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ABSTRACT
With the growing popularity of smartphone photography in recent

years, web photos play an increasingly important role in all walks

of life. Source camera identification of web photos aims to establish

a reliable linkage from the captured images to their source cameras,

and has a broad range of applications, such as image copyright

protection, user authentication, investigated evidence verification,

etc. This paper presents an innovative and practical source identifi-

cation framework that employs neural-network enhanced sensor

pattern noise to trace back web photos efficiently while ensuring

security. Our proposed framework consists of three main stages:

initial device fingerprint registration, fingerprint extraction and

cryptographic connection establishment while taking photos, and

connection verification between photos and source devices. By

incorporating metric learning and frequency consistency into the

deep network design, our proposed fingerprint extraction algorithm

achieves state-of-the-art performance on modern smartphone pho-

tos for reliable source identification. Meanwhile, we also propose

several optimization sub-modules to prevent fingerprint leakage

and improve accuracy and efficiency. Finally for practical system

design, two cryptographic schemes are introduced to reliably iden-

tify the correlation between registered fingerprint and verified

photo fingerprint, i.e. fuzzy extractor and zero-knowledge proof

(ZKP). The codes for fingerprint extraction network and benchmark

dataset with modern smartphone cameras photos are all publicly

available at https://github.com/PhotoNecf/PhotoNecf
1
.
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1 INTRODUCTION
With the explosive growth of social sharing platforms like Insta-

gram, Twitter, TikTok, etc., a massive amount of web photos and

video are generated. Consequently, source camera identification

that acquires the photographing device information of an arbitrary

web image can be availably utilized on wide range of applications.

As shown in scenarios from Figure 1, source identification can effec-

tively determine the identity of original creator of the web photos

to prevent piracy and protect copyright [18, 53, 56]. By verifying

the photo traceability [29], this framework can also evaluate the

trustworthiness of the sensed data. In the case of investigation and

evidence collection, source identification can also help to determine

the photography device, thereby assisting in product traceability

[6, 48, 60] and media forensics [15, 16, 44] cases. In addition, source

identified devices of collected images can also be served as an im-

portant factor for user authentication system [20, 38, 59].

In order to achieve this, previous works utilize sensor pattern

noise as the corner stone of digital image forensics [7, 40]. This

sensor pattern noise, also known as camera fingerprint, is presented

in each photo and is only associated with the source device rather

than high-level semantic content of the photo [36]. In detail, digital

images can be traced back to their sensors based on unique noise

characteristics. Minute manufacturing imperfections are believed

to make each sensor physically unique, leading to the presence

of a weak yet deterministic sensor pattern noise (SPN) in each

photo captured by the same sensor [17]. This fingerprint, previ-

ously referred to as photo-response non-uniformity (PRNU), can be
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Figure 1: Three main stages of source identification frame-
work mentioned in the Abstract, and several example appli-
cation scenarios of source identification systems.

estimated from images captured by a specific camera for purpose

of source camera identification, in which a noise signal extracted

from a probe image of unknown provenance is compared against

pre-computed fingerprint estimates from candidate cameras [45].

The PRNU is often estimated in the form of the noise residual

of an image. The noise residual can be extracted from an image

by simply subtracting the denoised image from the original image.

Most previous methods obtain denoised image by applying some

high-pass filters in the spatial or transform (Fourier, DCT, wavelet)

domain [14, 25, 27, 37]. In the conventional PRNU extraction algo-

rithm [40], the denoising filter adopts the wavelet-based denoising

filter which will be introduced in Section 2.2. Noise residuals can

be also used in a blind context (no external training) to reveal local

anomalies that indicate possible image tampering [8, 41].

In practice, we still have to solve the following challenges based

on PRNU: 1. With the widespread use of smartphones and gradual

development of image signal processor (ISP) [61], will the perfor-

mance of conventional PRNU algorithm still be guaranteed? 2. In

the practical application of PRNU, there are still problems of finger-

print leakage, low accuracy and efficiency [22]. 3. How to effectively

apply PRNU algorithm to real scenarios of source identification

while ensuring high reliability and security?

To address the above issues, we propose the following solutions:

First, we propose a novel camera fingerprint extraction algorithm

based on denoising neural network. In contrast to previous network

design with only supervision to approximate the pre-computed

PRNU fingerprint [33], we further leverage a Deep Metric Learning

(DML) framework based on a triplet-wise scheme, which has been

shown to be effective in a variety of cases [21, 35, 57]. Meanwhile,

we also supplement an additional frequency loss [30] to realize

frequency consistency between the predicted noise residual and pre-

computed PRNU fingerprint, thereby further improving the stability

of fingerprint extraction. Finally, considering the existence of color

filter array (CFA) in the imaging process, we introduce Pixel Shuffle

operation [51] into our network. Based on our proposed neural

enhanced algorithm, camera fingerprint can be accurately extracted

from limited number of RAW photos and it shows significantly

higher performance than PRNU results.

Second, we directly extract camera fingerprint from RAW images

rather than other compressed formats such as JPEG. Meanwhile,

only the splitted part of photo (e.g. only the even lines of pixels) are

made public, and the remainder pixels of the photo are privately

utilized for fingerprint extraction and comparipliton. Therefore,

the camera fingerprint which is extracted from private part can

not only be survived from ISP process, but also cannot be leaked

for adversarial attacks. Meanwhile, under the theoretical guidance

of Cramer–Rao lower bound (CRLB) on the fingerprint variance

[7], we further propose two optimization sub-modules (block filter-

ing and burst integration) to improve fingerprint accuracy which

can also be broadly applied to different fingerprint extraction algo-

rithms. Besides, we also utilize binary quantization of fingerprints

[4] to improve computational efficiency.

Lastly, we design two novel source identification systems that

rely on camera fingerprint extraction algorithm and cryptography

schemes. In the first design, the camera fingerprint is compressed

to compose a stable private key, and the detailed implementation is

similar to PRNU application on user authentication [55]. According

to the verification of signature information based on compressed

fingerprint, the source device of photo can be easily obtained. The

second scheme is to combine zero-knowledge proof (ZKP) [23]

with camera fingerprint. ZKP protocol (e.g., zkSNARKs [5, 26])

formulates the complete processes (e.g., noise extraction, fingerprint

matching, digest generation and matching, etc.) into circuit, creates

proof and verifies the proof, therefore achieving traceability and

verification of the whole process without data and privacy leakage.

With saving source camera’s public key/hash address as a meta

data, the generated signature/proof flows with web image on the

Internet, the image source identification can be verified at any time.

The contributions of this work can be summarized as follows:

• We have made a significant progress on the conventional

camera fingerprint algorithm, reducing the identification

error rate of models from 40.62% to 2.345%.

• In order to ensure the privacy and performance of the camera

fingerprint, we propose several additional beneficial sub-

modules and prove their validity for error rate < 0.5%.

• We release a new dataset for benchmark with photos taken

from recently announced smartphones. This dataset contains

1,665 photos taken from 15 iPhone cameras and 1,276 photos

taken from 15 Android cameras, both in RAW format.

• We incorporate cryptography schemes into the overall frame-

work design to improve the stability and security of the

system, and complete their project implementation.

2 BACKGROUND
2.1 Sensor noise fingerprints
Due to sensor element manufacturing imperfections, each camera

photo does not only contain the original noise-free image content

𝐼0, but also the sensor pattern noise 𝐾 as a camera-specific, mul-

tiplicative noise factor. A common simplified model of the image

capturing process assumes the final image 𝐼 to take the form [17]

𝐼 = 𝐼0 + 𝐼0𝐾 + Γ (1)
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where Γ reflects a variety of other additive noise terms. Due to its

multiplicative nature, the pattern noise is not present in images

with dark scene contents (i. e., 𝐼0 ≈ 0). Extensive experiments have

demonstrated that the noise factor𝐾 represents a unique and robust

camera fingerprint [24] that can be estimated from a number of

images 𝐼1, ..., 𝐼𝑁 taken with a given camera of interest. The standard

approach utilizes a denoising filter 𝐹 (·) and models noise residuals

𝑊𝑘 = 𝐼𝑘 − 𝐹 (𝐼𝑘 ) as in Fridrich’s work [17]:

𝑊𝑘 = 𝐼𝑘𝐾 + Θ𝑘 (2)

Modeling noise Θ subsumes Γ and residues of the image content

due to inherent imperfections of the denoising filter in separating

image content from noise. Adopting an independent and identically

distributed (i.i.d.) Gaussian noise assumption for Θ, the maximum

likelihood estimator of 𝐾 is [17]

𝐾̂ =

∑𝑁
𝑘=1

𝑊𝑘 𝐼𝑘∑𝑁
𝑘=1
(𝐼𝑘 )2

(3)

Given a query image 𝐽 of unknown provenance, camera identi-

fication then works by computing the residual𝑊𝐽 = 𝐽 − 𝐹 (𝐽 ),and
evaluating its similarity to a camera fingerprint estimate against a

set threshold 𝜏 ,

𝜙
𝑊𝐽 ,𝐾̂

= sim(𝑊𝐽 , 𝐾̂) > 𝜏 (4)

Suitable similarity measures for this task are normalized cross-

correlation or peak-to-correlation energy [17, 40].

2.2 Conventional PRNU extraction
According to Section 2.1, the main algorithm process to obtain

the noise pattern is the denoising filter. In the conventional PRNU

extraction proposed by Lukas et al. [40], it is constructed in the

wavelet domain. Image default size is a grayscale 512×512 image.

Larger images can be processed by multiple blocks and color images

are denoised for each color channel separately. The high-frequency

wavelet coefficients of the noisy image are modeled as an additive

mixture of a locally stationary i.i.d. signal with zero mean (the noise-

free image) and a stationary white Gaussian noise 𝑁 (0, 𝜎2
0
) (the

noise component). The denoising filter is built in two stages. In the

first stage, the local image variance is estimated, while in the second

stage the local Wiener filter is used to obtain an estimation of the

denoised image in the wavelet domain. 𝜎0 is set to 5 (for dynamic

range of images 0, ..., 255) to be conservative and to make sure

that the filter extracts substantial part of the PRNU noise even for

cameraswith a large noise component. The detailed implementation

can be inferred in the work by Lukas et al. [40].

2.3 Limitation of current fingerprint
PRNU has been proven effectively on cameras in the early years

[24]. However, as the popularity of smartphones embedded with

computational photography process, the effectiveness of PRNU

algorithm needs to be further verified or improved. Meanwhile, as

mentioned earlier, PRNU algorithm requires a registration process

of 𝑁 images, which is unrealistic in many scenarios. Therefore,

the accuracy performance and operational feasibility are the main

challenges for applications of camera fingerprint.

On the other hand, the system security also needs to be consid-

ered against fingerprint copy and abusing attack. In this case, the

objective of the adversary is to impersonate a legitimate user and

authorize a malicious request [3]. We also assume that the adver-

sary can access the public photos that the victim captures with her

smartphone. Those images may be hard to be kept private anyway,

for example, pictures shared through online social networks such

as Wechat or Facebook. Therefore, an adversary could estimate

the victim smartphone’s fingerprint from public images and embed

the obtained fingerprint into an image captured by her own device.

Hence, the security of camera fingerprint algorithm in practical

scenarios becomes another critical concern.

3 FINGERPRINT EXTRACTION NETWORK
As mentioned in Section 2.2, the main component of fingerprint

extraction is the denoising part to obtain the noise residual𝑊𝑘
of the image. Our goal is to improve the noise residual extraction

process, thereby enhancing the individual device sensor artifacts for

better identification results. Therefore, the algorithm takes a generic

image as input and produces a suitable noise residual as output

for next-step fingerprint matching. In this section, we describe

our proposed fingerprint extraction network with unique loss and

training design. The network overview is indicated in Figure 2.

For the target of obtaining the accurate noise residual for high

confidence matching, the main challenge is the difficulty to obtain

the ground truth (GT) pattern noise signals, which theoretically

requires accurate instruments to measure [58]. In order to avoid

the hardware-based measurement cost, we propose two methods

to address this issue, i.e., deep metric learning and frequency corre-

spondence with pseudo GT.

Inspired from deep metric learning with successful applications

on image embedding, we create a collection of training instances

organized in the forms of triplets. Each triplet contains a query

image 𝐼𝑞 , a positive image 𝐼𝑝 (a photo from the same camera as the

query) and a negative image 𝐼𝑛 (a photo from a different camera

as the query). For the correlation distance on the embedding space

after noise extraction network, the loss of a triplet (𝐼𝑞, 𝐼𝑝 , 𝐼𝑛) is :
𝐿1 = max(0, d[DN(𝐼𝑞),DN(𝐼𝑝 )] − d[DN(𝐼𝑞),DN(𝐼𝑛)] + 𝛾) (5)

where DN is a image denoising backbone network with residual

noise as output,𝛾 is amargin parameter to ensure a sufficiently large

difference between the positive-query distance and negative-query

distance, and d[·, ·] is the similar distance between noise residuals

which can be measured with Euclidean distance or cosine similarity.

We minimize this loss, which pushes the noise embedding distance

from same camera d[DN(𝐼𝑞),DN(𝐼𝑝 )] to 0 and d[DN(𝐼𝑞),DN(𝐼𝑛)]
to be greater than d[DN(𝐼𝑞),DN(𝐼𝑝 )] + 𝛾 . In addition, we can also

utilize batch hard strategy [28] to search hardest positive and hard-

est negative within a batch of image dataset for each query sample

to yield better performance. With an appropriate triplet generation

strategy in place, the model will eventually learn a noise representa-

tion (fingerprint) that improves source identification performance.

Another optimization approach for overcoming the difficulty of

obtaining ground truth sensor pattern noise signal is to approxi-

mate the fingerprint using conventional PRNU algorithm, which

can guide and optimize the network at the early training stage.

We refer to the fingerprint extracted by the PRNU algorithm as

pseudo GT. Here, we can obtain a more accurate approximation

of fingerprint by multiple photos as Eq.(3), and this calculation
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Figure 2: Overview of fingerprint extraction network.
Figure 3: Three example fingerprints
in spatial and frequency domain.

can be processed offline so as not to slow down the training time.

An import observation is that most of camera fingerprints are not

visually distinguishable from each other as can be shown in Figure

3, but in frequency domain they are apparently different to easily

tell apart. Inspired from focal frequency loss for image reconstruc-

tion and synthesis in the work by Jiang et al. [30], we utilize the

frequency distance between predicted residual noise of image 𝐼𝑞

and estimated PRNU 𝐾̂ as the second part of loss:

𝐿2 = d[𝔉(DN(𝐼𝑞)),𝔉(𝐾̂)] (6)

where𝔉 denotes 2D discrete Fourier transform, and here we directly

use Euclidean distance in d[·, ·] as consistent with frequency loss

implementation in [30]. 𝐾̂ is the fingerprint calculated as Eq.(3) of

the same camera as image 𝐼𝑞 .

Therefore, the final loss of our proposed network is 𝐿1 + 𝐿2. Be-
sides the unique loss design, we also introduce some other efficient

operations to further improve the fingerprint extraction accuracy.

Considering the Bayer filter mosaic of color filter array (CFA) of the

camera sensor, one of the inductive bias of convolution layer, i.e.,

translation invariance, can actually affect the network performance.

To solve this problem, we introduce the Pixel Shuffle operation [51]

which is commonly used in super-resolution scenarios into our

network, as shown in Figure 2. We first implement sub-pixel con-

volutions with a stride of 2 for downsampling, therefore obtaining

multiple channels and the same color filter of each channel. At last

step of the network, we utilize efficient sub-pixel convolution with

a stride of 1/2 and obtain noise residual with the same image size

as input.The entire network design is also indicated in Figure 2.

4 FINGERPRINT OPTIMIZATION MODULES
In this section, we further optimize fingerprint extraction in terms

of security, algorithm effectiveness and efficiency.

Leakage prevention. As mentioned before, an adversary could

estimate the victim smartphone’s fingerprint from public images

and embed the obtained fingerprint into an image captured by

her own device. Therefore, the main challenge is not to reveal fin-

gerprints (directly or indirectly) while maintaining the dominated

information of the captured images. One solution is to extract the

fingerprint from RAW image and obtain its residual noise which is

dominated by high-frequency components. Since web photos are

usually processed with JPEG compression as a low-pass filter, the

high-frequency components are unavailable or severely degraded

in publicly available images, and fingerprint can only be estimated

if one has access to the RAW data. In addition, we also spatially

split the original images into two parts that are adjacent to each

other on pixels, as shown in Figure 4(a). Only part of original image

(i.e., even rows) is opened to public and remainder part (i.e., odd

rows) is privately used for fingerprint calculation and comparison.

Hence, based on the public even-part of image, the original photo

can be easily obtained by upsampling, and the adversary cannot

derive the fingerprint in private (odd) part from the public web

photos. Further on in this paper, we refer the odd rows of photo as

RAW odd photo, and the even rows of photo as RAW even photo.

Accuracy improvement. The estimated camera fingerprint 𝐾̂ can

be derived from Eq.(3). By computing the Cramer–Rao lower bound

(CRLB) [7] on the variance of 𝐾̂

𝑣𝑎𝑟 (𝐾̂) ≥ 1

−𝐸 [ 𝜕
2𝐿 (𝐾)
𝜕𝐾2

]
=

𝜎2∑𝑁
𝑘=1
(𝐼𝑘 )2

(7)

Eq.(7) informs us what images are best for the estimation of 𝐾̂ .

The luminance (pixel value) of image should be as high as possible

but not saturated, and larger 𝑁 is preferred for higher lower bound

of 𝐾̂ . Based on these two factors, we propose block filtering and

burst integration to further enhance the fingerprint. As for block

filtering, we split the original image into multiple small blocks (e.g.,

64 × 64) and obtain the individual weight of each block according

to their average pixel luminance. The weight mask based on lumi-

nance can be float values or binary scores on selected threshold or

fixed percentage, as shown in Figure 4(b). Then the similarity mea-

sure is the weighted sum of normalized correlation of each block.

The detailed parameters and experiments are inferred in Section

6. Secondly, burst integration simply estimates fingerprints from

continuously taken 𝑁 images instead of only one image, which can

suppress other random noises such as scatter noise, readout noise.

As shown in Figure 4(c), we also utilize maximum likelihood estima-

tor (MLE) similar to Eq.(3) to obtain the optimized fingerprint from

multiple burst photos. Nowadays, burst photography has become

an important technology in computational imaging inside ISP and

this can be easily realize by bottom layer API [10].

Computational cost reduction. Sensor fingerprints are usually
large in dimension, especially for millions of pixels in today’s smart-

phones camera. This makes fingerprint process and matching slow

due to the large computational cost, leading to impractical imple-

mentation for later cryptographic scheme in Section 5. Here, we

adopt the binary quantization proposed in the work by Bayram et

al. [4] to reduce storage requirements and computation time while

still maintaining an acceptable matching accuracy. In detail, given
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Figure 4: Illustration of sub-modules of (a)spatially splitting,
(b)block filtering, and (c)burst integration.

a real-valued fingerprint 𝐾𝑅 , the binary-quantized version 𝐾𝐵 is:

𝐾𝐵𝑖 =

{
+1, 𝐾𝑅

𝑖
≥ 0

−1, 𝐾𝑅
𝑖
< 0

(8)

where 𝑖 is the pixel index on the fingerprint. According to experi-

ments in the work by Bayram et al. [4], this binarization of sensor

fingerprints can achieve 21 times speedup in loading to memory,

and 9 times faster computation. In addition, we also provide a sim-

plified version of fingerprint extraction procedure and put it into

ZKP circuit, which will be introduced in Section 5. After incor-

porating these optimization sub-modules, the overall fingerprint

extraction procedure is indicated in Figure 5. In real applications

(e.g., copyright trading), we verify the public RAW even photo and

its connection to the fingerprint. The downstream produced data

of RAW even photo such as its irreversible compression (e.g., JPEG)

can be verified using near-duplicate imagematchingmethodswhich

is beyond the scope of this paper.

Figure 5: Overall fingerprint extraction procedure including
optimization sub-modules.

5 SOURCE IDENTIFICATION SYSTEM
In this section, we propose two source identification systems which

integrates previously proposed fingerprint extraction network and

optimization modules. We also incorporate cryptographic schemes

to achieve the complete scheme design with higher reliability and

security, so that it can be applied in real scenarios.

Both these two practical schemes shown in Figure 6 contain

three stages, i.e., registration stage for obtaining reliable device

fingerprint with one or more photos as input, generation stage for

taking one photo and uploading the photo together with identifica-

tion script (signature or ZKP script) to public, verification stage for

identifying the source camera of photo. Notably, registration stage

only needs to be executed once for each device, and the verification

stage can be executed anytime, anywhere and many times.

Figure 6: Two proposed source identification schemes based
on fuzzy extractor and zero-knowledge proof respectively.

5.1 Fuzzy extractor solution
Our first solution is deeply inspired by the PRNU-based key man-

agement scheme presented by Valsesia et al. [55]. We present a

PRNU based digital signature based authentication scheme. Our

main idea is to use the camera fingerprint of a user’s device as

a physical unclonable function (PUF), which enables a hide-and-

recover scheme of user’s private key 𝑠𝑘 in a great change to success

if user’s private key 𝑠𝑘 is encoded with polar coding [2] and the

user is capable to extract similar fingerprints from same device.

In the registration stage, the system extracts the fingerprint from

a certain number of photos (single photo or multiple photos registra-

tion) based on the fingerprint extraction method. In the extraction

we use only the odd rows of photos to prevent information leakage

as presented in Section 4. Instead of directly sending the fingerprint

consisting millions of real numbers, the system first compresses

it by previously mentioned binarization and random projection
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[54]. The system also stores some side information related to the

seed of the pseudo random number generator and the positions of

the entries with largest magnitude (outliers) within those random

projections, which will be then used in the generation stage. The

exact algorithm as well as the role of the outliers will be made clear

in the following sections. After that the compressed fingerprint is

processed by a fuzzy extractor [11, 55]. Namely, the system:

• Firstly, generate a key pair consisting of a private key 𝑠𝑘

and public key 𝑝𝑘 , (𝑠𝑘, 𝑝𝑘) ← KeyGen(1𝜆), where 𝜆 is the
security parameter, here we let 𝜆 be 128 for 128-bit security.

• Next, generate a secure sketch 𝑠 of 𝑠𝑘 , 𝑠 = 𝐾 ⊕ C(𝑠𝑘), C
denotes an (𝑚, 𝜆) error correcting polar code where𝑚 is bit

length of fingerprint 𝐾 .

• Then the system registers the public key 𝑝𝑘 to the Verifier,

stores the secure sketch 𝑠 publicly or locally and discards

the private key 𝑠𝑘 .

In the generation stage, once the user takes a photo the system re-

produces a fingerprint 𝐾 ′ by our proposed deep extraction network

and compresses it using random projection [54] according to the

stored side information. The system then uses the fuzzy extractor

scheme for reproducing the private key string from the compressed

fingerprint of 𝐾 ′ and the secure sketch 𝑠 , 𝑠𝑘 ′ = D(𝐾 ′ ⊕ 𝑠), D de-

notes the decoding algorithm of the polar error correcting code

[1]. Then the system signs the RAW even photo with private key

𝑠𝑘 to produce a signature 𝜔 using digital signature schemes such

as ECDSA, SM2 [31, 42] etc. If the newly taken photo provides

a version of the compressed fingerprint sufficiently close to the

registered one, then the system can reproduce the same private key

of the registration stage.

In the verification stage, the verifier verifies the signature𝜔 with

the received RAW even photo and public key 𝑝𝑘 . If the verification

algorithm passes, it indicates that the reproduced private key is

identical to the one discard in the registration phase; otherwise the

reproduction of private key failed which means the two fingerprints

are not close to each other.

5.2 Zero-knowledge proof solution
Different from signature based authentication scheme that the re-

alization of source identification is based on the device owner to

honestly signing photos from his own camera, our second zero-

knowledge proof solution enables the device owner(prover) to con-

vince all verifiers that the photos presented are from certain reg-

istered source camera if the prover is capable to produce a valid

proof of the predetermined zero-knowledge argument.

In the registration stage, the prover again extracts the fingerprint

from a set of photos based on the conventional PRNU extraction

mehtod. Then the prover computes the digest ℎ = ℎ𝑎𝑠ℎ(𝐾) of the
device fingerprint𝐾 via cryptographic secure hash function such as

SHA256 [46]. The digest is sent to verifier as the identity of camera.

The prover stores the device fingerprint 𝐾 .

In the generation stage, once the user takes a photo from the

source camera the prover proves that the photo is indeed taken from

the camera with registered identity. To achieve such obligation, we

introduce a ZKP solution, the solution consists of two roles, prover

and verifier, where the prover wants to convince the verifier that

some statements are true without revealing.

In our case, the statement is very complicated thus industrial ZKP

protocol for general statements (e.g., zkSNARKS[13]) is adopted.

Our goal is to translate the process of generating matching digest

of fingerprint from RAW photo into arithmetic statements and thus

can be proved via zkSNARKs. The statements includes:

• The prover has a RAW photo 𝑃 that is spatially split into an

RAW odd photo 𝑂 and an RAW even photo 𝐸.

• the RAW even photo 𝐸 is identical to the photo 𝐸 ′ which
will be sent to verifiers.

• There exists a denoised photo 𝐷 that is consistent with the

RAW odd photo𝑂 . The consistency check procedure ensures

sufficient similarity of the low-level image features between

two photos which we will describe in detail.

• The pixel-wise subtraction of the two photos 𝑂 − 𝐷 (i.e.,

reproduced fingerprint 𝐾 ′) is correlated with the registered

fingerprint 𝐾 .

• The digestℎ′ (via e.g., SHA256) of a fingerprint𝐾 ′ is identical
to the registered digest ℎ (via e.g., SHA256).

The overall statement can be summarized as follows:

Π𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 = {𝑃,𝑂, 𝐸, 𝐸 ′, 𝐷, 𝐾, 𝐾 ′, ℎ, ℎ′ |
𝑃 = {𝑂, 𝐸}, 𝐸 ≈ 𝐸 ′

1 = CheckConsistency(𝐷,𝑂),
𝐾 ′ = (𝑂 − 𝐷) ≈ 𝐾,ℎ = ℎ′ = hash(𝐾)}

(9)

To prove the statement above, user has the private inputs includ-

ing 𝐾, 𝑃, 𝐷 as witness and ℎ, 𝐸 ′ as public inputs, the prove system
outputs a proof script 𝑝𝑠 .

We would incur a large computational cost if we kept extracting

the denoised image in ZKP circuit. To address this problem, we

design a consistency checking procedure that excludes the heavy ex-

traction network from ZKP circuit while approximately preserving

the correctness and completeness. Assuming the denoised image is

already extracted and passed as an input of ZKP circuit, the gen-

eration process confirms two necessary conditions: (1) the noise

pattern (i.e., the original image subtract the denoised image) is cor-

related with the registered camera fingerprint; (2) and in addition,

the denoised image is consistent with the original odd image. For

the first condition, we use normalized cross-correlation to measure

the correlation. For the second condition, we design a consistency

checking procedure as show in Algorithm 1.

Algorithm 1: Consistency Checking Procedure

1 Inputs: odd image 𝑂 and denoised image 𝐷

2 Grid partition 𝑂 into 𝑁 disjoint patches {𝑜𝑘 |𝑘 ∈ 1..𝑁 }
3 Grid partition 𝐷 into 𝑁 disjoint patches {𝑑𝑘 |𝑘 ∈ 1..𝑁 }
4 𝑐𝑜𝑢𝑛𝑡 = 0

5 for each (𝑜𝑘 , 𝑑𝑘 ) /* 𝑜𝑘 and 𝑑𝑘 are in same location */ do
6 if 𝐶1(𝑜𝑘 , 𝑑𝑘 ) ≥ 𝐶1_𝑡ℎ𝑙𝑑 or 𝐶2(𝑜𝑘 , 𝑑𝑘 ) ≥ 𝐶2_𝑡ℎ𝑙𝑑 then
7 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1 // 𝑜𝑘 is consistent with 𝑑𝑘

8 end
9 if 𝑐𝑜𝑢𝑛𝑡 ≥ 𝑐𝑜𝑢𝑛𝑡_𝑡ℎ𝑙𝑑 then

10 return True // 𝐷 is consistent with 𝑂

11 else return False // 𝐷 is inconsistent with 𝑂
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In Algorithm 1, we first grid partition the odd image 𝑂 and the

denoised image 𝐷 into disjoint patches (practically we use patch

size of 128 × 128). Then for each patch pair (𝑜𝑘 , 𝑑𝑘 ) with the same

location, we calculate the values of consistency coefficients 𝐶1 and

𝐶2 which we define as follows.

𝐶1(𝑜𝑘 , 𝑑𝑘 ) = 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑆𝑜𝑏𝑒𝑙 (𝑜𝑘 )),
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑆𝑜𝑏𝑒𝑙 (𝑑𝑘 )))

(10)

𝐶2(𝑜𝑘 , 𝑑𝑘 ) =𝑚𝑎𝑥{𝐼𝑜𝐴(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑃𝑜𝑜𝑙 (𝑜𝑘 )),
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑃𝑜𝑜𝑙 (𝑆𝑜𝑏𝑒𝑙 (𝑑𝑘 )))),

1 − 𝐼𝑜𝐴(𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑃𝑜𝑜𝑙 (𝑜𝑘 )),
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝑃𝑜𝑜𝑙 (𝑆𝑜𝑏𝑒𝑙 (𝑑𝑘 )))) }

(11)

Given 𝑆𝑜𝑏𝑒𝑙 is a sobel operator [50] with kernel size of 3×3,
𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is a thresholding operator [47] with mean pixel value as

the threshold, 𝑃𝑜𝑜𝑙 is a mean pooling operator [43] and 𝐼𝑜𝐴 is the

intersection over pixel-wise area defined as follows (X and Y are

two-dimensional binary matrices with the same size).

𝐼𝑜𝐴(𝑋,𝑌 ) = 1 − |𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑥𝑜𝑟 (𝑋,𝑌 ) ||𝑋 | (12)

As described in Eq.(10) and Eq.(11), the computational cost of

𝐶1 and 𝐶2 involves merely some linear operations which is much

less than fingerprint extraction network. In Appendix D, we visual-

ize the ability of consistency coefficients which shows 𝐶1 focuses

on close-up consistency while 𝐶2 focuses on contour consistency.

Collaboratively using 𝐶1 and 𝐶2 can detect almost all the near

duplicate patches (i.e., image patches and their denoised version).

In the verification stage, the verifier receives the proof script 𝑝𝑠 ,

the RAW even photo 𝐸 ′ and the registered digest ℎ then checks

the proofs for alleged statements. A successful verification of proof

script indicates that either the device honestly takes the RAW photo

𝑃 (from which 𝐸 ′ is spatially splitted) from the registered source

camera. If the verification failed, then it tells that the RAW even

photo 𝐸 ′ and the source camera are not connected. In the next

subsection, we analyze that forging the proof script is difficult.

5.3 Security analysis
We analyze security issues on our proposed solutions individually

from cryptographic side. Different from performance analysis of fin-

gerprint extraction algorithms in Section 6, cryptographic security

protects our solution against attackers in real applications.

Security of Fuzzy Extractor Solution: Our fuzzy extractor

solution works under an important assumption that attacker do

not have access to the source camera, RAW odd photo, fingerprint

𝐾 and secret key 𝑠𝑘 . In order to forge a signature 𝜔 , the attacker

must be able to acquire either the secrete key 𝑠𝑘 or the fingerprint

𝐾 extracted from RAW odd photo. As we prove in Appendix C,

probability of success of this attack can be upper bounded as follows.

Theorem 5.1. If an attacker do not have access to the source cam-
era, RAW odd photo 𝑂 , fingerprint 𝐾 and private key 𝑠𝑘 , then the
probability for the attacker to successfully forge a cryptographic secure
signature (e.g., ECDSA, SM2 etc.,) with public key 𝑝𝑘 is 𝑃𝑎 ≤ 1

2
𝜆−1

where 𝜆 is the security parameter.

Security of Zero-knowledge Proof Solution: Our ZKP solu-

tion works under an important assumption that attacker do not

have access to the fingerprint 𝐾 which is secretly protected by the

device. Recall that our ZKP solution requires the prover to prove

the statement (9), an attacker must be able to either forge the public

inputs that complies with the statement or convince the verifier of a

false statement. The latter indicates that the attacker is able to break

the soundness property of underlying ZKP system, which is beyond

the scope of this paper. As we prove in Appendix C, probability of

success of this attack can be upper bounded as follows.

Theorem 5.2. Let ℎ𝑎𝑠ℎ(·) be a cryptographic secure hash function
(e.g., SHA256, SHA3 [12] etc.), if the attacker do not have access to
fingerprint 𝐾 and can not break the pre-image resistance property of
ℎ𝑎𝑠ℎ(·) [49], then the attacker can forge a prove of statement (9) with
probability 𝑃𝑏 ≤ 1

2
𝑚 + 1

2
2·𝜆 where𝑚 is the bit length of fingerprint 𝐾 ,

𝜆 is the security parameter and a pre-image here refers to the message
mapped to a particular digest via hashing.

6 EXPERIMENTS
6.1 Implementation details
Dataset and metric. As mentioned in Section 4, in order to avoid

fingerprint leakage, we propose to utilize RAW images rather than

JPEG images for fingerprint extraction and matching. However,

there is no large-scale RAW photo dataset for training stable fin-

gerprints. Therefore, we collect a large amount of RAW photos

taken by iPhones, consisting of over 150,000 images and 72 cam-

eras. Among them, we select 1,665 photos taken by 15 different

cameras as the benchmark test set, and ensure that the camera

devices in the benchmark set do not exist in the training set. We

train the fingerprint extraction network on the splitted training

part of this RAW dataset, and benchmark our proposed algorithm

with the test set. We utilize normalized cross-correlation as the

similarity measure for camera identification. As for method com-

parison metric, we adopt AUC (Area Under Curve, higher is better)

[39] and EER (Equal Error Rate, lower is better) for performance.

Network details. The fingerprint extraction network is trained

with RAW photos under guidance of triplet loss and frequency

loss. In order to have a fair comparison with previous works [9,

33], we select DnCNN [62] as backbone denoise network. The

pre-computed PRNU in Figure 2 is extracted with wavelet-based

denoiser from 40 flat images. We mine hardest positive sample and

hardest negative sample per anchor within batch size of 2048, and

triplet margin is 0.2. We train the network using Adam optimizer

[32], learning rate of 1e-5, weight decay of 1e-6, and 100 epochs.

6.2 Network performance
First, we ablate different settings of network components in Table

1. We derive one fingerprint from each RAW photo as the device

registered fingerprint, and AUC and EER are calculated from the

correlation matrix between these single image camera fingerprints,

i.e., a 1,665×1,665 matrix, which can directly reflect the model per-

formance. Here, the basic denoise model has the same parameters

with the pretrained denoise model in the work by Zhang et al. [62].

Compared with residual noise performance directly from pretrained

denoise model, AUC is significantly improved after incorporating
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Table 1: Ablation of fingerprint extraction network.

Method AUC ↑ EER ↓
basic denoise model 54.29% 47.31%

+ Triplet loss 88.82% 18.53%

+ Spatial consistency 99.58% 3.003%

+ Pixel Shuffle 99.73% 2.645%

+ Frequency consistency 99.75% 2.345%

+ Postprocessing(ZM & WF) 99.80% 1.656%

Full model 99.80% 1.656%

deep metric learning with hard mining strategy. Furthermore, the

supervised guidance of pre-computed PRNU brings considerable

performance gains, and the frequency domain loss slightly outper-

forms spatial domain loss, which is consistent with the observa-

tion in Figure 3. Meanwhile, pixel-shuffle operator also slightly

improve the network performance. At last, we also utilize the post-

processing approach of zero mean (ZM) and wiener filter (WF)

proposed in PRNU algorithm [7] to further improve the result.

We compare our proposed algorithm to two open-sourced cam-

era fingerprints, i.e., wavelet denoiser based PRNU [7] and CNN-

based camera model fingerprint (Noiseprint) [9] on benchmark

dataset. Here, we test two scenarios: single photo fingerprint regis-

tration and multiple photos fingerprint registration, with 𝑁 = 1 and

𝑁 = 40 in Eq.(3) for registered fingerprint estimation respectively.

Table 2 shows our algorithm outperforms PRNU and Noiseprint by

a large margin on benchmark dataset with much higher AUC and

lower EER. Figure 7(a-d) give some insights by plotting average

correlation scores as confusion matrix of all 15 camera devices.

Results of our proposed network show significantly better discrimi-

nation between positive pair and negative pair in comparison with

others. ROC curves shown in Figure 7(e) also indicates our best

performance among all the benchmarked algorithms.

Table 2: Fingerprint accuracy performance comparison of
ours with previously open-sourced fingerprint extraction al-
gorithms on iPhone RAW photos. Result with ∗ indicates
containing post-processing (ZM &WF).

Register Method AUC ↑ EER ↓ AUC
∗ ↑ EER

∗ ↓

Single

PRNU 63.23% 40.62% 99.33% 3.513%

Noiseprint 53.10% 47.75% 63.23% 40.62%

Ours 99.75% 2.345% 99.80% 1.656%

Multiple

PRNU 65.14% 37.20% 99.99% 0.013%

Noiseprint 50.66% 48.30% 51.43% 49.40%

Ours 99.95% 0.708% 100.0% 0.0%

6.3 Fingerprint optimization
As mentioned in Section 4, we have proposed some optimization

sub-modules to improve the accuracy of fingerprint extraction.

First, we verify the effectiveness of block filtering with different

block size and filter weight mask. The best result is achieved with

block size of 64 and fixed percentage selection on luminance of 50%,

Figure 7: (a-d)Correlation scores between extracted finger-
prints of ground truth (GT) and different methods. (d) ROC
curves of the compared fingerprint extraction methods.

and this block filtering approach works effectively not only on our

proposed method, but also on PRNU method. Another proposed

accuracy improvement module is burst integration, and our test set

for this benchmark with 1,665 photos consists of exactly 555 sets

taken in three burst photography. Therefore, we can directly use

the three-in-one estimation to generate fingerprints and calculate

correlation. After optimization with block filtering and burst inte-

gration, our proposed network based fingerprint can achieve AUC

= 99.99% on single image registration with almost no error rate on

the benchmark dataset (baseline without optimization in Table 2

is 99.75%). We plot the histograms of all the positive and negative

correlations before and after optimization sub-modules in Figure

8 (a) and (b) respectively. There exist some overlaps between the

correlation distributions of positive and negative samples in Figure

8(a). But after the optimization sub-modules, the correlations of

positive and negative samples are completely separated. At last, we

also observe the fingerprint performance after binary quantization

in Figure 8(c), and it maintains an acceptable matching accuracy

with AUC = 99.98% but with much less computational cost.

Figure 8: Histogram of correlation scores from same camera
(positive) and different camera (negative) (a)before optimiza-
tion, (b)after optimization, (c)after binary quantization.

7 CONCLUSIONS
This paper presents a reliable source camera identification frame-

work for web photos. In detail, we firstly introduce a neural en-

hanced camera fingerprint extraction algorithm and demonstrate

it strong performance. Then several general sub-modules are pro-

posed to further optimize the system on both performance and
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computational efficiency. Finally for practical realization, two cryp-

tographic schemes are incorporated to achieve the complete scheme

design with higher reliability and security. We hope our new per-

spective will pave a way towards a new paradigm for accurate and

practical source camera identification.
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A SECURITY EVALUATION OF SPATIAL
SPLITTING

For evaluating the security of spatial splitting, we first derive one

fingerprint from each RAW odd photo and one fingerprint from

each RAW even photo for our benchmark test set (e.g., 15 iPhone

cameras) based on our trained network, resulting in two sets of

1,665 fingerprints. Then for each RAW photo, we calculate NCC

(Normalized Cross-correlation Coefficient) from its corresponding

RAW odd fingerprint and RAW even fingerprint. Finally, for each

camera, we calculate AUC from its NCC of RAW photos over two

parts (odd and even). Figure 9 illustrates the NCC over two parts

(odd and even) and AUC for each camera. We got an average of

96.22% AUC with 5.33% standard deviation, which indicates rela-

tively low information leakage.

Figure 9: Normalized Cross-correlation Coefficient over two
parts (odd and even) and AUC for each iPhone camera of
benchmark test set

Furthermore, we calculated AUC and EER from the correlation

matrix between RAW odd fingerprints and the correlation matrix

between RAW even fingerprints, i.e., two 1,665 × 1,665 matrices .

The results show 99.99% AUC and 0.253% EER for RAW odd finger-

prints, and 99.92% AUC and 0.497% EER for RAW even fingerprints,

both indicating highly discriminative ability.

B NETWORK PERFORMANCE ON ANDROID
RAW PHOTOS AND JPEG PHOTOS

While our network was trained only on iPhone RAW photos, it

displayed superior generalization and adaptability on both RAW

Android photos and JPEG compressed photos.

For examining Android RAW photos, we provide an additional

test dataset with 1,276 RAW photos from 15 Android smartphone

cameras. Table 3 shows the fingerprint accuracy performance com-

parison of our algorithm with previous algorithms on this dataset.

As shown in the table, our model outperforms conventional algo-

rithms by a large margin with much higher AUC and lower EER.

Table 3: Fingerprint accuracy performance comparison of
ours with previously open-sourced fingerprint extraction al-
gorithms on Android RAW photos. Result with ∗ indicates
containing post-processing (ZM &WF).

Register Method AUC
∗ ↑ EER

∗ ↓

Single

PRNU 99.81% 1.600%

Noiseprint 55.49% 45.53%

Ours 99.94% 0.907%

Multiple

PRNU 99.99% 0.179%

Noiseprint 51.39% 49.23%

Ours 100.0% 0.0%

For examining JPEG compressed photos, we directly tested our

released model on VISION dataset [52] (35 devices with 34,427 JPEG

photos). On this JPEG compressed dataset we obtained 92.83% AUC,

indicating better discrimination than other SOTA methods [40].
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C SECURITY ANALYSIS IN DETAIL
Here we give detailed proofs to the theorems presented in security

analysis subsection 5.3.

Figure 10: Visualization of consistency coefficients.

Theorem C.1. If an attacker do not have access to the source
camera, RAW odd photo𝑂 , fingerprint 𝐾 and private key 𝑠𝑘 , then the
probability for the attacker to successfully forge a cryptographic secure
signature (e.g., ECDSA, SM2 etc.,) with public key 𝑝𝑘 is 𝑃𝑎 ≤ 1

2
𝜆−1

where 𝜆 is the security parameter.

Proof. Min-entropy [34] describes the uncertainty of a random

value. As studied by Bayram et al. [4], the signed fingerprints ex-

tracted from photos are truly random, hence every single bit of

the fingerprint is independent from all the other fingerprint bits.

Thus, neither the fingerprint extracted from RAW even photo nor

the fingerprints extracted from other photos are helpless for an

Figure 11: Grid search on values of 𝐶1_𝑡ℎ𝑙𝑑 and 𝐶2_𝑡ℎ𝑙𝑑
against EER of patch level consistency checking results.

attacker to exploit the target odd signed fingerprint:

𝐻∞ (𝐾𝑟𝑎𝑤1,𝑜𝑑𝑑 ) = 𝐻̃∞ (𝐾𝑟𝑎𝑤1,𝑜𝑑𝑑 |𝐾𝑟𝑎𝑤1,𝑒𝑣𝑒𝑛)
= 𝐻̃∞ (𝐾𝑟𝑎𝑤1,𝑜𝑑𝑑 |𝐾𝑟𝑎𝑤∗, ·) =𝑚

(13)

where 𝐻̃∞ (𝐴|𝐵) denotes the average min-entropy of A given B,

𝐾𝑟𝑎𝑤∗, · denotes the · fingerprint extracted from (odd or even) photo

taken by cameras ∗.
Recall that we hide the user’s secret key 𝑠𝑘 with secure sketch

𝑠 = 𝐾 ⊕ C(𝑠𝑘). With 𝐾 truly random, an attacker can do nothing

better than randomly generate a new fingerprint 𝐾 ′ and try to

decode 𝑠𝑘 ′ = D(𝐾 ′ ⊕ 𝑠) and see if 𝑠𝑘 = 𝑠𝑘 ′. According to the work

of Valsesia et al. [55], the probability for an attacker to recover

user’s secret key 𝑠𝑘 is upper bounded by:

𝑃𝑎𝑑𝑣 = E𝑠𝑘 [P(𝐾 ∈ 𝐶𝑠𝑘 )] =
1

2
𝑚+𝜆

∑︁
|𝐶𝑠𝑘 | ≤

1

2
𝜆

(14)

Besides recovering secret key from secure sketch, the attacker

can also try to recover from user public key, however, as long as the

user use cryptographic safe signature schemes such as ECDSA, SM2,

BLS etc., and complies with key generation rules, then according to

the Elliptic Curve Discrete Log Problem (ECDLP) [19], the attacker

can recover secret key 𝑠𝑘 from public key 𝑝𝑘 = 𝑔𝑠𝑘 , 𝑔 ∈ G and

G is the group of elliptic curve points, with negligible probability

𝑛𝑒𝑔𝑙 (𝜆) ≤ 2
128

,for instance, let 𝑠𝑘 ∈ F𝑞 , 𝐹𝑞 refers to the finite

field modulo prime 𝑞, |𝑞 | = 256 and 𝜆 = 128, breaking 𝑠𝑘 from 𝑝𝑘

requires averagely 2
128

operations, thus achieve 128-bit security.

In conclusion, the attacker has less than
1

2
𝜆−1 probability to suc-

cessfully forge a signature. □

Theorem C.2. Let ℎ𝑎𝑠ℎ(·) be a cryptographic secure hash func-
tion (e.g., SHA256, SHA3 etc.), if the attacker do not have access to
fingerprint 𝐾 and can not break the pre-image resistance property of
ℎ𝑎𝑠ℎ(·) [49], then the attacker can forge a prove of statement (9) with
probability 𝑃𝑏 ≤ 1

2
𝑚 + 1

2
2·𝜆 where𝑚 is the bit length of fingerprint 𝐾 ,
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𝜆 is the security parameter and a pre-image here refers to the message
mapped to a particular digest via hashing.

Proof. In our solution, if the attacker is able to forge a set of

inputs that complies the statement and pass the verification. He

must be able to either regenerate fingerprint protected by user, or

find another fingerprint the digest ℎ′ of which is identical to the

registered digest ℎ. Since operations such as subtraction and 𝑆𝑜𝑏𝑒𝑙

operations are reversible, if an attacker is capable to regenerate

the fingerprint 𝐾 , he could reversely comply with the statement to

generate a fake RAW photo. However, according to our previous

discussion of entropy of sign fingerprint, an attacker with no access

to user’s camera is only capable to reconstruct the random identical

fingerprint 𝐾 ′ = 𝐾 with negligibly
1

2
𝑚 .

The attacker could also try to find another fingerprint producing

the same digest value than the registered one. However, according

to pre-image resistance property of cryptographic secure hash func-

tion, an attacker can do nothing but the brute-force attack to find

the pre-image from digest. For instance, probability to successfully

brute force pre-image of SHA256 is
1

2
2·𝜆 = 1

2
256

.

Thus, if the attacker is unable to stole user’s fingerprint𝐾 , he has

less than
1

2
𝑚 + 1

2
2·𝜆 probability to forge a our ZKP statement. □

D CONSISTENCY CHECKING IN DETAIL
D.1 Consistency Coefficient Visualization
To illustrate the ability of two consistency coefficients𝐶1 and𝐶2, we

visualize an example in Figure 9. As show in the figure, 𝐶1 focuses

on close-up consistency while 𝐶2 focuses on contour consistency.

Collaboratively using 𝐶1 and 𝐶2 can detect almost all the near

duplicate patches (i.e., image patches and their denoised version).

D.2 Feasible Hyperparameter Range
We partitioned our photo data set into patches to investigate the

feasible hyperparameter range. For each patch we use its denoised

version as positive samples and randomly choose denoised patches

with the same location from three other images as negative samples.

In our experiment we used 150,000 positive samples and 450,000

negative samples. Then we grid searched on the values of 𝐶1_𝑡ℎ𝑙𝑑

and 𝐶2_𝑡ℎ𝑙𝑑 against the Equal Error Rate (EER) of patch level con-

sistency checking results.

As show in Figure 10, the black color indicates very low EER

which takes a wide range of area. This illustrates that we have a

wide range to select feasible combination of 𝐶1_𝑡ℎ𝑙𝑑 and 𝐶2_𝑡ℎ𝑙𝑑

which grantees the reliability of consistency checking in practice.
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