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ABSTRACT

Generative graph self-supervised learning (SSL) aims to learn node
representations by reconstructing the input graph data. However,
most existing methods focus on unsupervised learning tasks only
and very few work has shown its superiority over the state-of-
the-art graph contrastive learning (GCL) models, especially on the
classification task. While a very recent model has been proposed
to bridge the gap, its performance on unsupervised learning tasks
is still unknown. In this paper, to comprehensively enhance the
performance of generative graph SSL against other GCL models on
both unsupervised and supervised learning tasks, we propose the
SeeGeramodel, which is based on the family of self-supervised vari-
ational graph auto-encoder (VGAE). Specifically, SeeGera adopts
the semi-implicit variational inference framework, a hierarchical
variational framework, and mainly focuses on feature reconstruc-
tion and structure/feature masking. On the one hand, SeeGera
co-embeds both nodes and features in the encoder and reconstructs
both links and features in the decoder. Since feature embeddings
contain rich semantic information on features, they can be com-
bined with node embeddings to provide fine-grained knowledge
for feature reconstruction. On the other hand, SeeGera adds an
additional layer for structure/feature masking to the hierarchical
variational framework, which boosts the model generalizability. We
conduct extensive experiments comparing SeeGera with 9 other
state-of-the-art competitors. Our results show that SeeGera can
compare favorably against other state-of-the-art GCL methods in a
variety of unsupervised and supervised learning tasks.
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1 INTRODUCTION

Self-supervised learning (SSL) [2, 6, 9, 36] has attracted significant
attention recently. By extracting and employing supervisions from
data itself, SSL can heavily reduce the dependence of neural network
models on the labeled data, which is costly to obtain. To facilitate
graph-based learning, SSL has been applied on graph-structured
data. For example, it can learn representations for nodes (e.g., web
pages in search engines), and detect the anomalies on webs (e.g.,
malicious users) [16]. Recently, graph contrastive learning (GCL), as
one of the main SSL types, has experienced a surge [10, 26, 29, 35].
The core idea of GCL is to first construct positive and negative pairs
for nodes, and then maximize the similarity between positive pairs
while minimizing that between negative ones1.

Despite the success, existing GCL methods suffer from two main
problems. On the one hand, negative samples are needed in most
contrastive objectives, which generally construct one positive and
𝐾 negative samples for each node. However, these models are eas-
ily affected by the value of 𝐾 . When 𝐾 is small, the model cannot
learn sufficient discriminative information, which degrades the
model effectiveness; otherwise, there could lead to a large number
of false-negative samples and slow convergence. Generally, 𝐾 is
set empirically and there lack theoretical supports. On the other
hand, for the rest of methods based on positive pairs only, they
are easily trapped into a degenerate solution [40], where all the
output embeddings of nodes collapse to a constant. To tackle the
issue, additional strategies are necessary, such as asymmetric dual
encoders with momentum updates and exponential moving aver-
age [21, 27]. Recently, some studies [14] have showed that although
these training strategies can alleviate collapse to some extent, they
may still cause collapse in partial dimensions of the representation,
which leads to worse performance.

To address the shortcomings of GCL methods, generative graph
SSL methods can be used instead. In particular, self-supervised

1Note that some GCL methods require positive pairs only and they only maximize the
similarity between positive pairs.
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graph auto-encoders (GAEs) [12], whose objective is to reconstruct
the input graph data, have been widely studied. Existing methods
mainly differ in their adopted reconstruction components, such
as the adjacency matrix reconstruction [19], the node feature re-
construction [20] and a combination of both graph structure and
node feature reconstruction [23]. However, most of these methods
focus on the unsupervised learning tasks like link prediction and
node clustering, and very few work has shown its superiority over
the state-of-the-art GCL methods, especially on the classification
task. While a masked GAE model GraphMAE [7] is very recently
proposed to bridge the gap, its performance on the unsupervised
learning tasks is still unexplored. Since the goal of SSL is to learn
versatile representations, a further study on self-supervised GAE
model that can achieve comprehensive superiority on both unsu-
pervised and supervised learning tasks is needed. Further, although
GraphMAE is an auto-encoding method, it is based on GAE and
is essentially not a generative model. This also calls our attention
back to the study of generative graph SSL model, such as variational
graph auto-encoder (VGAE) [12].

Different from GAE, VGAE consists of an inference model and a
generative model. Specifically, the inference model encodes obser-
vations (links and features) into latent variables (node embeddings)
while the generative model decodes from these latent variables
to reconstruct links. However, as pointed out in [7], node feature
reconstruction is beneficial for learning high-quality representa-
tions. Therefore, the lack of feature reconstruction could degrade
the model effectiveness. To solve the issue, most existing methods
adopt MLP [8, 9] and GNNs [7, 20] as their decoders for feature
reconstruction. However, they utilize node-level embeddings only
and ignore feature-level embeddings that contain rich semantic
information on node features and can be used to help feature recon-
struction. Recently, CAN [18] is proposed to co-embed both nodes
and features, and use the inner product of their embeddings as the
decoder to recover node features. Despite the success, it has three
main problems. First, the linear decoder is generally less powerful
than MLP and GNNs, which restricts the model’s capability in re-
constructing node features. Second, it assumes the independence
between node and feature embeddings in the variational inference
stage, but practically these two types of embeddings are highly
correlated. Third, it lacks structure/feature masking in the learning
process, which has been shown to degrade the model’s performance
on the classification task [7].

In this paper, we study generative graph SSL and our goal is to en-
hance the family of self-supervised VGAE on graph representation
learning in a variety of downstream tasks. Recently, semi-implicit
variational inference (SIVI) [32], which is a hierarchical variational
framework, has been applied to VGAE to model a wide range of un-
derlying true posteriors with multi-modality, skewness and heavy
tails [4]. We thus adopt the framework to remove the explicit Gauss-
ian restriction on the variational distribution and mainly focus
on the component of feature reconstruction and structure/feature
masking. We propose a Self-supervised semi-implicit Graph varia-
tional auto-encoder with masking, namely, SeeGera. Specifically,
the model co-embeds both nodes and features in the encoder and
jointly reconstructs links and features in the decoder. Note that the
feature embeddings can provide fine-grained information that is
supplementary to the node embeddings when reconstructing node

features. Specifically, for each node, we take its feature values as
weights and compute the weighted average of feature embeddings
w.r.t. the node. The weighted embedding characterizes the affini-
ties between the node and all the features. After that, we combine
the weighted embedding with the node embedding, and feed the
fused embedding into GNNs to reconstruct the node’s features.
Further, to generate node and feature embeddings in the encoder,
we first assume the independence between them and propose the
base SeeGera model. Then we upgrade the model by capturing
the correlations between node and feature embeddings. Finally, we
add an additional layer to the hierarchical variational framework
to integrate SeeGera with the masking mechanism and boost the
model performance. In summary, our main contributions are listed:
•We propose a generative graph SSLmodel SeeGera. To our knowl-
edge, this is the first generative graph SSL method that is compre-
hensively compared with the SOTA GCL models in terms of both
unsupervised and supervised learning tasks, and shows superiority.
• We present a novel feature reconstruction method that lever-
ages both node and feature embeddings to provide fine-grained
information for reconstructing features. We further introduce the
structure/feature masking mechanism by adding an additional layer
to the hierarchical variational framework.
• We conduct extensive experiments to evaluate the performance
of SeeGera on two unsupervised learning tasks: link prediction
and attribute inference, and one supervised learning task: node
classification. Experimental results show that SeeGera can signifi-
cantly outperform other competitors on both link prediction and
attribute inference tasks, and perform comparably with them in
node classification. This effectively verifies the power of generative
graph SSL in graph representation learning.

2 RELATEDWORK

In this section, we summarize the related work on both graph self-
supervised learning and generative graph self-supervised learning,
respectively.

2.1 Graph self-supervised learning

Graph self-supervised learning [7, 26, 31, 35] aims to employ super-
visions extracted from graph-structured data without the need for
annotated data. Existing methods can be mainly divided into four
types: (1) generative models [12], whose objective is to reconstruct
the input graph data. (2) auxiliary-property-based methods [36],
which first obtain graph-related properties and then take them as
supervisions, such as the pseudo labels of unlabeled nodes; (3) con-
trastive models [29], which construct positive and negative pairs
for contrast. (4) hybrid approaches [38], which combine the objec-
tives of the first three types in a multi-task learning fashion. For a
comprehensive survey on graph self-supervised learning, see [15].

Recently, graph contrastive learning has been widely studied.
According to whether negative samples are used in the learning pro-
cess, existing methods include negative-sample-based and negative-
sample-free ones. For the former, DGI [29] and InfoGraph [26] em-
ploy corruptions to construct negative pairs. GRACE [41], GCA [42]
and GraphCL [35] take samples in a mini-batch as a dictionary
whose size is constrained by the batch size and consider other sam-
ples in the samemini-batch as negatives of a sample, while GCC [21]
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maintains a dynamic dictionary with larger size as in MoCo [6].
For the latter, BGRL [27] and CCA-SSG [37] are two representative
models that are based on asymmetric encoding architectures. How-
ever, they require special training strategies to avoid the collapse
of learned node embeddings to a constant, such as momentum up-
date [6], exponential moving average [27] and stop gradient [27].
Further, existing GCL methods heavily rely on graph augmentation
strategies to construct different graph views for contrast, including
feature-oriented (e.g., masking [35] and shuffling [29]), proximity-
oriented (e.g., perturbation [35]), and graph-sampling-based (e.g.,
random-walk [5]) augmentations.

2.2 Generative graph self-supervised learning

Generative graph self-supervised learning aims to take the input
graph as self-supervision and recover the input data. It mainly con-
sists of two families of models: graph autoregressive models and
graph autoencoders (GAEs). Autoregressive models [33, 34] decom-
pose joint probability distributions as a product of conditionals. The
representative graph autoregressive model is GPT-GNN [9], which
takes attributed graph generation as its objective. However, since
autoregressive models require an explicit ordering to generate, they
might not work well on graphs that do not exhibit inherent orders.

Different from graph autoregressive models, GAEs do not require
any decoding ordering and they aim to reconstruct part of the input
graph data. According to the reconstructed components, existing
self-supervised GAE methods include those that reconstruct links
only (e.g., ARVGA [19], GAE [12], VGAE [12]), features only (e.g.,
GraphMAE [7], GALA [20], MGAE [30], EP [3]), and a combination
of both links and features (e.g., GATE [23], CAN [18], DGE [39]).
However, most of these methods focus on the link prediction and
node clustering tasks, and few of them compares favorably against
the state-of-the-art GCL methods, especially in the classification
task. While GraphMAE is recently proposed to bridge the gap, its
performance on unsupervised learning tasks remains unexplored.
Further, it is based on GAE and is essentially not a generative model.
Different from GAE, variational graph auto-encoder (VGAE) is a
generative model that recovers links only in the decoder. While
there exist some self-supervised VGAE models that reconstruct fea-
tures [23, 39], most of them only leverage node-level embeddings
but ignore feature-level embeddings that contain fine-grained infor-
mation for node features and can help boost feature reconstruction.
In this paper, we reconsider generative graph self-supervised learn-
ing and show that self-supervised VGAE can outperform or perform
comparably against other SOTA GCL models in a variety of tasks,
such as link prediction, attribute inference and node classification.

3 PRELIMINARY

3.1 Notations

Let G = (V, E) denote a graph, whereV = {𝑥𝑖 }𝑛𝑖=1 is a set of nodes
and E ⊆ V ×V is a set of edges. Let A be the adjacency matrix of
𝐺 , such that A𝑖 𝑗 represents the weight of edge 𝑒𝑖 𝑗 between objects
𝑥𝑖 and 𝑥 𝑗 . For simplicity, we set A𝑖 𝑗 = 1 if 𝑒𝑖 𝑗 ∈ E; 0, otherwise.
Further, since nodes in a graph are usually associated with features,
we denote F = {𝑓𝑟 }𝑙𝑟=1 as a set of node features and X ∈ R𝑛×𝑙 as
the node feature matrix, where the 𝑖-th row X𝑖 is the feature vector
of node 𝑥𝑖 . For the node representation matrix, let it be ZV ∈ R𝑛×𝑑 ,

where 𝑑 is the output embedding dimension satisfying 𝑑 ≪ |V|.
Note that the 𝑖-th row ZV

𝑖
represents the embedding of node 𝑥𝑖 .

Similarly, ZF ∈ R𝑙×𝑑 denotes the feature representation matrix,
whose 𝑟 -th row ZF

𝑟 is the embedding of node feature 𝑓𝑟 . In this
paper, we learn both node and feature representations, and use
node representations in various downstream tasks.

3.2 SIVI and SIG-VAE

Given observations Y and latent variable Z, the vanilla variational
inference (VI) derives an evidence lower bound

ELBO = −EZ∼𝑞 (Z |𝜓 ) [log𝑞(Z|𝜓 ) − log𝑝 (Y,Z)] , (1)

where𝜓 is variational parameter, 𝑞(Z|𝜓 ) is variational distribution
and 𝑝 (Y,Z) is joint distribution. However, VI restricts an exponen-
tial family assumption to the posterior. To address the problem,
semi-implicit variational inference (SIVI) [32] considers variational
parameters as random variables drawn from a mixing distribution.
Specifically, the semi-implicit variational distribution for Z is de-
fined in a hierarchical manner, which follows Z ∼ 𝑞(Z|𝜓 ) and
𝜓 ∼ 𝑞𝜙 (𝜓 ). Here, 𝜙 is the parameter of the mixing distribution
𝑞𝜙 (𝜓 ). Further,𝜓 can be marginalized out to derive a distribution
familyH indexed by 𝜙 for Z:

H =

{
ℎ(Z) : ℎ(Z) =

∫
𝜓

𝑞(Z|𝜓 )𝑞𝜙 (𝜓 )d𝜓
}
. (2)

Note that 𝑞(Z|𝜓 ) is required to be explicit, but the mixing distri-
bution 𝑞𝜙 (𝜓 ) is allowed to be implicit. Moreover, the marginal
distribution ℎ(Z) ∈ H is often implicit unless 𝑞𝜙 (𝜓 ) is conjugate
to 𝑞(Z|𝜓 ). These are the reasons why the method is referred to as
“semi-implicit” VI. To maintain simple optimization, 𝑞(Z|𝜓 ) is re-
quired to be either reparameterizable [11] or allow the ELBO under
𝑞(Z|𝜓 ) to be analytic. For 𝑞𝜙 (𝜓 ), it needs to be reparameterizable.
Generally, SIVI draws from 𝑞𝜙 (𝜓 ) by injecting random noise 𝜖 into
node features and transforming the features via neural networks.

Recently, Hasanzadeh et al. [4] apply SIVI to VGAE and propose
the semi-implicit graph variational auto-encoder (SIG-VAE) model.
Specifically, it sets 𝑞(Z|𝜓 ) to be Gaussian distribution and uses
GNNs to characterize themixing distribution𝑞𝜙 (𝜓 ).While SIG-VAE
uses the hierarchical variational framework to capture complex non-
Gaussian posteriors, it still has the problem of ignorance of feature
reconstruction and structure/feature masking. Therefore, based on
the framework of SIG-VAE, we next explore how to enhance self-
supervised VGAE for unsupervised graph representation learning.

4 ALGORITHM

In this section, we present our model SeeGera. Different from SIG-
VAE that uses node embeddings only, SeeGera further generates
feature embeddings to capture the rich semantic information on
node features, which can be used to enhance feature reconstruction.
Specifically, we consider two cases in the encoder when generating
node and feature embeddings: (1) they are independent; (2) they
are correlated. After that, in the decoder part, we utilize GNNs
to reconstruct node features based on both node and feature em-
beddings. Finally, we show how structure/feature masking can be
integrated with the hierarchical variational framework and gives
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the optimization techniques. The overall framework of SeeGera is
summarized in Figure 1.

4.1 Variational lower bound

In VI, given a graph G with an adjacency matrix A and a feature
matrix X, we approximate the true posterior 𝑝 (ZV ,ZF |A,X) with
a variational distribution 𝑞(ZV ,ZF |𝜓1,𝜓2), where 𝜓1 and 𝜓2 are
variational parameters. To capture more complex posteriors that go
beyond the exponential family, we adopt the hierarchical variational
framework in SIVI and assume

ZV ∼ 𝑞1 (ZV |𝜓1), 𝜓1 ∼ 𝑞𝜙1 (𝜓1), ZF ∼ 𝑞2 (ZF |𝜓2), 𝜓2 ∼ 𝑞𝜙2 (𝜓2), (3)

where𝜙1 and𝜙2 are parameters ofmixing distributions.Wemarginal-
ize𝜓1 and𝜓2 out and derive

ZV ∼ ℎ𝜙1 (Z
V ) =

∫
𝜓1
𝑞1 (ZV |𝜓1)𝑞𝜙1 (𝜓1)d𝜓1,

ZF ∼ ℎ𝜙2 (Z
F) =

∫
𝜓2
𝑞2 (ZF |𝜓2)𝑞𝜙2 (𝜓2)d𝜓2 .

(4)

We maximize the log-likelihood of observations A and X, and use
Jensen’s inequality to get

log𝑝 (A,X) ≥ Eℎ𝜙 (ZV ,ZF )

[
log

𝑝 (A,X,ZV ,ZF)
ℎ𝜙 (ZV ,ZF)

]
= L, (5)

where L is ELBO and

ℎ𝜙 (ZV ,ZF) =
∫
𝜓1

∫
𝜓2

𝑞(ZV ,ZF |𝜓1,𝜓2)𝑞𝜙 (𝜓1,𝜓2)d𝜓1d𝜓2 (6)

is the marginal distribution over ZV and ZF . Since ℎ𝜙 is often
intractable, theMonte Carlo estimation of ELBO could be prohibited.
To address the problem, we first take the mean-field assumption:

𝑞(ZV ,ZF |𝜓1,𝜓2) = 𝑞1 (ZV |𝜓1)𝑞2 (ZF |𝜓2),
𝑞𝜙 (𝜓1,𝜓2) = 𝑞𝜙1 (𝜓1)𝑞𝜙2 (𝜓2),

(7)

and substitute Eq. 7 into Eq. 6 to get:

ℎ𝜙 (ZV ,ZF) = ℎ𝜙1 (Z
V )ℎ𝜙2 (Z

F) . (8)

From Eq. 8, we see that ZV and ZF are independent. Then we
derive a lower bound for the ELBO based on Eq. 8:

L = Eℎ𝜙1 (ZV )Eℎ𝜙2 (ZF )

[
log

𝑝 (A,X,ZV ,ZF)
ℎ𝜙1 (ZV )ℎ𝜙2 (ZF)

]
≥ E𝜓1∼𝑞𝜙1 (𝜓 )EZV∼𝑞1 (ZV |𝜓1)E𝜓2∼𝑞𝜙2 (𝜓 )EZF∼𝑞2 (ZF |𝜓2)[

log
𝑝 (A,X,ZV ,ZF)

𝑞1 (ZV |𝜓1)𝑞2 (ZF |𝜓2)

]
= L1

(9)

Details on the derivation of Equation 9 are deferred to Appendix E.
In L1, 𝑞1 and 𝑞2 are required to be explicit and have analytic den-
sity function, while 𝑞𝜙1 and 𝑞𝜙2 could be implicit but have to be
convenient to be sampled from. Directly optimizing L1 by Monte
Carlo Estimation is much easier.

However, in practice, nodes and their features are highly cor-
related. On the one hand, node embeddings are generated based
on features. On the other hand, the semantic information of fea-
tures are directly reflected by nodes. Therefore, the independence

between ZV and ZF in Equation 8 is inappropriate. To tackle the
issue, we modify Eq. 7 into:

𝑞(ZV ,ZF |𝜓1,𝜓2) = 𝑞1 (ZV |𝜓1)𝑞2 (ZF |𝜓2),
𝑞𝜙 (𝜓1,𝜓2) = 𝑞𝜙2 (𝜓2 |𝜓1)𝑞𝜙1 (𝜓1),

(10)

which explicitly characterizes the dependence between variational
parameters𝜓1 and𝜓2. In this way,ℎ𝜙 (ZV ,ZF) ≠ ℎ𝜙1 (ZV )ℎ𝜙2 (ZF),
which shows that ZV and ZF are correlated. Then we can derive
another lower bound for the ELBO in Equation 5:

L ≥ E𝜓1∼𝑞𝜙1 (𝜓1)E𝜓2∼𝑞𝜙2 (𝜓2 |𝜓1)E(ZV ,ZF )∼𝑞 (ZV ,ZF |𝜓1,𝜓2)[
log

𝑝 (A,X,ZV ,ZF)
𝑞(ZV ,ZF |𝜓1,𝜓2)

]
= L2

(11)

4.2 Encoder

In the encoder, we generate ZV and ZF from observations A and X.
We next show how to generate ZV and ZF according to whether
they are independent or not.

[ZV
and ZF

are independent]. To generate ZV , we assume
that 𝑞1 (ZV |𝜓1) =

∏𝑛
𝑖=1 𝑞1 (ZV

𝑖
|𝜇V
𝑖
, ΣV
𝑖
), where 𝑞1 (ZV

𝑖
|𝜇V
𝑖
, ΣV
𝑖
)

= N(𝜇V
𝑖
, ΣV
𝑖
) and N is multivariate Gaussian distribution with

mean 𝜇V
𝑖

and diagonal co-variance matrix ΣV
𝑖
. Since 𝜇V

𝑖
and ΣV

𝑖
are random variables, we draw them by injecting noise 𝜖 into a
GNN model:

X̃ = CONCAT(X, 𝜖), 𝜖 ∼ 𝑞(𝜖), [𝜇V𝑖 , Σ
V
𝑖 ] = GNN1 (A, X̃), (12)

where CONCAT(·) is the concatenation function and GNN1 (·) is a
GNN model. Note that 𝜖 is random noise sampled from distribution
𝑞(𝜖), whose row size should be the same as X. The injected noise 𝜖
enables the uncertainty propagation between neighboring nodes in
the GNN layer, which drives the outputs of the GNN to be random
variables rather than deterministic values. Similarly, for ZF , we
assume 𝑞2 (ZF |𝜓2) =

∏𝑙
𝑟=1 𝑞2 (ZF

𝑟 |𝜇F𝑟 , ΣF
𝑟 ) with 𝑞2 (ZF

𝑟 |𝜇F𝑟 , ΣF
𝑟 ) =

N(𝜇F𝑟 , ΣF
𝑟 ). To infer 𝜇F𝑟 and ΣF

𝑟 , we use a MLP model:

X̂ = CONCAT(X𝑇 , 𝜖), 𝜖 ∼ 𝑞(𝜖), [𝜇F𝑟 , ΣF
𝑟 ] = MLP1 (X̂) . (13)

Note that X𝑇 ∈ R𝑙×𝑛 and the 𝑟 -th row X𝑇𝑟 ∈ R𝑛 can be considered
as the feature vector of feature 𝑓𝑟 . The random noise 𝜖 drawn from
𝑞(𝜖) injects uncertainty to the matrix X𝑇 , which models 𝜇F𝑟 and
ΣF
𝑟 as random variables.
[ZV

and ZF
are correlated].We also assume 𝑞1 and 𝑞2 follow

Gaussian distribution and use the same method as in Equation 12 to
generate [𝜇V

𝑖
, ΣV
𝑖
]. However, to capture the dependence between

𝜓1 and 𝜓2 2 in Equation 10, we compute [𝜇F𝑟 , ΣF
𝑟 ] for feature 𝑓𝑟

based on node embeddings. Specifically, since the rich semantic
information of each feature is directly reflected by values of nodes
in the feature, we take the feature vector X𝑇𝑟 ∈ R𝑛 as the weight
vector over all the nodes, and compute:

[𝜇F𝑟 , ΣF
𝑟 ] = MLP2

(∑𝑛
𝑖=1 X𝑇

𝑟𝑖
[𝜇V
𝑖
, ΣV
𝑖
]∑𝑛

𝑖=1 X𝑇
𝑟𝑖

)
. (14)

2Here, we denote𝜓1 = [𝜇V , ΣV ] and𝜓2 = [𝜇F , ΣF ], respectively.
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Figure 1: The overall framework of SeeGera.

In this way, [𝜇F𝑟 , ΣF
𝑟 ] is derived from node embeddings. Since 𝜇V

𝑖

and ΣV
𝑖

are random variables, 𝜇F𝑟 and ΣF
𝑟 will also be random

variables.

4.3 Decoder

In the decoder, we aim to reconstruct both edges and features in
the given graph. The generative process is described as follows.

First, for each node 𝑥𝑖 and each feature 𝑓𝑟 , we draw (ZV
𝑖
,ZF
𝑟 ) ∼

ℎ𝜙 (ZV
𝑖
,ZF
𝑟 )3. Second, for each edge A𝑖 𝑗 in the adjacency matrix

A, draw A𝑖 𝑗 ∼ Ber(𝑝A
𝑖 𝑗
). Here, Ber(·) denotes Bernoulli distribu-

tion and 𝑝A
𝑖 𝑗

is the probability for the existence of edge A𝑖 𝑗 . We
implement 𝑝A

𝑖 𝑗
simply by inner product as: 𝑝A

𝑖 𝑗
= 𝜎 ((ZV

𝑖
)𝑇ZV

𝑗
),

where 𝜎 is the sigmoid function. Third, for each attribute X𝑖𝑟 in the
attribute matrix X, draw X𝑖𝑟 ∼ N(𝜇X

𝑖𝑟
, ΣX
𝑖𝑟
|ZV
𝑖
,ZF
𝑟 ). Here, 𝜇X

𝑖𝑟
, ΣX
𝑖𝑟

are functions of ZV and ZF .
We next introduce how to compute 𝜇X

𝑖𝑟
and ΣX

𝑖𝑟
. Since ZF

𝑟 con-
tains rich semantic information on feature 𝑓𝑟 , the affinity between
𝑥𝑖 and 𝑓𝑟 can provide fine-grained knowledge for feature reconstruc-
tion. Given a node 𝑥𝑖 , to capture its affinities with all the features,
the attention mechanism [28] can be applied on node and feature
embeddings. However, this will increase the time complexity of the
model. For simplicity, we directly use the feature vector X𝑖 ∈ R𝑙 of
𝑥𝑖 as the weight vector and calculate the weighted average over all
the feature embeddings:

Z̄V
𝑖 =

∑𝑙
𝑟=1 X𝑖𝑟ZF

𝑟∑𝑙
𝑟=1 X𝑖𝑟

. (15)

Compared with ZV
𝑖
, Z̄V
𝑖

contains more details on how each feature
can be reconstructed. After that, we combine ZV

𝑖
and Z̄V

𝑖
to get:

ZV
𝑖 = COMBINE(ZV

𝑖 , Z̄
V
𝑖 ) . (16)

3When ZV
𝑖

and ZF
𝑟 are independent, we draw ZV

𝑖
∼ ℎ𝜙1 (Z

V
𝑖
) and ZF

𝑟 ∼ ℎ𝜙2 (Z
F
𝑟 ) .

In our experiments, we set the COMBINE function to be CONCAT.
Finally, the updated ZV

𝑖
is taken as input and fed into a GNN model

to learn parameters w.r.t. node 𝑥𝑖 :

[𝜇X
𝑖 , Σ

X
𝑖 ] = GNN2 (A,ZV

𝑖 ), (17)

where GNN2 (·) is a GNN model.

4.4 Masking

To further improve the model generalizability, we introduce the
masking mechanism in SeeGera by adding an additional layer to
the hierarchical variational framework. Specifically, we transform
Equation 6 into:

ℎ𝜙 (ZV ,ZF) =
∫
𝜓1

∫
𝜓2

∫
𝐺̃

𝑞(ZV ,ZF |𝜓1,𝜓2)·

𝑞𝜙 (𝜓1,𝜓2 |𝐺̃)𝑝 (𝐺̃ |A,X)d𝜓1d𝜓2d𝐺̃
(18)

From the above equation, we see that in addition to𝜓1 and𝜓2, the
integration is performed over a new variable 𝐺̃ and a probability
function 𝑝 (𝐺̃ |A,X). Here, 𝐺̃ denotes a new graph and 𝑝 is the graph
augmentation probability function. The equation can lead to a new
variational lower bound for the ELBO, but it is more difficult to
optimize compared with L1 and L2. To tackle the issue, we can
first perform graph augmentation and generate a perturbed graph
𝐺̃ . After that, based on 𝐺̃ , node and feature embeddings are learned
based on L1 or L2. We repeat the above process until convergence.
Although graph augmentation can include more operations than
masking, we mainly focus on structure/feature masking in this
paper, because masking is beneficial for node classification [7].

4.5 Optimization

In Section 4.1, we have derived two lower bounds L1 and L2 for
the ELBO, according to whether ZV and ZF are independent. For
notation brevity, we use L to overload both L1 and L2. However,
directly optimizing L could lead to the degeneracy problem [32]
that 𝑞𝜙1 (𝜓1), 𝑞𝜙2 (𝜓2) and 𝑞𝜙 (𝜓1,𝜓2) might converge to a point



WWW ’23, May 1–5, 2023, Austin, TX, USA Xiang Li, et al.

mass density, which degenerates SIVI to the vanilla VI. To address
the problem, we can regularize L by 𝐵𝐾 :

𝐵𝐾 = E(𝜓1,𝜓2 ),{(𝜓𝑘1 ,𝜓
𝑘
2 ) }𝐾

𝑘=1∼𝑞𝜙 (𝜓1,𝜓2 )DKL
(
𝑞 (ZV ,ZF |𝜓1,𝜓2) | |ℎ̃𝐾 (ZV ,ZF)

)
ℎ̃𝐾 (ZV ,ZF) =

𝑞(ZV ,ZF |𝜓1,𝜓2) +
∑𝐾
𝑘=1 𝑞(Z

V ,ZF |𝜓𝑘1 ,𝜓
𝑘
2 )

𝐾 + 1
.

Note that 𝐵𝐾 satisfies (1) 𝐵𝐾 ≥ 0; (2) 𝐵𝐾 = 0 if and only if 𝐾 = 0 or
𝑞𝜙 degenerates to a point mass density. According to [32], L

𝐾
=

L + 𝐵𝐾 is an asymptotically exact surrogate ELBO that satisfies
L0 = L and lim𝐾→∞ L

𝐾
= L. Maximizing L

𝐾
with 𝐾 ≥ 1

derives positive 𝐵𝐾 and could drive 𝑞𝜙 away from degeneracy.
Moreover, importance reweighting [1] can be further introduced to
tighten L

𝐾
by drawing 𝐽 samples {(ZV ) 𝑗 , (ZF) 𝑗 ,𝜓 𝑗1 ,𝜓

𝑗

2 }
𝐽
𝑗=1 from

𝑞(ZV ,ZF,𝜓1,𝜓2). The objective can be formulated as

L 𝐽
𝐾

=E{(ZV ) 𝑗 ,(ZF ) 𝑗 ,𝜓
𝑗
1 ,𝜓

𝑗
2 }
𝐽
𝑗=1∼𝑞 (ZV ,ZF |𝜓1,𝜓2 )𝑞𝜙 (𝜓1,𝜓2 )

E{𝜓𝑘1 ,𝜓
𝑘
2 }𝐾
𝑘=1∼𝑞𝜙 (𝜓1,𝜓2 ) log

1
𝐽

𝐽∑︁
𝑗=1

𝑝 (A,X, (ZV ) 𝑗 , (ZF) 𝑗 )
Ω 𝑗

,

(19)

where

Ω 𝑗 =
1

𝐾 + 1

[
𝑞 ( (ZV ) 𝑗 , (ZF) 𝑗 |𝜓 𝑗1 ,𝜓

𝑗

2 ) +
𝐾∑︁
𝑘=1

𝑞 ( (ZV ) 𝑗 , (ZF) 𝑗 |𝜓𝑘1 ,𝜓𝑘2 )
]
.

Thenwe takeL 𝐽

𝐾
as the surrogate ELBO and use stochastic gradient

ascent to optimize it. Note that L1 and L2 treats differently for
𝑞𝜙 (𝜓1,𝜓2). Finally, we summarize the pseudocodes of SeeGera in
Algorithm 1 (see Appendix B).

[Complexity analysis] The major time complexity in the en-
coder comes from GNN and MLP. Suppose we use GCN as the GNN
model. Since the adjacency matrix is generally sparse, let 𝑑𝐴 be the
average number of non-zero entries in each row of the adjacency
matrix. Let 𝑙 be the number of features and 𝑑 be the embedding
dimension. Further, we denote 𝑑 and 𝑑 as the dimensions of injected
noise to the GCN and MLP, respectively. Then, the time complexi-
ties for GCN andMLP are𝑂 (𝑛𝑑𝐴 (𝑙 +𝑑)+𝑛(𝑙 +𝑑)𝑑) and𝑂 (𝑙 (𝑛+𝑑)𝑑),
respectively. In the decoder, suppose we still adopt GCN as the GNN
model. Then the time complexities for reconstructing links and fea-
tures are 𝑂 (𝑛2𝑑) and 𝑂 (𝑛𝑑𝐴𝑑 + 𝑛𝑑𝑙), respectively. As suggested
by [12], we can down-sample the number of nonexistent edges in
the graph to reduce the time complexity for recovering links.

5 EXPERIMENT

In this section we comprehensively evaluate the quality of node
embeddings learned by SeeGera. We mainly study four research
questions:

(RQ1) How does SeeGera perform in the link prediction task?
(RQ2) Can SeeGera effectively predict node attributes?
(RQ3) While SeeGera is an unsupervised learning method, can

it perform well when generalized to the node classification task?
(RQ4) How does structure/feature masking influence the perfor-

mance of SeeGera?

5.1 Datasets and Baselines

To answer the above four questions, we conduct extensive experi-
ments on seven public datasets: Cora, Citeseer, Pubmed, Coauthor CS,

Coauthor Physics, Amazon Computer and Amazon Photo. Detailed
descriptions and statistics on these datasets are provided in Ap-
pendix A. We also compare SeeGera with 9 other SOTA baselines,
which can be categorized into two groups:
•[Generative graph SSL methods]. This group of methods are
based on GAE/VGAE and aim to reconstruct links and/or features,
including SIG-VAE [4], CAN [18], GATE [23] and GraphMAE [7].
Note that GraphMAE is the SOTA generative graph SSL model.
•[Graph contrastive learning methods]. Models in this type
construct positive (and negative) pairs for contrast to learn node rep-
resentations, includingDGI [29],MVGRL [5], GRACE [41], GCA [42]
and CCA-SSG [37].

Further, for more implementation details, see Appendix D.

5.2 Link Prediction (RQ1)

Link prediction is a typical unsupervised learning task for graph
analysis, which aims to predict whether an edge exists between
two nodes or not. We compare SeeGera with 8 other SOTA base-
lines, including GCL models: DGI [29], MVGRL [5], GRACE [41],
GCA [42], CCA-SSG [37], and the generative graph SSL methods:
CAN [18], SIG-VAE [4], GraphMAE [7]. For our proposed method
SeeGera, we put forward three versions. Specifically, SeeGera-v1
assumes the independence between ZV and ZF and optimizes L1,
while SeeGera-v2 captures the correlations between them and op-
timizes L2. Further, SeeGera-v3 upgrades SeeGera-v2 by adding
the masking mechanism.

To evaluate the model performance, we construct the valida-
tion/test set by randomly selecting 20%/10% edges in the original
graph as positive samples and an equal number of nonexistent edges
as negative samples. After the removal of these selected edges, we
train all the models on the resulting graph with the remaining 70%
edges. We use two commonly used metrics, the area under the ROC
curve (AUC) and the average precision (AP), to report the model
performance. For both metrics, a larger value indicates a better
performance. We use the validation set for hyper-parameter tuning
and early stopping with a patience of 100, i.e., we stop training if
both metric scores on the validation set do not increase for 100
consecutive epochs. Similar as in [12], the predicted probability of
an edge between nodes 𝑥𝑖 and 𝑥 𝑗 is calculated by A𝑖 𝑗 ∼ Ber(𝑝A

𝑖 𝑗
),

where 𝑝A
𝑖 𝑗

= 𝜎 ((ZV
𝑖
)𝑇ZV

𝑗
) and 𝜎 is the sigmoid function. For each

method, we run experiments 10 times and report the average results
on the test set. Table 1 summarizes the results across all the datasets.
From the table, we have the following observations:

(1) The generative graph SSL methods except GraphMAE gen-
erally perform better than GCL methods. This is because these
methods learn to reconstruct links in the objective. For GraphMAE,
it only reconstructs features, which explains its poor performance.

(2) While SeeGera is based on SIG-VAE, it achieves better perfor-
mance. This demonstrates the importance of feature reconstruction
and structure/feature masking.

(3) Although CAN co-embeds both nodes and features, it still per-
forms not very well, due to the independence assumption between
node and feature embeddings. Further, it uses linear decoder for
feature reconstruction, which restricts the model’s effectiveness.

(4) SeeGera significantly outperforms other competitors across
all the datasets, which indicates the superiority of generative VGAE
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Table 1: Link prediction results. The error bar (±) denotes the standard deviation score of results over 10 trials.Wehighlight the

best score on each dataset in bold. For CAN, the released codes by the authors do not implement reconstruction for numerical

features, so we cannot run it on datasets with numerical features. OOM denotes the out-of-the-memory error.

Metrics Method Cora Citeseer Pubmed Photo Computer CS Physics

AUC

DGI 93.88 ± 1.00 95.98 ± 0.72 96.30 ± 0.20 80.95 ± 0.39 81.27 ± 0.51 93.81 ± 0.20 93.51 ± 0.22
MVGRL 93.33 ± 0.68 88.66 ± 5.27 95.89 ± 0.22 69.58 ± 2.04 92.37 ± 0.78 91.45 ± 0.67 OOM
GRACE 82.67 ± 0.27 87.74 ± 0.96 94.09 ± 0.92 81.72 ± 0.31 82.94 ± 0.20 85.26 ± 2.07 83.48 ± 0.96
GCA 81.46 ± 4.86 84.81 ± 1.25 94.20 ± 0.59 70.02 ± 9.66 89.92 ± 0.91 84.35 ± 1.13 85.24 ± 5.41

CCA-SSG 93.88 ± 0.95 94.69 ± 0.95 96.63 ± 0.15 73.98 ± 1.31 75.91 ± 1.50 96.80 ± 0.16 96.74 ± 0.05
CAN 93.67 ± 0.62 94.56 ± 0.68 − 97.00 ± 0.28 96.03 ± 0.37 − −

SIG-VAE 94.10 ± 0.68 92.88 ± 0.74 85.89 ± 0.54 94.98 ± 0.86 91.14 ± 1.10 95.26 ± 0.36 98.76 ± 0.23
GraphMAE 90.70 ± 0.01 70.55 ± 0.05 69.12 ± 0.01 77.42 ± 0.02 75.14 ± 0.02 91.47 ± 0.01 87.61 ± 0.02
SeeGera-v1 94.95 ± 0.72 96.75 ± 0.54 97.07 ± 2.20 98.40 ± 0.08 96.87 ± 0.29 97.82 ± 0.11 98.95 ± 0.06
SeeGera-v2 95.37 ± 0.60 96.81 ± 0.51 97.79 ± 0.22 98.47 ± 0.05 97.28 ± 0.00 97.83 ± 0.11 98.97 ± 0.04
SeeGera-v3 95.50 ± 0.71 97.04 ± 0.47 97.87 ± 0.20 98.64 ± 0.05 97.70 ± 0.19 98.42 ± 0.13 99.03 ± 0.05

AP

DGI 93.60 ± 1.14 96.18 ± 0.68 95.65 ± 0.26 81.01 ± 0.47 82.05 ± 0.50 92.79 ± 0.31 92.10 ± 0.29
MVGRL 92.95 ± 0.82 89.37 ± 4.55 95.53 ± 0.30 63.43 ± 2.02 91.73 ± 0.40 89.14 ± 0.93 OOM
GRACE 82.36 ± 0.24 86.92 ± 1.11 93.26 ± 1.20 81.18 ± 0.37 83.12 ± 0.23 83.90 ± 2.20 82.20 ± 1.06
GCA 80.87 ± 4.11 81.93 ± 1.76 93.31 ± 0.75 65.17 ± 10.11 89.50 ± 0.64 83.24 ± 1.16 82.80 ± 4.46

CCA-SSG 93.74 ± 1.15 95.06 ± 0.91 95.97 ± 0.23 67.99 ± 1.60 69.47 ± 1.94 96.40 ± 0.30 96.26 ± 0.10
CAN 94.49 ± 0.60 95.49 ± 0.61 − 96.68 ± 0.30 95.96 ± 0.38 − −

SIG-VAE 94.79 ± 0.71 94.21 ± 0.53 85.02 ± 0.49 94.53 ± 0.93 91.23 ± 1.04 94.93 ± 0.37 98.85 ± 0.12
GraphMAE 89.52 ± 0.01 74.50 ± 0.04 87.92 ± 0.01 77.18 ± 0.02 75.80 ± 0.01 83.58 ± 0.01 86.44 ± 0.03
SeeGera-v1 95.53 ± 0.54 97.10 ± 0.49 97.25 ± 2.07 98.32 ± 0.09 96.73 ± 0.31 98.30 ± 0.11 99.10 ± 0.09
SeeGera-v2 95.90 ± 0.49 97.17 ± 0.46 97.89 ± 0.21 98.37 ± 0.09 97.15 ± 0.00 98.33 ± 0.10 99.13 ± 0.06
SeeGera-v3 95.92 ± 0.68 97.33 ± 0.46 97.87 ± 0.20 98.48 ± 0.06 97.50 ± 0.15 98.53 ± 0.18 99.18 ± 0.04

Table 2: Attribute inference performance w.r.t the MSE metric. The best result in each dataset is highlighted in bold.

Method Cora Citeseer Pubmed Photo Computer CS Physics
CAN - - - 0.22 ± 0.00 0.23 ± 0.01 - -
GATE 1.80 × 10−3 ± 2.15 × 10−4 4.58 × 10−4 ± 8.07 × 10−5 3.90 × 10−4 ± 1.99 × 10−5 0.24 ± 0.01 0.25 ± 0.01 2.03 ± 0.25 OOM

GraphMAE 1.57 × 10−3 ± 7.42 × 10−5 8.68 × 10−4 ± 1.30 × 10−4 7.29 × 10−4 ± 2.66 × 10−5 0.48 ± 0.00 0.48 ± 0.00 2.70 ± 0.06 2.97 ± 0.05
SeeGera-v1 1.90 × 10−3 ± 8.18 × 10−5 4.87 × 10−4 ± 2.62 × 10−6 4.21 × 10−4 ± 4.70 × 10−5 0.22 ± 0.00 0.23 ± 0.14 2.12 ± 0.06 2.15 ± 0.05
SeeGera-v2 1.89 × 10−3 ± 8.13 × 10−5 4.86 × 10−4 ± 2.24 × 10−6 3.68 × 10−4 ± 7.11 × 10−6 0.21 ± 0.01 0.23 ± 0.01 2.08 ± 0.07 2.14 ± 0.03
SeeGera-v3 1.89 × 10−3 ± 8.13 × 10−5 4.84 × 10−4 ± 2.96 × 10−6 3.66 × 10−4 ± 7.34 × 10−6 0.21 ± 0.01 0.22 ± 0.00 1.93 ± 0.07 2.14 ± 0.03

Table 3: Node classification performance w.r.t. the classification accuracy. We highlight the best results in bold.

Method Cora Citeseer Pubmed Photo Computer CS Physics
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6 91.61 ± 0.22 83.95 ± 0.47 92.15 ± 0.63 94.51 ± 0.52

MVGRL 83.5 ± 0.4 73.3 ± 0.5 80.1 ± 0.7 91.74 ± 0.07 87.52 ± 0.11 92.11 ± 0.12 95.33 ± 0.03
GRACE 81.9 ± 0.4 71.2 ± 0.5 80.6 ± 0.4 92.15 ± 0.24 86.25 ± 0.25 92.93 ± 0.01 95.26 ± 0.02
CCA-SSG 84.0 ± 0.4 73.1 ± 0.3 81.0 ± 0.4 93.14 ± 0.14 88.74 ± 0.28 93.31 ± 0.22 95.38 ± 0.06
GraphMAE 84.2 ± 0.4 73.4 ± 0.4 81.1 ± 0.4 92.98 ± 0.35 88.34 ± 0.27 93.08 ± 0.17 95.30 ± 0.12
SeeGera-v1 82.9 ± 0.4 71.7 ± 0.6 78.9 ± 0.9 92.53 ± 0.41 88.44 ± 0.24 93.72 ± 0.29 95.40 ± 0.10
SeeGera-v2 84.0 ± 0.4 73.0 ± 0.8 80.4 ± 0.4 92.70 ± 0.42 88.39 ± 0.26 93.83 ± 0.22 95.39 ± 0.08
SeeGera-v3 84.3 ± 0.4 73.0 ± 0.8 80.4 ± 0.4 92.81 ± 0.45 88.39 ± 0.26 93.84 ± 0.11 95.39 ± 0.08

model in graph representation learning. In particular, the consis-
tent outperformance of SeeGera-v2 over SeeGera-v1 verifies the
importance of capturing the correlations between node and fea-
ture embeddings. Further, the improvement of SeeGera-v3 over
SeeGera-v2 shows the necessity of structure/feature masking.

5.3 Attribute Inference (RQ2)

Attribute inference is a task that predicts values of missing node
attributes. Similar as in link prediction, we hide a certain percent-
age of node features and train on the rest. To construct the train-
ing/validation/test set, we randomly select 70%/10%/20% node fea-
tures. The validation set is used for hyper-parameter tuning and
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(a) Cora-AUC (b) Cora-AP (c) Citeseer-AUC (d) Citeseer-AP

Figure 2: Hyper-parameter sensitivity analysis on themasking rates 𝛼1 and 𝛼2 in terms of link prediction. The darker the color,

the larger the value.

early stopping with a patience of 100 epoches. We take the Mean
Squared Error (MSE) as the evaluation metric. The smaller the value,
the better the performance. In this task, we compare SeeGera with
generative graph SSL methods that reconstruct features in their
decoders, including CAN [20], GATE [23] and GraphMAE [7]. For
GCL models and other generative graph SSL methods that recover
links only, they cannot be easily adapted to the task, so we do
not take them as baselines. For each method, we run experiments
10 times and report the average results in Table 2. For Cora and
Citeseer, we normalize node features for fair comparison, so CAN
cannot be applied. From the table, while CAN, GATE and Graph-
MAE can perform well on some datasets, they cannot consistently
provide excellent performance. For example, GraphMAE achieves
the best result on Cora, but it performs very poorly on Citeseer.
Further, SeeGera-v3 outperforms other competitors on 5 out of
7 datasets. This shows the effectiveness of our proposed feature
reconstruction method and also the masking mechanism. We also
notice that, in all cases, SeeGera-v2 achieves better performance
than SeeGera-v1, which again verifies the necessity of capturing
correlations between node and feature embeddings.

5.4 Node Classification (RQ3)

To further study SeeGera, we generalize learned embeddings to
the node classification task. After node embeddings are trained on
the entire graph, we train an additional classifier. Here, we employ
Logistic Regression as the classifier. For Cora, Citeseer and Pubmed,
we use the public split for evaluation, where each class has fixed
20 nodes for training, another fixed 500 nodes and 1000 nodes for
validation and testing, respectively. For other datasets, we randomly
split the nodes into 10%/10%/80% training/validation/test sets. We
use classification accuracy as the metric to evaluate the model per-
formance. Since GCL methods have been shown to perform well in
classification tasks, we compare SeeGera with 4 state-of-the-arts,
including DGI, MVGRL, GRACE and CCA-SSA. We also take the
recently proposed generative model GraphMAE as baseline, be-
cause it bridges the gap between generative graph SSL models and
GCL methods in terms of classification tasks. Table 3 summarizes
the classification results on all the datasets. From the table, we see
that CCA-SSG, GraphMAE and SeeGera lead other competitors

and they almost tie. This shows that SeeGera achieves compa-
rable performance with the state-of-the-art methods in the node
classification task. Further, with the significant advantage in link
prediction and attribute inference tasks, we conclude that SeeGera,
a VGAE-based graph SSL method, can generate versatile node rep-
resentations that can be widely used in various downstream tasks.

5.5 Parameter Analysis (RQ4)

We end this section with a sensitivity analysis on the key hyper-
parameters in SeeGera, i.e., the structure masking rate 𝛼1 and the
feature masking rate 𝛼2. Specifically, we explore the stability of
SeeGera w.r.t. the perturbation of 𝛼1 and 𝛼2. We conduct experi-
ments on the link prediction task by varying these parameters from
0 to 0.5, and keeping others fixed. Figure 2 illustrates the AUC and
AP scores of SeeGera-v3 under different 𝛼1 and 𝛼2 values on Cora
and Citeseer. From the figure, we see that SeeGera-v3 can give very
stable performance over a wide range of 𝛼1 and 𝛼2 values, as shown
by the plateau in the figure. This demonstrates the insensitivity of
SeeGera w.r.t. these two hyper-parameters.

6 CONCLUSIONS

We studied generative graph SSL in this paper and proposed SeeGera,
which enhances the family of VGAE on graph representation learn-
ing. Specifically, SeeGera adopts the hierarchical variational frame-
work in SIG-VAE and mainly focuses on feature reconstruction and
structure/feature masking. On the one hand, SeeGera co-embeds
both nodes and features in the encoder and computes their embed-
dings by assuming they are independent and correlated, respec-
tively. After that, feature embeddings that contain rich semantic
information on features are combined with node embeddings to
provide more fine-grained information for feature reconstruction in
the decoder. On the other hand, we injected themaskingmechanism
into SeeGera by adding an additional layer to the hierarchical varia-
tional framework. We conducted extensive experiments to evaluate
the performance of SeeGera. The results show that SeeGera sig-
nificantly outperforms other competitors in link prediction and
attribute inference, and achieves comparable results with them in
node classification. This further verifies the power of generative
graph SSL methods in graph representation learning.
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A DATASETS

We use 7 public datasets which do not have license. We next briefly
introduce them as follows.

Cora, Citeseer and Pubmed [13] are three citation networks,
where nodes represent publications and edges are citation links.
Features for each node are the keywords it contains. Each dimen-
sion in the feature vector indicates the presence of a keyword in
the publication. Nodes in these datasets are associated with labels
that describe research topics of publications.

Coauther CS and Coauther Physics are co-authorship graphs
based on the Microsoft Academic Graph from the KDD Cup 2016
challenge [24]. In these datasets, nodes are authors and edges cap-
ture the co-authorship. Further, node features represent keywords
in each author’s papers, and class labels indicate the study fields
for authors.

Amazon Computer and Amazon Photo are extracted from the
Amazon co-purchase graph [17], where nodes represent goods
and edges indicate that two goods are frequently bought together.
Node features are bag-of-words encoded product reviews and class
labels are the product categories. The statistics of these datasets
are summarized in Table 4.

B PSEUDOCODES

This section summarizes the pseudocodes of SeeGera-v3 in Alg. 1.

Algorithm 1 SeeGera-v3

Input: A, X, 𝑝 (𝐺̃ |A,X), 𝑞(𝜖), 𝑞(𝜖), 𝜌 , neural networks𝑇𝜙1 and𝑇𝜙2
Output: 𝜙1 and 𝜙2
1: Initialize 𝜙1, 𝜙2, set L 𝐽

𝐾
= 0

2: while not converged do

3: Sample 𝐺̃ ∼ 𝑝 (𝐺̃ |A,X)
4: for 𝑘 = 1 to 𝐾 do

5: Sample𝜓𝑘1 = 𝑇𝜙1 (𝐺̃, 𝜖𝑘1 ), where 𝜖
𝑘
1 ∼ 𝑞(𝜖) ⊲ Eq. 12

6: Sample𝜓𝑘2 = 𝑇𝜙2 (𝐺̃,𝜓𝑘1 , 𝜖
𝑘
2 ), where 𝜖

𝑘
2 ∼ 𝑞(𝜖) ⊲ Eq. 14

7: end for

8: for 𝑗 = 1 to 𝐽 do
9: Sample 𝜖 𝑗1 ∼ 𝑞(𝜖), 𝜖 𝑗2 ∼ 𝑞(𝜖)
10: Sample𝜓 𝑗1 = [(𝜇V ) 𝑗 , (ΣV ) 𝑗 ] = 𝑇𝜙1 (𝐺̃, 𝜖

𝑗

1 ) ⊲ Eq. 12
11: Sample𝜓 𝑗2 = [(𝜇F) 𝑗 , (ΣF) 𝑗 ] = 𝑇𝜙2 (𝐺̃,𝜓

𝑗

1 , 𝜖
𝑗

2 ) ⊲ Eq. 14
12: Sample 𝜖V

𝑗
∼ N(0, 𝐼 ), 𝜖A

𝑗
∼ N(0, 𝐼 )

13: Sample (ZV ) 𝑗 = (𝜇V ) 𝑗 + (ΣV ) 𝑗 ⊙ 𝜖V𝑗
14: Sample (ZF) 𝑗 = (𝜇F) 𝑗 + (ΣF) 𝑗 ⊙ 𝜖A𝑗
15: Set 𝑡𝑚𝑝1 = − log Ω 𝑗 ⊲ Eq. 19
16: Set 𝑡𝑚𝑝2 = log𝑝 (𝐺̃ | (ZV ) 𝑗 , (ZF) 𝑗 )
17: Set 𝑡𝑚𝑝3 = log𝑝 ((ZV ) 𝑗 , (ZF) 𝑗 )
18: Update L 𝐽

𝐾
= L 𝐽

𝐾
+ 𝑒𝑡𝑚𝑝1+𝑡𝑚𝑝2+𝑡𝑚𝑝3

19: end for

20: Update L 𝐽

𝐾
= logL 𝐽

𝐾
− log 𝐽

21: Update 𝜙1 = 𝜙1 + 𝜌▽𝜙1L
𝐽

𝐾

22: Update 𝜙2 = 𝜙2 + 𝜌▽𝜙2L
𝐽

𝐾
23: end while

24: return 𝜙1 and 𝜙2

Table 4: Statistics of datasets used in experiments

Datasets #Nodes #Edges #Features #Classes
Cora 2, 708 5, 278 1, 433 7

Citeseer 3, 327 4, 676 3, 703 6
Pubmed 19, 717 88, 651 500 3

Coauthor CS 18, 333 327, 576 6, 805 15
Coauthor Physics 34, 493 991, 848 8, 451 5
Amazon Computer 13, 752 574, 418 767 10
Coauthor Physics 7, 650 287, 326 745 8

C ABLATION STUDY

We conduct an ablation study to investigate themain components in
SeeGera. In particular, we have extensively compared SeeGera-v1,
SeeGera-v2 and SeeGera-v3 in our experiments. The advantage
of SeeGera-v2 over SeeGera-v1 shows the importance of captur-
ing the correlations between node and feature embeddings. Also,
the outperformance of SeeGera-v3 over SeeGera-v2 verifies the
importance of the masking mechanism. Further, to show the effec-
tiveness of our proposed feature reconstruction method, we remove
feature embeddings in the encoder and feed only node embeddings
into GCN in the decoder to reconstruct features. We call this variant
SeeGera_nf (no feature embedding). Table 5 shows the results on
attribute inference. We exclude SeeGera-v3 in the table, because it
further uses the masking mechanism while others not. From the
table, we see that both SeeGera-v1 and SeeGera-v2 outperform
SeeGera_nf. This shows the importance of using both node and
feature embeddings for feature reconstruction.

Table 5: The comparison between SeeGera and

SeeGera_nf in the attribute inference task.

Method Cora Citeseer CS
SeeGera_nf 1.91 × 10−3 ± 3.78 × 10−5 5.15 × 10−4 ± 1.02 × 10−6 2.14 ± 0.07
SeeGera-v1 1.90 × 10−3 ± 8.18 × 10−5 4.87 × 10−4 ± 2.62 × 10−6 2.12 ± 0.06
SeeGera-v2 1.89 × 10−3 ± 8.13 × 10−5 4.86 × 10−4 ± 2.24 × 10−6 2.08 ± 0.07

D IMPLEMENTATION DETAILS

We implemented SeeGera by PyTorch. The model is initialized
by Glorot initialization and trained by Adam. We run the model
for 3500 epochs on all the datasets. In particular, for the task of
node classification, we further run the logistic regression classifier
for 500 epochs. We adopt GCNs in both encoder and decoder for
all the datasets except CS. For CS, we use MLPs to replace GNNs
instead. We choose Bernoulli noise Ber(0.5) for both 𝜖 ∼ 𝑞(𝜖) and
𝜖 ∼ 𝑞(𝜖), and set the noise dimension to 5 in all tasks. As suggested
by [25], we use warm-up during the first 300 epochs to gradually im-
pose the prior regularization terms DKL (𝑞1 (ZV |𝜓1) | |𝑝 (ZV )) and
DKL (𝑞2 (ZF |𝜓2) | |𝑝 (ZF)). For both priors 𝑝 (ZV ) and 𝑝 (ZF), we
assume that they follow standard multivariate normal distributions.
In the node classification task, most results of baselines are publicly
available and we directly report these results from their original
papers. For the results that are missing, we run the released codes
by their authors and fine-tune the model hyper-parameters. In the
link prediction and attribute inference tasks, since most baselines
are not studied in these tasks, we run their released codes with
fine-tuning. For fairness, we run all the experiments on a server
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with a single NVIDIA A100 GPU with 80G memory. For simplicity,
we set 𝐽 = 𝐾 = 1 in Eq. 19 for both SeeGera and SIG-VAE. One
may further refer to [22] for better value selection. All the datasets
and codes are provided at https://github.com/SeeGera/SeeGera. We
provide the detailed hyper-parameter settings of SeeGera-v3 on
different datasets in Tables 6- 8. All hyper-parameters are selected
through small grid search, and the search space is provided as:

• Number of layers in the encoder 𝐿1: {1, 2, 3}
• Number of layers in the decoder 𝐿2: {1, 2, 3}
• Learning rate of SeeGera: {1e-3, 5e-3, 1e-2}
• Dropout of SeeGera: {0, 0.1, 0.3, 0.5, 0.7, 0.9}
• Weight decay of SeeGera: {5e-5, 1e-4, 5e-4, 1e-3}
• Structure masking rate 𝛼1: {0, 0.1, 0.2, 0.3, 0.4, 0.5}
• Feature masking rate 𝛼2: {0, 0.1, 0.2, 0.3, 0.4, 0.5}
• Learning rate of logistic regression: {1e-3, 5e-3, 1e-2}
• Dropout of logistic regression: {0, 0.1, 0.3, 0.5, 0.7, 0.9}
• Weight decay of logistic regression: {5e-5, 1e-4, 5e-4, 1e-3}

Table 6: Hyper-parameter setting details of SeeGera-v3 in

link prediction.

Dataset 𝐿1 𝐿2 lr dropout wd 𝛼1 𝛼2
Cora 2 3 1e-3 0.3 5e-5 0.3 0.0

Citeseer 1 2 1e-3 0.0 1e-4 0.6 0.0
Pubmed 2 1 5e-3 0.5 0.0 0.3 0.1
Photo 1 1 5e-3 0.0 0.0 0.5 0.0

Computer 2 2 1e-3 0.0 0.0 0.4 0.0
CS 1 2 1e-3 0.0 0.0 0.5 0.5

Physics 2 2 1e-3 0.0 0.0 0.2 0.0

Table 7: Hyper-parameter setting details of SeeGera-v3 in

attribute inference.

Dataset 𝐿1 𝐿2 lr dropout wd 𝛼1 𝛼2
Cora 1 1 1e-3 0.1 5e-5 0.4 0.0

Citeseer 1 1 1e-3 0.0 0.0 0.3 0.0
Pubmed 2 2 1e-3 0.0 0.0 0.0 0.1
Photo 2 3 1e-3 0.0 0.0 0.3 0.0

Computer 2 3 1e-3 0.0 0.0 0.2 0.0
CS 1 3 1e-3 0.0 0.0 0.1 0.5

Physics 2 2 1e-3 0.0 0.0 0.0 0.0

Table 8: Hyper-parameter setting details of SeeGera-v3 in

node classification.

Dataset SeeGera Logistic Regression
𝐿1 𝐿2 lr dropout wd 𝛼1 𝛼2 lr dropout wd

Cora 2 2 1e-3 0.3 1e-3 0.2 0.1 1e-3 0.9 1e-3
Citeseer 2 2 5e-3 0.3 5e-4 0.0 0.0 1e-3 0.9 0.0
Pubmed 2 1 5e-3 0.7 0.0 0.0 0.0 1e-3 0.3 0.0
Photo 1 2 1e-3 0.0 5e-4 0.5 0.5 5e-3 0.7 5e-5

Computer 1 3 5e-3 0.0 5e-4 0.0 0.0 5e-3 0.3 1e-4
CS 2 3 1e-2 0.1 1e-3 0.4 0.0 1e-2 0.0 1e-3

Physics 1 3 1e-2 0.0 0.0 0.0 0.0 1e-2 0.5 5e-5

E VARIATIONAL LOWER BOUND

In this section, we show the derivation on the variational lower
bounds in detail.

L = Eℎ𝜙1 (Z
V )Eℎ𝜙2 (Z

F )

[
log

𝑝 (ZV |A,X)𝑝 (ZF |X𝑇 )𝑝 (A,X)
ℎ𝜙1 (ZV )ℎ𝜙2 (ZF)

]
= −DKL (ℎ𝜙1 (Z

V ) | |𝑝 (ZV |A,X)) − DKL (ℎ𝜙2 (Z
F) | |𝑝 (ZF |X𝑇 )) + log𝑝 (A,X)

≥ −E𝜓1∼𝑞𝜙1 (𝜓1 )DKL (𝑞1 (ZV |𝜓1) | |𝑝 (ZV |A,X))

− E𝜓2∼𝑞𝜙2 (𝜓2 )DKL (𝑞2 (ZF |𝜓2) | |𝑝 (ZF |X𝑇 )) + log𝑝 (A,X)
= E𝜓1∼𝑞𝜙1 (𝜓 )EZV∼𝑞1 (ZV |𝜓1 )E𝜓2∼𝑞𝜙2 (𝜓 )EZF∼𝑞2 (ZF |𝜓2 )[

log
𝑝 (A,X,ZV ,ZF)

𝑞1 (ZV |𝜓1)𝑞2 (ZF |𝜓2)

]
= L1,

whereDKL is the KL divergence andwe employDKL (E𝜓𝑞(Z|𝜓 ) | |𝑝 (Z)) ≤
E𝜓DKL (𝑞(Z|𝜓 ) | |𝑝 (Z)) according to [32]. To better understand L1,
we decompose the joint distribution 𝑝 (A,X, ZV ,ZF) as
𝑝 (A,X,ZV ,ZF) = 𝑝 (ZV )𝑝 (ZF)

∏
𝑖,𝑗∈V

𝑝 (A𝑖 𝑗 |ZV
𝑖 ,Z

V
𝑗 )

∏
𝑖∈V,𝑟∈F

𝑝 (X𝑖𝑟 |ZV
𝑖 ,Z

F
𝑟 )

and expand L1 to derive:

L1 = E𝜓1∼𝑞𝜙1 (𝜓1)EZV∼𝑞1 (ZV |𝜓1)


∑︁
𝑖, 𝑗 ∈V

log 𝑝 (A𝑖 𝑗 |ZV
𝑖 ,Z

V
𝑗 )


+ E𝜓1∼𝑞𝜙1 (𝜓1)EZV∼𝑞1 (ZV |𝜓1)E𝜓2∼𝑞𝜙2 (𝜓2)EZF∼𝑞2 (ZF |𝜓2)

∑︁
𝑖∈V,𝑟 ∈F

log 𝑝 (X𝑖𝑟 |ZV
𝑖 ,Z

F
𝑟 )


− E𝜓1∼𝑞𝜙1 (𝜓1)DKL (𝑞1 (ZV |𝜓1) | |𝑝 (ZV ))

− E𝜓2∼𝑞𝜙2 (𝜓2)DKL (𝑞2 (ZF |𝜓2) | |𝑝 (ZF)) .

Here, 𝑞1 (ZV |𝜓1) and 𝑞2 (ZF |𝜓2) are encoders that generate em-
beddings of nodes and features, respectively; 𝑝 (A𝑖 𝑗 |ZV

𝑖
,ZV
𝑗
) and

𝑝 (X𝑖𝑟 |ZV
𝑖
,ZF
𝑟 ) are decoders that reconstruct links and features

from learned embeddings. The first two terms in the equation cor-
respond to the negative reconstruction loss for links and features,
while the last two terms are regularizers that promote the closeness
between variational distributions and prior distributions.

Similarly, we can expand L2 as:
L2 = E𝜓1∼𝑞𝜙1 (𝜓1)E𝜓2∼𝑞𝜙2 (𝜓2 |𝜓1)E(ZV ,ZF )∼𝑞 (ZV ,ZF |𝜓1,𝜓2)

∑︁
𝑖, 𝑗 ∈V

log𝑝 (A𝑖 𝑗 |ZV
𝑖 ,Z

V
𝑗 ) +

∑︁
𝑖∈V,𝑟 ∈F

log𝑝 (X𝑖𝑟 |ZV
𝑖 ,Z

F
𝑟 )


− E(𝜓1,𝜓2)∼𝑞𝜙 (𝜓1,𝜓2)DKL (𝑞(ZV ,ZF |𝜓1,𝜓2) | |𝑝 (ZV ,ZF)) .

https://github.com/SeeGera/SeeGera
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