
Dynamically Expandable Graph Convolution for Streaming
Recommendation

Bowei He∗
City University of Hong Kong

Hong Kong SAR
boweihe2-c@my.cityu.edu.hk

Xu He
Huawei Noah’s Ark Lab

Shenzhen, China
hexu27@huawei.com

Yingxue Zhang
Huawei Noah’s Ark Lab Montreal

Montreal, Canada
yingxue.zhang@huawei.com

Ruiming Tang
Huawei Noah’s Ark Lab

Shenzhen, China
tangruiming@huawei.com

Chen Ma†
City University of Hong Kong

Hong Kong SAR
chenma@cityu.edu.hk

ABSTRACT
Personalized recommender systems have been widely studied and
deployed to reduce information overload and satisfy users’ diverse
needs. However, conventional recommendation models solely con-
duct a one-time training-test fashion and can hardly adapt to evolv-
ing demands, considering user preference shifts and ever-increasing
users and items in the real world. To tackle such challenges, the
streaming recommendation is proposed and has attracted great
attention recently. Among these, continual graph learning is widely
regarded as a promising approach for the streaming recommenda-
tion by academia and industry. However, existing methods either
rely on the historical data replay which is often not practical under
increasingly strict data regulations, or can seldom solve the over-
stability issue. To overcome these difficulties, we propose a novel
Dynamically Expandable Graph Convolution (DEGC) algorithm
from a model isolation perspective for the streaming recommen-
dation which is orthogonal to previous methods. Based on the
motivation of disentangling outdated short-term preferences from
useful long-term preferences, we design a sequence of operations
including graph convolution pruning, refining, and expanding to
only preserve beneficial long-term preference-related parameters
and extract fresh short-term preferences. Moreover, we model the
temporal user preference, which is utilized as user embedding ini-
tialization, for better capturing the individual-level preference shifts.
Extensive experiments on the three most representative GCN-based
recommendation models and four industrial datasets demonstrate
the effectiveness and robustness of our method.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Online learning settings.
∗Work done as an intern in Huawei Noah’s Ark Lab, Hong Kong.
†Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583237

KEYWORDS
Continual graph learning, Graph neural network, Streaming rec-
ommendation
ACM Reference Format:
Bowei He, Xu He, Yingxue Zhang, Ruiming Tang, and Chen Ma. 2023.
Dynamically Expandable Graph Convolution for Streaming Recommen-
dation. In Proceedings of the ACM Web Conference 2023 (WWW ’23), April
30–May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583237

1 INTRODUCTION
The recommender system (RS), aiming to provide the personalized
contents to different users precisely [11–13, 31, 32], has been de-
ployed in many online Internet applications. However, traditional
recommender systems trained on the offline static datasets face
three challenges in the real online platforms: user preference shift,
ever-increasing users and items, and intermittent user activities. In
fact, these can cause the unacceptable performance degradation as
shown in Figure 1, and lead to the necessity of dynamical model
updating. Thus, how to update the model dynamically to tackle
the above challenges has attracted great attention in real-world
RS [5, 46]. This ensures the indispensable need of streaming rec-
ommendation, referring to updating and applying recommendation
models dynamically over the data stream.

Figure 1: LightGCN, NCGF, and MGCCF only trained in the
first week and then tested in the following three weeks on
Taobao2014 dataset.

ar
X

iv
:2

30
3.

11
70

0v
1

 [
cs

.I
R

]
 2

1
M

ar
 2

02
3

https://doi.org/10.1145/3543507.3583237
https://doi.org/10.1145/3543507.3583237

WWW ’23, April 30–May 4, 2023, Austin, TX, USA Bowei He et al.

Due to the strong capability of modeling user-item, user-user,
and item-item relationships, graph convolution neural network
(GCN) has been widely-used as recommendation models. Some
recent works [1, 51, 52, 56, 61] develop continual learning methods
for GCN-based recommendation methods to achieve the stream-
ing recommendation, also known as continual graph learning for
streaming recommendation.

To enable continual GCN-based recommendation, most works fo-
cus on two realizations: experience replay [1, 52, 68] and knowledge
distillation/weight regularization [29, 51, 56, 61]. Although these
methods have achieved acceptable results, there are still drawbacks
which hinder them from being applied in the real-world systems.
First, experience replay needs complete and accurate historical data
when training the model on the newly coming data. Nevertheless,
in the real-world system, the missing data [14, 55] and malicious
data attack [67] issues are pretty common. What’s worse, more and
more strict data governance policies often make the user histori-
cal behavior inaccessible. Training with historical data replay also
brings the huge memory cost and increasing time consumption.
Second, knowledge distillation/model regularization can hardly
capture the varying short-term preferences, especially for those
users whose preferences change quickly and dramatically. Such is-
sue is also known as over-stability [35] in continual learning. Third,
previous continual graph learning methods for streaming recom-
mendation do not model the user-level temporal preference changes
explicitly and only relies on the graph convolution itself to cap-
ture the shift, which is greatly limited by the aforementioned two
challenges: ever-increasing users and intermittent user activities.
This is also far from the fine-grained user modeling for personal-
ized recommendation. Besides, few existing model isolation-based
methods [6, 66] (another main approach for continual learning)
are designed specially for the typical continual learning paradigm
with task boundaries and can hardly handle the growing dataset
(data stream) on a single task. Suchmodel isolationmethods need to
search the whole GCN architecture in each task which increases the
method complexity greatly. In streaming recommendation setting,
model isolation-based continual graph learning is less investigated
though some apparent advantages like no longer needing to replay
historical data and the potential to overcome the over-stability issue.

To tackle the above challenges, we propose a model-isolation
continual graph learning method, namelyDynamically Expandable
Graph Convolution (DEGC), to better model the user preference
shift without the need of historical data replay. First, we design a
graph convolution network-based sparsification training method
to disentangle short-time preference-related parameters from long-
time preference-related parameters. Then we remove outdated
short-term preference-related filters and preserve long-term preference-
related filters which are further refined with newly-collected data.
Next, the graph convolution network is expanded by additional
filters to extract the current short-term preference. The added filters
will also be partly pruned to eliminate the redundant ones and pre-
vent the network width explosion catastrophe. Moreover, inspired
by the Kalman filter [57], a temporal attention model is utilized to
explicitly encode the temporal user preference, which works as the
user embedding initialization for training on new data.

In summary, the main contributions of this paper are:

• We propose a model isolation-based continual graph learning
method, DEGC, for streaming recommendation. We design a
sequence of graph convolution operations including pruning,
refining, and expanding to overcome the over-stability challenge.

• To address the challenges of ever-increasing users and intermit-
tent user activities, we model the temporal user preference as
the user embedding initialization to help learn users’ preferences
on newly coming data.

• Experiments on three representative GCN-based recommenda-
tion models and four real-world datasets demonstrate the effec-
tiveness and robustness of our method.

2 RELATEDWORK
2.1 Streaming Recommendation
Due to the real-world dynamics like user preference continuous
shift and ever-increasing users and items, conventional recom-
mender systems trained on the static fixed datasets usually suffer
from: predicting previous interactions and preferences, disregard-
ing trends and shifting preferences, and ignoring real industrial
constraints like few time and limited resources. To tackle these
challenges, streaming recommendation is proposed in which data
and recommendation model are both updated dynamically along
the timeline [8, 10, 15, 16, 47, 48, 53]. Early works recommend
items to users based on the popularity, recency, and trend analy-
sis [7, 30, 49] but pay few attention to the collaborative signal distill-
ing. To extracting such information, some other works [8, 16, 18, 44]
introduce the classical recommendation algorithms like collabo-
rative filtering and machine factorization into the streaming set-
ting. In addition, there are also some recent works from the per-
spectives of online clustering of bandits and collaborative filtering
bandits [2, 19, 20, 27, 28] to perform streaming recommendation.
Thanks to the great success of graph neural network on complex
relationship modeling, how to apply GCN-based recommendation
models to the streaming recommendation is attracting more and
more attention recently [1, 51, 52, 56, 61]. Besides, streaming rec-
ommendation algorithms have been successfully deployed to in-
dustrial online service platforms like Google, Huawei, and Ten-
cent [5, 15, 46]. However, for a long time, there lacks a standardized
definition to streaming recommendation, especially in the deep
model-based recommendation setting. In this paper, we draw intu-
itions from previous research and most recent progress, and then
summarize a definition of the streaming recommendation.

2.2 Continual Learning
Continual learning was originally paid great attention in computer
vision and nature language process areas in which different tasks
come in sequence. Various methods have been proposed to pre-
vent catastrophic forgetting and effectively transfer knowledge.
The mainstream continual learning algorithms can be classified
into three categories: experience replay [9, 25, 34, 38, 41], knowl-
edge distillation/model regularization [17, 23, 24, 40], and model
isolation [21, 35, 39, 45, 59, 60, 65]. Continual learning is often
regarded as a trade-off between knowledge retention (stability)
and knowledge expansion (plasticity) [35], and model isolation-
based methods provide an more explicit control over such trade-off.
Considering that graph-based models have been widely studied

Dynamically Expandable Graph Convolution for Streaming Recommendation WWW ’23, April 30–May 4, 2023, Austin, TX, USA

to model the complex data relationships, continual graph learn-
ing [6, 29, 33, 36, 37, 51, 52, 68] has also attracted more and more
attentions recently. When it comes to the continual graph in recom-
mendation setting [1, 51, 56, 61], we focus more on the data coming
continuously in chronological order rather than the data with task
boundaries. Different from the conventional continual learning, the
continual graph learning for streaming recommendation which is
studied in this work pays more attention to the effective knowl-
edge transfer across the time segments rather than preventing
catastrophic forgetting. This is because performance degradation
on historical data makes no sense to a real recommender system.

3 PRELIMINARIES
In this section, we first formalize the continual graph learning
for streaming recommendation. Then we briefly introduce three
classical graph convolution based recommendation models used in
this paper.

3.1 Definitions and Formulations
Definition 1. Streaming Recommendation. Massive user-item

interaction data D̃ streams into industrial recommender system con-
tinuously. For convenience [4, 51, 52], the continuous data stream is
split into consecutive data segments 𝐷1, ..., 𝐷𝑡 , ..., 𝐷𝑇 with the same
time span. At each time segment 𝑡 , the model needs to optimize the
recommendation performance on 𝐷𝑡 with the knowledge inherited
from 𝐷1, 𝐷2, ..., 𝐷𝑡−1. The recommendation performance is evaluated
along the whole timeline.

Definition 2. Streaming Graph. A streaming graph is repre-
sented as a sequence of graphs G = (𝐺1,𝐺2, ...,𝐺𝑡 , ...,𝐺𝑇), where
𝐺𝑡 = 𝐺𝑡−1 + Δ𝐺𝑡 . 𝐺𝑡 = (A𝑡 ,X𝑡) is an attributed graph at time 𝑡 ,
where A𝑡 and X𝑡 are the adjacency matrix and node features of 𝐺𝑡 ,
respectively. Δ𝐺𝑡 = (ΔA𝑡 ,ΔX𝑡) is the changes of graph structures
and node attributes at 𝑡 . The changes contain newly added nodes and
newly built connections between different nodes.

Definition 3. Continual Graph Learning for Streaming Graph.
Given a streaming graph G = (𝐺1,𝐺2, ...,𝐺𝑡 , ...,𝐺𝑇), the goal of
continual graph learning (CGL) is to learn Δ𝐺𝑡 (𝐷𝑡) sequentially
while transferring historical knowledge to new graph segments effec-
tively. Mathematically, the goal of CGL for streaming graph is to find
the optimal GNN structure S𝑡 and parameters W𝑡 at each segment 𝑡
such that:

(S∗𝑡 ,W∗
𝑡) = argmin

(S𝑡 ,W𝑡)
L𝑡 (S𝑡 ,W𝑡 ,Δ𝐺𝑡), (1)

where (S𝑡 ,W𝑡) ∈ (S,W). L𝑡 (S𝑡 ,W𝑡 ,Δ𝐺𝑡) is the loss function of
current task defined on Δ𝐺𝑡 . The S and W are corresponding search
spaces, respectively.

Since the user-item interaction data is actually a bipartite graph,
the continual learning task for streaming recommendation is es-
sentially the continual graph learning for streaming graph. For
each segment 𝑡 , the GNN structure S𝑡 and parameters W𝑡 need
to be adjusted and refined simultaneously to achieve a satisfying
recommendation performance. We use the Bayesian Personalized
Ranking (BPR) [42] loss as the loss function in this work, because
it is effective and has broad applicability in top-K recommendation
tasks. The major notations are summarized in Appendix A.

3.2 GCN-based Recommender Models
Many graph convolution-based recommender models [22, 50, 54,
64] have been developed recently to capture the collaborative signal,
which is not encoded by the early matrix factorization and other
deep learning based models. A general graph convolution process
for such models can be summarized below: On the user-item bi-
partite graph, the layer-𝑘 embedding of user 𝑢 is obtained via the
following processing:

h𝑢,𝑘 = 𝜎 (W𝑢,𝑘 · [h𝑢,𝑘−1; hN(𝑢),𝑘−1]), h𝑢,0 = e𝑢 ,

hN(𝑢),𝑘−1 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑢 (h𝑖,𝑘−1, 𝑖 ∈ N (𝑢)),
(2)

where e𝑢 is the initial user embeddings, 𝜎 (·) is the activation func-
tion, hN(𝑢),𝑘−1 is the learned neighborhood embedding, and W𝑢,𝑘

is the layer-𝑘 user transformation matrix shared among all users.
The𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑢 is the designed aggregation function in order
to aggregate neighbor information for user nodes. Similarly, the
layer-𝑘 embedding of item 𝑖 is obtained via the following process-
ing:

h𝑖,𝑘 = 𝜎 (W𝑖,𝑘 · [h𝑖,𝑘−1; hN(𝑖),𝑘−1]), h𝑖,0 = e𝑖 ,

hN(𝑖),𝑘−1 = 𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝑂𝑅𝑖 (h𝑢,𝑘−1, 𝑢 ∈ N (𝑖)).
(3)

In our setting, considering the timestamps of the above matrices,
convolution parametersW𝑡 =

{
W𝑢,1
𝑡 ,W𝑖,1

𝑡 , ...,W
𝑢,𝑘
𝑡 ,W𝑖,𝑘

𝑡 , ...,W𝑢,𝐾
𝑡 ,W𝑖,𝐾

𝑡

}
,

whereW𝑢,𝑘
𝑡 is theW𝑢,𝑘 on the time segment 𝑡 . Each column in such

matrices is a graph convolution filter. NGCF [54], LightGCN [22],
and MGCCF [50] are three representative GCN-based recommen-
dation models which will be utilized in our work. Some of their
details are provided below.

NGCF [54]. One of the most widely used GCN-based recom-
mendation model. NGCF exploits the user-item bipartite graph
structure by propagating embeddings on it with graph convolution.

LightGCN [22]. An improved version of NGCF which still con-
volutes on user-item graph. Compared with NGCF, LightGCN no
more needs neighbor node feature transformation and nonlinear
activation. Based on the original model setting, we add a dense ma-
trix to each layer to align the dimensions of aggregated embeddings
for better adapting to our approach.

MGCCF [50]. A graph convolution-based recommender frame-
work which explicitly incorporates multiple graphs in the em-
bedding learning process. Compared with the above two models,
MGCCF adds a Multi-Graph Encoding(MGE) module to capture
the inter-user and inter-item proximity information from user-user
graph and item-item graph via homogeneous graph convolution,
respectively.

4 METHODOLOGY
In this section, we introduce our DEGC method towards continual
graph learning for streaming recommendation. We first model the
temporal user preference to capture the preference shifts between
segments, which will be utilized for the user embedding initializa-
tion of training. Then, we successively use two operations, historical
graph convolution pruning and refining as well as graph convolution
expanding and pruning (shown in Figure 2), in such a model isola-
tion way to obtain the best structure and optimal parameters of the
graph convolution.

WWW ’23, April 30–May 4, 2023, Austin, TX, USA Bowei He et al.

Figure 2: Overview toDynamically Expandable GraphConvolution. Take 2-layer graph convolution as an example. Operations
1,2,3 correspond to the methods introduced in Sec. 4.2. And operations 4,5,6,7 illustrate the methods mentioned in Sec. 4.3.

4.1 Temporal User Preference Modeling as
Initialization

Conventional continual graph learning algorithms directly inherit
the user embeddings trained in the previous segments as the ini-
tialization without considering the user preference shift between
the time segments. This type of methods totally rely on the graph
convolution network to capture the user preference shift which is
far from the fine-grained user modeling. To explicitly model the
user-level preference shift and provide a better embedding initializa-
tion for graph convolution model training, we propose a temporal
attention (TA) module to model the user temporal preference shift.
This is motivated by the Kalman filter [3, 26, 57], which is an ef-
fective way to model the temporal state change. In recommender
system, the user embedding e𝑢 is utilized to represent the user
𝑢’s preference. At segment 𝑡 , the preference shift of user 𝑢 can be
estimated with the Hadamard product of a time-scaled attention
vector and the previous user embedding:

Δe𝑢𝑡 = (W𝑇𝐴Δ𝑡) ⊙ e𝑢𝑡− ,Δ𝑡 = 𝑡 − 𝑡−, (4)

where 𝑡− is the last time segment that user 𝑢 appears andW𝑇𝐴 is a
learnable linear matrix. The larger the time interval Δ𝑡 , the larger
the user preference shift. Note that the users who are intermittently
active on the platform (e.g., 𝑢1 and 𝑢2 in Figure 3) can also be mod-
eled. Summing the user preference shift vector Δe𝑢𝑡 and the user’s
previous preference vector e𝑢𝑡− gives the user’s current preference
e𝑢𝑡 :

e𝑢𝑡 = e𝑢𝑡− + Δe𝑢𝑡 . (5)
As illustrated in Figure 3, the preferences of existing users (have

appeared in the historical segments) at segment 𝑡 can be estimated

Figure 3: Temporal user preference modeling and new user
initialization.

with the temporal attention module directly. As for new users
(appears for the first time), their preference vectors are initialized
with a one-hop neighbor aggregation from the user-user graph at
segment 𝑡 :

e𝑢𝑡 =
1

|N𝑢
𝑡 |

∑︁
𝑗 ∈N𝑢𝑡

e𝑗𝑡 , (6)

where 𝑗 are existing users in user 𝑢’s one-hop neighbor on the
user-user graph at segment 𝑡 . The embeddings of existing users
and new users will be utilized as the initial embeddings for graph
convolution-based recommendation model training.

Dynamically Expandable Graph Convolution for Streaming Recommendation WWW ’23, April 30–May 4, 2023, Austin, TX, USA

4.2 Historical Graph Convolution Pruning and
Refining

In the recommender system, a user’s preference is often regarded
as the combination of her long-term preference (LTP) and short-
term preference (STP) [31, 32, 43]. The long-term preference will
not change drastically along the time and can take effect at most
segments. This kind of preference is often determined by users’
gender, occupation, education, and so on. By contrast, the short-
term preference varies quickly and can only take effect in a certain
time segment. STP is often influenced by the recommendation
context information, like user emotion. And the recommendation
model parameters store both users’ long-term preferences and short-
term preferences after learning on the interaction data. Previous
continual graph learning methods for streaming recommendation
inherit the parameters learned on the last segment indiscriminately
and fine-tune them with the new data. However, these methods
will preserve the outdated short-term preferences which only work
for the last segment and hinder the model learning on the new
segment, which corresponds to the over-stability issue mentioned
above.

Based on the motivation of decoupling users’ useful long-term
preferences and outdated short-term preferences, we first design
a spasification training method to disentangle LTP-related graph
convolution parameters W𝑙

𝑡 and STP-related graph convolution
parameters W𝑠

𝑡 at segment 𝑡 . As shown in subfigure (1) of Figure 2,
we randomly initialize the topmost graph convolution layerW𝐾

𝑡 and
fix the rest graph convolution layers with parametersW𝑡−1 learned
on Δ𝐺𝑡−1 and then only train the topmost graph convolution layer
W𝐾
𝑡 with the new incremental interaction graph Δ𝐺𝑡 :

𝑚𝑖𝑛
W𝐾
𝑡

L𝑡 (W𝐾
𝑡 ;W

1:𝐾−1
𝑡−1 , e,Δ𝐺𝑡) + _1∥W𝐾

𝑡 ∥1 . (7)

The e denotes the embeddings of graph nodes. The added 𝐿1 reg-
ulation term is to encourage the sparse connection between layer
𝐾 and layer 𝐾 − 1 illustrated in subfigure (2) of Figure 2. Once
obtaining sparseW𝐾

𝑡 , we can identify the filters ofW𝐾−1
𝑡−1 that have

no connection with layer 𝐾 . Starting from this, we can find all the
parameters in layer 1 : 𝐾 − 1 that have no connection with convo-
lution layer 𝐾 via breadth-first search. Because this sparsification
effect is obtained by training on Δ𝐺𝑡 , such parameters are actually
the users’ outdated short-term preference-related parametersW𝑠

𝑡−1
and cannot reflect users’ current preferences at 𝑡 . And the convo-
lution parameters W𝑙

𝑡−1 that have connection with W𝐾
𝑡 represent

another part of users’ previous preferences that still takes effect
at 𝑡 , which is users’ long-term preferences. Considering that the
users’ long-term preferences are also evolving along the time, we
first remove the W𝑠

𝑡−1 to avoid the negative knowledge transfer
and then fine-tune the remaining LTP-related graph convolution
parametersW𝑙

𝑡 initialized withW𝑙
𝑡−1:

𝑚𝑖𝑛
W𝑙
𝑡

L𝑡 (W𝑙
𝑡 , e,Δ𝐺𝑡) + _2∥W𝑙

𝑡 ∥2 . (8)

Here, we use 𝐿2 regularization to prevent the model overfitting.
The operation of removingW𝑠

𝑡−1 also corresponds to the best GNN
structure search mentioned in Definition 3. Note that only fine-
tuning the preserved long-term preference parameters can reduce

the computing overload which is of great significance in streaming
recommendation setting.

Algorithm 1: DEGC
Input: A sequence of user-item interaction graphs G.
Output: Graph convolution parametersW𝑡 , user

embeddings e𝑢𝑡 , item embeddings e𝑖𝑡 .
1 Process:;
2 for each 𝑡 = 1,2,...,𝑇 do
3 Initialize the user embeddings with Eqn. 5 and 6;
4 Train the topmost graph convolution layerW𝐾

𝑡 with
Eqn. 7;

5 ObtainW𝑙
𝑡−1 andW𝑠

𝑡−1 with breadth-first search;
6 Refine the W𝑙

𝑡 initialized byW𝑙
𝑡−1 with Eqn. 8;

7 Expand the graph convolution layers and train the
expanded filters ΔW𝑡 with Eqn. 9;

8 Prune the expanded filters and finetune the whole
model with Eqn. 10;

9 Update theW𝑇𝐴 in Eqn. 4;
10 end

4.3 Graph Convolution Expanding and
Pruning

Only the refined long-term preferences are not enough to reflect the
users’ comprehensive preferences. To extract users’ current short-
term preferences at segment 𝑡 , we expand the graph convolution
layers and train the expanded part from scratch independently with
new data after obtaining fine-tuned W𝑙

𝑡 via operations 1, 2, 3 in
Figure 2. In detail, we add 𝑁 filters to each graph convolution layer.
Then, we initialize the expanded graph convolution parameters
ΔW𝑡 randomly and train them with Δ𝐺𝑡 while fixing theW𝑙

𝑡 :

𝑚𝑖𝑛
ΔW𝑡

L𝑡 (W𝑙
𝑡 ;ΔW𝑡 , e,Δ𝐺𝑡) + _1∥ΔW𝑡 ∥1 + _𝑔

∑︁
𝑔

∥ΔW𝑔
𝑡 ∥2 . (9)

Here, we use both 𝐿1 regularization and group sparse regularization
(GSR) [58] to sparsify the expanded convolution parameters ΔW𝑡 .
𝑔 is the group consisting of the parameters of each newly added
filter. The purpose of sparsification terms here is to prevent the
convolution layer width explosion catastrophe if adding 𝑁 filters
to each layer constantly at each segment.

After obtaining sparsified ΔW𝑡 (operation 5 in Figure 2), we
prune ΔW𝑘

𝑡 at each layer 𝑘 . Specifically, for each ΔW𝑘
𝑡 , we first

search the filters whose weights are all zeros and remove such filters.
Meanwhile, the corresponding parameters in ΔW𝑘+1

𝑡 of layer 𝑘 + 1
are also pruned. In such way, we not only extract the current short-
term preferences at segment 𝑡 but also eliminate the redundant
expansion parameters. It needs to be mentioned that our expanding
and pruning operations echo the GNN structure optimization in
Definition 3 again. Finally, the fixed W𝑙

𝑡 , the pruned ΔW𝑡 , and the
embeddings e will be finetuned:

𝑚𝑖𝑛
W𝑙
𝑡 ,ΔW𝑡 ,e

L𝑡 (W𝑙
𝑡 ;ΔW𝑡 , e,Δ𝐺𝑡) +_1 (∥W𝑙

𝑡 ∥1+ ∥ΔW𝑡 ∥1) +_2∥e∥2 .

(10)

WWW ’23, April 30–May 4, 2023, Austin, TX, USA Bowei He et al.

The embeddings e include both user embeddings e𝑢 and item em-
beddings e𝑖 . Here, the 𝐿1 regularization is to sparsify the whole
graph convolution structure to facilitate the historical convolution
pruning on the next segment 𝑡 + 1. The whole workflow of our
method is illustrated in Algorithm 1. Because our method is ac-
tually orthogonal to previous methods like experience replay and
knowledge distillation, we will combine our method with previous
methods to demonstrate its advantages.

5 EXPERIMENTS
In this section, we conduct experiments on four real-world time-
stamped recommendation datasets to show the effectiveness of our
method. We mainly focus on the following questions:
• RQ1:Whether ourmethod can get better recommendation effects
than the state-of-art methods on the most common recommen-
dation metrics like Recall@20 and NDCG@20?

• RQ2: Whether our method is robust to different datasets and
GCN-based recommendation models?

• RQ3: Whether pruning historical convolution parameters to
forget the outdated short-term preferences is necessary for im-
proving streaming recommendation?

• RQ4:Whether temporal user preference modeling as initializa-
tion help learn users’ preferences in the GCN update phase?

5.1 Experiment Settings
5.1.1 Datasets.

• Taobao20141: This dataset contains real users-commodities be-
havior data collected from Alibaba’s M-Commerce platforms,
spanning 30 days. The rich background informations, like users’
location information and behavior timestamp are also included.
We filter out users and items with less than 10 interactions.

• Taobao20152: This dataset contains user behavior data between
July 1st, 2015 and Nov. 30th, 2015 accumulated on Taobao.com
and the app Alipay. The online actions and timestamps are both
recorded. In this work, we only use the first month data for
analysis. Besides, We filter out users and items with less than 20
interactions.

• Neflix3: This movie rating dataset contains over 100 million rat-
ings from 480 thousand randomly-chosen Netflix customers over
17 thousand movie titles. The data were collected between Octo-
ber, 1998 and December, 2005 and reflect the distribution of all
ratings received during this period. A similar filtering operation
is executed and the thresholds are both set as 30. We use the first
24 months data for analysis.

• Foursquare [62, 63]: This dataset includes long-term (about
22 months from Apr. 2012 to Jan. 2014) global-scale check-in
data collected from Foursquare, a local search-and-discovery
mobile APP. The check-in dataset contains 22,809,624 checkins
by 114,324 users on 3,820,891 venues. For this dataset, we set the
filtering thresholds as 20.

The data statistics after filtering of the above datasets are detailed
in Appendix B. Average entity overlapping rate between adjacent
segments (AER) is a metric to measure the stability of a data stream.
1https://tianchi.aliyun.com/dataset/dataDetail?dataId=46
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
3https://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a

The larger the AER, the more stable the data stream. The data on
each segment is split into training, validation, and test sets using a
ratio of 8:1:1. We repeat each experiment five times and report the
average results to reduce the variance brought by the randomness.

5.1.2 Baselines.

• Finetune: Finetune first inherits the parameters from the previ-
ous segment and then fine-tune the model only with the data of
the current segment.

• Uniform Sampling (Uniform): A kind of naive experience re-
play method which first sample the historical data uniformly and
then combine the new data with it. The model is trained with
the combined data from scratch at each segment.

• Inverse Degree Sampling (Inverse) [1]: A similar sampling-
based experience replay method. However, the sampling probabil-
ity of each interaction is proportional to its user’s inverse degree
on the interaction graph.

• ContinualGNN [51]: A continual graph learning method which
combines the experience replay and knowledge distillation for
existing pattern consolidation.

• Topology-aware Weight Preserving (TWP) [29]: A knowl-
edge distillation method which explores the local structure of the
interaction graph and stabilize the parameters playing pivotal
roles in the topological aggregation.

• GraphSAIL [61]: A knowledge distillation method which pre-
serves each node’s local structure, global structure, and self-
information, respectively at the new segment.

• SGCT [56]: A knowledge distillation method which uses con-
trastive distillation on each node’s embedding where a single
user-item graph is used to construct positive samples.

• MGCT [56]: A knowledge distillation method which uses con-
trastive distillation on each node’s embedding where multiple
graphs (user-item, user-user, item-item graphs) is used to con-
struct positive samples.

• LWC-KD [56]: Based onMGCT, LWC-KD adds the intermediate
layer distillation to inject layer-level supervision.

We compare our DEGC model with the above continual graph
learning methods. Note that we will show the experiment results of
DEGC+Finetune and DEGC+LWC-KD (the combined methods
mentioned in Section 4.3) for a fair comparison. The implementation
details are provided in Appendix D. The code is available at https:
//github.com/BokwaiHo/DEGC.

5.1.3 Evaluation Metrics. All the methods are evaluated in terms
of Recall@k and NDCG@k. For each user, our recommendation
model will recommend an ordered list of items to her. Recall@k
(abbreviated as R@k) indicates the percentage of her rated items that
appear in the top 𝑘 items of the recommended list. The NDCG@k
(abbreviated as N@k) is the normalized discounted cumulative gain
at a ranking position 𝑘 to measure the ranking quality. Similar to
previous related papers [1, 56, 61], we set the 𝑘 as 20.

5.2 Results and Analysis
5.2.1 Overall Performance (RQ1). To answer RQ1, we evalu-
ate our model performance from two perspectives: time-varying
performance and average performance on the data stream. In Fig-
ure 4, we visualize the Recall@20 and NDCG@20 curves on the

https://github.com/BokwaiHo/DEGC
https://github.com/BokwaiHo/DEGC

Dynamically Expandable Graph Convolution for Streaming Recommendation WWW ’23, April 30–May 4, 2023, Austin, TX, USA

Table 1: The average performancewithMGCCF as our basemodel. ∗ indicates the improvements over baselines are statistically
significant (𝑡-test, 𝑝-value ≤ 0.01).

Method Taobao2014 Taobao2015 Netflix Foursquare
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

Finetune 0.0412 0.0052 0.4256 0.0117 0.3359 0.0580 0.1154 0.0115
Uniform 0.0308 0.0038 0.4194 0.0113 0.3298 0.0533 0.1024 0.0101
Inverse 0.0323 0.0039 0.4217 0.0114 0.3321 0.0536 0.1063 0.0107

ContinualGNN 0.0311 0.0035 0.4203 0.0111 0.3089 0.0491 0.1056 0.0098
TWP 0.0398 0.0050 0.4320 0.0122 0.3428 0.0580 0.1048 0.0104

GraphSAIL 0.0395 0.0051 0.4371 0.0126 0.3470 0.0583 0.1086 0.0110
SGCT 0.0423 0.0054 0.4411 0.0129 0.3300 0.0572 0.1255 0.0137
MGCT 0.0421 0.0055 0.4446 0.0131 0.3252 0.0562 0.1192 0.0127
LWC-KD 0.0440 0.0059 0.4512 0.0139 0.2616 0.0482 0.1280 0.0144

DEGC+LWC-KD 0.1082*
(↑ 146%)

0.0142*
(↑ 141%)

0.4892*
(↑ 8.42%)

0.0167*
(↑ 20.1%)*

0.2949*
(↓ 15.0%)

0.0520*
(↓ 10.8%)

0.1425*
(↑ 11.3%)

0.0178*
(↑ 23.6%)

DEGC+Finetune 0.0825*
(↑ 87.5%)

0.0106*
(↑ 79.7%)

0.4563*
(↑ 1.13%)

0.0142*
(↑ 2.16%)

0.3583*
(↑ 3.26%)

0.0612*
(↑ 4.97%)

0.1324*
(↑ 3.44%)

0.0153*
(↑ 6.25%)

Table 2: The average performance with NGCF as our base
model. ∗ indicates the improvements over baselines are sta-
tistically significant (𝑡-test, 𝑝-value ≤ 0.01).

Method Taobao2014 Netflix
R@20 N@20 R@20 N@20

Finetune 0.0304 0.0040 0.3131 0.0541
Uniform 0.0340 0.0038 0.3263 0.0525
Inverse 0.0347 0.0039 0.3256 0.0518

ContinualGNN 0.0338 0.0036 0.3047 0.0479
TWP 0.0358 0.0047 0.3159 0.0531

GraphSAIL 0.0318 0.0042 0.3245 0.0554
SGCT 0.0350 0.0046 0.3044 0.0533
MGCT 0.0346 0.0045 0.2957 0.0511
LWC-KD 0.0380 0.0050 0.2496 0.0454

DEGC+LWC-KD 0.0961*
(↑ 153%)

0.0123*
(↑ 146%)

0.2713*
(↓ 16.9%)

0.0486*
(↓ 12.3%)

DEGC+Finetune 0.0816*
(↑ 115%)

0.0107*
(↑ 114%)

0.3454*
(↑ 5.85%)

0.0594*
(↑ 7.22%)

data streams of Taobao2014 dataset and Netflix dataset. Compar-
ing the DEGC+Finetune and DEGC+LWC-KD with Finetune and
LWC-KD, respectively, we can observe that our methods achieve
significant time-varying performance gain over their correspond-
ing base methods. Note that the zero performance in the first two
days of Taobao2014 dataset is due to the limited amount of data
and the model overfitting. The main reason that the observed sharp
NDCG@20 decreases in the first five months of Netflix dataset is
the rapidly increasing numbers of users and items. In Table 1, we
show the average performance of different methods on four datasets
while choosing MGCCF as the base GCN recommendation model. It
can be observed that our DEGC+Finetune and DEGC+LWC-KD get
better recommendation effects than all state-of-art methods on all
four datasets, except the DEGC+LWC-KD on Netflix. We argue that
this is because the poor performance of LWC-KD itself on Netflix.
Comparing the DEGC+LWC-KD with LWC-KD independently, our

Table 3: The average performance with LightGCN as our
basemodel. ∗ indicates the improvements over baselines are
statistically significant (𝑡-test, 𝑝-value ≤ 0.01).

Method Taobao2014 Netflix
R@20 N@20 R@20 N@20

Finetune 0.0339 0.0040 0.3179 0.0537
Uniform 0.0377 0.0041 0.3289 0.0533
Inverse 0.0386 0.0042 0.3275 0.0530

ContinualGNN 0.0382 0.0041 0.3035 0.0475
TWP 0.0338 0.0040 0.3204 0.0542

GraphSAIL 0.0342 0.0042 0.3282 0.0544
SGCT 0.0342 0.0043 0.3073 0.0519
MGCT 0.0357 0.0047 0.2983 0.0516
LWC-KD 0.0402 0.0053 0.2571 0.0461

DEGC+LWC-KD 0.0975*
(↑ 143%)

0.0125*
(↑ 136%)

0.2776*
(↓ 15.6%)

0.0491*
(↓ 9.74%)

DEGC+Finetune 0.0833*
(↑ 107%)

0.0109*
(↑ 106%)

0.3483*
(↑ 5.90%)

0.0596*
(↑ 9.56%)

method still improves the performance by 12.7% on Recall@20 and
7.9% on NDCG@20, which also demonstrate the effectiveness of our
method. As for the poor performance of SGCT, MGCT, LWC-KD
on Netflix, this is resulted by the over-stability issue. Such type
of knowledge distillation methods can hardly accurately capture
the user preferences’ shifts when they change rapidly. Besides, it
can be noticed that the performance of experience replay methods
including Uniform, Inverse, and ContinualGNN are even worse
than Finetune. Actually, in the streaming recommendation, such
methods can replay previous data containing users’ outdated short-
term preferences, which negatively influences the model learning
on new segments.

5.2.2 Method Robustness Analysis (RQ2). To answer RQ2,
we conduct the experiments with NGCF and LightGCN as the
base GCN models on both Taobao2014 and Netflix datasets. The

WWW ’23, April 30–May 4, 2023, Austin, TX, USA Bowei He et al.

Figure 4: The time-varying model performance on the data
stream of Taobao2014 dataset and Netflix dataset.

corresponding results are shown in Tables 2 and 3. For GCN mod-
els NGCF and LightGCN, the improvements of our methods on
Taobao2014 are both significant. DEGC+Finetune and DEGC+LWC-
KD both achieve the state-of-art recommendation performance.
An interesting observation is that DEGC+Finetune in Table 3 even
gets better performance than that in Table 1. This also shows the
performance potential of DEGC on different kinds of base GCN
models. As for the dataset Netflix, DEGC+Finetune improves the
Recall@20 by 10.3% and NDCG@20 by 9.8% over Finetune when
choosing NGCF as the GCN model. DEGC+LWC-KD improves the
Recall@20 by 8.7% and NDCG@20 by 7.0% over LWC-KD, mean-
while. Besides, DEGC+Finetune achieves the best recommendation
effect over all previous methods. Similar improvements can also be
observed when taking LightGCN as the base GCN model. Such ob-
servations demonstrate the robustness of our methods to different
datasets and GCN-based recommendation models.

Figure 5: Ablation study to historical convolution prun-
ing (HCP) and temporal preference modeling (TPM) on
Taobao2014 dataset.

5.2.3 Ablation Study toHistorical ConvolutionPruning (RQ3).
To answer RQ3, we conduct the experiments with DEGC+Finetune
(w/o HCP) and DEGC+LWC-KD (w/o HCP) as the continual graph
learning methods while taking the MGCCF as base GCN model on

Taobao2014 and Netflix datasets. The top two subfigures of Figure 5
illustrate the time-varying recommendation performance with two
metrics: Recall@20 and NDCG@20. Comparing the DEGC+Finetune
withDEGC+Finetune (w/oHCP) andDEGC+LWC-KDwithDEGC+LWC-
KD (w/o HCP), respectively, we can find that historical convolu-
tion pruning is of great significance to our methods’ effectiveness.
These demonstrate that pruning historical convolution parameter
to forget the outdated short-term preferences is necessary. It is also
validated that conventional continual graph methods that inherit
the parameters learned on the last segment indiscriminately and
then finetune them with the new data hinders the model learning
on the new segment. This can also be regarded as, at least, part of
the reasons that lead to the ’over-stability’ challenge in continual
learning for streaming recommendation. We also quantitatively
analyze the performance drop after removing the historical convo-
lution pruning. We find that DEGC+Finetune decreases by 25.3%
and DEGC+LWC-KD decreases by 28.4% on average. The more
severe decrease effect of DEGC+LWC-KD is due to that LWC-KD
preserves more historical knowledge which may contain users’ out-
dated short-term preferences. We can also observe similar results
regarding Netflix dataset in Figure 6 of Appendix C.

5.2.4 Ablation Study to Temporal PreferenceModeling (RQ4).
To answer RQ4, we conduct the experiments with DEGC+Finetune
(w/o TPM) and DEGC+LWC-KD (w/o TPM) on Taobao2014 and
Netflix datasets while taking the MGCCF as the base GCN model.
From the bottom two subfigures of Figure 5, we can observe that
the Recall@20 and NDCG@20 metrics both decrease obviously after
removing the temporal preference modeling. This proves that mod-
eling temporal user preference as initialization does benefit the user
preference learning in the GCN update phase. Actually, this also
corresponds to the other two challenges except the continuous user
preference shifts in streaming recommendation: ever-increasing
users and intermittent user activities mentioned in Section 1. Tradi-
tional continual graph learningmethods like Finetune and LWC-KD
directly use the user embeddings learned in the last segment as
the embeddings initialization in the current segment. So they can
hardly provide an accurate embedding initialization to users whose
active intervals on the online platform are longer than a time seg-
ment. Also, they cannot provide a warm embedding initialization
for newly coming users. Our temporal preference modeling as user
embedding initialization solves such two challenges to some ex-
tent and improves the Recall@20 by 34.3% and 24.9% on average,
over DEGC+Finetune (w/o TPM) and DEGC+LWC-KD (w/o TPM),
respectively. The similar trends on Netflix dataset can also be ob-
served in Figure 6 of Appendix C.

6 CONCLUSION
Streaming recommendation has attracted great attention due to
the dynamics of the real world. In this paper, we first propose the
temporal preference modeling as the user embedding initialization
of each time segment. Then, we start from the model isolation per-
spective and propose the historical graph convolution pruning and
refining and graph convolution expanding and pruning operations,
in such ways to only preserve useful long-term preferences and fur-
ther extract current short-term preferences. Extensive experiments

Dynamically Expandable Graph Convolution for Streaming Recommendation WWW ’23, April 30–May 4, 2023, Austin, TX, USA

on four real-world datasets and three most representative GCN-
based recommendation models also demonstrate the effectiveness
and robustness of our method.

ACKNOWLEDGMENTS
This work was supported by the Start-up Grant (No. 9610564) and
the Strategic Research Grant (No. 7005847) of City University of
Hong Kong.

REFERENCES
[1] Kian Ahrabian, Yishi Xu, Yingxue Zhang, Jiapeng Wu, Yuening Wang, and Mark

Coates. 2021. Structure Aware Experience Replay for Incremental Learning in
Graph-based Recommender Systems. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 2832–2836.

[2] Yikun Ban and Jingrui He. 2021. Local clustering in contextual multi-armed
bandits. In Proceedings of the Web Conference 2021. 2335–2346.

[3] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H
Chi. 2018. Latent cross: Making use of context in recurrent recommender systems.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining. 46–54.

[4] Lucas Caccia, Jing Xu, Myle Ott, Marc’Aurelio Ranzato, and Ludovic Denoyer.
2021. On anytime learning at macroscale. arXiv preprint arXiv:2106.09563 (2021).

[5] Guohao Cai, Jieming Zhu, Quanyu Dai, Zhenhua Dong, Xiuqiang He, Ruiming
Tang, and Rui Zhang. 2022. ReLoop: A Self-Correction Continual Learning
Loop for Recommender Systems. In SIGIR ’22: The 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, Madrid, Spain,
July 11 - 15, 2022. ACM, 2692–2697.

[6] Jie Cai, Xin Wang, Chaoyu Guan, Yateng Tang, Jin Xu, Bin Zhong, and Wenwu
Zhu. 2022. Multimodal Continual Graph Learning with Neural Architecture
Search. In Proceedings of the ACM Web Conference 2022. 1292–1300.

[7] Badrish Chandramouli, Justin J Levandoski, Ahmed Eldawy, and Mohamed F
Mokbel. 2011. Streamrec: a real-time recommender system. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of data. 1243–1246.

[8] Shiyu Chang, Yang Zhang, Jiliang Tang, Dawei Yin, Yi Chang, Mark A Hasegawa-
Johnson, and Thomas S Huang. 2017. Streaming recommender systems. In
Proceedings of the 26th international conference on world wide web. 381–389.

[9] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajan-
than, Puneet K Dokania, Philip HS Torr, and M Ranzato. 2019. Continual learning
with tiny episodic memories. (2019).

[10] Chen Chen, Hongzhi Yin, Junjie Yao, and Bin Cui. 2013. Terec: A temporal
recommender system over tweet stream. Proceedings of the VLDB Endowment 6,
12 (2013), 1254–1257.

[11] Yankai Chen, Huifeng Guo, Yingxue Zhang, Chen Ma, Ruiming Tang, Jingjie
Li, and Irwin King. 2022. Learning binarized graph representations with multi-
faceted quantization reinforcement for top-k recommendation. In SIGKDD.

[12] Yankai Chen, Menglin Yang, Yingxue Zhang, Mengchen Zhao, Ziqiao Meng,
Jianye Hao, and Irwin King. 2022. Modeling Scale-free Graphs with Hyperbolic
Geometry for Knowledge-aware Recommendation. In WSDM. 94–102.

[13] Yankai Chen, Yaming Yang, Yujing Wang, Jing Bai, Xiangchen Song, and Irwin
King. 2022. Attentive Knowledge-aware Graph Convolutional Networks with
Collaborative Guidance for Personalized Recommendation. In ICDE.

[14] Ed H Chi. 2020. From Missing Data to Boltzmann Distributions and Time Dy-
namics: The Statistical Physics of Recommendation. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 1–2.

[15] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.
Google news personalization: scalable online collaborative filtering. In Proceed-
ings of the 16th international conference on World Wide Web. 271–280.

[16] Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. 2015. Dynamic matrix
factorization with priors on unknown values. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. 189–
198.

[17] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama
Chellappa. 2019. Learning without memorizing. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 5138–5146.

[18] Ernesto Diaz-Aviles, Lucas Drumond, Lars Schmidt-Thieme, and Wolfgang Nejdl.
2012. Real-time top-n recommendation in social streams. In Proceedings of the
sixth ACM conference on Recommender systems. 59–66.

[19] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou, Giovanni
Zappella, and Evans Etrue. 2017. On context-dependent clustering of bandits. In
International Conference on machine learning. PMLR, 1253–1262.

[20] Claudio Gentile, Shuai Li, and Giovanni Zappella. 2014. Online clustering of
bandits. In International Conference on Machine Learning. PMLR, 757–765.

[21] Siavash Golkar, Michael Kagan, and Kyunghyun Cho. 2019. Continual learning
via neural pruning. arXiv preprint arXiv:1903.04476 (2019).

[22] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[23] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

[24] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. 2019.
Learning a unified classifier incrementally via rebalancing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 831–839.

[25] David Isele and Akansel Cosgun. 2018. Selective experience replay for lifelong
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[26] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic em-
bedding trajectory in temporal interaction networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1269–1278.

[27] Shuai Li, Wei Chen, Shuai Li, and Kwong-Sak Leung. 2019. Improved Algorithm
on Online Clustering of Bandits. In Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, Sarit Kraus (Ed.). ijcai.org, 2923–2929.

[28] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. 2016. Collaborative
filtering bandits. In Proceedings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval. 539–548.

[29] Huihui Liu, Yiding Yang, and Xinchao Wang. 2021. Overcoming Catastrophic
Forgetting in Graph Neural Networks. In AAAI. AAAI Press, 8653–8661.

[30] Andreas Lommatzsch and Sahin Albayrak. 2015. Real-time recommendations for
user-item streams. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing. 1039–1046.

[31] Chen Ma, Peng Kang, and Xue Liu. 2019. Hierarchical gating networks for
sequential recommendation. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 825–833.

[32] Chen Ma, Liheng Ma, Yingxue Zhang, Ruiming Tang, Xue Liu, and Mark Coates.
2020. Probabilistic metric learning with adaptive margin for top-K Recommenda-
tion. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 1036–1044.

[33] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. 2020. Stream-
ing graph neural networks. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 719–728.

[34] Fei Mi, Xiaoyu Lin, and Boi Faltings. 2020. Ader: Adaptively distilled exemplar re-
play towards continual learning for session-based recommendation. In Fourteenth
ACM Conference on Recommender Systems. 408–413.

[35] Oleksiy Ostapenko, Pau Rodriguez, Massimo Caccia, and Laurent Charlin. 2021.
Continual learning via local module composition. Advances in Neural Information
Processing Systems 34 (2021), 30298–30312.

[36] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
AAAI. AAAI Press, 5363–5370.

[37] Massimo Perini, Giorgia Ramponi, Paris Carbone, and Vasiliki Kalavri. 2022.
Learning on streaming graphs with experience replay. In Proceedings of the 37th
ACM/SIGAPP Symposium on Applied Computing. 470–478.

[38] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania. 2020. Gdumb: A simple
approach that questions our progress in continual learning. In European conference
on computer vision. Springer, 524–540.

[39] Qi Qin, Wenpeng Hu, Han Peng, Dongyan Zhao, and Bing Liu. 2021. BNS:
Building Network Structures Dynamically for Continual Learning. Advances in
Neural Information Processing Systems 34 (2021), 20608–20620.

[40] Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. 2017.
Encoder based lifelong learning. In Proceedings of the IEEE International Confer-
ence on Computer Vision. 1320–1328.

[41] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H
Lampert. 2017. icarl: Incremental classifier and representation learning. In Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition. 2001–
2010.

[42] Steffen Rendle, Christoph Freudenthaler, ZenoGantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI. AUAI
Press, 452–461.

[43] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[44] Steffen Rendle and Lars Schmidt-Thieme. 2008. Online-updating regularized
kernel matrix factorization models for large-scale recommender systems. In
Proceedings of the 2008 ACM conference on Recommender systems. 251–258.

[45] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. 2016. Pro-
gressive neural networks. arXiv preprint arXiv:1606.04671 (2016).

[46] Chijun Sima, Yao Fu, Man-Kit Sit, Liyi Guo, Xuri Gong, Feng Lin, Junyu Wu,
Yongsheng Li, Haidong Rong, Pierre-Louis Aublin, et al. 2022. Ekko: A {Large-
Scale} Deep Learning Recommender System with {Low-Latency} Model Update.

WWW ’23, April 30–May 4, 2023, Austin, TX, USA Bowei He et al.

In 16th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22). 821–839.

[47] Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, and Xia Hu. 2017.
Multi-aspect streaming tensor completion. In Proceedings of the 23rd ACMSIGKDD
international conference on knowledge discovery and data mining. 435–443.

[48] Yang Song, Ziming Zhuang, Huajing Li, Qiankun Zhao, Jia Li, Wang-Chien Lee,
and C Lee Giles. 2008. Real-time automatic tag recommendation. In Proceedings of
the 31st annual international ACM SIGIR conference on Research and development
in information retrieval. 515–522.

[49] Karthik Subbian, Charu Aggarwal, and Kshiteesh Hegde. 2016. Recommendations
for streaming data. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. 2185–2190.

[50] Jianing Sun, Yingxue Zhang, Chen Ma, Mark Coates, Huifeng Guo, Ruiming
Tang, and Xiuqiang He. 2019. Multi-graph convolution collaborative filtering. In
2019 IEEE International Conference on Data Mining (ICDM). IEEE, 1306–1311.

[51] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-
ral networks via continual learning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1515–1524.

[52] Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. 2022. Streaming
Graph Neural Networks with Generative Replay. In KDD ’22: The 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 14 - 18, 2022. 1878–1888.

[53] Weiqing Wang, Hongzhi Yin, Zi Huang, Qinyong Wang, Xingzhong Du, and
Quoc Viet Hung Nguyen. 2018. Streaming ranking based recommender systems.
In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 525–534.

[54] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[55] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly robust joint
learning for recommendation on data missing not at random. In International
Conference on Machine Learning. PMLR, 6638–6647.

[56] Yuening Wang, Yingxue Zhang, and Mark Coates. 2021. Graph Structure Aware
Contrastive Knowledge Distillation for Incremental Learning in Recommender
Systems. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 3518–3522.

[57] GregWelch, Gary Bishop, et al. 1995. An introduction to the Kalman filter. (1995).
[58] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning

structured sparsity in deep neural networks. Advances in neural information
processing systems 29 (2016).

[59] Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. 2020. Firefly neural architecture
descent: a general approach for growing neural networks. Advances in Neural
Information Processing Systems 33 (2020), 22373–22383.

[60] Ju Xu and Zhanxing Zhu. 2018. Reinforced continual learning. Advances in
Neural Information Processing Systems 31 (2018).

[61] Yishi Xu, Yingxue Zhang,Wei Guo, Huifeng Guo, Ruiming Tang, andMark Coates.
2020. Graphsail: Graph structure aware incremental learning for recommender
systems. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 2861–2868.

[62] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. 2019. Revis-
iting user mobility and social relationships in lbsns: a hypergraph embedding
approach. In The world wide web conference. 2147–2157.

[63] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudré-Mauroux. 2020.
Lbsn2vec++: Heterogeneous hypergraph embedding for location-based social
networks. IEEE Transactions on Knowledge and Data Engineering (2020).

[64] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[65] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. 2018. Lifelong
Learning with Dynamically Expandable Networks. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings.

[66] Fajie Yuan, Guoxiao Zhang, Alexandros Karatzoglou, Joemon Jose, Beibei Kong,
and Yudong Li. 2021. One person, one model, one world: Learning continual user
representation without forgetting. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval. 696–705.

[67] Hengtong Zhang, Changxin Tian, Yaliang Li, Lu Su, Nan Yang, Wayne Xin
Zhao, and Jing Gao. 2021. Data Poisoning Attack against Recommender System
Using Incomplete and Perturbed Data. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 2154–2164.

[68] Fan Zhou and Chengtai Cao. 2021. Overcoming Catastrophic Forgetting in Graph
Neural Networks with Experience Replay. In AAAI. AAAI Press, 4714–4722.

A NOTATIONS
We summarize the main notations used in this paper in Table 4.

Table 4: Major notations.

𝑇 The total number of data/time segments
𝐾 The total number of graph convolution layers
D̃ The user-item interaction data stream
𝐷𝑡 The data streaming into the system at time segment 𝑡
Δ𝐺𝑡 The graph structure of interaction data 𝐷𝑡
𝐺𝑡 The graph structure of the union of 𝐷1, 𝐷2, ..., 𝐷𝑡
S𝑡 The graph convolution structure at segment 𝑡
W𝑡 The graph convolution parameters at segment 𝑡
W𝐾
𝑡 The topmost graph convolution layer parameters at segment 𝑡

W𝑠
𝑡 The short-term preference-related parameters ofW𝑡

W𝑙
𝑡 The long-term preference-related parameters ofW𝑡

ΔW𝑡 The expansion part of graph convolution at segment 𝑡

Table 5: Data statistics of filtered datasets.

Dataset Tb2014 Tb2015 Netflix Foursquare
user # 8K 192K 301K 52K
item # 39K 10K 9K 37K

interaction # 749K 9M 49M 2M
time span 31 days 123 days 74 months 22 months

AER 35.5% 26.0% 58.4% 60.0%

B DATA STATISTICS OF FILTERED DATASETS
The data statistics of fours filter datasets used in this work are
summarized in Table 5.

C SUPPLEMENTARY ABLATION STUDY
The ablation study results on Netflix dataset are present in Figure 6.

Figure 6: Ablation study to historical convolution pruning
(HCP) and temporal preference modeling (TPM) on Netflix
dataset.

D IMPLEMENTATION DETAILS
We report our implementation details here. We use the Adam opti-
mizer with an initial learning rate as 0.001. The embedding size and

Dynamically Expandable Graph Convolution for Streaming Recommendation WWW ’23, April 30–May 4, 2023, Austin, TX, USA

the width of each graph convolution layer are set to 128. The 𝐿1
regularization coefficient _1 is set to 0.001. The 𝐿2 regularization
coefficient _2 and the GSR regularization coefficient _𝑔 are set to
0.01. We set the batch size as 1,000 when training the GCN models.

The number 𝑁 of the expansion filters at each layer is set as 30.
Without specifications, the hyper-parameters are set same as the
original papers. We implement our algorithm with Tensorflow and
test it on the NVIDIA GeForce RTX 3090 GPU with 24 GB memory.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Streaming Recommendation
	2.2 Continual Learning

	3 Preliminaries
	3.1 Definitions and Formulations
	3.2 GCN-based Recommender Models

	4 Methodology
	4.1 Temporal User Preference Modeling as Initialization
	4.2 Historical Graph Convolution Pruning and Refining
	4.3 Graph Convolution Expanding and Pruning

	5 Experiments
	5.1 Experiment Settings
	5.2 Results and Analysis

	6 Conclusion
	Acknowledgments
	References
	A Notations
	B Data statistics of filtered datasets
	C Supplementary Ablation Study
	D Implementation Details

