of Hong Kong

2
The Chinese University of Hong Kong, Shenzhen

Abstract
Searching on bipartite graphs is basal and versatile to many real-

world Web applications, e.g., online recommendation, database

retrieval, and query-document searching. Given a query node, the

conventional approaches rely on the similarity matching with the

vectorized node embeddings in the continuous Euclidean space.

To efficiently manage intensive similarity computation, develop-

ing hashing techniques for graph-structured data has recently be-

come an emerging research direction. Despite the retrieval effi-

ciency in Hamming space, prior work is however confronted with

catastrophic performance decay. In this work, we investigate the

problem of hashing with Graph Convolutional Network on bipar-

tite graphs for effective Top-N search. We propose an end-to-end

Bipartite Graph Convolutional Hashing approach, namely BGCH,

which consists of three novel and effective modules: (1) adaptive
graph convolutional hashing, (2) latent feature dispersion, and (3)

Fourier serialized gradient estimation. Specifically, the former two

modules achieve the substantial retention of the structural informa-

tion against the inevitable information loss in hash encoding; the

last module develops Fourier Series decomposition to the hashing

function in the frequency domainmainly for more accurate gradient

estimation. The extensive experiments on six real-world datasets

not only show the performance superiority over the competing

hashing-based counterparts, but also demonstrate the effectiveness

of all proposed model components contained therein.

CCS Concepts
• Computing methodologies → Learning latent representa-
tions; • Information systems→ Information retrieval.

Keywords
Representation Learning; Learning to Hash; Graph Convolutional

Network; Bipartite Graph; Hamming Space Search

ACM Reference Format:
Yankai Chen

1
, Yixiang Fang

2
, Yifei Zhang

1
, Irwin King

1
. 2023. Bipartite

Graph Convolutional Hashing for Effective and Efficient Top-N Search in

Hamming Space . In Proceedings of the ACM Web Conference 2023 (WWW
’23), May 1–5, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3543507.3583219

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00

https://doi.org/10.1145/3543507.3583219

(a) Bipartite graph modeling (b) Effectiveness (NDCG@1000) versus
matching computation latency (log-scale)

Figure 1: Illustration of bipartite graph modeling and over-
all model performance visualization on Dianping dataset.

1 Introduction
Bipartite graphs are ubiquitous in the real world for the ease of

modeling various Web applications, e.g., as shown in Figure 1(a),

user-product recommendation [41, 63] and online query-document

matching [66]. A fundamental task, Top-N search, is to filter out

N best-matched graph nodes for a query node, e.g., recommend-

ing Top-N attractive products to a target user in the user-product

graph. With the development of the recent machine learning re-

search, learning vectorized representations (a.k.a. embeddings)

nowadays has become one of the standard procedures for simi-

larity matching [10, 16]. Among existing techniques, graph-based

neural methods, i.e., Graph Convolutional Networks (GCNs), have
recently present remarkable model performance [17, 19]. Due to the

ability to capture high-order connection information, GCN models

can thus produce semantic enrichment to the node embeddings.

Based on the learned embeddings, similarity estimation is then

exhaustively proceeded in the continuous Euclidean space.

Apart from embedding informativeness, computation latency and

embedding memory overhead are two important criteria for realistic

application deployment. With the explosive data growth, learning to
hash [25, 51] recently provides an alternative option to graph-based

models for optimizing the model scalability. Generally, it learns

to convert the vectorized list of continuous values into the finite

binarized hash codes. In lieu of using full-precision1 embeddings,

the learned hash codes have the promising potential to achieve, not

only the space reduction, but also the computation acceleration for

Top-N object matching and retrieval in the Hamming space.

Despite the promising advantages of bridging GCNs and learning

to hash, simply stacking these two techniques is trivial and thus

falls short of performance satisfaction with several inadequacies:

1
The term “full-precision” generally refers to single-precision and double-precision. And we use

float32 by default throughout this work for illustration.

ar
X

iv
:2

30
4.

00
24

1v
1

 [
cs

.I
R

]
 1

 A
pr

 2
02

3

https://doi.org/10.1145/3543507.3583219
https://doi.org/10.1145/3543507.3583219

WWW ’23, May 1–5, 2023, Austin, TX, USA Yankai Chen et al.

• Coarse-grained similarity measurement. Compared to con-

tinuous embeddings, hash codes with the same vector dimension

are naturally less expressive with finite encoding permutation in

Hamming space (e.g., 2
𝑑
if the dimension is 𝑑). Consequently,

this leads to a coarse-grained estimation of the pairwise node

similarity, thus drawing a conspicuous performance decay with

inaccurate Top-N matching.

• Feature erosion issue. Recent work [38, 44, 45, 49] usually

adopts sign(·) function for 𝑂 (1) complexity encoding. However,

hashing via sign(·) will inevitably smooth the embedding fea-

ture informativeness, via converting each digit of continuous

embeddings into the hamming space, no matter what specific

value it used to be. Thus the latent features in these learned hash

embeddings become less informative, and existing models lack

certain mechanisms to hedge the feature erosion in hashing.

• Intractable model optimization. Since sign(·) is not differen-
tiable at 0 and its derivatives are 0 anywhere else, previousmodels

usually use visually similar but not necessarily theoretically rele-
vant functions, e.g., tanh(·), for gradient estimation. This may

lead to inconsistent optimization directions in model training.

Moreover, because of the embedding discreteness, the associated

loss landscape
2
(Figure 2(a)) are steep and bumping [1], which

further increases the difficulty in optimization.

In this paper, we study the problem of learning to hash with

Graph Convolutional Network (GCN) on bipartite graphs for effec-

tive Top-N Hamming space search. We propose a model namely

Bipartite Graph Convolutional Hashing (BGCH), with three effective

modules: (1) adaptive graph convolutional hashing, (2) latent feature
dispersion, and (3) Fourier serialized gradient estimation. While the

former two modules significantly enrich the informativeness and

expressivity to the learned hash codes, the last one provides an

accordant and tractable optimization flow in forward and backward

propagation of model optimization. Concretely:

• Adaptive graph convolutional hashing. Our first module de-

signs a topology-aware convolutional hashing that employs the

layer-wise hash encoding (from low- to high-order sub-structures

of bipartite graphs) to consecutively binarize the node features

with different semantics. To boost the expressivity, the convolu-

tional hashing is equipped an effective approximation technique

for embedding rescaling, which does not undermine the efficiency

of Hamming distance computation. Intuitively, these two designs

make the learned hash codes more informative and expressive

for preserving fine-grained similarity in the Hamming space.

• Latent feature dispersion. Our second module, i.e., feature dis-

persion, aims to hedge the inevitable information loss from the

numerical binarization. In conventional continuous embeddings,

major features however condense in a small region of embed-

ding structures. Since these vectorized latent features tend to be

inevitably smoothed by the hashing discreteness, it is natural

to preserve information as much as possible by spreading out

those decisive features to the majority of embedding dimensions,

instead of the very few of them. To achieve this, our proposed

module aims to explicitly disperse informative latent node fea-

tures, which can be further diffused to each convolutional layer

when exploring the bipartite graph.

2
Details about the visualization construction are attached in Appendix A.

• Fourier serialized gradient estimation. Furthermore, to pro-

vide accurate gradient estimation, BGCH proposes to decompose

sign(·) function with Fourier Series in the frequency domain.

Compared to existing gradient estimators [11, 15, 39, 44, 59], this

estimator better follows themain direction of factual gradients to

enable an accordant and tractable model optimization in forward

and backward propagation. With the limited number of decom-

position terms, BGCH can well provide more accurate gradient

estimation to sign(·) within the acceptable training cost.

Based on the learned hash codes, BGCH maintains moderate

resource consumption whilst providing substantial performance

improvement in Top-N Hamming space retrieval. The quality-cost

trade-off is summarized in Figure 1(b), which compares BGCH against

a list of representative counterparts (including float32-based and
hashing-based) on a real-world bipartite graph with over 10 million

observed edges (experimental details are reported in § 5.1). As the

lower-right corner of Figure 1(b) indicates the ideal optimal perfor-

mance, BGCH can deliver over 8× computation acceleration and

space reduction relative to existing full-precision models, while

being more effective than each hash-based method (§ 5.2 and § 5.3).

To summarize, our main contributions are organized as follows:

• We study the problem of learning to hash with Graph Convolu-

tional Network on bipartite graphs. We propose a novel approach

BGCH with three effective modules for effective and efficient

Top-N search in Hamming space (§ 4).

• We conduct extensive experiments on six real-world datasets to

evaluate the retrieval quality. In-depth analyses are also provided

towards the necessity of all proposed model components from

both technical and empirical perspectives (§ 5).

• We theoretically prove the model effectiveness and provide com-

plexity analyses in terms of time and space costs (Appendix C).

2 Related Work
Graph convolutionnetwork (GCN). Earlywork studies the graph
convolutionsmainly on the spectral domain, such as Laplacian eigen-
decomposition [3] and Chebyshev polynomials [12]. One major

issue is that these models are usually computationally expensive.

To tackle this problem, spatial-based GCN models are proposed

to re-define the graph convolution operations by aggregating the

embeddings of neighbors to refine and update the target node’s

embedding. Due to its scalability to large graphs, spatial-based GCN

models are widely used in various applications [17, 19, 52]. For ex-

ample, to capture high-order structural information, NGCF [52] and

LightGCN [19] learn the collaborative filtering signals on bipartite

interaction graphs for recommendation. Despite the effectiveness

in embedding latent features for graph nodes, they usually suf-

fer from inference inefficiency due to the high computational cost

of similarity calculation between continuous embeddings [49]. To

address this issue, learning to hash provides the feasibility.

Learning to hash. Learning to hash models are promising to

achieve computation acceleration and storage reduction for general

information retrieval and processing tasks [5, 13, 19, 22, 23, 36, 40].

More than reducing conflicts [33], similarity-preserving hashing

maps high-dimensional dense vectors to a low-dimensional Ham-

ming space for efficiently processing downstream tasks. A repre-

sentative model is Locality Sensitive Hashing (LSH) [14] that uses

Bipartite Graph Convolutional Hashing for Effective and Efficient Top-N Search in Hamming Space WWW ’23, May 1–5, 2023, Austin, TX, USA

random projections as the hash functions. Recent work focuses on

integrating the deep neural network architectures for model im-

provement [51]. They inspire a series of follow-up work for various

tasks, such as fast retrieval of images [4, 38, 44], documents [9, 35],

categorical information [27], e-commerce products [6, 65].

To leverage hashing techniques with GCNs, the state-of-the-art

work HashGNN [49] investigates learning to hash for online match-

ing and recommendation. Specifically, HashGNN consectively com-

bines the GraphSage [17] as the embedding encoder and learning to

hash method to get the corresponding binary encodings afterwards.

Its hash encoding process only proceeds at the end of multi-layer

graph convolutions, i.e., using the aggregated output of Graph-

Sage for representation binarization. However, this fails to capture

intermediate semantics from nodes’ different layers of receptive

fields [30]. The other issue of HashGNN is using Straight-Through
Estimator (STE) [2] to assume all gradients of sign(·) as 1 in back-

propagation. However, the integral of 1 is a certain linear function

other than the sign(·), whereas this may lead to inconsistent opti-

mization directions in the model training. To address these issues,

our model BGCH is proposed with effectiveness justification in § 5.

3 Preliminaries and Problem Formulation
GraphConvolutionNetwork (GCN). The general idea of GCN is

to learn node embeddings by iteratively propagating and aggregating
latent features of node neighbors via the graph topology [19, 30, 56]:

𝑽 (𝑙)𝑥 = 𝐴𝐺𝐺

(
𝑽 (𝑙−1)𝑥 , {𝑽 (𝑙−1)𝑧 : 𝑧 ∈ N (𝑥)}

)
, (1)

where 𝑽 (𝑙)𝑥 ∈ R𝑑 denotes node 𝑥 ’s embedding after 𝑙-th iteration

of graph convolutions, indexed in the embedding matrix 𝑽 . N(𝑥)
is the set of 𝑥 ’s neighbors. Function 𝐴𝐺𝐺 (·, ·) is the information

aggregation function, with several implementations in previous

work [17, 30, 50, 57], mainly aiming to transform the center node fea-

ture and the neighbor features. In this work, we adopt the graph con-

volution paradigm from the state-of-the-art model LightGCN [19].

Bipartite Graph and Adjacency Matrix. The bipartite graph is

denoted as G = {V1,V2, E}, where V1 and V2 are two disjoint
node sets and E is the set of edges between nodes in V1 and V2.

We can use 𝒀 ∈ R |V1 |× |V2 | to indicate the edge transactions, where
1-valued entries, i.e., 𝒀𝑥,𝑦 = 1, indicate there is an observed edge

between nodes 𝑥 ∈ V1 and 𝑦 ∈ V2, otherwise 𝒀𝑥,𝑦 = 0. Then the

adjacency matrix 𝑨 of the whole graph can be defined as:

𝑨 =

[
0 𝒀
𝒀𝑇 0

]
. (2)

Problem Formulation. Give a bipartite graph G = {V1,V2, E}
and its adjacency matrix 𝑨, we devote to learn a hashing function:

𝐹 (𝑨|Θ) → Q, (3)

where Θ is the set of all learnable parameters. Given two nodes in

the bipartite graph, e.g., 𝑥 ∈ V1 and𝑦 ∈ V2, their hash codes areQ𝑥
and Q𝑦 . Then the probability of edge existence 𝒀̂𝑥,𝑦 between nodes

𝑥 ∈ V1 and 𝑦 ∈ V2 can be effectively and efficiently measured by

the hash codes Q𝑥 and Q𝑦 , i.e., 𝒀̂𝑥,𝑦 = 𝑓 (Q𝑥 ,Q𝑦) where 𝑓 is a score
function. Intuitively, the larger value 𝒀̂𝑥,𝑦 is, the more likely 𝑥 and

𝑦 are matched, i.e., an edge between 𝑥 and 𝑦 exists. Explanations of

key notations used in this paper are attached in Appendix B.

4 BGCH: Methodology
4.1 Overview
We formally introduce our BGCHmodel. Notice that since the effect

of feature dispersion module propagates along with convolutional

hashing, we then introduce these modules in the following order:

(1) latent feature dispersion (§ 4.2) aims to disperse the embedded

features into wider embedding structures to hedge the inevitable in-

formation loss in hashing; (2) adaptive graph convolutional hashing
(§ 4.3) provides an effective encoding approach to significantly im-

prove the hashed feature expressivity whilst maintaining the match-

ing efficiency in the hamming space; (3) Fourier serialized gradient
estimation (§ 4.4) introduces the Fourier Series decomposition for

sign(·) in the frequency domain to provide more accurate gradient

approximation. Based on the learned hash codes, BGCH develops

efficient online matching with the Hamming distance measurement

(§ 4.5). Our model illustration is attached in Figure 2(b).

4.2 Latent Feature Dispersion
To tackle the feature erosion issue, we seek to disperse the em-

bedded features as one effective strategy to hedge the inevitable

information loss caused by numerical binarization. From the per-

spective of singular value decomposition (SVD), singular values

and corresponding singular vectors reconstruct the original ma-

trix; normally, large singular values can be interpreted to associate

with major feature structures of the matrix [54]. Since we want to

avoid condensing and gathering informative features in (relatively

small) embedding sub-structures, it is natural to bridge the target

by working on these singular values. Hence, based on this intuition,

we aim to normalize singular values for equalizing their respective
contributions in constituting latent features. To achieve this, Power

Normalization [31, 68] is one of the solutions that tackle related

problems such as feature imbalance [32]. Inspired by the recent ap-

proximation attempt [61], we now introduce a lightweight feature

dispersion technique in graph convolution as follows.

Concretely, let 𝑰 denote the identity matrix, we start from gener-

ating a standard normal random vector 𝒑 (0)∼N(0, 𝑰) where 𝒑 (0) ∈
R𝑐 . Based on the embedding matrix to conduct feature dispersion,

e.g., let 𝑽 = 𝑽 (0) , we compute the desired dispersing vector 𝒑 (𝑘)

by iteratively performing 𝒑 (𝑘) = 𝑽T𝑽𝒑 (𝑘−1) . The iteration for gen-

erating dispersing vectors is independent of the graph convolution

iterations
3
. We have the projection matrix 𝑷 of 𝒑 (𝐾) via:

𝑷 =
𝒑 (𝐾)𝒑 (𝐾)

T

| |𝒑 (𝐾) | |2
2

. (4)

Then we have the feature-dispersed representation matrix with the

hyper-parameter 𝜖 ∈ (0, 1) as follows:
𝑽̃ = 𝑽 (𝑰 − 𝜖𝑷). (5)

Consequently, integrating the dispersed matrix 𝑽̃ , we have the

feature-dispersed graph convolution as:

𝑽̃ (𝑙+1) = (𝑫−
1

2𝑨𝑫−
1

2)𝑽̃ (𝑙) , where 𝑽̃ (0) = 𝑽 (0) (𝑰 − 𝜖𝑷) . (6)

Note that we explicitly conduct this feature dispersion operation

one time only at the initial step, i.e., 𝑽 (0) , and, more importantly,

such feature dispersion can be diffused via the multi-layer graph

3
In our work, we set𝐾 ≤ 𝐿 mainly to enable the associated complexity of dispersing vector gener-

ation is upper bounded by the graph convolution complexity.

WWW ’23, May 1–5, 2023, Austin, TX, USA Yankai Chen et al.

l = 1

<latexit sha1_base64="rKeL/G6b4GfPYs6wJbsCYZc6xg4=">AAAB7nicdVDLSgMxFM3UV62vqks3wVZwNWSGaW0XQtGNywr2Ae1QMmmmDc1khiQjlKEf4caFIm79Hnf+jelDUNEDFw7n3Mu99wQJZ0oj9GHl1tY3Nrfy24Wd3b39g+LhUVvFqSS0RWIey26AFeVM0JZmmtNuIimOAk47weR67nfuqVQsFnd6mlA/wiPBQkawNlKnzOEldMqDYgnZtXq9glyIbA9VHa9iiFP1XFSHjo0WKIEVmoPie38YkzSiQhOOleo5KNF+hqVmhNNZoZ8qmmAywSPaM1TgiCo/W5w7g2dGGcIwlqaEhgv1+0SGI6WmUWA6I6zH6rc3F//yeqkOa37GRJJqKshyUZhyqGM4/x0OmaRE86khmEhmboVkjCUm2iRUMCF8fQr/J23Xdjy7cuuWGlerOPLgBJyCc+CAC9AAN6AJWoCACXgAT+DZSqxH68V6XbbmrNXMMfgB6+0TmhWOcw==</latexit>

l = 2

<latexit sha1_base64="+5irm2GcwA2N0gsqNFYauwx0urI=">AAAB7HicdVDLSgMxFM3UV62vqks3wVZwNWRqH9OFUHTjsoLTFtqhZNK0Dc1khiQjlKHf4MaFIm79IHf+jelDUNEDFw7n3Mu99wQxZ0oj9GFl1tY3Nrey27md3b39g/zhUUtFiSTUIxGPZCfAinImqKeZ5rQTS4rDgNN2MLme++17KhWLxJ2extQP8UiwISNYG8kr8stSsZ8vINut1yuoCpFdRlV0UTPEqbo1tw4dGy1QACs0+/n33iAiSUiFJhwr1XVQrP0US80Ip7NcL1E0xmSCR7RrqMAhVX66OHYGz4wygMNImhIaLtTvEykOlZqGgekMsR6r395c/MvrJnro+ikTcaKpIMtFw4RDHcH553DAJCWaTw3BRDJzKyRjLDHRJp+cCeHrU/g/aZVsp2xXbkuFxtUqjiw4AafgHDigBhrgBjSBBwhg4AE8gWdLWI/Wi/W6bM1Yq5lj8APW2ycMeY41</latexit>

x1’s neighbors

<latexit sha1_base64="fFADXxMlU8K5FcjMOC6hPalkPSk=">AAAB+nicbVBNT8JAEJ3iF+JX0aOXjWD0RFqi0SPRi0dM5COBptkuC2zYbpvdrUoqP8WLB43x6i/x5r9xgR4UfMkkL+/NZGZeEHOmtON8W7mV1bX1jfxmYWt7Z3fPLu43VZRIQhsk4pFsB1hRzgRtaKY5bceS4jDgtBWMrqd+655KxSJxp8cx9UI8EKzPCNZG8u1i+dF3yycKCcoGwyCSyrdLTsWZAS0TNyMlyFD37a9uLyJJSIUmHCvVcZ1YeymWmhFOJ4VuomiMyQgPaMdQgUOqvHR2+gQdG6WH+pE0JTSaqb8nUhwqNQ4D0xliPVSL3lT8z+skun/ppUzEiaaCzBf1E450hKY5oB6TlGg+NgQTycytiAyxxESbtAomBHfx5WXSrFbcs8r5bbVUu8riyMMhHMEpuHABNbiBOjSAwAM8wyu8WU/Wi/Vufcxbc1Y2cwB/YH3+AOp5kyY=</latexit>

Normalized
Sumy3

<latexit sha1_base64="m2ql1yRVdNWgmD/iKvyLKwiCcaY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5JURY9FLx4rmLbQhrLZbtqlm03Y3Qgh9Dd48aCIV3+QN/+NmzYHbX0w8Hhvhpl5fsyZ0rb9bZXW1jc2t8rblZ3dvf2D6uFRR0WJJNQlEY9kz8eKciaoq5nmtBdLikOf064/vcv97hOVikXiUacx9UI8FixgBGsjufV0eFEfVmt2w54DrRKnIDUo0B5WvwajiCQhFZpwrFTfsWPtZVhqRjidVQaJojEmUzymfUMFDqnysvmxM3RmlBEKImlKaDRXf09kOFQqDX3TGWI9UcteLv7n9RMd3HgZE3GiqSCLRUHCkY5Q/jkaMUmJ5qkhmEhmbkVkgiUm2uRTMSE4yy+vkk6z4Vw2rh6atdZtEUcZTuAUzsGBa2jBPbTBBQIMnuEV3ixhvVjv1seitWQVM8fwB9bnD8rDjgU=</latexit>

y1

<latexit sha1_base64="Ptd3INDsNHeCUv1wwBmcl9W9ngw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURY9FLx4rmFpoQ9lsN+3SzW7Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy+hhObmf+4xNVmknxYLKEBjEeCRYxgo2V/Ho28OqDas1tuHOgVeIVpAYF2oPqV38oSRpTYQjHWvc8NzFBjpVhhNNppZ9qmmAywSPas1TgmOognx87RWdWGaJIKlvCoLn6eyLHsdZZHNrOGJuxXvZm4n9eLzXRdZAzkaSGCrJYFKUcGYlmn6MhU5QYnlmCiWL2VkTGWGFibD4VG4K3/PIq6TQb3kXj8r5Za90UcZThBE7hHDy4ghbcQRt8IMDgGV7hzRHOi/PufCxaS04xcwx/4Hz+AMe5jgM=</latexit>

V (0)
y1

<latexit sha1_base64="tBRP5HRS/S+eRVaM7uleempzArU=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqEIwVLIxFog+pDZHjuK1VJ45sBymKsrDwKywMIMTKP7DxNzhtBmg5kuWjc+7Vvfd4EaNSWda3sbS8srq2Xtoob25t7+yae/sdyWOBSRtzxkXPQ5IwGpK2ooqRXiQICjxGut7kOve7D0RIysM7lUTECdAopEOKkdKSax5VBx5nvkwC/aWdzE0T187u05p1mlVds2LVrSngIrELUgEFWq75NfA5jgMSKsyQlH3bipSTIqEoZiQrD2JJIoQnaET6moYoINJJp1dk8EQrPhxyoV+o4FT93ZGiQOZ76soAqbGc93LxP68fq+Glk9IwihUJ8WzQMGZQcZhHAn0qCFYs0QRhQfWuEI+RQFjp4Mo6BHv+5EXSadTts/r5baPSvCriKIFDcAxqwAYXoAluQAu0AQaP4Bm8gjfjyXgx3o2PWemSUfQcgD8wPn8A4BOYKQ==</latexit>

V (0)
y3

<latexit sha1_base64="FO0Ewju9QDa8Q6XwYvHAX6YHsGk=">AAACBXicbVC7TsMwFHXKq5RXgBGGiBapLFVSQDBWsDAWiT6kNkSO47RWnTiyHaQoysLCr7AwgBAr/8DG3+C0GaDlSJaPzrlX997jRpQIaZrfWmlpeWV1rbxe2djc2t7Rd/e6gsUc4Q5ilPG+CwWmJMQdSSTF/YhjGLgU99zJde73HjAXhIV3MomwHcBRSHyCoFSSox/Whi6jnkgC9aXdzEkT5zS7T+vmSVZz9KrZMKcwFolVkCoo0Hb0r6HHUBzgUCIKhRhYZiTtFHJJEMVZZRgLHEE0gSM8UDSEARZ2Or0iM46V4hk+4+qF0piqvztSGIh8T1UZQDkW814u/ucNYulf2ikJo1jiEM0G+TE1JDPySAyPcIwkTRSBiBO1q4HGkEMkVXAVFYI1f/Ii6TYb1lnj/LZZbV0VcZTBATgCdWCBC9ACN6ANOgCBR/AMXsGb9qS9aO/ax6y0pBU9++APtM8f4yuYKw==</latexit>

l = 1

<latexit sha1_base64="rKeL/G6b4GfPYs6wJbsCYZc6xg4=">AAAB7nicdVDLSgMxFM3UV62vqks3wVZwNWSGaW0XQtGNywr2Ae1QMmmmDc1khiQjlKEf4caFIm79Hnf+jelDUNEDFw7n3Mu99wQJZ0oj9GHl1tY3Nrfy24Wd3b39g+LhUVvFqSS0RWIey26AFeVM0JZmmtNuIimOAk47weR67nfuqVQsFnd6mlA/wiPBQkawNlKnzOEldMqDYgnZtXq9glyIbA9VHa9iiFP1XFSHjo0WKIEVmoPie38YkzSiQhOOleo5KNF+hqVmhNNZoZ8qmmAywSPaM1TgiCo/W5w7g2dGGcIwlqaEhgv1+0SGI6WmUWA6I6zH6rc3F//yeqkOa37GRJJqKshyUZhyqGM4/x0OmaRE86khmEhmboVkjCUm2iRUMCF8fQr/J23Xdjy7cuuWGlerOPLgBJyCc+CAC9AAN6AJWoCACXgAT+DZSqxH68V6XbbmrNXMMfgB6+0TmhWOcw==</latexit>

l = 2

<latexit sha1_base64="+5irm2GcwA2N0gsqNFYauwx0urI=">AAAB7HicdVDLSgMxFM3UV62vqks3wVZwNWRqH9OFUHTjsoLTFtqhZNK0Dc1khiQjlKHf4MaFIm79IHf+jelDUNEDFw7n3Mu99wQxZ0oj9GFl1tY3Nrey27md3b39g/zhUUtFiSTUIxGPZCfAinImqKeZ5rQTS4rDgNN2MLme++17KhWLxJ2extQP8UiwISNYG8kr8stSsZ8vINut1yuoCpFdRlV0UTPEqbo1tw4dGy1QACs0+/n33iAiSUiFJhwr1XVQrP0US80Ip7NcL1E0xmSCR7RrqMAhVX66OHYGz4wygMNImhIaLtTvEykOlZqGgekMsR6r395c/MvrJnro+ikTcaKpIMtFw4RDHcH553DAJCWaTw3BRDJzKyRjLDHRJp+cCeHrU/g/aZVsp2xXbkuFxtUqjiw4AafgHDigBhrgBjSBBwhg4AE8gWdLWI/Wi/W6bM1Yq5lj8APW2ycMeY41</latexit>

Normalized
Sum

y2’s neighbors

<latexit sha1_base64="mLQYqg5W9DQ1A8B//rIraAdErC4=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM9iKrkpSFF0W3bisYB/QhjCZTtqhk5kwMxFCCPgrblwo4tbvcOffOG2z0NYDFw7n3Mu99wQxo0o7zrdVWlldW98ob1a2tnd29+z9g44SicSkjQUTshcgRRjlpK2pZqQXS4KigJFuMLmd+t1HIhUV/EGnMfEiNOI0pBhpI/n2US1Lcz9r5LUzBTmho3EgpPLtqlN3ZoDLxC1IFRRo+fbXYChwEhGuMUNK9V0n1l6GpKaYkbwySBSJEZ6gEekbylFElJfNzs/hqVGGMBTSFNdwpv6eyFCkVBoFpjNCeqwWvan4n9dPdHjtZZTHiSYczxeFCYNawGkWcEglwZqlhiAsqbkV4jGSCGuTWMWE4C6+vEw6jbp7Ub+8b1SbN0UcZXAMTsA5cMEVaII70AJtgEEGnsEreLOerBfr3fqYt5asYuYQ/IH1+QOUGJVA</latexit>

x1

<latexit sha1_base64="/BCjIpSlQYsmAQdAn7NI7sBaNhY=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHaJRo9ELx4xcYEENqRbutDQdjdt10g2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epItQnMY9VJ8Saciapb5jhtJMoikXIaTsc38789iNVmsXywUwSGgg8lCxiBBsr+dWnvlftlytuzZ0DrRIvJxXI0eyXv3qDmKSCSkM41rrruYkJMqwMI5xOS71U0wSTMR7SrqUSC6qDbH7sFJ1ZZYCiWNmSBs3V3xMZFlpPRGg7BTYjvezNxP+8bmqi6yBjMkkNlWSxKEo5MjGafY4GTFFi+MQSTBSztyIywgoTY/Mp2RC85ZdXSate8y5ql/f1SuMmj6MIJ3AK5+DBFTTgDprgAwEGz/AKb450Xpx352PRWnDymWP4A+fzB8YyjgI=</latexit>

x2

<latexit sha1_base64="JcOhZeFQiUW/Fre3KnkZu6uNS40=">AAAB7HicbVBNTwIxEJ3iF+IX6tFLI5h4IrtEo0eiF4+YuEACG9ItXWjodjdt10g2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5QSK4No7zjQpr6xubW8Xt0s7u3v5B+fCopeNUUebRWMSqExDNBJfMM9wI1kkUI1EgWDsY38789iNTmsfywUwS5kdkKHnIKTFW8qpP/Xq1X644NWcOvErcnFQgR7Nf/uoNYppGTBoqiNZd10mMnxFlOBVsWuqlmiWEjsmQdS2VJGLaz+bHTvGZVQY4jJUtafBc/T2RkUjrSRTYzoiYkV72ZuJ/Xjc14bWfcZmkhkm6WBSmApsYzz7HA64YNWJiCaGK21sxHRFFqLH5lGwI7vLLq6RVr7kXtcv7eqVxk8dRhBM4hXNw4QoacAdN8IACh2d4hTck0Qt6Rx+L1gLKZ47hD9DnD8e3jgM=</latexit>

V (0)
x1

<latexit sha1_base64="mloPF3GjGWB4QHD2hGGsUoi8ww8=">AAACBXicbVC7TsMwFHXKq5RXgBEGixapLFVSgWCsYGEsEn1IbYgcx2mtOnFkO4gqysLCr7AwgBAr/8DG3+C0HaDlSJaPzrlX997jxYxKZVnfRmFpeWV1rbhe2tjc2t4xd/fakicCkxbmjIuuhyRhNCItRRUj3VgQFHqMdLzRVe537omQlEe3ahwTJ0SDiAYUI6Ul1zys9D3OfDkO9Ze2Mzd9cO3sLq1aJ1nFNctWzZoALhJ7RspghqZrfvV9jpOQRAozJGXPtmLlpEgoihnJSv1EkhjhERqQnqYRCol00skVGTzWig8DLvSLFJyovztSFMp8T10ZIjWU814u/uf1EhVcOCmN4kSRCE8HBQmDisM8EuhTQbBiY00QFlTvCvEQCYSVDq6kQ7DnT14k7XrNPq2d3dTLjctZHEVwAI5AFdjgHDTANWiCFsDgETyDV/BmPBkvxrvxMS0tGLOeffAHxucP3oWYKA==</latexit>

V (0)
x2

<latexit sha1_base64="ao7jW9APLeOOwXjo2dORp2yo1gY=">AAACBXicbVC7TsMwFHXKq5RXgBGGiBapLFVSgWCsYGEsEn1IbYgcx2mtOnZkO4gqysLCr7AwgBAr/8DG3+C0HaDlSJaPzrlX997jx5RIZdvfRmFpeWV1rbhe2tjc2t4xd/fakicC4RbilIuuDyWmhOGWIoribiwwjHyKO/7oKvc791hIwtmtGsfYjeCAkZAgqLTkmYeVvs9pIMeR/tJ25qUPXj27S6v2SVbxzLJdsyewFokzI2UwQ9Mzv/oBR0mEmUIUStlz7Fi5KRSKIIqzUj+ROIZoBAe4pymDEZZuOrkis461ElghF/oxZU3U3x0pjGS+p66MoBrKeS8X//N6iQov3JSwOFGYoemgMKGW4lYeiRUQgZGiY00gEkTvaqEhFBApHVxJh+DMn7xI2vWac1o7u6mXG5ezOIrgAByBKnDAOWiAa9AELYDAI3gGr+DNeDJejHfjY1paMGY9++APjM8f4BGYKQ==</latexit>

DH(Qx1
, Qy2

).

<latexit sha1_base64="GTKLSpvJeiw20Y7PWmDj9yU42D8=">AAACHHicbVDLSsNAFJ3UV62vqEs3g61QQUJSFV0WddFlC/YBbQmT6aQdOnkwMxFDyIe48VfcuFDEjQvBv3HSZqHVA8MczrmXe+9xQkaFNM0vrbC0vLK6VlwvbWxube/ou3sdEUQckzYOWMB7DhKEUZ+0JZWM9EJOkOcw0nWm15nfvSNc0MC/lXFIhh4a+9SlGEkl2fpp5cZuVAdOwEYi9tSXtFI7ubet9AQuqrFdS48rBrT1smmYM8C/xMpJGeRo2vrHYBTgyCO+xAwJ0bfMUA4TxCXFjKSlQSRIiPAUjUlfUR95RAyT2XEpPFLKCLoBV8+XcKb+7EiQJ7IlVaWH5EQsepn4n9ePpHs5TKgfRpL4eD7IjRiUAcySgiPKCZYsVgRhTtWuEE8QR1iqPEsqBGvx5L+kUzOsM+O8VSvXr/I4iuAAHIIqsMAFqIMGaII2wOABPIEX8Ko9as/am/Y+Ly1oec8++AXt8xvw2KFF</latexit>

Hamming distance

l = L

<latexit sha1_base64="d/iV+msqBqxNCx+jwctMnOQepjw=">AAAB7HicdVDLSsNAFJ3UV62vqks3g63gKiQx1nQhFN24cFHB2EIbymQ6aYdOJmFmIpTQb3DjQhG3fpA7/8bpQ1DRAxcO59zLvfeEKaNSWdaHUVhaXlldK66XNja3tnfKu3t3MskEJj5OWCLaIZKEUU58RRUj7VQQFIeMtMLR5dRv3RMhacJv1TglQYwGnEYUI6Ulv8rOr6u9csUyvVq97tagZZ44tue5mtiO69ZtaJvWDBWwQLNXfu/2E5zFhCvMkJQd20pVkCOhKGZkUupmkqQIj9CAdDTlKCYyyGfHTuCRVvowSoQuruBM/T6Ro1jKcRzqzhipofztTcW/vE6mIi/IKU8zRTieL4oyBlUCp5/DPhUEKzbWBGFB9a0QD5FAWOl8SjqEr0/h/+TOMW3XPL1xKo2LRRxFcAAOwTGwwRlogCvQBD7AgIIH8ASeDW48Gi/G67y1YCxm9sEPGG+fKqKOSA==</latexit>

l = L

<latexit sha1_base64="d/iV+msqBqxNCx+jwctMnOQepjw=">AAAB7HicdVDLSsNAFJ3UV62vqks3g63gKiQx1nQhFN24cFHB2EIbymQ6aYdOJmFmIpTQb3DjQhG3fpA7/8bpQ1DRAxcO59zLvfeEKaNSWdaHUVhaXlldK66XNja3tnfKu3t3MskEJj5OWCLaIZKEUU58RRUj7VQQFIeMtMLR5dRv3RMhacJv1TglQYwGnEYUI6Ulv8rOr6u9csUyvVq97tagZZ44tue5mtiO69ZtaJvWDBWwQLNXfu/2E5zFhCvMkJQd20pVkCOhKGZkUupmkqQIj9CAdDTlKCYyyGfHTuCRVvowSoQuruBM/T6Ro1jKcRzqzhipofztTcW/vE6mIi/IKU8zRTieL4oyBlUCp5/DPhUEKzbWBGFB9a0QD5FAWOl8SjqEr0/h/+TOMW3XPL1xKo2LRRxFcAAOwTGwwRlogCvQBD7AgIIH8ASeDW48Gi/G67y1YCxm9sEPGG+fKqKOSA==</latexit>

Hash code segments

Q(L)
y2

<latexit sha1_base64="RuWwvNwM6gqltcc53D/QgZL2LmY=">AAACBXicbVC7TsMwFHV4lvIKMMIQ0SKVpUoqEIwVLAwMrUQfUhsix3Faq04c2Q5SFGVh4VdYGECIlX9g429w2gzQciTLR+fcq3vvcSNKhDTNb21peWV1bb20Ud7c2t7Z1ff2u4LFHOEOYpTxvgsFpiTEHUkkxf2IYxi4FPfcyXXu9x4wF4SFdzKJsB3AUUh8gqBUkqMfVYcuo55IAvWl7cxJE6eR3ae129Os6ugVs25OYSwSqyAVUKDl6F9Dj6E4wKFEFAoxsMxI2inkkiCKs/IwFjiCaAJHeKBoCAMs7HR6RWacKMUzfMbVC6UxVX93pDAQ+Z6qMoByLOa9XPzPG8TSv7RTEkaxxCGaDfJjakhm5JEYHuEYSZooAhEnalcDjSGHSKrgyioEa/7kRdJt1K2z+nm7UWleFXGUwCE4BjVggQvQBDegBToAgUfwDF7Bm/akvWjv2sesdEkreg7AH2ifPwSYmEE=</latexit>

↵
(L)
y2

<latexit sha1_base64="nbDKNDFL8RLXkRHVxuaxtPZNqXw=">AAAB/XicbVDLSsNAFJ34rPUVHzs3g61QNyUpii4Lbly4qGAf0MZwM522QycPZiZCDMFfceNCEbf+hzv/xmmbhbYeuHA4517uvceLOJPKsr6NpeWV1bX1wkZxc2t7Z9fc22/JMBaENknIQ9HxQFLOAtpUTHHaiQQF3+O07Y2vJn77gQrJwuBOJRF1fBgGbMAIKC255mG5BzwagZsmbi27Tys3p1nZNUtW1ZoCLxI7JyWUo+GaX71+SGKfBopwkLJrW5FyUhCKEU6zYi+WNAIyhiHtahqAT6WTTq/P8IlW+ngQCl2BwlP190QKvpSJ7+lOH9RIznsT8T+vG6vBpZOyIIoVDchs0SDmWIV4EgXuM0GJ4okmQATTt2IyAgFE6cCKOgR7/uVF0qpV7bPq+W2tVK/ncRTQETpGFWSjC1RH16iBmoigR/SMXtGb8WS8GO/Gx6x1ychnDtAfGJ8/R0yUdQ==</latexit>

Adaptive convolutional hashing Hamming space query & matching

(b) BGCH framework illustration

V (L)
x1

<latexit sha1_base64="kqOjNtnoAfJbMEiGoPPD/HdcPdc=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqEIwVLAwMRaIPqQ2R47itVceJbAdRRVlY+BUWBhBi5R/Y+BucNgO0HMny0Tn36t57vIhRqSzr21hYXFpeWS2sFdc3Nre2zZ3dlgxjgUkThywUHQ9JwignTUUVI51IEBR4jLS90WXmt++JkDTkt2ocESdAA077FCOlJdc8KPe8kPlyHOgvaaVu8uDa6V1SuT5Oy65ZsqrWBHCe2DkpgRwN1/zq+SGOA8IVZkjKrm1FykmQUBQzkhZ7sSQRwiM0IF1NOQqIdJLJFSk80ooP+6HQjys4UX93JCiQ2Z66MkBqKGe9TPzP68aqf+4klEexIhxPB/VjBlUIs0igTwXBio01QVhQvSvEQyQQVjq4og7Bnj15nrRqVfukenpTK9Uv8jgKYB8cggqwwRmogyvQAE2AwSN4Bq/gzXgyXox342NaumDkPXvgD4zPHwlYmEQ=</latexit>

V (2)
x1

<latexit sha1_base64="eMvM7FWOfbExH2IsL5FJchKa9nM=">AAACBXicbVC7TsMwFHXKq5RXgBGGiBapLFVSgWCsYGEsEn1IbYgcx2mtOnZkO4gqysLCr7AwgBAr/8DG3+C0HaDlSJaPzrlX997jx5RIZdvfRmFpeWV1rbhe2tjc2t4xd/fakicC4RbilIuuDyWmhOGWIoribiwwjHyKO/7oKvc791hIwtmtGsfYjeCAkZAgqLTkmYeVvs9pIMeR/tJ25qUPnpPdpdX6SVbxzLJdsyewFokzI2UwQ9Mzv/oBR0mEmUIUStlz7Fi5KRSKIIqzUj+ROIZoBAe4pymDEZZuOrkis461ElghF/oxZU3U3x0pjGS+p66MoBrKeS8X//N6iQov3JSwOFGYoemgMKGW4lYeiRUQgZGiY00gEkTvaqEhFBApHVxJh+DMn7xI2vWac1o7u6mXG5ezOIrgAByBKnDAOWiAa9AELYDAI3gGr+DNeDJejHfjY1paMGY9++APjM8f4ZOYKg==</latexit>

V (1)
x1

<latexit sha1_base64="q4CVr0jz6CBlB0OEhGhl+t5dYII=">AAACBXicbVC7TsMwFHXKq5RXgBEGixapLFVSgWCsYGEsEn1IbYgcx2mtOnFkO4gqysLCr7AwgBAr/8DG3+C0HaDlSJaPzrlX997jxYxKZVnfRmFpeWV1rbhe2tjc2t4xd/fakicCkxbmjIuuhyRhNCItRRUj3VgQFHqMdLzRVe537omQlEe3ahwTJ0SDiAYUI6Ul1zys9D3OfDkO9Ze2Mzd9cO3sLq3aJ1nFNctWzZoALhJ7RspghqZrfvV9jpOQRAozJGXPtmLlpEgoihnJSv1EkhjhERqQnqYRCol00skVGTzWig8DLvSLFJyovztSFMp8T10ZIjWU814u/uf1EhVcOCmN4kSRCE8HBQmDisM8EuhTQbBiY00QFlTvCvEQCYSVDq6kQ7DnT14k7XrNPq2d3dTLjctZHEVwAI5AFdjgHDTANWiCFsDgETyDV/BmPBkvxrvxMS0tGLOeffAHxucP4AyYKQ==</latexit>

eV (1)

x1

<latexit sha1_base64="20M5PjqVaFq11wjRTtap/QWKro8=">AAACEXicbVC7TgJBFJ3FF+Jr1dJmI5hgQ3aJRkoSG0tM5JEAbmZnLzBh9pGZWZVM9hds/BUbC42xtbPzbxxgCwVPMpmTc+7Nvfd4MaNC2va3kVtZXVvfyG8WtrZ3dvfM/YOWiBJOoEkiFvGOhwUwGkJTUsmgE3PAgceg7Y0vp377DrigUXgjJzH0AzwM6YASLLXkmuVS7576ICnzQfW8iPliEuhPtdLUVQ+uk96qsnOallyzaFfsGaxl4mSkiDI0XPOr50ckCSCUhGEhuo4dy77CXFLCIC30EgExJmM8hK6mIQ5A9NXsotQ60YpvDSKuXyitmfq7Q+FATBfVlQGWI7HoTcX/vG4iB7W+omGcSAjJfNAgYZaMrGk8lk85EMkmmmDCqd7VIiPMMZE6xIIOwVk8eZm0qhXnrHJ+XS3Wa1kceXSEjlEZOegC1dEVaqAmIugRPaNX9GY8GS/Gu/ExL80ZWc8h+gPj8wfr8J2m</latexit>

eV (2)

x1

<latexit sha1_base64="1V2xhBC1Oq1ek4zWfyXjJd9zePE=">AAACEXicbVC7TsMwFHXKq5RXgZElokUqS5VUIDpWYmEsEn1IbYgc56a16sSR7QBVlF9g4VdYGECIlY2Nv8F9DNByJMtH59yre+/xYkalsqxvI7eyura+kd8sbG3v7O4V9w/akieCQItwxkXXwxIYjaClqGLQjQXg0GPQ8UaXE79zB0JSHt2ocQxOiAcRDSjBSktusVLu31MfFGU+pH2PM1+OQ/2l7Sxz0wfXzm7TSu00K7vFklW1pjCXiT0nJTRH0y1+9X1OkhAiRRiWsmdbsXJSLBQlDLJCP5EQYzLCA+hpGuEQpJNOL8rME634ZsCFfpEyp+rvjhSHcrKorgyxGspFbyL+5/USFdSdlEZxoiAis0FBwkzFzUk8pk8FEMXGmmAiqN7VJEMsMFE6xIIOwV48eZm0a1X7rHp+XSs16vM48ugIHaMKstEFaqAr1EQtRNAjekav6M14Ml6Md+NjVpoz5j2H6A+Mzx/td52n</latexit>

eV (L)

x1

<latexit sha1_base64="d09FlBRsHpAoirTnkSE3mS9KKuY=">AAACEXicbVC7TsNAEDzzDOEVoKSxSJBCE9kRCMoIGgqKIJGHFBvrfF4np5wfujsDkeVfoOFXaChAiJaOjr/hkriAhJFON5rZ1e6OGzMqpGF8awuLS8srq4W14vrG5tZ2aWe3LaKEE2iRiEW862IBjIbQklQy6MYccOAy6LjDi7HfuQMuaBTeyFEMdoD7IfUpwVJJTqlase6pB5IyD1LLjZgnRoH60naWOemDY2a3afXqKKs4pbJRMybQ54mZkzLK0XRKX5YXkSSAUBKGheiZRiztFHNJCYOsaCUCYkyGuA89RUMcgLDTyUWZfqgUT/cjrl4o9Yn6uyPFgRgvqioDLAdi1huL/3m9RPpndkrDOJEQkukgP2G6jPRxPLpHORDJRopgwqnaVScDzDGRKsSiCsGcPXmetOs187h2cl0vN87zOApoHx2gKjLRKWqgS9RELUTQI3pGr+hNe9JetHftY1q6oOU9e+gPtM8fGD6dyw==</latexit>

eV = V (I � ✏P)

<latexit sha1_base64="xwBpho72VDEPOiQABMDyg7/nMvg=">AAACQHicbVDLSgMxFM34rPVVdekmWIW6sMyIohtBdKO7CvYBnVIymds2NJMMSUYpw3yaGz/BnWs3LhRx68r0sbDqgZCTc8/l3pwg5kwb1312Zmbn5hcWc0v55ZXVtfXCxmZNy0RRqFLJpWoERANnAqqGGQ6NWAGJAg71oH85rNfvQGkmxa0ZxNCKSFewDqPEWKldqO/69ywEw3gIqR9IHupBZK+0lmX4DE8rpZ/P6wwfYB9izbgUU8ZKtr/bLhTdsjsC/ku8CSmiCSrtwpMfSppEIAzlROum58amlRJlGOWQ5f1EQ0xon3ShaakgEehWOgogw3tWCXFHKnuEwSP1Z0dKIj1czjojYnr6d20o/ldrJqZz2kqZiBMDgo4HdRKOjcTDNHHIFFDDB5YQqpjdFdMeUYQam3nehuD9/vJfUjsse0fl45vD4vnFJI4c2kY7qIQ8dILO0RWqoCqi6AG9oDf07jw6r86H8zm2zjiTni00BefrG6YtsZA=</latexit>

…

…

Q(1)
x1

<latexit sha1_base64="6LE2Wxy0MSJVaLBwN/rbkz7UCzA=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqEIwVLIytRB9SGyLHcVqrThzZDqKKsrDwKywMIMTKP7DxNzhtB2g5kuWjc+7Vvfd4MaNSWda3sbS8srq2Xtgobm5t7+yae/ttyROBSQtzxkXXQ5IwGpGWooqRbiwICj1GOt7oOvc790RIyqNbNY6JE6JBRAOKkdKSax6V+x5nvhyH+kubmZs+uHZ2l1bs06zsmiWrak0AF4k9IyUwQ8M1v/o+x0lIIoUZkrJnW7FyUiQUxYxkxX4iSYzwCA1IT9MIhUQ66eSKDJ5oxYcBF/pFCk7U3x0pCmW+p64MkRrKeS8X//N6iQounZRGcaJIhKeDgoRBxWEeCfSpIFixsSYIC6p3hXiIBMJKB1fUIdjzJy+Sdq1qn1XPm7VS/WoWRwEcgmNQATa4AHVwAxqgBTB4BM/gFbwZT8aL8W58TEuXjFnPAfgD4/MH2DKYJA==</latexit>

↵
(1)
x1

<latexit sha1_base64="KdvWJ5Jw/SMYW3IXKJJAaomovf4=">AAAB/XicbVDLSsNAFL3xWesrPnZugq1QNyUpii4LblxWsA9oY5hMJ+3QySTMTMQagr/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7jx8zKpVtfxtLyyura+uFjeLm1vbOrrm335JRIjBp4ohFouMjSRjlpKmoYqQTC4JCn5G2P7qa+O17IiSN+K0ax8QN0YDTgGKktOSZh+UeYvEQeemD52R3acU5zcqeWbKr9hTWInFyUoIcDc/86vUjnISEK8yQlF3HjpWbIqEoZiQr9hJJYoRHaEC6mnIUEumm0+sz60QrfSuIhC6urKn6eyJFoZTj0NedIVJDOe9NxP+8bqKCSzelPE4U4Xi2KEiYpSJrEoXVp4JgxcaaICyovtXCQyQQVjqwog7BmX95kbRqVeesen5TK9XreRwFOIJjqIADF1CHa2hAEzA8wjO8wpvxZLwY78bHrHXJyGcO4A+Mzx8a9ZRY</latexit>

↵
(2)
x1

<latexit sha1_base64="8Hd+F2VecXluJheUQ9T58/9vchA=">AAAB/XicbVDLSsNAFL3xWesrPnZugq1QNyUpii4LblxWsA9oY5hMJ+3QySTMTMQagr/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7jx8zKpVtfxtLyyura+uFjeLm1vbOrrm335JRIjBp4ohFouMjSRjlpKmoYqQTC4JCn5G2P7qa+O17IiSN+K0ax8QN0YDTgGKktOSZh+UeYvEQeemD52R3aaV2mpU9s2RX7SmsReLkpAQ5Gp751etHOAkJV5ghKbuOHSs3RUJRzEhW7CWSxAiP0IB0NeUoJNJNp9dn1olW+lYQCV1cWVP190SKQinHoa87Q6SGct6biP953UQFl25KeZwowvFsUZAwS0XWJAqrTwXBio01QVhQfauFh0ggrHRgRR2CM//yImnVqs5Z9fymVqrX8zgKcATHUAEHLqAO19CAJmB4hGd4hTfjyXgx3o2PWeuSkc8cwB8Ynz8cfJRZ</latexit>

Q(2)
x1

<latexit sha1_base64="hFaYOk+oRHSOZyR4cU/IHcJ9gW0=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqEIwVLIytRB9SGyLHcVqrjhPZDqKKsrDwKywMIMTKP7DxNzhtB2g5kuWjc+7Vvfd4MaNSWda3sbS8srq2Xtgobm5t7+yae/ttGSUCkxaOWCS6HpKEUU5aiipGurEgKPQY6Xij69zv3BMhacRv1TgmTogGnAYUI6Ul1zwq972I+XIc6i9tZm764NrZXVqpnWZl1yxZVWsCuEjsGSmBGRqu+dX3I5yEhCvMkJQ924qVkyKhKGYkK/YTSWKER2hAeppyFBLppJMrMniiFR8GkdCPKzhRf3ekKJT5nroyRGoo571c/M/rJSq4dFLK40QRjqeDgoRBFcE8EuhTQbBiY00QFlTvCvEQCYSVDq6oQ7DnT14k7VrVPqueN2ul+tUsjgI4BMegAmxwAergBjRAC2DwCJ7BK3gznowX4934mJYuGbOeA/AHxucP2bmYJQ==</latexit>

Q(L)
x1

<latexit sha1_base64="PuefMz16aMoADcITO1ADExXXFis=">AAACBXicbVC7TsMwFHXKq5RXgBGGiBapLFVSgWCsYGFgaCX6kNoQOY7TWnWcyHYQVZSFhV9hYQAhVv6Bjb/BaTNAy5EsH51zr+69x40oEdI0v7XC0vLK6lpxvbSxubW9o+/udUQYc4TbKKQh77lQYEoYbksiKe5FHMPApbjrjq8yv3uPuSAhu5WTCNsBHDLiEwSlkhz9sDJwQ+qJSaC+pJU6yYNjpXdJ9eYkrTh62ayZUxiLxMpJGeRoOvrXwAtRHGAmEYVC9C0zknYCuSSI4rQ0iAWOIBrDIe4rymCAhZ1Mr0iNY6V4hh9y9Zg0purvjgQGIttTVQZQjsS8l4n/ef1Y+hd2QlgUS8zQbJAfU0OGRhaJ4RGOkaQTRSDiRO1qoBHkEEkVXEmFYM2fvEg69Zp1Wjtr1cuNyzyOIjgAR6AKLHAOGuAaNEEbIPAInsEreNOetBftXfuYlRa0vGcf/IH2+QMBfpg/</latexit>

↵
(L)
x1

<latexit sha1_base64="lahSvjrEbRhTu/o2DWjjU37axds=">AAAB/XicbVDLSsNAFL2pr1pf8bFzE2yFuilJUXRZcOPCRQX7gDaGyXTSDp1MwsxErCH4K25cKOLW/3Dn3zh9LLT1wIXDOfdy7z1+zKhUtv1t5JaWV1bX8uuFjc2t7R1zd68po0Rg0sARi0TbR5IwyklDUcVIOxYEhT4jLX94OfZb90RIGvFbNYqJG6I+pwHFSGnJMw9KXcTiAfLSB8/J7tLy9UlW8syiXbEnsBaJMyNFmKHumV/dXoSTkHCFGZKy49ixclMkFMWMZIVuIkmM8BD1SUdTjkIi3XRyfWYda6VnBZHQxZU1UX9PpCiUchT6ujNEaiDnvbH4n9dJVHDhppTHiSIcTxcFCbNUZI2jsHpUEKzYSBOEBdW3WniABMJKB1bQITjzLy+SZrXinFbObqrFWm0WRx4O4QjK4MA51OAK6tAADI/wDK/wZjwZL8a78TFtzRmzmX34A+PzB0QylHM=</latexit>

Q(0)
x1

<latexit sha1_base64="9TX9EYvBGBJh2ZquGM+Q3dIT4qs=">AAACBXicbVC7TsMwFHV4lvIKMMJg0SKVpUoqEIwVLIytRB9SGyLHcVqrThzZDqKKsrDwKywMIMTKP7DxNzhtB2g5kuWjc+7Vvfd4MaNSWda3sbS8srq2Xtgobm5t7+yae/ttyROBSQtzxkXXQ5IwGpGWooqRbiwICj1GOt7oOvc790RIyqNbNY6JE6JBRAOKkdKSax6V+x5nvhyH+kubmZs+uHZ2l1as06zsmiWrak0AF4k9IyUwQ8M1v/o+x0lIIoUZkrJnW7FyUiQUxYxkxX4iSYzwCA1IT9MIhUQ66eSKDJ5oxYcBF/pFCk7U3x0pCmW+p64MkRrKeS8X//N6iQounZRGcaJIhKeDgoRBxWEeCfSpIFixsSYIC6p3hXiIBMJKB1fUIdjzJy+Sdq1qn1XPm7VS/WoWRwEcgmNQATa4AHVwAxqgBTB4BM/gFbwZT8aL8W58TEuXjFnPAfgD4/MH1quYIw==</latexit>

↵
(0)
x1

<latexit sha1_base64="4mwEBX9Qp7HsFt40F7bZnljd+BU=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wVaom5IURZcFNy4r2Ae0MdxMJ+3QySTMTMQagr/ixoUibv0Pd/6N0zYLbT1w4XDOvdx7jx8zKpVtfxtLyyura+uFjeLm1vbOrrm335JRIjBp4ohFouODJIxy0lRUMdKJBYHQZ6Ttj64mfvueCEkjfqvGMXFDGHAaUAxKS555WO4Bi4fgpQ+ek92lFfs0K3tmya7aU1iLxMlJCeVoeOZXrx/hJCRcYQZSdh07Vm4KQlHMSFbsJZLEgEcwIF1NOYREuun0+sw60UrfCiKhiytrqv6eSCGUchz6ujMENZTz3kT8z+smKrh0U8rjRBGOZ4uChFkqsiZRWH0qCFZsrAlgQfWtFh6CAKx0YEUdgjP/8iJp1arOWfX8plaq1/M4CugIHaMKctAFqqNr1EBNhNEjekav6M14Ml6Md+Nj1rpk5DMH6A+Mzx8ZbpRX</latexit>

eV = V (I � ✏P)

<latexit sha1_base64="xwBpho72VDEPOiQABMDyg7/nMvg=">AAACQHicbVDLSgMxFM34rPVVdekmWIW6sMyIohtBdKO7CvYBnVIymds2NJMMSUYpw3yaGz/BnWs3LhRx68r0sbDqgZCTc8/l3pwg5kwb1312Zmbn5hcWc0v55ZXVtfXCxmZNy0RRqFLJpWoERANnAqqGGQ6NWAGJAg71oH85rNfvQGkmxa0ZxNCKSFewDqPEWKldqO/69ywEw3gIqR9IHupBZK+0lmX4DE8rpZ/P6wwfYB9izbgUU8ZKtr/bLhTdsjsC/ku8CSmiCSrtwpMfSppEIAzlROum58amlRJlGOWQ5f1EQ0xon3ShaakgEehWOgogw3tWCXFHKnuEwSP1Z0dKIj1czjojYnr6d20o/ldrJqZz2kqZiBMDgo4HdRKOjcTDNHHIFFDDB5YQqpjdFdMeUYQam3nehuD9/vJfUjsse0fl45vD4vnFJI4c2kY7qIQ8dILO0RWqoCqi6AG9oDf07jw6r86H8zm2zjiTni00BefrG6YtsZA=</latexit>

…

…V (1)
y2

<latexit sha1_base64="p0ifIflL662+Dr56vzoA8T0ST94=">AAACB3icbVDLSgMxFM34rPU16lKQYCvUTZkpvpYFNy4r2Ae045DJpG1o5kGSEYYwOzf+ihsXirj1F9z5N2baWWjrgZDDOfdy7z1ezKiQlvVtLC2vrK6tlzbKm1vbO7vm3n5HRAnHpI0jFvGehwRhNCRtSSUjvZgTFHiMdL3Jde53HwgXNArvZBoTJ0CjkA4pRlJLrnlUVQMvYr5IA/2pTpa5KnUb2b2q2adZ1TUrVt2aAi4SuyAVUKDlml8DP8JJQEKJGRKib1uxdBTikmJGsvIgESRGeIJGpK9piAIiHDW9I4MnWvHhMOL6hRJO1d8dCgUiX1RXBkiOxbyXi/95/UQOrxxFwziRJMSzQcOEQRnBPBToU06wZKkmCHOqd4V4jDjCUkdX1iHY8ycvkk6jbp/Vz28bleZFEUcJHIJjUAM2uARNcANaoA0weATP4BW8GU/Gi/FufMxKl4yi5wD8gfH5A7vymSs=</latexit>

V (2)
y2

<latexit sha1_base64="r55JPpqBphT33okb4V+t/zaet+I=">AAACB3icbVDLSsNAFJ34rPUVdSlIsBXqpiTB17LgxmUF+4A2hslk0g6dZMLMRAghOzf+ihsXirj1F9z5N07aLLT1wDCHc+7l3nu8mBIhTfNbW1peWV1br2xUN7e2d3b1vf2uYAlHuIMYZbzvQYEpiXBHEklxP+YYhh7FPW9yXfi9B8wFYdGdTGPshHAUkYAgKJXk6kf1bOgx6os0VF/WzXM3S107v88a9mled/Wa2TSnMBaJVZIaKNF29a+hz1AS4kgiCoUYWGYsnQxySRDFeXWYCBxDNIEjPFA0giEWTja9IzdOlOIbAePqRdKYqr87MhiKYlFVGUI5FvNeIf7nDRIZXDkZieJE4gjNBgUJNSQzilAMn3CMJE0VgYgTtauBxpBDJFV0VRWCNX/yIunaTeuseX5r11oXZRwVcAiOQQNY4BK0wA1ogw5A4BE8g1fwpj1pL9q79jErXdLKngPwB9rnD715mSw=</latexit>

V (L)
y2

<latexit sha1_base64="CpVjgsHGZzwJKWFePcFeA8A62Ac=">AAACB3icbVDLSsNAFJ3UV62vqEtBgq1QNyUpvpYFNy5cVLAPaGOYTCbt0MkkzEyEELJz46+4caGIW3/BnX/jpM1CWw8MczjnXu69x40oEdI0v7XS0vLK6lp5vbKxubW9o+/udUUYc4Q7KKQh77tQYEoY7kgiKe5HHMPApbjnTq5yv/eAuSAhu5NJhO0AjhjxCYJSSY5+WEuHbkg9kQTqS7tZ5qSJ08zu0/rNSVZz9KrZMKcwFolVkCoo0Hb0r6EXojjATCIKhRhYZiTtFHJJEMVZZRgLHEE0gSM8UJTBAAs7nd6RGcdK8Qw/5OoxaUzV3x0pDES+qKoMoByLeS8X//MGsfQv7ZSwKJaYodkgP6aGDI08FMMjHCNJE0Ug4kTtaqAx5BBJFV1FhWDNn7xIus2Gddo4u21WW+dFHGVwAI5AHVjgArTANWiDDkDgETyDV/CmPWkv2rv2MSstaUXPPvgD7fMH5S+ZRg==</latexit>

eV (L)

y2

<latexit sha1_base64="ZoT54L8qwhKrkxXmVx83CljfdyY=">AAACEXicbVC7TsMwFHXKq5RXgZElokUqS5VUvMZKLAwMRaIPqQ2R49y0Vp04sh1QFeUXWPgVFgYQYmVj429wHwO0HMny0Tn36t57vJhRqSzr28gtLa+sruXXCxubW9s7xd29luSJINAknHHR8bAERiNoKqoYdGIBOPQYtL3h5dhv34OQlEe3ahSDE+J+RANKsNKSW6yUew/UB0WZD2nP48yXo1B/aSvL3HTk1rK7tHJ9nJXdYsmqWhOYi8SekRKaoeEWv3o+J0kIkSIMS9m1rVg5KRaKEgZZoZdIiDEZ4j50NY1wCNJJJxdl5pFWfDPgQr9ImRP1d0eKQzleVFeGWA3kvDcW//O6iQounJRGcaIgItNBQcJMxc1xPKZPBRDFRppgIqje1SQDLDBROsSCDsGeP3mRtGpV+6R6elMr1c9mceTRATpEFWSjc1RHV6iBmoigR/SMXtGb8WS8GO/Gx7Q0Z8x69tEfGJ8/F7ydwQ==</latexit>

eV (2)

y2

<latexit sha1_base64="Vic+MSNzHtXXpOMVUlFQ8/F89Wo=">AAACEXicbVC7TsMwFHV4lvIKMLJEtEhlqZKI11iJhbFI9CG1JXKc29aq85DtgCorv8DCr7AwgBArGxt/g9N2gJYjWT46517de4+fMCqkbX8bS8srq2vrhY3i5tb2zq65t98UccoJNEjMYt72sQBGI2hIKhm0Ew449Bm0/NFV7rfugQsaR7dynEAvxIOI9inBUkueWSl3H2gAkrIAVNePWSDGof5UM8s8Nfbc7E5V3JOs7Jklu2pPYC0SZ0ZKaIa6Z351g5ikIUSSMCxEx7ET2VOYS0oYZMVuKiDBZIQH0NE0wiGInppclFnHWgmsfsz1i6Q1UX93KByKfFFdGWI5FPNeLv7ndVLZv+wpGiWphIhMB/VTZsnYyuOxAsqBSDbWBBNO9a4WGWKOidQhFnUIzvzJi6TpVp3T6tmNW6qdz+IooEN0hCrIQReohq5RHTUQQY/oGb2iN+PJeDHejY9p6ZIx6zlAf2B8/gDv952n</latexit>

eV (1)

y2

<latexit sha1_base64="LSfCMWAoheDgYvzoA/je09mL90E=">AAACEXicbVC7TsMwFHV4lvIqMLJEtEhlqZKK11iJhbFI9CE1JXKcm9aqE0e2A6qi/AILv8LCAEKsbGz8DU7bAVqOZPnonHt17z1ezKhUlvVtLC2vrK6tFzaKm1vbO7ulvf225Ikg0CKccdH1sARGI2gpqhh0YwE49Bh0vNFV7nfuQUjKo1s1jqEf4kFEA0qw0pJbqlacB+qDosyH1PE48+U41F/azjI3Hbv17C6t2idZxS2VrZo1gblI7BkpoxmabunL8TlJQogUYVjKnm3Fqp9ioShhkBWdREKMyQgPoKdphEOQ/XRyUWYea8U3Ay70i5Q5UX93pDiU+aK6MsRqKOe9XPzP6yUquOynNIoTBRGZDgoSZipu5vGYPhVAFBtrgomgeleTDLHAROkQizoEe/7kRdKu1+zT2tlNvdw4n8VRQIfoCFWRjS5QA12jJmohgh7RM3pFb8aT8WK8Gx/T0iVj1nOA/sD4/AHucJ2m</latexit>

Latent Feature Dispersion

Hash code segments

Q(0)
y2

<latexit sha1_base64="aFNegwyR2IMqmkhj+SKcO+74MXU=">AAACBXicbVC7TsMwFHXKq5RXgBEGixapLFVSgWCsYGFsJfqQ2hA5jtNadR6yHaQoysLCr7AwgBAr/8DG3+C0GaDlSJaPzrlX997jRIwKaRjfWmlldW19o7xZ2dre2d3T9w96Iow5Jl0cspAPHCQIowHpSioZGUScIN9hpO9Mb3K//0C4oGFwJ5OIWD4aB9SjGEkl2fpxbeSEzBWJr760k9lpYjez+7RunGU1W68aDWMGuEzMglRBgbatf43cEMc+CSRmSIihaUTSShGXFDOSVUaxIBHCUzQmQ0UD5BNhpbMrMniqFBd6IVcvkHCm/u5IkS/yPVWlj+RELHq5+J83jKV3ZaU0iGJJAjwf5MUMyhDmkUCXcoIlSxRBmFO1K8QTxBGWKriKCsFcPHmZ9JoN87xx0WlWW9dFHGVwBE5AHZjgErTALWiDLsDgETyDV/CmPWkv2rv2MS8taUXPIfgD7fMH2cWYJQ==</latexit>

↵
(0)
y2

<latexit sha1_base64="yAQ++lpvgX6m7VHJbaE6WX3FQj4=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CbZC3ZSkKLosuHFZwT6gjeFmOmmHTiZhZiLUEPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee/yYUals+9sorKyurW8UN0tb2zu7e+b+QVtGicCkhSMWia4PkjDKSUtRxUg3FgRCn5GOP76e+p0HIiSN+J2axMQNYchpQDEoLXnmUaUPLB6Bl068enafVu2zrOKZZbtmz2AtEycnZZSj6Zlf/UGEk5BwhRlI2XPsWLkpCEUxI1mpn0gSAx7DkPQ05RAS6aaz6zPrVCsDK4iELq6smfp7IoVQykno684Q1EguelPxP6+XqODKTSmPE0U4ni8KEmapyJpGYQ2oIFixiSaABdW3WngEArDSgZV0CM7iy8ukXa8557WL23q50cjjKKJjdIKqyEGXqIFuUBO1EEaP6Bm9ojfjyXgx3o2PeWvByGcO0R8Ynz8ciJRZ</latexit>

Q(1)
y2

<latexit sha1_base64="Ob6ddsHHTJAdrWFU77e9N6c901A=">AAACBXicbVC7TsMwFHXKq5RXgBEGixapLFVSgWCsYGFsJfqQ2hA5jtNadR6yHaQoysLCr7AwgBAr/8DG3+C0GaDlSJaPzrlX997jRIwKaRjfWmlldW19o7xZ2dre2d3T9w96Iow5Jl0cspAPHCQIowHpSioZGUScIN9hpO9Mb3K//0C4oGFwJ5OIWD4aB9SjGEkl2fpxbeSEzBWJr760k9lpYjez+7RunmU1W68aDWMGuEzMglRBgbatf43cEMc+CSRmSIihaUTSShGXFDOSVUaxIBHCUzQmQ0UD5BNhpbMrMniqFBd6IVcvkHCm/u5IkS/yPVWlj+RELHq5+J83jKV3ZaU0iGJJAjwf5MUMyhDmkUCXcoIlSxRBmFO1K8QTxBGWKriKCsFcPHmZ9JoN87xx0WlWW9dFHGVwBE5AHZjgErTALWiDLsDgETyDV/CmPWkv2rv2MS8taUXPIfgD7fMH20yYJg==</latexit>

↵
(1)
y2

<latexit sha1_base64="xEO3xkOJ+Awe1o/PaixWqru30YE=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5CbZC3ZSkKLosuHFZwT6gjeFmOmmHTiZhZiLUEPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee/yYUals+9sorKyurW8UN0tb2zu7e+b+QVtGicCkhSMWia4PkjDKSUtRxUg3FgRCn5GOP76e+p0HIiSN+J2axMQNYchpQDEoLXnmUaUPLB6Bl068enafVp2zrOKZZbtmz2AtEycnZZSj6Zlf/UGEk5BwhRlI2XPsWLkpCEUxI1mpn0gSAx7DkPQ05RAS6aaz6zPrVCsDK4iELq6smfp7IoVQykno684Q1EguelPxP6+XqODKTSmPE0U4ni8KEmapyJpGYQ2oIFixiSaABdW3WngEArDSgZV0CM7iy8ukXa8557WL23q50cjjKKJjdIKqyEGXqIFuUBO1EEaP6Bm9ojfjyXgx3o2PeWvByGcO0R8Ynz8eD5Ra</latexit>

Q(2)
y2

<latexit sha1_base64="ISqx/lEhkvd4u83fAEm8FC69qt0=">AAACBXicbVC7TsMwFHXKq5RXgBEGixapLFUSgWCsYGFsJfqQ2hA5jttadR6yHaQoysLCr7AwgBAr/8DG3+C0GaDlSJaPzrlX997jRowKaRjfWmlldW19o7xZ2dre2d3T9w+6Iow5Jh0cspD3XSQIowHpSCoZ6UecIN9lpOdOb3K/90C4oGFwJ5OI2D4aB3REMZJKcvTj2tANmScSX31pO3PSxLGy+7RunWU1R68aDWMGuEzMglRBgZajfw29EMc+CSRmSIiBaUTSThGXFDOSVYaxIBHCUzQmA0UD5BNhp7MrMniqFA+OQq5eIOFM/d2RIl/ke6pKH8mJWPRy8T9vEMvRlZ3SIIolCfB80ChmUIYwjwR6lBMsWaIIwpyqXSGeII6wVMFVVAjm4snLpGs1zPPGRduqNq+LOMrgCJyAOjDBJWiCW9ACHYDBI3gGr+BNe9JetHftY15a0oqeQ/AH2ucP3NOYJw==</latexit>

↵
(2)
y2

<latexit sha1_base64="czsA/AHZfm/WvPBMaPM4UszxZTQ=">AAAB/XicbVDLSsNAFJ3UV62v+Ni5GWyFuilJUHRZcOOygn1AG8NkOmmHTiZhZiLEEPwVNy4Ucet/uPNvnLZZaOuBC4dz7uXee/yYUaks69sorayurW+UNytb2zu7e+b+QUdGicCkjSMWiZ6PJGGUk7aiipFeLAgKfUa6/uR66ncfiJA04ncqjYkbohGnAcVIackzj2oDxOIx8rLUc/L7rO6c5TXPrFoNawa4TOyCVEGBlmd+DYYRTkLCFWZIyr5txcrNkFAUM5JXBokkMcITNCJ9TTkKiXSz2fU5PNXKEAaR0MUVnKm/JzIUSpmGvu4MkRrLRW8q/uf1ExVcuRnlcaIIx/NFQcKgiuA0CjikgmDFUk0QFlTfCvEYCYSVDqyiQ7AXX14mHadhnzcubp1qs1nEUQbH4ATUgQ0uQRPcgBZoAwwewTN4BW/Gk/FivBsf89aSUcwcgj8wPn8AH5aUWw==</latexit>

x1

<latexit sha1_base64="/BCjIpSlQYsmAQdAn7NI7sBaNhY=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHaJRo9ELx4xcYEENqRbutDQdjdt10g2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8epItQnMY9VJ8Saciapb5jhtJMoikXIaTsc38789iNVmsXywUwSGgg8lCxiBBsr+dWnvlftlytuzZ0DrRIvJxXI0eyXv3qDmKSCSkM41rrruYkJMqwMI5xOS71U0wSTMR7SrqUSC6qDbH7sFJ1ZZYCiWNmSBs3V3xMZFlpPRGg7BTYjvezNxP+8bmqi6yBjMkkNlWSxKEo5MjGafY4GTFFi+MQSTBSztyIywgoTY/Mp2RC85ZdXSate8y5ql/f1SuMmj6MIJ3AK5+DBFTTgDprgAwEGz/AKb450Xpx352PRWnDymWP4A+fzB8YyjgI=</latexit>

x2

<latexit sha1_base64="JcOhZeFQiUW/Fre3KnkZu6uNS40=">AAAB7HicbVBNTwIxEJ3iF+IX6tFLI5h4IrtEo0eiF4+YuEACG9ItXWjodjdt10g2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5QSK4No7zjQpr6xubW8Xt0s7u3v5B+fCopeNUUebRWMSqExDNBJfMM9wI1kkUI1EgWDsY38789iNTmsfywUwS5kdkKHnIKTFW8qpP/Xq1X644NWcOvErcnFQgR7Nf/uoNYppGTBoqiNZd10mMnxFlOBVsWuqlmiWEjsmQdS2VJGLaz+bHTvGZVQY4jJUtafBc/T2RkUjrSRTYzoiYkV72ZuJ/Xjc14bWfcZmkhkm6WBSmApsYzz7HA64YNWJiCaGK21sxHRFFqLH5lGwI7vLLq6RVr7kXtcv7eqVxk8dRhBM4hXNw4QoacAdN8IACh2d4hTck0Qt6Rx+L1gLKZ47hD9DnD8e3jgM=</latexit>

y2

<latexit sha1_base64="gplGgMFCYykae036wvOlmcSt1WY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURY9FLx4rmFpoQ9lsN+3S3U3Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epItQnMY9VN8Saciapb5jhtJsoikXI6WM4uZ35j09UaRbLB5MlNBB4JFnECDZW8uvZoFkfVGtuw50DrRKvIDUo0B5Uv/rDmKSCSkM41rrnuYkJcqwMI5xOK/1U0wSTCR7RnqUSC6qDfH7sFJ1ZZYiiWNmSBs3V3xM5FlpnIrSdApuxXvZm4n9eLzXRdZAzmaSGSrJYFKUcmRjNPkdDpigxPLMEE8XsrYiMscLE2HwqNgRv+eVV0mk2vIvG5X2z1rop4ijDCZzCOXhwBS24gzb4QIDBM7zCmyOdF+fd+Vi0lpxi5hj+wPn8Ack+jgQ=</latexit>

y1

<latexit sha1_base64="Ptd3INDsNHeCUv1wwBmcl9W9ngw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURY9FLx4rmFpoQ9lsN+3SzW7Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8tUEeoTyaXqhlhTzgT1DTOcdhNFcRxy+hhObmf+4xNVmknxYLKEBjEeCRYxgo2V/Ho28OqDas1tuHOgVeIVpAYF2oPqV38oSRpTYQjHWvc8NzFBjpVhhNNppZ9qmmAywSPas1TgmOognx87RWdWGaJIKlvCoLn6eyLHsdZZHNrOGJuxXvZm4n9eLzXRdZAzkaSGCrJYFKUcGYlmn6MhU5QYnlmCiWL2VkTGWGFibD4VG4K3/PIq6TQb3kXj8r5Za90UcZThBE7hHDy4ghbcQRt8IMDgGV7hzRHOi/PufCxaS04xcwx/4Hz+AMe5jgM=</latexit>

y3

<latexit sha1_base64="m2ql1yRVdNWgmD/iKvyLKwiCcaY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5JURY9FLx4rmLbQhrLZbtqlm03Y3Qgh9Dd48aCIV3+QN/+NmzYHbX0w8Hhvhpl5fsyZ0rb9bZXW1jc2t8rblZ3dvf2D6uFRR0WJJNQlEY9kz8eKciaoq5nmtBdLikOf064/vcv97hOVikXiUacx9UI8FixgBGsjufV0eFEfVmt2w54DrRKnIDUo0B5WvwajiCQhFZpwrFTfsWPtZVhqRjidVQaJojEmUzymfUMFDqnysvmxM3RmlBEKImlKaDRXf09kOFQqDX3TGWI9UcteLv7n9RMd3HgZE3GiqSCLRUHCkY5Q/jkaMUmJ5qkhmEhmbkVkgiUm2uRTMSE4yy+vkk6z4Vw2rh6atdZtEUcZTuAUzsGBa2jBPbTBBQIMnuEV3ixhvVjv1seitWQVM8fwB9bnD8rDjgU=</latexit>

…
Low- to high-order graph topology

l = 1

<latexit sha1_base64="rKeL/G6b4GfPYs6wJbsCYZc6xg4=">AAAB7nicdVDLSgMxFM3UV62vqks3wVZwNWSGaW0XQtGNywr2Ae1QMmmmDc1khiQjlKEf4caFIm79Hnf+jelDUNEDFw7n3Mu99wQJZ0oj9GHl1tY3Nrfy24Wd3b39g+LhUVvFqSS0RWIey26AFeVM0JZmmtNuIimOAk47weR67nfuqVQsFnd6mlA/wiPBQkawNlKnzOEldMqDYgnZtXq9glyIbA9VHa9iiFP1XFSHjo0WKIEVmoPie38YkzSiQhOOleo5KNF+hqVmhNNZoZ8qmmAywSPaM1TgiCo/W5w7g2dGGcIwlqaEhgv1+0SGI6WmUWA6I6zH6rc3F//yeqkOa37GRJJqKshyUZhyqGM4/x0OmaRE86khmEhmboVkjCUm2iRUMCF8fQr/J23Xdjy7cuuWGlerOPLgBJyCc+CAC9AAN6AJWoCACXgAT+DZSqxH68V6XbbmrNXMMfgB6+0TmhWOcw==</latexit>

l = 2

<latexit sha1_base64="+5irm2GcwA2N0gsqNFYauwx0urI=">AAAB7HicdVDLSgMxFM3UV62vqks3wVZwNWRqH9OFUHTjsoLTFtqhZNK0Dc1khiQjlKHf4MaFIm79IHf+jelDUNEDFw7n3Mu99wQxZ0oj9GFl1tY3Nrey27md3b39g/zhUUtFiSTUIxGPZCfAinImqKeZ5rQTS4rDgNN2MLme++17KhWLxJ2extQP8UiwISNYG8kr8stSsZ8vINut1yuoCpFdRlV0UTPEqbo1tw4dGy1QACs0+/n33iAiSUiFJhwr1XVQrP0US80Ip7NcL1E0xmSCR7RrqMAhVX66OHYGz4wygMNImhIaLtTvEykOlZqGgekMsR6r395c/MvrJnro+ikTcaKpIMtFw4RDHcH553DAJCWaTw3BRDJzKyRjLDHRJp+cCeHrU/g/aZVsp2xXbkuFxtUqjiw4AafgHDigBhrgBjSBBwhg4AE8gWdLWI/Wi/W6bM1Yq5lj8APW2ycMeY41</latexit>

l = L

<latexit sha1_base64="d/iV+msqBqxNCx+jwctMnOQepjw=">AAAB7HicdVDLSsNAFJ3UV62vqks3g63gKiQx1nQhFN24cFHB2EIbymQ6aYdOJmFmIpTQb3DjQhG3fpA7/8bpQ1DRAxcO59zLvfeEKaNSWdaHUVhaXlldK66XNja3tnfKu3t3MskEJj5OWCLaIZKEUU58RRUj7VQQFIeMtMLR5dRv3RMhacJv1TglQYwGnEYUI6Ulv8rOr6u9csUyvVq97tagZZ44tue5mtiO69ZtaJvWDBWwQLNXfu/2E5zFhCvMkJQd20pVkCOhKGZkUupmkqQIj9CAdDTlKCYyyGfHTuCRVvowSoQuruBM/T6Ro1jKcRzqzhipofztTcW/vE6mIi/IKU8zRTieL4oyBlUCp5/DPhUEKzbWBGFB9a0QD5FAWOl8SjqEr0/h/+TOMW3XPL1xKo2LRRxFcAAOwTGwwRlogCvQBD7AgIIH8ASeDW48Gi/G67y1YCxm9sEPGG+fKqKOSA==</latexit>

Fourier serialized gradient estimation

Non-hashing

With hashing

Perturbation Pert
urb

ati
on

Pert
urb

ati
on

Perturbation Pert
urb

ati
on

(a) Loss landscape visualization

Hash-based
Backward

propagation

Forward
propagation

(c) Gradient estimation

Figure 2: (a) Visualized loss landscape comparison; (b) BGCH model framework (best view in color); (c) Fourier Serialized
gradient estimation in forward and bachward propagation.

convolutions from 0 to 𝐿. Compare to the unprocessed embedding

counterpart, e.g., 𝑽 (𝑙) , embedding matrix 𝑽 (𝑙) at each layer presents

a dispersed feature structure with a more balanced distribution of
singular values in expection. We formally explain this as follows:

Theorem 1 (Feature Dispersion). Let 𝑽 (𝑙) = 𝑼1𝚺𝑼 T
2
, where 𝑼1

and 𝑼2 are unitary matrices and descending singular value matrix
𝚺 = diag(𝜎1, 𝜎2, · · · , 𝜎𝑐). Then E(𝑽̃ (𝑙)) = 𝑼1𝚺𝚺𝜇𝑼 T

2
where 𝚺𝜇 =

diag(𝜇1, 𝜇2, · · · , 𝜇𝑐)0<𝜇1···𝑐<1 is in ascending order.

Intuitively, given the same orthonormal bases, compared to 𝑽 (𝑙) ,

it is harder in expectation to reconstruct 𝑽 (𝑙) with informative

features being dispersed out in larger matrix sub-structures. This

eventually provides the functionality to hedge the information loss

in numerical binarization. We attach the theorem proof in Appendix

C and evaluate the module effectiveness later in § 5.4.

4.3 Adaptive Graph Convolutional Hashing
One feasible solution for increasing expressivity and smoothing

loss landscapes is to include the relaxation strategy. Hence, apart
from the topology-aware embedding binarization with sign(·):

𝑸 (𝑙)𝑥 = sign(𝑽̃ (𝑙)𝑥), (7)

our model BGCH additionally computes a layer-wise positive rescal-

ing factor for each node, e.g., 𝛼
(𝑙)
𝑥 ∈ R+, such that 𝑽̃ (𝑙)𝑥 ≈ 𝛼 (𝑙)𝑥 𝑸 (𝑙)𝑥 .

In this work, we introduce a simple but effective approach to di-

rectly calculate the rescaling factors as follows:

𝛼
(𝑙)
𝑥 =

1

𝑑
| |𝑽̃ (𝑙)𝑥 | |1 . (8)

Instead of setting these factors as learnable, such deterministic

computation substantially prunes the parameter search space while

attaining the adaptive approximation functionality for different

graph nodes. We demonstrate this in § 5.4 of experiments.

After 𝐿 iterations of feature propagation and hashing, we ob-

tain the table of adaptive hash codes Q = {𝜶 ,𝑸}, where 𝜶 ∈
R(|V1 |+ |V2 |)×(𝐿+1)

and 𝑸 ∈ R(|V1 |+ |V2 |)×𝑑 }. For each node 𝑥 , its

corresponding hash codes are indexed and assembled:

𝜶𝑥 = 𝛼
(0)
𝑥 | |𝛼

(1)
𝑥 | | · · · | |𝛼

(𝐿)
𝑥 , and 𝑸𝑥 = 𝑸 (0)𝑥 | |𝑸

(1)
𝑥 | | · · · | |𝑸

(𝐿)
𝑥 . (9)

Intuitively, the hash code table Q represents the bipartite structural

information that is propagated back and forth at different itera-

tion steps 𝑙 , i.e., from 0 to the maximum step 𝐿. It not only tracks

the intermediate knowledge hashed for all graph nodes, but also

maintains the value approximation to their original continuous

embeddings, e.g., 𝑽
(𝑙)
𝑥 . In addition, with the slightly more space

cost (complexity analysis in Appendix C, such detached hash en-

coding approach still supports the bitwise operations (§ 4.5) for

accelerating inference and matching.

4.4 Fourier Serialized Gradient Estimation
To provide the accordant gradient estimation for hash function

sign(·), we approximate it by introducing its Fourier Series de-

composition in the frequency domain. Specifically, sign(·) can be

viewed as a special case of the periodical Square Wave Function

𝑡 (𝑥) within the length 2𝐻 , i.e., sign(𝜙) = 𝑡 (𝜙), |𝜙 | < 𝐻 . Since 𝑡 (𝑥)
can be decomposed in Fourier Series, we shall have:

sign(𝜙) = 4

𝜋

+∞∑︁
𝑖=1,3,5, · · ·

1

𝑖
sin(𝜋𝑖𝜙

𝐻
), where |𝜙 | < 𝐻. (10)

Fourier Series decomposition of sign(·) with infinite terms is a

lossless transformation [46]. Thus, as shown in Figure 2(c), we can

set the finite expanding term 𝑛 to obtain its approximation version

as follows:

sign(𝜙) � 4

𝜋

𝑛∑︁
𝑖=1,3,5, · · ·

1

𝑖
sin(𝜋𝑖𝜙

𝐻
) . (11)

The corresponding derivatives can be derived accordingly as:

𝜕sign(𝜙)
𝜕𝜙

�
4

𝐻

𝑛∑︁
𝑖=1,3,5, · · ·

cos(𝜋𝑖𝜙
𝐻
). (12)

Different from other gradient estimators such as tanh-alike [15,

44] and SignSwish [11], approximating sign(·) function with its

Fourier Series will not corrupt the main direction of factual gra-

dients in model optimization [58]. This is beneficial to bridge a

coordinated transformation from the continuous values to its cor-

responding binarization for node representations, which signifi-

cantly retains the discriminability of binarized representations and

Bipartite Graph Convolutional Hashing for Effective and Efficient Top-N Search in Hamming Space WWW ’23, May 1–5, 2023, Austin, TX, USA

produces better retrieval accuracy accordingly. We present this

performance comparison in § 5.6 of experiments. To summarize,

as shown in Equation (13), to learn and optimize the binarized

embeddings for graph nodes, we apply the strict sign(·) function
for forward propagation and estimate the gradients

𝜕 sign(𝜙)
𝜕𝜙

for

backward propagation.
𝑸 (𝑙) = sign(𝜙), Forward propagation.

𝜕𝑸 (𝑙)

𝜕𝜙
�

4

𝐻

𝑛∑︁
𝑖=1,3,5, · · ·

cos(𝜋𝑖𝜙
𝐻
) . Backward propagation.

(13)

4.5 Score Prediction and Model Optimization
4.5.1 Matching score prediction. Given two nodes 𝑥 ∈ V1 and

𝑦 ∈ V2, one natural manner to implement the score function is

inner-product, mainly for its simplicity as:

𝒀̂𝑥,𝑦 = (𝛼𝑥𝑸𝑥)T · (𝛼𝑦𝑸𝑦) . (14)

However, the inner product in Equation (14) is still conducted in

the (continuous) Euclidean space with full-precision arithmetics. To
bridge the connection between the inner product and Hamming

distance measurement, we introduce Theorem 2 as follows:

Theorem 2 (Hamming Distance Matching). Given two hash
codes, we have (𝛼𝑥𝑸𝑥)T · (𝛼𝑦𝑸𝑦) = 𝛼𝑥𝛼𝑦 (𝑑 − 2𝐷𝐻 (𝑸𝑥 ,𝑸𝑦)).

𝐷𝐻 (·, ·) denotes the Hamming distance between two inputs.

Based on Theorem 2, we transform the score computation to the

Hamming distance matching. By doing so, we can reduce most

number of the floating-point operations (#FLOPs) in the original

score computation formulation (Equation (14)) to efficient ham-

ming distance matching. This can develop substantial computation

acceleration that is analyzed in Appendix C.

4.5.2 Multi-loss Objective Function. Our objective function

consists of two components, i.e., graph reconstruction loss L𝑟𝑒𝑐
and BPR loss L𝑏𝑝𝑟 . Generally, these two loss functions harness the

regularization effect to each other. The intuition of such design is:

• L𝑟𝑒𝑐 reconstructs the observed bipartite graph topology;

• L𝑏𝑝𝑟 ranks the matching scores computed from the hash codes.

Concretely, we implement L𝑟𝑒𝑐 with Cross-entropy loss:

L𝑟𝑒𝑐 =
∑︁
𝑥 ∈V1

(∑︁
𝑦∈N(𝑥)

ln𝜎

(
(𝑽 (0)𝑥)T · 𝑽

(0)
𝑦

)
+

∑︁
𝑦′∉N(𝑥)

ln

(
1 − 𝜎

(
(𝑽 (0)𝑥)T · 𝑽

(0)
𝑦′

)))
,

(15)

where 𝜎 is the activation function, e.g., Sigmoid. L𝑟𝑒𝑐 bases on

the initial continuous embeddings before the graph convolution,

e.g., 𝑽 (0)𝑥 , providing the most fundamental information for topol-

ogy reconstruction. As for L𝑏𝑝𝑟 , we employ Bayesian Personalized
Ranking (BPR) loss as:

L𝑏𝑝𝑟 = −
∑︁
𝑥 ∈V1

∑︁
𝑦∈N(𝑥)
𝑦′∉N(𝑥)

ln𝜎 (𝒀̂𝑥,𝑦 − 𝒀̂𝑥,𝑦′) . (16)

L𝑏𝑝𝑟 encourages the predicted score of an observed edge to be

higher than its unobserved counterparts [19]. Let Θ denote the set

of trainable embeddings regularized by the parameter 𝜆2 to avoid

over-fitting. our final objective function is finally defined as:

L = L𝑟𝑒𝑐 + 𝜆1L𝑏𝑝𝑟 + 𝜆2 | |Θ| |22 . (17)

Table 1: The statistics of datasets.

MovieLens Gowalla Pinterest Yelp2018 AMZ-Book Dianping

|V1 | 6,040 29,858 55,186 31,668 52,643 332,295

|V2 | 3,952 40,981 9,916 38,048 91,599 1,362

|E | 1,000,209 1,027,370 1,463,556 1,561,406 2,984,108 10,000,014

Density 0.04190 0.00084 0.00267 0.00130 0.00062 0.02210

So far, we have introduced all technical parts of BGCH and

attached the pseudocodes in Appendix B.We present all the theorem

proofs and complexity analyses in Appendix C.

5 Experimental Evaluation
We evaluate BGCH to answer the following research questions:

• RQ1. How does BGCH perform compared to state-of-the-art

hashing-based models in the Top-N Hamming space retrieval?

• RQ2. what is the performance gap between BGCH and the full-

precision models in terms of long-list retrieval quality?

• RQ3. What are the benefits of proposed components in BGCH?

• RQ4. what is the practical BGCH resource consumption?

• RQ5. How does the Fourier Series decomposition perform w.r.t.
retrieval accuracy and training efficiency?

5.1 Experiment Setup
Datasets and evaluation metrics. We include six real-world bi-

partite graphs in Table 1 that are widely evaluated [7, 8, 19, 52, 60,

64]. We adopt evaluation protocols Recall@N and NDCG@N to

measure the Top-N Hamming space ranking capability. Dataset

details and evaluation procedure are explained in Appendix D.

Baselines. We include the following representative hashing-

based models for (1) general object retrieval (LSH [14]), (2) image

search (HashNet [4]), and (3) Top-N candidate generation for recom-

mendation (Hash_Gumbel [24, 42], CIGAR [28] and HashGNN [49]).

We also include several state-of-the-art full-precision
4
recommender

models, i.e., NeurCF [20], NGCF [52], DGCF [53], LightGCN [19],

for the long-list ranking quality comparison. Model introductions

are referred in Appendix D. Early hashing methods, e.g., SH [55],

RMMH [26], LCH [62], are excluded mainly because the above

competing models [4, 28] have already validated the performance

superiority over them.

5.2 Top-N Hamming Space Query (RQ1)
To evaluatefine-to-coarseTop-N ranking capability, we set N=1000.

We first report the results of Recall@201000 and NDCG@201000
5

in Top-1000 search in Table 2 and then plot the holistic Recall and

NDCG metric curves of {20, 50, 100, 200, 500, 1000} of Top-1000 in

Figure 3. We set convolution iteration number as 2 and embedding

dimension as 256 for BGCH and baselines for fair comparison.

• The results demonstrate the superiority of BGCH model
over prior hashing-basedmodels. (1) As shown in Table 2, the
state-of-the-art model, i.e., HashGNN, works better than tradi-

tional hashing-based baselines, e.g., LSH, HashNet, CIGAR. This

indicates that, compared to graph-based models, a direct adapta-

tion of conventional (i.e., non-graph-based) hashingmethodsmay

4
They are denoted by FT32 as we implement them with float32 in the experiments.

5
We then use simple notation Recall@20, NDCG@20 if there is no ambiguity caused.

WWW ’23, May 1–5, 2023, Austin, TX, USA Yankai Chen et al.

Table 2: Results of Recall@20 and NDCG@20 in Top-1000 retrieval: (1) “R” and “N” denote the Recall and NGCG; (2) the
bold indicate BGCH and the underline represents the best-performing models; (3) Mark ∗ denotes scenarios where Wilcoxon
signed-rank tests indicate statistically significant improvements over the second-best models over 95% confidence level.

Dataset MovieLens (%) Gowalla (%) Pinterest (%) Yelp2018 (%) AMZ-Book (%) Dianping (%)

Metric R@201000 N@201000 R@201000 N@201000 R@201000 N@201000 R@201000 N@201000 R@201000 N@201000 R@201000 N@201000

LSH 11.38 25.87 8.14 12.23 7.88 6.71 2.91 4.35 2.41 2.34 5.85 5.84

HashNet 15.43 32.23 11.38 13.74 10.27 7.33 3.37 4.41 2.86 2.71 6.24 5.59

CIGAR 14.84 31.73 11.57 14.21 10.34 8.53 3.65 4.57 3.05 3.03 6.91 6.03

Hash_Gumbel 16.62 32.48 12.26 14.68 10.53 8.74 3.85 5.12 2.69 3.24 8.29 6.43

HashGNN
h

14.21 31.83 11.63 14.21 10.15 8.67 3.77 5.04 3.09 3.15 8.34 6.68

HashGNNs 19.87 33.21 13.45 14.87 12.38 9.11 4.86 5.34 3.34 3.45 9.57 7.13

BGCH 22.86∗ 36.26∗ 16.73∗ 16.48∗ 12.78∗ 9.42∗ 5.51∗ 5.84∗ 3.48∗ 3.92∗ 10.66∗ 7.63∗

% Gain 15.05% 9.18% 24.39% 10.83% 3.23% 3.40% 13.37% 9.36% 4.19% 13.62% 11.39% 7.01%

(a) MovieLens (b) Gowalla (c)Pinterest (d) Yelp2018 (e) Amazon-Book (f) Dianping

Figure 3: Top-N retrieval quality with N in {20, 50, 100, 200, 500, 1000} (best view in color).

be hard to achieve comparable performance, mainly because of

the effectiveness of graph convolutional architecture in capturing

latent information within the bipartite graph topology for hash

encoding preparation. (2) Owing to our proposed model compo-

nents, e.g., adaptive graph convolutional hashing, BGCH consis-

tently outperforms HashGNN over all datasets, by 3.23%∼24.39%,
and 3.40%∼ 13.62% w.r.t. Recall@20 and NDCG@20, respectively.

(3) Furthermore, we conduct the Wilcoxon signed-rank tests at

BGCH. The results verify that all BGCH improvements over the

second-best model are statistically significant over 95% confi-

dence level. (4) To explain these, our proposed topology-aware

graph convolutional hashing approach effectively enriches the

graph node embeddings. Our proposed feature dispersion further

alleviates the feature erosion issue caused by numerical binariza-

tion. Last but not least, our proposed Fourier serialized gradient

estimation is also vital to provide accurate gradients for model

optimization. We conduct the ablation study later in § 5.4.

• By varying N from 20 to 1000, BGCH consistently shows
competitive performance compared to the baselines.While

Recall@N indicates the fraction of relevant objects in Top-N re-

trieval, NDCG@N measures the ranking capability for relative

orders. As shown in Figure 3: (1) Compared to the approximated

version of HashGNN, i.e., HashGNN𝑠 , BGCH generally obtains

stable and significant improvements of both Recall and NDCG

metrics over all six benchmarks with N from 20 to 1000. (2)

Table 3: NDCG@1000 results of Float32-based models.
Movie Gowalla Pinterest Yelp2018 AMZ-Book Dianping

NeurCF 58.76 32.07 28.79 24.69 19.83 25.54

NGCF 60.28 32.13 29.78 25.23 20.37 25.76

DGCF 62.41 34.97 31.47 26.28 21.74 26.87

LightGCN 62.88 35.26 31.32 26.55 21.92 27.28

BGCH 59.16 32.87 29.09 25.01 19.79 25.57
% capacity 94.08% 93.22% 92.44% 94.20% 90.28% 93.73%

Apart from the higher retrieval quality, another advantage of

BGCH over HashGNN𝑠 is that it still supports bitwise operations,

i.e., hamming distance matching, for inference acceleration. This

is because, to improve the prediction accuracy, HashGNN𝑠 adopts

a Bernoulli random variable to provide the probability of replac-

ing the certain digits in the hash codes with the original continu-

ous values, which thus disables the bitwise computation. As we

present in § 5.5, BGCH achieves over 8× inference acceleration
over HashGNN𝑠 , which is particularly promising for query-based

online matching and retrieval applications.

5.3 Comparing to FT32-based Models (RQ2)
In this section, we also compare BGCH with several full-precision

(FT32-based) models to evaluate the long-list search quality. As

we can observe from Table 3, we have the following analyses. (1)

We notice that our model BGCH generally performs competitively

with early full-precision models, e.g., NeurCF and NGCF, over all

datasets. As for the state-of-the-art model LightGCN, our model

Bipartite Graph Convolutional Hashing for Effective and Efficient Top-N Search in Hamming Space WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 4: Ablation study.

Variant

MovieLens Gowalla Pinterest Yelp2018 AMZ-Book Dianping

R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

w/o FD 22.82 (-0.17%) 35.87 (-1.08%) 15.92 (-4.84%) 15.79 (-4.19%) 12.25 (-4.15%) 9.07 (-3.72%) 5.16 (-6.35%) 5.49 (-2.49%) 3.26 (-6.32%) 3.57 (-8.93%) 10.46 (-1.88%) 7.50 (-1.70%)

w/o AH-TA 19.54(-14.52%) 29.17(-19.55%) 13.49(-19.37%) 12.38(-24.88%) 12.24 (-4.23%) 8.86 (-5.94%) 4.77(-13.43%) 5.18(-11.30%) 2.49(-28.45%) 2.86(-27.04%) 9.83 (-7.79%) 6.87 (-9.96%)

w/o AH-RF 16.73(-26.82%) 26.97(-25.62%) 11.24(-32.82%) 11.29(-31.49%) 10.18(-20.34%) 7.33(-22.19%) 3.76(-31.76%) 4.30(-26.37%) 3.27 (-6.03%) 3.64 (-7.14%) 8.33(-21.86%) 6.93 (-9.17%)

w/in LF 21.06 (-7.87%) 34.59 (-4.61%) 15.48 (-7.47%) 15.38 (-6.67%) 11.94 (-6.57%) 8.89 (-5.63%) 4.86(-11.80%) 5.17(-11.47%) 3.14 (-9.77%) 3.62 (-7.65%) 9.40(-11.82%) 7.27 (-4.72%)

w/o L𝑏𝑝𝑟 21.42 (-6.30%) 34.83 (-3.94%) 15.87 (-5.14%) 15.66 (-4.98%) 12.33 (-3.52%) 9.17 (-2.65%) 5.31 (-3.63%) 5.61 (-3.94%) 3.35 (-3.74%) 3.77 (-3.83%) 10.21 (-4.22%) 7.38 (-3.28%)

w/o L𝑟𝑒𝑐 17.01(-25.59%) 27.16(-25.10%) 12.27(-26.66%) 12.63(-23.36%) 10.81(-15.41%) 7.86(-16.56%) 3.93(-28.68%) 4.37(-25.17%) 3.19 (-8.33%) 3.73 (-4.85%) 8.82(-17.26%) 7.26 (-4.85%)

BGCH 22.86 36.26 16.73 16.48 12.78 9.42 5.51 5.84 3.48 3.92 10.66 7.63

can generally achieve over 90% of the Top-1000 ranking capability.

(2) The performance of BGCH demonstrates its effectiveness in

guaranteeing the long-list Top-N retrieval quality. This is useful

for some industrial applications, e.g., recommender systems, which

usually consist of two major stages: candidate generation and re-
ranking. Thus, obviously, the good quality of candidate generation

directly reduces the complexity of next-stage re-ranking, as the

search space is substantially pruned. (3) Considering the efficiency
in Hamming space retrieval and the reduced space cost of those
learned hash codes, we believe that BGCH can provide the optional

alternative to these full-precision models, especially in scenarios

with limited computation resources.

5.4 Ablation Study (RQ3)
We evaluate the necessity of model components with Top-20 search

metrics and report the results in Table 4.

Effect of Feature Dispersion.We first analyze the effect of our

proposed feature dispersion approach for hedging the feature ero-

sion in hash encoding. We introduce the model variant, denoted by

w/o FD, to directly disable it by setting 𝜂 as 0. As shown in Table 4,

the performance gap between w/o FD and BGCH well demonstrates

the effectiveness of dispersing the latent features before embed-

ding binarization for hashing over these six datasets. Moreover, let

the density summarized in Table 1 be computed by
|V1 |× |V2 |
|E | . In

sparse datasets, i.e., Gowalla (0.00084), Pinterest (0.00267), Yelp2018

(0.00130), and AMZ-Book (0.00062), the performance decay between

BGCH and w/o FD is much larger than on the other two datasets,

i.e., MovieLens (0.04190) and Dianping (0.02210). This is because

sparse datasets are more sensitive to hashing as they may not have

insufficient training edges to abridge the gap against their unhashed

version. Another promising approach to tackle data sparsity issue

is data augmentation [67] and we leave it for future work.

Effect of Adaptive GraphConvolutional Hashing. Then we
study this model component by setting two variants, where: (1) w/o
AH-TA only disables the topology-awareness of hashing and sets

it as the final encoder after all graph convolutions (just like the

conventional manner [4, 49]); (2) w/o AH-RF removes the rescaling
factors. From Table 4 results, we have the following observations:

(1) The variantw/o AH-TA consistently underperforms BGCH. This

demonstrates that simply using the rear output embeddings

from the GCN frameworkmay not sufficiently model the unique

latent node features for hashing, especially for the rich struc-

tural informationwithin different graph depths.While in BGCH,

by capturing the intermediate information for representation

enrichment, the topology-aware hashing can effectively allevi-

ate the limited expressivity of discrete hash codes.

(2) Apart from the topology-aware hashing, another key point for

contributing to the performance improvement is the rescaling
factor that we introduced in Equation (8). After removing it

from BGCH, variant w/o AH-RF presents huge performance de-

cay. Although these factors are directly calculated and may not

be theoretically optimal, they reflect the numerical uniqueness

of embeddings for later hash encoding, which substantially im-

proves BGCH’s prediction capability. We study the determinacy
design of factor computation in the following section.

Design of Learnable Rescaling. We include another variant

namely w/in LF to indicate the model version using learnable rescal-
ing factors. As shown in Table 4, the design of learnable rescaling

factors in w/in LF does not achieve good performance as expected.

One explanation is that, our proposed model currently does not

post a strong mathematical constraint to the learnable factors (𝛼𝑥),

e.g., 𝛼
(𝑙)
𝑥 = argmin(𝑽̃ (𝑙)𝑥 , 𝛼

(𝑙)
𝑥 𝑸 (𝑙)𝑥), mainly because of its additional

training complexity; and purely relying on the stochastic optimiza-

tion, e.g., stochastic gradient descent (SGD), may hardly reach the

optimum. Considering the additional search space introduced from

this regularization design, we argue that our deterministic rescaling

method is simple yet effective in practice.

Effect of Multi-loss in Optimization. Lastly, to study the ef-

fect of BPR lossL𝑏𝑝𝑟 and graph reconstruction lossL𝑟𝑒𝑐 , we set two
variants, termed by w/o L𝑏𝑝𝑟 and w/o L𝑟𝑒𝑐 , to optimize BGCH sep-

arately. As shown in Table 4, with all other model components,

partially using each one of L𝑏𝑝𝑟 and L𝑟𝑒𝑐 can not achieve the ex-

pected performance. This confirms the effectiveness of our proposed

multi-loss design: while L𝑏𝑝𝑟 learns to assign higher prediction

values to observed edges, i.e., 𝒀𝑥,𝑦 = 1, than the unobserved node

pair counterparts, L𝑟𝑒𝑐 transfers the graph reconstruction prob-

lem to a classification task by using the original embeddings in

training. By collectively optimizing these two loss functions, our

model BGCH can learn precise intermediate embeddings fromL𝑟𝑒𝑐 ,
and generate targeted hash codes with high-quality relative order

information regularized by L𝑏𝑝𝑟 accordingly.

5.5 Resource Consumption Analysis (RQ4)
Due to the various value ranges over all six datasets, we compactly

report the value ratios of BGCH over the state-of-the-art hashing-

based model HashGNN𝑠 in Figure 4.

Model Training Time Cost. As indicated by the metric “T-
Time” in Figure 4, we notice that training HashGNN𝑠 is more

time-consuming than our proposed model. The main reason is

WWW ’23, May 1–5, 2023, Austin, TX, USA Yankai Chen et al.

MovieLens Gowalla Pinterest Yelp2018 AMZ-Book Dianping
0

200

400

600

800

1000

R
at

io
 (%

)

258 271 266 283

548
613

806
912

843

1020

866 887906 908 905 907 904 880

T Time : HashGNNs
BGCH I Time : HashGNNs

BGCH Space : HashGNNs
BGCH

Figure 4: Resource consumption ratios.

that HashGNN adopts the early GCN framework [17] as the model

backbone, while our model follows the latest framework [19] to

remove operations, e.g., self-connection, feature transformation,

and nonlinear activation. In addition, on the two largest datasets

AMZ-Book and Dianping, the training cost ratio further increases

to around 5∼6 times. This is because we have to decrease the batch

size of HashGNN𝑠 for tractable training process.

Online Inference Time Cost. We randomly generate 1,000

queries and evaluate the computation time cost. To present a fair

comparison, we disable all parallel arithmetic techniques (e.g., MKL,

BLAS) by using the open-source toolkit
6
. Indicated by “I-Time” in

Figure 4, our model with Hamming distance matching generally

achieves over 8× computation acceleration over HashGNN𝑠 on all

datasets. This is because, as we have explained in § 5.2, HashGNN𝑠

randomly replaces the hash codes with their original continuous

embeddings for relaxation and adopts floating-point arithmetics to

pursue performance improvement while sacrificing the computa-

tion acceleration from the bitwise operations.

Hash Codes Memory Footprint. Binarized embeddings can

largely reduce memory space consumption. Compared to the state-

of-the-art hashing-based model HashGNN𝑠 , our BGCH further

achieves about 9× of memory space reduction for the hash codes.

As we have just explained, since HashGNN𝑠 interprets hash codes

with random real-value digits, it thus requires additional cost to

distinguish binary digits from full-precision ones. On the contrary,

BGCH separates the storage of binarized encoding parts and corre-

sponding rescaling factors, thus providing the advantage for space

overhead optimization.

5.6 Study of Fourier Gradient Estimation (RQ5)
We take our largest dataset Dianping for illustration and the analysis

can be generally popularized to the other datasets.

Effect of Decomposition Term 𝑛.We vary the decomposition

term 𝑛 from 1 to 16. As shown in Figure 5, we have two observa-

tions: (1) Different decomposition terms will surely affect the final

retrieval quality, as theoretically, the larger 𝑛 increases, the more

accurate gradients can be estimated. However, in practice, too large

values of 𝑛 may introduce the overfitting risk, which implies that

keeping a moderate 𝑛, e.g., 𝑛=4 in Figure 5(a), can already maximize

the model performance. (2) By varying 𝑛 from 1 to 16, the training

time per iteration of BGCH slowly increases. This generally coin-

cides with our complexity analysis in Appendix C, in which the

majority of training cost lies in our feature dispersion and graph

convolutional hashing, as 𝑂 (2𝑐𝑠 (𝐾+𝐿) |E |
2

𝐵
) ≫ 𝑂 (𝑠𝑛𝑑 |E |).

6
https://www.lfd.uci.edu/~gohlke/pythonlibs/

(a) Top-20 retrieval metrics (b) Training time costs

Figure 5: Fourier Series decomposition term 𝑛 in BGCH.

Table 5: Gradient estimator comparison on Recall@20.

Movie Gowalla Pinterest Yelp2018 AMZ-Book Dianping

STE 20.93 (-8.44%) 14.85(-11.24%) 12.35 (-3.36%) 5.24 (-4.90%) 3.12(-10.34%) 10.34 (-3.00%)

Tanh 21.75 (-4.86%) 15.06 (-9.98%) 12.36 (-3.29%) 5.43 (-1.45%) 3.21 (-7.76%) 10.41 (-2.34%)

SignSwish 22.13 (-3.19%) 15.62 (-6.63%) 12.44 (-2.66%) 5.50 (-0.18%) 3.34 (-4.02%) 10.43 (-2.16%)

Sigmoid 22.08 (-3.41%) 15.21 (-9.09%) 12.52 (-2.03%) 5.53 (+0.03%) 3.18 (-8.62%) 10.38 (-2.63%)

PBE 21.68 (-5.16%) 15.05(-10.04%) 12.32 (-3.60%) 5.35 (-2.90%) 3.13(-10.06%) 10.47 (-1.78%)

BGCH 22.86 16.73 12.78 5.51 3.48 10.66

Comparison with Other Gradient Estimators. We include

several recent gradient estimators, i.e., Tanh-like [15, 44], Sign-
Swish [11], Sigmoid [59], and projected-based estimator [39] (denoted
as PBE). (1) The results summarized in Table 5 well demonstrate the

superiority of our proposed Fourier Series decomposition to sign(·)
function in gradient estimation. As we have briefly explained, most

existing estimators employ the visually similar function approxi-

mation to sign(·); compared to STE, they generally provide better

gradient estimation. (2) However, for those bipartite graphs with

heavy sparsity, e.g., Gowalla (0.00084) and AMZ-Book (0.00062),

graph-based models may hardly collect enough structural informa-

tion for effective hash codes training. Based on the limited training

samples, these theoretically irrelevant estimators may not effectively

rectify the optimization deviation, and thus present a recognizable

performance gap against our proposed Fourier serialized estimator.

6 Conclusion
We study the graph convolutional hashing over bipartite graphs for

efficient Hamming space search, by proposing BGCH with three

effectual modules. Extensive experiments demonstrate the model

superiority over conventional counterparts and validate the effec-

tiveness of all proposed modules. As for future work, we plan to

investigate modeling with the semi-supervised graph setting [47, 48]
mainly for its commonality in practice. Moreover, another promis-

ing direction is to upgrade BGCH for inductive learning [17], such

that it can make adaptive matching and prediction for evolving

graphs with structural updates.

Acknowledgments
We thank anonymous reviewers for their insightful comments and

suggestions. Yankai Chen, Yifei Zhang and Irwin King were sup-

ported by the National Key Research and Development Program of

China (No. 2018AAA0100204) and by the Research Grants Council

of the Hong Kong Special Administrative Region, China (CUHK

2410021, Research Impact Fund, No. R5034-18). Yixiang Fang was

supported by NSFC Grant (62102341).

https://www.lfd.uci.edu/~gohlke/pythonlibs/

Bipartite Graph Convolutional Hashing for Effective and Efficient Top-N Search in Hamming Space WWW ’23, May 1–5, 2023, Austin, TX, USA

References
[1] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael

Lyu, and Irwin King. 2020. Pushing the limit of bert quantization. arXiv (2020).

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or

propagating gradients through stochastic neurons for conditional computation.

arXiv (2013).

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral

networks and locally connected networks on graphs. arXiv (2013).

[4] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. 2017. Hashnet:

Deep learning to hash by continuation. In ICCV. 5608–5617.

[5] Minyu Chen, Guoqiang Li, Chen Ma, Jingyang Li, and Hongfei Fu. 2022. Answer-

ing Coding Questions via Dense Retrieval on GitHub Repositories. In COLING.

[6] Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie

Li, and Irwin King. 2022. Learning binarized graph representations with multi-

faceted quantization reinforcement for top-k recommendation. In SIGKDD.

[7] Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Ziqiao Meng,

Jianye Hao, and Irwin King. 2022. Modeling Scale-free Graphs with Hyperbolic

Geometry for Knowledge-aware Recommendation. In WSDM. 94–102.

[8] Yankai Chen, Yaming Yang, Yujing Wang, Jing Bai, Xiangchen Song, and Irwin

King. 2022. Attentive Knowledge-aware Graph Convolutional Networks with

Collaborative Guidance for Personalized Recommendation. In ICDE.

[9] Yankai Chen, Yifei Zhang, Huifeng Guo, Ruiming Tang, and Irwin King. 2022.

An Effective Post-training Embedding Binarization Approach for Fast Online

Top-K Passage Matching. In AACL-IJCNLP. 102–108.

[10] Zhiyong Cheng, Ying Ding, Lei Zhu, andMohan Kankanhalli. 2018. Aspect-aware

latent factor model: Rating prediction with ratings and reviews. In WWW.

[11] Sajad Darabi, Mouloud Belbahri, Matthieu Courbariaux, and Vahid Partovi Nia.

2018. Bnn+: Improved binary network training. (2018).

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. CNNs on

graphs with fast localized spectral filtering. NeurIPS 29 (2016).

[13] Yifan Gao, Chien-Sheng Wu, Jingjing Li, Shafiq Joty, Steven CH Hoi, Caiming

Xiong, Irwin King, and Michael Lyu. 2020. Discern: Discourse-Aware Entailment

Reasoning Network for Conversational Machine Reading. In EMNLP. 2439–2449.

[14] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in

high dimensions via hashing. In PVLDB, Vol. 99. 518–529.

[15] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li, Peng Hu, Jiazhen

Lin, Fengwei Yu, and Junjie Yan. 2019. Differentiable soft quantization: Bridging

full-precision and low-bit neural networks. In ICCV. 4852–4861.

[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In SIGKDD. 855–864.

[17] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1025–1035.

[18] Ruining He and Julian McAuley. 2016. Modeling the visual evolution of fashion

trends with one-class collaborative filtering. In WWW. 507–517.

[19] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In SIGIR. 639–648.

[20] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[21] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast

matrix factorization for online recommendation with implicit feedback. In ICCV.

[22] Xuming Hu, Fukun Ma, Chenyao Liu, Chenwei Zhang, Lijie Wen, and Philip S Yu.

2021. Semi-supervised Relation Extraction via Incremental Meta Self-Training.

In EMNLP.

[23] Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang, and Philip S. Yu. 2020. Self-

ORE: Self-supervised Relational Feature Learning for Open Relation Extraction.

In EMNLP. 3673–3682.

[24] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical reparameterization

with gumbel-softmax. (2017).

[25] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization

for nearest neighbor search. TPAMI 33, 1 (2010), 117–128.

[26] Alexis Joly and Olivier Buisson. 2011. Random maximum margin hashing. In

CVPR. IEEE, 873–880.

[27] Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting

Chen, Lichan Hong, and Ed H Chi. 2021. Learning to Embed Categorical Features

without Embedding Tables for Recommendation. In SIGKDD. 840–850.

[28] Wang-Cheng Kang and Julian McAuley. 2019. Candidate generation with binary

codes for large-scale top-n recommendation. In CIKM. 1523–1532.

[29] Diederik Kingma and Jimmy Ba. 2015. Method for stochastic optimization. ICLR.

[30] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. (2017).

[31] Piotr Koniusz, Fei Yan, Philippe-Henri Gosselin, and Krystian Mikolajczyk. 2016.

Higher-order occurrence pooling for bags-of-words: Visual concept detection.

TPAMI 39, 2 (2016), 313–326.

[32] Piotr Koniusz, Hongguang Zhang, and Fatih Porikli. 2018. A deeper look at power

normalizations. In CVPR. 5774–5783.

[33] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In SIGMOD. 489–504.

[34] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019. Deepgcns:

Can gcns go as deep as cnns?. In ICCV. 9267–9276.

[35] Hao Li, Wei Liu, and Heng Ji. 2014. Two-Stage Hashing for Fast Document

Retrieval.. In ACL. 495–500.

[36] Jingjing Li, Zichao Li, Lili Mou, Xin Jiang, Michael Lyu, and Irwin King. 2020.

Unsupervised text generation by learning from search. NeurIPS.

[37] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-

eling user exposure in recommendation. In WWW. 951–961.

[38] Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards accurate binary convolu-

tional neural network. (2017).

[39] Chunlei Liu, Wenrui Ding, Xin Xia, Yuan Hu, Baochang Zhang, Jianzhuang

Liu, Bohan Zhuang, and Guodong Guo. 2019. Rectified Binary Convolutional

Networks for Enhancing the Performance of 1-bit DCNNs. arXiv (2019).

[40] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for

sequential recommendation. In SIGKDD.

[41] Chen Ma, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, and Mark Coates.

2020. Probabilistic metric learning with adaptive margin for top-k recommenda-

tion. In SIGKDD.

[42] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2017. The concrete distribu-

tion: A continuous relaxation of discrete random variables. (2017).

[43] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Ban-

ner, Alex M Bronstein, and Avi Mendelson. 2021. Loss aware post-training

quantization. Machine Learning (2021), 1–18.

[44] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei

Yu, and Jingkuan Song. 2020. Forward and backward information retention for

accurate BNNs. In CVPR. 2250–2259.

[45] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.

Imagenet classification using binary CNNs. In ECCV. Springer, 525–542.

[46] BRYAN RUST. 2013. CONVERGENCE OF FOURIER SERIES. (2013).

[47] Zixing Song, Ziqiao Meng, Yifei Zhang, and Irwin King. 2021. Semi-supervised

Multi-label Learning for Graph-structured Data. In CIKM.

[48] Zixing Song, Yifei Zhang, and Irwin King. 2022. Towards an Optimal Asymmetric

Graph Structure for Robust Semi-supervised Node Classification. In SIGKDD.

[49] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu.

2020. Learning to hash with GNNs for RecSys. In WWW. 1988–1998.

[50] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[51] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on

learning to hash. TPAMI 40, 4 (2017), 769–790.

[52] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In SIGIR. 165–174.

[53] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.

2020. Disentangled graph collaborative filtering. In ICLR. 1001–1010.

[54] Xing Wei, Yue Zhang, Yihong Gong, Jiawei Zhang, and Nanning Zheng. 2018.

Grassmann pooling as compact homogeneous bilinear pooling for fine-grained

visual classification. In ECCV. 355–370.

[55] Yair Weiss and Antonio Torralba. 2008. Spectral hashing. NeurIPS (2008).

[56] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In ICML.

[57] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks? (2019).

[58] Yixing Xu, Kai Han, Chang Xu, Yehui Tang, Chunjing Xu, and Yunhe Wang. 2021.

Learning frequency domain approximation for BNNs. arXiv (2021).

[59] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li, Bing Deng, Jianqiang

Huang, and Xian-Sheng Hua. 2019. Quantization Networks. In CVPR. 7308–7316.

[60] Menglin Yang, Min Zhou, Jiahong Liu, Defu Lian, and Irwin King. 2022. HRCF:

Enhancing collaborative filtering via hyperbolic geometric regularization. In

WWW. 2462–2471.

[61] Tan Yu, Yunfeng Cai, and Ping Li. 2020. Toward faster and simpler matrix

normalization via rank-1 update. In ECCV. Springer, 203–219.

[62] Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. 2010. Laplacian co-hashing of

terms and documents. In ECIR. Springer, 577–580.

[63] Jiani Zhang, Xingjian Shi, Shenglin Zhao, and Irwin King. 2019. Stacked and

reconstructed graph convolutional networks for recommender systems. IJCAI.

[64] Xinni Zhang, Yankai Chen, CuiyunGao, Qing Liao, Shenglin Zhao, and Irwin King.

2022. Knowledge-aware Neural Networks with Personalized Feature Referencing

for Cold-start Recommendation. arXiv (2022).

[65] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete personalized ranking for

fast collaborative filtering from implicit feedback. In AAAI, Vol. 31.

[66] Yifei Zhang and Hao Zhu. 2019. Doc2hash: Learning discrete latent variables for

documents retrieval. In NAACL. 2235–2240.

[67] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. 2022. COSTA:

Covariance-Preserving Feature Augmentation for Graph Contrastive Learning.

In SIGKDD.

[68] Yifei Zhang, Hao Zhu, Zixing Song, Piotr Koniusz, and Irwin King. 2022. Spectral

Feature Augmentation for Graph Contrastive Learning and Beyond. In arXiv.

WWW ’23, May 1–5, 2023, Austin, TX, USA Yankai Chen et al.

Table 6: Notations and meanings.
Notation Meaning
G,V1 , V2 , E Bipartite graph with sets of nodes and edges.

𝑐 , 𝑑 Convolution dimension and hash code dimension.

𝑽 (𝑙)𝑥 Node 𝑥 ’s embedding at iteration 𝑙 .

𝒀
Edge transactions where 𝒀𝑥,𝑦 = 1 indicates the interaction

existence between nodes 𝑥 and 𝑦, and otherwise 𝒀𝑥,𝑦 = 0.

𝑨, 𝑫 Adjacency matrix and associated diagonal degree matrix.

𝒑 (𝑘) , 𝑷 Dispersing vector at iteration 𝑘 and the projection matrix.

𝑉 Feature-dispersed embedding matrix.

𝒀 Estimated matching scores.

𝑸 (𝑙)𝑥 Hash code segment of node 𝑥 at iteration 𝑙 .

𝛼 (𝑙) 𝑥 ’s rescaling factor computed at the 𝑙-th convolution.

𝑸𝑥 Target hash codes of node 𝑥 .

𝐿, 𝐾 Numbers of convolutional hashing and dispersion generation.

L𝑟𝑒𝑐 , L𝑏𝑝𝑟 , L Two loss terms of final objective function L.
𝜂, 𝐻 , 𝑛, 𝜆1 , 𝜆2 hyper-parameters.

Algorithm 1: BGCH algorithm.

1 while model not converge do
2 for 𝑘 = 0, · · · , 𝐾 − 1 do
3 𝒑 (𝑘+1) ← (𝑽 (0))T𝑽 (0)𝒑 (𝑘) ;
4 𝑷 ← obtain the projection matrix ; ⊲ Eq.(4)

5 𝑽 (0) ← obtain the feature-dispersed embeddings ; ⊲ Eq.(5)

6 for 𝑙 = 0, · · · , 𝐿 − 1 do
7 𝑽 (𝑙+1) ← (𝑫− 1

2 𝑨𝑫−
1

2)𝑽 (𝑙) ; ⊲ Eq.(6)

8 𝑸 (𝑙+1) ← sign

(
𝑽 (𝑙+1)) ; ⊲ Eq.(7)

9 𝜶 ← calculate the rescaling factors ; ⊲ Eq.(8)

10 for 𝑥 ∈ V1, 𝑦 ∈ N(𝑥) do
11 𝒀𝑥,𝑦 ← 𝛼𝑥𝛼𝑦 (𝑑 − 2𝐷𝐻 (𝑸𝑥 ,𝑸𝑦)) ; ⊲ Eq.(14)&Thm.2

12 L ← compute loss and optimize the model ; ⊲ Eq’s.(15-17)

13 Function Gradient_estimator(L):
14 𝜕L

𝜕𝑽 ←
𝜕L
𝜕𝑸 ·

4

𝐻

∑𝑛
𝑖=1,3,5,··· cos(𝜋𝑖𝑽𝐻) ; ⊲ Eq.(12)

A Loss Landscape Visualization
We simulate the optimization trajectories of learnable embeddings

and visually compare the loss landscapes of non-hashing and hash-

ing versions in Figure 2(a). Specifically, we manually assign pertur-

bations [1, 43] to the embeddings on MovieLens dataset as: 𝑽 (𝑙)𝑥 =

𝑽 (𝑙)𝑥 ± 𝑝 · |𝑽 (𝑙)𝑥 | ·1(𝑙) . where |𝑽 (𝑙)𝑥 | represents the absolute mean of en-

tries in 𝑽 (𝑙)𝑥 and perturbationmagnitudes 𝑝 are from {0.01, · · · , 0.50}.
1 is an all-one vector. For pairs of perturbed node embeddings, we

plot their loss distribution accordingly. As we can observe, the

non-hashing version produces a flat loss surface, showing the local

convexity. On the contrary, the hashing counterpart has a bumping

and complex loss landscape.

B Notation Table and BGCH Pseudo-codes
We use bold uppercase and calligraphy characters for matrices and

sets. The non-bolded denote graph nodes or scalars. Key notations

and Pseudocodes are explained in Table 6 and Algorithm 1.

C Theoretical Proofs and Analyses
Theorem 1 (Feature Dispersion). Let 𝑽 (𝑙) = 𝑼1𝚺𝑼 T

2
, where 𝑼1

and 𝑼2 are unitary matrices and descending singular value matrix
𝚺 = diag(𝜎1, 𝜎2, · · · , 𝜎𝑐). Then E(𝑽̃ (𝑙)) = 𝑼1𝚺𝚺𝜇𝑼 T

2
where 𝚺𝜇 =

diag(𝜇1, 𝜇2, · · · , 𝜇𝑐)0<𝜇1···𝑐<1 is in ascending order.

Proof. We focus on comparing (𝑽 (0) , 𝑽 (0)), which can be easily

popularized to any convolution layer, i.e., (𝑽 (𝑙) , 𝑽 (𝑙)). Conducting

SVD decomposition on 𝑽 (0) , we have 𝑽 (0) = 𝑼1𝚺𝑼 T
2
, where 𝑼1 and

𝑼2 are unitary matrices of singular vectors. Then following 𝒑 (𝑘) =

𝑽 (0)
T
𝑽 (0)𝒑 (𝑘−1) , we shall have 𝒑 (𝑘) = (𝑽 (0) T𝑽 (0))𝑘𝒑 (0) . Replacing

𝑽 (0) with its SVD decomposition, we get the following equation:

𝒑 (𝑘) = (𝑼2𝚺2𝑘𝑼 T
2
)𝒑 (0) . (18)

Then we transform the projection matrix in Equation (4) as follows:

𝑷 =
𝒑 (𝑘)𝒑 (𝑘)

T

𝒑 (𝑘)T𝒑 (𝑘)
=
(𝑼2𝚺2𝑘𝑼 T

2
)𝒑 (0)𝒑 (0)T (𝑼2𝚺2𝑘𝑼 T

2
)

𝒑 (0)T (𝑼2𝚺2𝑘𝑼 T
2
) (𝑼2𝚺2𝑘𝑼 T

2
)𝒑 (0)

= 𝑼2𝚺
2𝑘

𝑼 T
2
𝒑 (0)𝒑 (0)

T
𝑼2

𝒑 (0)T𝑼2𝚺4𝑘𝑼 T
2
𝒑 (0)

𝚺
2𝑘𝑼 T

2
.

(19)

Let 𝒕 = 𝑼 T
2
𝒑 (0) , we can further simplify the above equation to:

𝑷 = 𝑼2𝚺
2𝑘 𝒕 𝒕T

𝒕T𝚺4𝑘 𝒕
𝚺
2𝑘𝑼 T

2
, where scalar 𝒕T𝚺4𝑘 𝒕 =

𝑐∑︁
𝑗=1

𝑡2𝑗 𝜎
4𝑘
𝑗 . (20)

Recalling that 𝑽 (0) = 𝑽 (0) (𝑰 − 𝜖𝑷) , E(𝑽 (0)) = 𝑽 (0) − 𝜖 · E(𝑽 (0)𝑷) .
Then we focus on the term E(𝑽 (0)𝑷) as follows:

E(𝑽 (0)𝑷) = 1

𝒕T𝚺4𝑘 𝒕
𝑼1𝚺

2𝑘+1 · E(𝒕 𝒕T) · 𝚺2𝑘𝑼 T
2

(21)

Since 𝒑 (0)∼N(0, 𝑰) and 𝑼2 is a unitary matrix, thus 𝒕∼N(0, 𝑰) . This
indices that each element of 𝒕 , e.g., 𝑡 𝑗 ∈ 𝒕 , is i.i.d. random variable.

Thus, E(𝑡 𝑗 · 𝑡𝑘) = 0 for 𝑗 ≠ 𝑘 and E(𝒕 𝒕T) is a diagonal matrix, i.e.,

E(𝒕 𝒕T) = diag(𝑡2
1
, 𝑡2
2
, · · · , 𝑡2𝑐) . We then have:

E(𝑽 (0)𝑷) = 𝑼1 · diag
(𝜎1𝑡

2

1
𝜎4𝑘
1∑𝑐

𝑗=1 𝑡
2

𝑗
𝜎4𝑘
𝑗

, · · · , 𝜎𝑐𝑡
2

𝑐𝜎
4𝑘
𝑐∑𝑐

𝑗=1 𝑡
2

𝑗
𝜎4𝑘
𝑗

)
· 𝑼 T

2
. (22)

Therefore,

E(𝑽̃ (0)) = 𝑼1 ·diag
(
𝜎1−𝜖

𝜎1𝑡
2

1
𝜎4𝑘
1∑𝑐

𝑗=1 𝑡
2

𝑗
𝜎4𝑘
𝑗

, · · · , 𝜎𝑐 −𝜖
𝜎𝑐𝑡

2

𝑐𝜎
4𝑘
𝑐∑𝑐

𝑗=1 𝑡
2

𝑗
𝜎4𝑘
𝑗

)
·𝑼 T

2
.

(23)

Let 𝜇𝑘 = 1 − 𝜖
𝑡2
𝑘
𝜎4𝑘
𝑘∑𝑐

𝑗=1
𝑡2
𝑗
𝜎4𝑘
𝑗

, with 𝜖 ∈ (0, 1) , obviously, 0 < 𝜇𝑘 < 1.

Furthermore, ∀𝑘1 ≥ 𝑘2, we have:

𝜇𝑘1 − 𝜇𝑘2 = 𝜖E(
𝑡2
𝑘1
𝜎4𝑘
𝑘1∑𝑐

𝑗=1 𝑡
2

𝑗
𝜎4𝑘
𝑗

−
𝑡2
𝑘2
𝜎4𝑘
𝑘2∑𝑐

𝑗=1 𝑡
2

𝑗
𝜎4𝑘
𝑗

) ≥ 𝜖𝜎4𝑘
𝑘1
· E(

𝑡2
𝑘1
− 𝑡2

𝑘2∑𝑐
𝑗=1 𝑡

2

𝑗
𝜎4𝑘
𝑗

) = 0,

(24)

as 𝜎4𝑘
𝑘2
≥ 𝜎4𝑘

𝑘1
, and 𝑡𝑘1 and 𝑡𝑘2 are i.i.d. random variables with same

normal distribution. Equation (24) proves that 𝜇𝑘 is monotone non-
decreasing in expectation, which completes the proof. □

Theorem 2 (Hamming Distance Matching). Given two hash
codes, we have (𝛼𝑥𝑸𝑢)T · (𝛼𝑦𝑸𝑦) = 𝛼𝑥𝛼𝑦 (𝑑 − 2𝐷𝐻 (𝑸𝑥 ,𝑸𝑦)).

Proof.

𝑸T
𝑥 · 𝑸𝑦 =

��{𝑖 | (𝑸𝑥)𝑖 = (𝑸𝑦)𝑖 = 1}
�� + ��{𝑖 | (𝑸𝑥)𝑖 = (𝑸𝑦)𝑖 = −1}��

−
��{𝑖 | (𝑸𝑥)𝑖 ≠ (𝑸𝑦)𝑖 }��

= 𝑑 − 2 ·
��{𝑖 | (𝑸𝑥)𝑖 ≠ (𝑸𝑦)𝑖 }�� = 𝑑 − 2𝐷𝐻 (𝑸𝑥 ,𝑸𝑦)),

(25)

which completes the proof. □

Training time complexity. As shown in Table 7, |E |, 𝐵, 𝑠 , and
𝑛 are the edge number, batch size, numbers of train iterations and

Bipartite Graph Convolutional Hashing for Effective and Efficient Top-N Search in Hamming Space WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 7: Traing time complexity.
Graph Norm. Feat. Disp. Conv. & Hash. Loss Comp. Grad. Est.

𝑂 (2 |E |) 𝑂 (2𝑐𝑠𝐾 |E |
2

𝐵
) 𝑂 (2𝑐𝑠𝐿 |E |

2

𝐵
) 𝑂

(
2𝑠 (𝑐+𝑑) |E |

)
𝑂 (𝑠𝑛𝑑 |E |)

Table 8: Complexity of space and computation.

Space cost #FLOP #BOP

float32-based 32 |V1 ∪ V2 |𝑑 𝑂
(
|V1 | · |V2 |𝑑

)
-

BGCH |V1 ∪ V2 | (𝑑 + 32(𝐿 + 1)) 𝑂
(
4 |V1 | · |V2 |

)
𝑂
(
|V1 | · |V2 |𝑑

)
Fourier Series decomposition terms. (1) The time complexity of

the graph normalization, i.e., 𝑫−
1

2𝑨𝑫−
1

2 , is 𝑂 (2|E |). (2) Before the
graph convolution, we first conduct the feature dispersion only for

the initial node embeddings, e.g., 𝑽 (0)𝑥 , which takes 𝑂 (2𝑐𝑠𝐾 |E |
2

𝐵
)

complexity. In our experiment, hyper-parameter𝐾 ≤ 3. (3) In graph

convolution, the time complexity is 𝑂 (2𝑐𝑠𝐿 |E |
2

𝐵
), where 𝐿 ≤ 4 is a

common setting [17, 19, 30, 52] to avoid over-smoothing [34]. (4)

As for the loss computation, BGCH takes 𝑂
(
2𝑠𝑐 |E |

)
to compute

L𝑟𝑒𝑐 and𝑂
(
2𝑠𝑑 |E |

)
for L𝑏𝑝𝑟 . (5) Lastly, BGCH takes𝑂 (𝑠𝑛𝑑 |E |) to

estimate the gradients for the 𝑑-dimension hash codes. Thus, thee

total complexity in total is quadratic to the graph edge numbers,

i.e., |E |, which is common in GCN frameworks.

Hash codes space cost. As shown in Table 8, the total space

cost of hash codes is 𝑂 (|V1 ∪ V2 | (𝑑 + 32(𝐿 + 1))) bits, supposing
that we use float32 for those rescaling factors in 𝐿 + 1 iterations.
Compared to the continuous embedding size, i.e., 32|V1∪V2 |𝑑 bits,

the theoretical size reduction ratio thus is:

𝑟𝑎𝑡𝑖𝑜 =
32|V1 ∪V2 |𝑑

|V1 ∪V2 | (𝑑 + 32(𝐿 + 1))
=

32𝑑

𝑑 + 32(𝐿 + 1) . (26)

As we just explained, stacking too many iteration layers will in-

curring performance detriment [34]. Hence, if 𝐿 ≤ 4 and 𝑑 = 1024,

BGCH can achieve considerable size compression.

Onlinematching.The original score formulation in Equation (14)

contains 𝑑 floating-point operations (#FLOPs). As shown in Table 8,

using Hamming distance matching can convert the most of floating-

point arithmetics to binary operations (#BOPs), with slightly more

#FLOPs for scalar computations, i.e., 4 ≪ 𝑑 .

D Experiment Setup Details
Datasets. We evaluate our model on the following six six datasets:

(1) MovieLens7 is a widely adopted benchmark between users and
movies. Similar to the setting in [21, 49], if the user 𝑥 has rated

item 𝑦, we set the edge 𝒀𝑥,𝑦 = 1, otherwise 𝒀𝑥,𝑦 = 0.

(2) Gowalla8 [19, 49, 52, 53] is the dataset [37] between customers
and their check-in locations collected from Gowalla.

(3) Pinterest9 is an open dataset for image recommendation be-

tween users and images. Edges represent the pins over images

initiated by users.

(4) Yelp201810 is from Yelp Challenge 2018 Edition, bipartitely

modeling between users and local businesses.

7
https://grouplens.org/datasets/movielens/1m/

8
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/gowalla

9
https://sites.google.com/site/xueatalphabeta/dataset-1/pinterest_iccv

10
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/yelp2018

(5) AMZ-Book11 is the bipartite graph between readers and books,
organized from the book collection of Amazon-review [18].

(6) Dianping12 is a commercial dataset between users and local
businesses recording their diverse interactions, e.g., clicking,

saving, and purchasing.

Evaluation metrics. To evaluate the model performance of

Hamming space retrieval over bipartite graphs, we directly deploy

our model BGCH in the basic user-item recommendation scenarios.

Specifically, given a query node, we apply the hash codes to match

Top-N answers for the query with the closest Hamming distances,

and thus adopt two widely-used evaluation protocols Recall@N

and NDCG@N to measure the ranking capability.

Implementations.We implement our models under Python 3.6

and PyTorch 1.14.0 on a Linux machine with 1 Nvidia GeForce RTX

3090 GPU, 4 Intel Core i7-8700 CPUs, 32 GB of RAM with 3.20GHz.

For all the baselines, we follow the official hyper-parameter settings.

We apply a grid search if lacking recommended model settings. The

dimension is searched in {32, 64, 128, 256, 512}. The learning rate 𝜂

is tuned within {10
−3, 5 × 10−3, 10−2, 5 × 10−2} and the coefficient

𝜆 is tuned among {10
−5, 10−4, 10−3}. We initialize and optimize all

models with default normal initializer and Adam optimizer [29].

Baselines. All baselines studied in this paper are introduced as:

(1) LSH [14] is a classical hashing method. LSH is proposed to

approximate the similarity search for massive high-dimensional

data and we introduce it for Top-N object search by following

the adaptation in [49].

(2) HashNet [4] is a representative deep hashing method that

is originally proposed for multimedia retrieval tasks. Similar

to [49], we adapt it for graph data by modifying it with the

general graph convolutional network.

(3) CIGAR [28] is a state-of-the-art neural-network-based frame-

work for fast Top-N candidate generation in recommendation.

CIGAR can be further followed by a full-precision re-ranking

algorithm. And we only use its hashing part for fair comparison.

(4) Hash_Gumbel is a variance of BGCH with Gumbel-softmax

for hash encoding and gradient estimation [24, 42]. Specifically,

we first expand each embedding bit to a size-two one-hot en-

coding. Then it utilizes the Gumbel-softmax trick to replace

sign(·) as relaxation for binary hash code generation.

(5) HashGNN [49] is the state-of-the-art learning to hash based

method with GCN framework. We use HashGNNℎ to denote

the vanilla version with hard encoding proposed in [49], where

each element of user-item embeddings is strictly binarized. We

use HashGNN𝑠 to denote its proposed approximated version.

(6) NeurCF [20] is one representative deep neural network model

for collaborative filtering in recommendation.

(7) NGCF [52] is one of the representative graph-based recom-

mender models with collaborative filtering methodology.

(8) DGCF [53] is a state-of-the-art graph-based model that learns

disentangled user intents for better recommendation.

(9) LightGCN [19] is another latest state-of-the-art GCN-based

recommender model that has been widely evaluated.

11
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/amazon-book

12
https://www.dianping.com/

https://grouplens.org/datasets/movielens/1m/
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/gowalla
https://sites.google.com/site/xueatalphabeta/dataset-1/pinterest_iccv
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/yelp2018
https://github.com/gusye1234/LightGCN-PyTorch/tree/master/data/amazon-book
https://www.dianping.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries and Problem Formulation
	4 BGCH: Methodology
	4.1 Overview
	4.2 Latent Feature Dispersion
	4.3 Adaptive Graph Convolutional Hashing
	4.4 Fourier Serialized Gradient Estimation
	4.5 Score Prediction and Model Optimization

	5 Experimental Evaluation
	5.1 Experiment Setup
	5.2 Top-N Hamming Space Query (RQ1)
	5.3 Comparing to FT32-based Models (RQ2)
	5.4 Ablation Study (RQ3)
	5.5 Resource Consumption Analysis (RQ4)
	5.6 Study of Fourier Gradient Estimation (RQ5)

	6 Conclusion
	Acknowledgments
	References
	A Loss Landscape Visualization
	B Notation Table and BGCH Pseudo-codes
	C Theoretical Proofs and Analyses
	D Experiment Setup Details

