
Improving Content Retrievability in Search with Controllable
Query Generation

Gustavo Penha1, Enrico Palumbo2, Maryam Aziz3, Alice Wang3, Hugues Bouchard4
Spotify

1Netherlands, 2Italy, 3USA, 4Spain
{gustavop,enricop,maryama,alicew,hb}@spotify.com

ABSTRACT
An important goal of online platforms is to enable content discovery,
i.e. allow users to find a catalog entity they were not familiar with. A
pre-requisite to discover an entity, e.g. a book, with a search engine
is that the entity is retrievable, i.e. there are queries for which
the system will surface such entity in the top results. However,
machine-learned search engines have a high retrievability bias,
where the majority of the queries return the same entities. This
happens partly due to the predominance of narrow intent queries,
where users create queries using the title of an already known
entity, e.g. in book search “harry potter”. The amount of broad
queries where users want to discover new entities, e.g. in music
search “chill lyrical electronica with an atmospheric feeling to it”,
and have a higher tolerance to what they might find, is small in
comparison. We focus here on two factors that have a negative
impact on the retrievability of the entities (I) the training data used
for dense retrieval models and (II) the distribution of narrow and
broad intent queries issued in the system. We propose CtrlQGen,
a method that generates queries for a chosen underlying intent—
narrow or broad. We can use CtrlQGen to improve factor (I) by
generating training data for dense retrieval models comprised of
diverse synthetic queries. CtrlQGen can also be used to deal with
factor (II) by suggesting queries with broader intents to users. Our
results on datasets from the domains of music, podcasts, and books
reveal that we can significantly decrease the retrievability bias of
a dense retrieval model when using CtrlQGen. First, by using the
generated queries as training data for dense models we make 9%
of the entities retrievable—go from zero to non-zero retrievability.
Second, by suggesting broader queries to users, we can make 12%
of the entities retrievable in the best case.

1 INTRODUCTION
In online content platforms, users can search for catalog entities1
that they are already familiar with, for example, they issue queries
with the title of a track to listen to next or of a book they would like
1Catalog entities are items from a platform that can be retrieved and/or recommended
to users. For example, the book “The Fellowship of the Ring by J.R.R Tolkien” is an entity
from an online book platform. We refer to such items as entities throughout the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, May 1–5, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/3543507.3583261

Bi − EncoderClick CtrlQGen

Figure 1: TSNE reduction of queries and entities when em-
bedded with a Bi-Encoder trained with query logs and
clicked entities (left), and synthetic queries from our pro-
posed method CtrlQGen (right). The left model surfaces the
same four entities for most queries while six entities are
never retrieved as the most similar entity. The right model
distributes the queries better, i.e. has less retrievability bias.

to read. This type of search based on bibliographic data (e.g. title,
artist, author, etc) to find entities [7] has been referred to as narrow
intent queries [27]. However, user information needs are diverse
and can be more complex depending on their current mindset [33].

When users have an exploratory mindset, they have a higher tol-
erance and are prone to explore different alternatives through broad
queries. Non-focused information needs are generally complex and
require multiple interactions. Many users solve such information
needs outside the search engine of the platforms, by asking broad
queries to other users in forums such as subreddits2 as existing
search systems are ineffective for broader intents.

Broad intents are an opportunity to surface under-served entities
that would not be discovered otherwise without affecting user
satisfaction [57]. While approaches to promote the discovery of
entities have been studied from the perspective of recommender
systems [1, 42], they do not generalize to search engines where there
is an input query. A prerequisite to improving the discoverability of
entities through search is that the entity is retrievable. Azzopardi
and Vinay [5] defined the retrievability of a document as how many
queries lead to the entity being surfaced in the top-k results.

For example, if we assume that the users will only interact with
the top-1 ranked entity of the list, the dense retrieval model used
to embed queries and entities in the left Voronoi plot of Figure 1
would make one of the five leftmost entities appear for every query
(they are closest neighbors in the embedded space). These entities
would have a high concentration of retrievability, i.e. retrievability
bias, compared to the remaining entities which have no query close

2See for example https://www.reddit.com/r/musicsuggestions/ or /r/booksuggestions/.

ar
X

iv
:2

30
3.

11
64

8v
1

 [
cs

.I
R

]
 2

1
M

ar
 2

02
3

https://doi.org/10.1145/3543507.3583261
https://www.reddit.com/r/musicsuggestions/

WWW ’23, May 1–5, 2023, Austin, TX, USA

in the embedding space. Retrievability bias limits exploration, as it
becomes harder to discover new entities through search when they
have low retrievability scores.

In this paper, we study the effect of generating queries on the
retrievability of the system. Although the implications of query
generation techniques for training document/passage dense mod-
els have been studied in detail [20, 35, 40, 61], little attention has
been given to generating queries for entities and their impact on
the effectiveness and retrievability bias. Dense models have shown
promising results for different retrieval tasks [37], requiring a signif-
icant amount of in-domain supervision data for training [56]. Query
generation approaches have shown to be effective in generating
training data for domains with a scarcity of labeled data [15, 35, 40].

Unlike previous approaches to query generation which are ag-
nostic to search intents, we propose CtrlQGen which controls for
the underlying intent. By generating both narrow and broad queries
for an entity we are able to (I) train the dense retrieval model for
both types of intents and (II) suggest broader and more exploratory
queries to users. With the use of weak supervision through the pro-
posed weak labeling functions, CtrlQGen does not strictly require
any training data to generate synthetic queries for a given entity.

With our empirical evaluation using three datasets in the do-
mains of music, podcasts, and books we set out to answer the
following research question: To what extent can we reduce the
retrievability bias of entity search with automatically gener-
ated queries without significant impact in the effectiveness?

Considering that the retrievability of an entity depends on (I)
the retrieval model which decides which entities are surfaced for
each query and (II) the set of queries used for the estimation, we
generate two retrievability debiasing hypotheses that focus on mod-
ifications to the retrieval model and the set of queries respectively.
Our first hypothesis, H1, is that training dense retrieval models
with CtrlQGen queries will lead to less retrievability bias compared
to training with real queries and their respective clicked entities.
The click data is prone to different biases, for example, many queries
will be issued for the most popular entities, i.e. popularity bias, and
after training the model on such data and this bias will be reinforced
in later interactions with the system. Conversely, with CtrlQGen
we can obtain pairs of query-entity to train the model for any given
entity, which can be randomly sampled from the collection.

Our second hypothesis, H2, is that suggesting broad queries
using CtrlQGen will lead to less retrievability bias. Narrow queries
have by definition less relevant entities than broad queries. By
assisting users in formulating their queries with the suggestion of
broad queries we can potentially influence users’ query behaviors
and then have an impact on the query type distribution.

Our main findings and contributions are:
• We introduce CtrlQGen, a novel method to generate queries
for a given entity conditioned on a desired underlying intent
(narrow or broad). We demonstrate two ways of using the
generated queries: as training data for dense retrieval models
and as query suggestions.

• We find positive evidence for H1: dense models fine-tuned
on synthetic queries have significantly less retrievability
bias than models fine-tuned on click data. When using the
queries from the proposed CtrlQGen we reduce the retriev-
ability bias by 10% in terms of Gini scores on average when

compared to a model that uses the click data and make 9% of
the Tracks collection of entities retrievable—go from zero
to non-zero retrievability score.

• Regarding H2, we show that applying CtrlQGen for gener-
ating query suggestions can reduce the retrievability bias
of the system up to 9% percent and increase the number of
entities that have non-zero retrievability 11% for the Tracks
collection when using a Bi-Encoder model that was trained
with an unbiased set of queries.

Next, we describe the related work, followed by the proposed
method in Section 3. Section 4 describes the experimental setup
used to answer the research question, followed by our experiments
in Section 5. We conclude the paper in Section 6.

2 RELATEDWORK
We first discuss here related work on search for the domains consid-
ered here. Then we look into retrievability followed by a discussion
on query generation techniques and their applications.

2.1 Entity Search
A number of studies have explored user behavior when searching
for specific entities such as music tracks, products, and books [7, 23,
27, 32]. While focused searches have the goal of finding a specific
entity, non-focused searches involve broader intents, where the
user is in an exploratory mindset [33, 51, 55].

The Social Book Search Lab CLEF [30] that ran from 2011 to
20163 enabled a number of studies in complex search for the book
domain [13, 14, 17, 58, 59]. A richer document representation for
books which contains for example reviews, tags, and controlled
vocabulary was shown to have better retrieval effectiveness. It has
also been shown in the music domain that multiple sources of data
such as metadata, audio features, tags, and lyrics lead to better
effectiveness for downstream tasks [29]. For podcast search, the
TREC2020 podcasts track [28] revealed that adding the additional
information of transcripts also leads to higher effectiveness when
compared to using only the episode title and description.

Another external source of information for entities that was
shown to be useful for downstream tasks [54] is the concept of lists,
where users group together a number of entities that are similar
in a way. In the music domain, this is often referred to as playlists.
The creation of lists with curated entities is also common in the
domains of books [39] and movies [25].

2.2 Retrievability
To estimate the retrievability of a document [4, 5] proposed to
sum the popularity of the queries that retrieve the given document
above a position that the user would actually look at (e.g. in the
top-5 documents). Retrievability scores can be used to determine if
a retrieval system has a concentration of retrievability, for example,
to verify if certain types of documents are being surfaced more than
others. For example, [50] showed that for a collection with datasets
and articles, the retrievability bias was stronger for datasets when
compared with articles.

3The book corpus of the SBS tasks is no longer available.

Improving Content Retrievability in Search with Controllable Query Generation WWW ’23, May 1–5, 2023, Austin, TX, USA

Entity

Intent

Serialization

Weak labeling

S-Entity

Query

Transformer
input

output

32
Query

optional

1 Entities

CtrlQGen

Bi-Encoder

CtrlQGen pipeline

Intents Queries

Improving retrievability by modifying the ranker

Improving retrievability by modifying the queries

CtrlQGen

Narrow query Entities

Intent=broadBi-Encoder

CtrlQGen

Query suggestions

Figure 2: Left: Components of the CtrlQGenmethod. Each entity is serialized by concatenating the values of eachmetadata, e.g.
title: The Fellowship of the Ring [SEP] author names: J.R.R. Tolkien [...]. (2) Labeled data (entity ; query ; intent) is not strictly
required, due to the use ofweak labeling functionswhich output a query and intent for a given entity, e.g. (The Fellowship of the
Ring ; fantasy book ; broad). (3) Control over the underlying intent (narrow or broad) when generating the query via prompting,
e.g. “Generate a querywith narrow/broad intent from: <serialized_entity>”. Right: Differentways of using the proposed CtrlQGen
to improve the retrievability of the search system: modifying the ranker by fine-tuning on synthetic queries and modifying
the set of queries by suggesting broad queries for the narrow intent queries issued.

Even though a system with less retrievability bias does not nec-
essarily mean that the system is more effective, studies have found
a correlation between the two [9, 62, 63], suggesting that a measure
of retrievability bias can potentially be used to select better retrieval
systems. In order to reduce the retrievability bias of a system [8]
proposed a query expansion technique with a novel document se-
lection process for pseudo-relevance feedback in the domain of
patent search. Chakraborty et al. [18] proposed to use retrievability
of a document over a set of query variations to decide which docu-
ments to use for relevance feedback. Finding which queries lead to
a document can be also used to improve search transparency [34].

2.3 Query Generation
Query generation techniques can be broadly categorized based
on their input: documents or queries. For generating known-item
queries for a given document, i.e. queries where the task is to
find a previously seen document, techniques have been proposed
that select a number of document terms based on different sampling
methods [2, 3, 31]. Liu et al. [38] tackled a similar problem with the
additional constraint that the generated queries are also informative.
Generating queries for a given document using a seq2seq model
was first proposed by [45]. Unlike sampling methods proposed
for generating known-item queries, a seq2seq approach such as
docT5query [44] is able to generate queries where its terms do not
occur in the input document, being able to mitigate the vocabulary
mismatch problem. Similarly, [35, 40, 61] generate queries based on
documents using a transformer encoder-decoder model, but instead
of using the queries for document augmentation, they employ the
queries as additional training data for training bi-encoders, leading
to significant gains in retrieval effectiveness—specially in cross-
domain evaluation settings. It has also been proposed to replace
the fine-tuned encoder-decoder model to generate queries with
little supervision by doing in-context learning with models such as
GPT-3 [15, 20]. Zhuang et al. [64] used generated queries with the
goal of improving the effectiveness of the emerging differentiable
search indexes. Another recent direction for query generation is to

incorporate explicit knowledge when generating queries, e.g. with
the use of knowledge graphs [19, 26, 52].

Generating queries for a given query has also been shown to
be useful in IR. For example by generating query suggestions or
reformulations that help users explore and express their informa-
tion needs [16, 43]. Another objective is to generate query variants
that can be used to obtain more effective ranking models by com-
bining such variants for the given query [11, 12], and also to better
evaluate ranking models [6, 46, 65].

The closest to our problem is the generation of queries for prod-
uct search. Lien et al. [36] used textual data from the reviews as-
sociated with the documents (products) to generate queries auto-
matically for the following products: headphones, tents, and condi-
tioners. In the domain of movies, Bassani and Pasi [10] generated
queries automatically for a document (a movie) based on a number
of predefined semantic components such as genre and year. We
propose here a method to generate queries that can take advantage
of manually created functions as a weak supervision signal, and also
employ pre-trained language models. Unlike previous methods to
generate queries, CtrlQGen does intent-aware generation, where it
is possible to control for the underlying intent of the output query.

3 CONTROLLABLE QUERY GENERATION
In this section, we first describe the three main components of
the proposed CtrlQGen followed by different applications for the
generated queries. Figure 2 displays a diagram of the model, as
well as two different ways to employ the synthetic queries. The
serialization module is required to obtain a text representation
for a given entity so that text-based models can use that as input.
The second component is called weak labeling, which is able to
bypass the need for a large amount of labeled data. Finally, the last
component is the intent-aware generation, which is able to control
for different types of intent (broad and narrow).

WWW ’23, May 1–5, 2023, Austin, TX, USA

3.1 Model Components
3.1.1 Serialization. This module takes as input an entity 𝑒 and
outputs a string representation of the entity: 𝑒𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑠 (𝑒).
The serialization function 𝑠 concatenates every metadata column
of the entity with their respective values, using a special token:
𝑠 (𝑒) = 𝑐𝑜𝑙1 : 𝑣𝑎𝑙1 [𝑆𝐸𝑃]𝑐𝑜𝑙2 : 𝑣𝑎𝑙2 [𝑆𝐸𝑃] ...[𝑆𝐸𝑃]𝑐𝑜𝑙𝑛 : 𝑣𝑎𝑙𝑛 . So for
example the book with the title The Fellowship of the Ring becomes:

title: The Fellowship of the Ring [SEP] series name: The Lord
of the Rings #1 [SEP] author names: J.R.R. Tolkien [SEP]
publication year: 1954 [SEP] language: EN [SEP] genres:
Fantasy, Classics, Fiction, Adventure, High Fantasy, ...[SEP]
description: One Ring to rule them all, One Ring to find them
...[SEP] review: This book is full of wonder and adventure
with fantastic writing ... [SEP] lists: fantasy, uk-and-ireland,
witches-wizards, fiction, british, ...

3.1.2 Weak Labeling. In order to train CtrlQGen we require a
dataset D = {(𝑒𝑖 , 𝑖𝑖 , 𝑞𝑖)}𝑀𝑖=1 with training triplets of entity, intent,
and query, which are the input, control variable, and output re-
spectively. In each triplet, the query 𝑞 has the underlying intent 𝑖
(narrow or broad) when matching with the entity 𝑒 . One option to
acquire such data is to ask annotators to create narrow and broad
queries for a given entity. Alternatively, we can employ weak label-
ing functions that generate such data based on heuristics.

We present here two flavors of weak labeling functions. The first
is completely unsupervised (WeakLabeling-Un), and thus is able to
generate both query and intents for any given entity. The second
requires queries that are related to each entity and thus is based on
intent prediction of the given query (WeakLabeling-IP).

WeakLabeling-Un

Entity

WeakLabeling-IP

Entity

Query
Intent

Query

Query

Intent prediction

Q. Variations

Q. VariationsRandom terms

Random terms

Summarizer or IDF sampling

narrow-fields

broad-fields

broad-fields-ft

Figure 3: Two variants of theweak labeling functions.While
WeakLabeling-Un (top) outputs query and intents for a given
entity, WeakLabeling-IP (bottom) outputs an intent label for
a given pair of entity and query.

WeakLabeling-Un. The core intuition is that we can define a set
of metatada columns that are inherently associated with narrow
intent queries since they can identify the entity (narrow-fields), e.g.
title and artists, and a set of metadata columns that capture charac-
teristics of the entity that other entities might also have, e.g. genres,

and thus can be considered to be broad columns (broad-fields). In
order to generate a set of queries and intents for a given entity we
rely on randomly sampling terms from all possible combinations
of the respective fields. So for example to generate a narrow intent
query in the music domain, we could use either the title of a track,
the album, the artist, or a combination of the three. After sampling
terms from such the respective columns for the query, we apply
a number of functions to generate query variations in a stochas-
tic manner: shuffling words, adding misspellings, and removing
prefixes4.

Specifically, when generating broad queries, we differentiate be-
tween metadata columns that are based on free text (broad-fields-ft),
e.g. reviews, and the ones which are already category-like terms
(broad-fields), e.g. genres. For the free text columns, in order to avoid
selecting terms that are uninformative, we apply a sampling strat-
egy that prioritizes terms with higher IDF. As another weak labeling
function for the free text columns, we apply a text summarization
model to select more informative terms.

WeakLabeling-IP In order to take advantage of existing data
of entities and queries, e.g. query logs with clicked entities, this
variant predicts if the query is broad or narrow based on its narrow
and broad columns. If the similarity5 of the query and the values of
the narrow queries is higher than the similarity of the query with
the values of the broad queries then the weak label will be narrow,
otherwise broad. So for example, if the entity is a book with the
title “The Brothers Karamazov”, and the input query is “Karamazov”,
the label would be narrow whereas if the input query is “russian
theological fiction” the label would be broad as it would be more
similar to the categories of the book.

3.1.3 Intent-aware Generation. Given the training dataset D =

{(𝑒𝑖 , 𝑖𝑖 , 𝑞𝑖)}𝑀𝑖=1, we train an encoder-decoder model 𝐺 that receives
as input the entity and the underlying intent to control for, and it
outputs the query: 𝐺 (𝑒, 𝑖) = 𝑞. In order to achieve that we rely on
adding the control variable as part of the language model prompt.
We train the model with the following prompt: “Generate a query
with narrow/broad intent from: <serialized_entity>” and its respec-
tive query as the output. So for example the query “lord of th” with
intent narrow would lead to the following training instance:

Input Generate a narrow query from: title: The Fellowship
of the Ring [SEP] series name: The Lord of the Rings #1 [SEP]
author names: J.R.R. Tolkien [SEP] publication year: 1954
[SEP] language: EN [SEP] genres: Fantasy, Classics, Fiction,
Adventure, High Fantasy, ...[SEP] description: One Ring to
rule them all, One Ring to find them ...[SEP] review: This
book is full of wonder and adventure with fantastic writing ...
[SEP] lists: fantasy, uk-and-ireland, witches-wizards, fiction,
brittish, ...
Output lord of th

4Since the datasets considered come from a large-scale online platform with instant
search, many log queries are not complete and are just prefixes of the entity titles. This
happens because the user might stop before the end of the query as the result could
be already found in the list of results.
5We employ here a transformer sentence representation and cosine similarity.

Improving Content Retrievability in Search with Controllable Query Generation WWW ’23, May 1–5, 2023, Austin, TX, USA

3.2 Applications
3.2.1 Synthetic training data. We can use the generated queries
to train Bi-Encoder retrieval models, as shown on the right top
part of Figure 2. For a randomly sampled set of entities E ′ from
the collection E we apply CtrlQGen with both desired intents
𝑞′𝑛𝑎𝑟𝑟𝑜𝑤 = 𝐺 (𝑒, narrow) and 𝑞′

𝑏𝑟𝑜𝑎𝑑
= 𝐺 (𝑒, broad) for each 𝑒 in

E ′. After that, given a desired weight proportion of broad queries
and narrow queries (𝑃𝑛𝑎𝑟𝑟𝑜𝑤 , 𝑃𝑏𝑟𝑜𝑎𝑑) we can sample training in-
stances from the synthetic generated queries Q ′ for training the
Bi-Encoder. This gives us a dataset of pairs of synthetic queries and
respective relevant entities that can be used to train Bi-Encoder
models, controlling for the desired proportion of underlying intents.

3.2.2 Query suggestion. We can employ the CtrlQGen model to
perform query suggestion, as shown on the bottom right part of
Figure 2. Since the majority of the queries for entities have a narrow
intent behind them, one approach to modifying the user’s behavior
is to suggest broader queries. In order to do that, we can employ
the generated queries in the following manner. First, for a given
input query 𝑞, we can obtain a list R𝑞 with the top-k entities ranked
for it using a ranking model. For each entity in the top-k ranked
list, we apply CtrlQGen to generate a set of broad queries Q ′ to
recommend: Q ′ = {𝐺 (𝑒𝑖 , broad)} for 𝑒𝑖 in R𝑞

6. The complexity of
this approach is 𝑂 (𝑛2 ∗ 𝑑 ∗ 𝑘), where 𝑛 is the sequence length, 𝑑 is
the number of dimensions of the transformer model and 𝑘 is the
size of the list considered to generate suggestions.

Table 1: Datasets metadata and statistics. Metadata columns
1–3 are considered to be narrow-fields, whereas 4–9 are
broad-fields. In the experiments the broad columns which
are free-text (broad-fields-ft) are: Episode & show descrip-
tion and Transcript for Podcasts, and User reviews and De-
scription for Books.

Tracks Podcasts Books

Metadata

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

Title
Album name
Artist names
Release year
Language
Genres
Descriptors
Lyric
User Playlists

Title
Show name
Host names
Ingested date
Language
Categories
Episode & show description
Transcript
Topics

Title
Series name
Author names
Publication year
Language
Genres
Description
User reviews
User lists

docs 682k 600k 617k

queries 100k 100k 100k

Click # qrels
train/val/test 75.9k/9.5k/9.5k 14.4k/1.8k/1.8k 117.5k/14.7k/14.7k

Avg doc len 55.87 80.76 161.58

Avg query len 1.96 3.06 4.47

4 EXPERIMENTAL SETUP
In this section, we first describe the data used to test our hypotheses,
followed by the implementation details of themethods and baselines
as well as how we evaluate different approaches.
6In our experiments this set of queries Q′ is appended, according to a percentage of
acceptance, to the set of log queries Q in order to calculate the retrievability bias.

4.1 Datasets
In order to test our hypothesis and compare different methods to
generate queries we rely on three datasets: Tracks, Podcasts, and
Books. For each dataset, we have a set of entities (>600k entities),
a set of 100k queries, and a set of relevance judgements. Table 1
describes the statistics of the datasets and examples of entities.

While the queries and entities from Tracks and Podcasts were
extracted from a large-scale online platform the Books dataset is
a subset of the Goodreads public dataset from [60] 7. The query
sets from Tracks and Podcasts are a unique subset of randomly
sampled entities and queries from the logs of a large scale online
audio platform, where clicks for a given entity after issuing the
query are considered to be the relevance signal in our experiments.

We also use the number of distinct users for which the query was
issued by, and use them as 𝑜𝑞 to calculate retrievability scores (see
Section 4.3). Regarding the columns, as seen in Table 1, the oneswith
numbers 1–3 are considered to be narrow-fields, whereas 4–9 are
broad-fields. The broad columns which are free-text (broad-fields-ft)
are: Episode & show description and Transcript for Podcasts, and
User reviews and Description for Books.

Since the Goodreads dataset does not have any set of queries
available, we generate a set of queries automatically: 75% of the
queries are narrow, generated by sampling words from the narrow-
fields, and 25% of them are from broad-fields and consider that as
the relevance labels. This specific split of narrow and broad queries
was chosen to simulate actual user behavior observed in the other
two datasets (Tracks and Podcasts) where narrow queries are the
majority but in a less extreme fashion. We use the number of ratings
the entities from Books have as a proxy for the number of users
that would issue such queries (𝑜𝑞).

4.1.1 Broad queries datasets. Since the majority of the queries
from Tracks, Podcasts and Books are narrow, we also employ two
smaller additional sets of queries and relevance labels that have an
underlying broad intent. They are Tracksbroad and Podcastsbroad,
containing a total of 1309 and 500 queries. The Tracksbroad is a
sample of queries from the logs that have a high predicted probabil-
ity of being broad based on the interaction signals the user had after
issuing the query. If the user interacts with entities such as playlists
and hubs more than tracks and albums they are more likely to be
issuing a broad query. Based on this set, we get the clicked entities
where the query does not match the title, artist, or album of the
entity, avoiding cases where the query seems broad but is in fact a
narrow interaction, e.g. query “pop” and clicking a track with the
title “POP!”. For Podcastsbroad, there is no parallel for the Tracks
playlists so we employ a set of manually curated pairs of broad
queries and entities. Annotators were instructed to write a query
relevant to the podcast episode while avoiding exact matches and
matching diverse metadata fields.

4.2 Implementation Details
4.2.1 Query generation models. As baselines for generating syn-
thetic queries, we first use QGen, a common approach to generate
queries from documents used in this manner in different previous
work [35, 40, 44, 61]. We rely on fine-tuning T5 [47] (t5-base) on

7https://github.com/MengtingWan/goodreads

https://github.com/MengtingWan/goodreads

WWW ’23, May 1–5, 2023, Austin, TX, USA

a subset of Click train set with 10k pairs query-entities. The sec-
ond baseline for generating queries requires very little supervision
signal: InPars [15]. The model uses in-context learning, i.e. few
examples in the prompt of the document and expected query, and
large language models. For a fair comparison, we randomly sample
examples to use in the prompt every time we are generating the
output queries, this way InPars has access to the same amount
of training pairs of query and entities as QGen8. We rely on the
open bigscience/bloom-760m9 release to do so10. For the CtrlQGen
implementation we also rely on the T5 (t5-base) model. When gen-
erating the queries with T5, for both QGen and CtrlQGenwe employ
𝑑𝑜_𝑠𝑎𝑚𝑝𝑙𝑒=True and 𝑡𝑜𝑝_𝑘=10.

4.2.2 Retrieval models. For BM25 [49] we resort to the default
hyperparameters and implementation provided by the PyTerrier
toolkit [41]. For the zero-shot Bi-Encoder models, we rely on the
SentenceTransformers [48] model releases11. The library uses Hug-
ginface transformers for the pre-trained models such as BERT [21]
and MPNet [53]. Specifically, we employ the pre-trained model
all-mpnet-base-v2. When fine-tuning the Bi-Encoder models on
the Click or synthetic datasets, we rely on the MultipleNegatives-
RankingLoss, which uses in-batch random negatives to train the
model. We fine-tune the dense models for a total of 10k steps. Thus,
all dense models were trained on the same amount of (syn-
thetic or not) queries. We use a batch size of 8, with 10% of the
training steps as warmup steps. The learning rate is 2e-5 and the
weight decay is 0.01. We refer to the Bi-Encoder model trained on
Click data as Bi-EncoderClick and a Bi-Encoder model trained
on the queries from CtrlQGen as Bi-EncoderCtrlQGen.

4.3 Evaluation Procedure
To evaluate the effectiveness of the retrieval systems we use the
recall at 100, 𝑅@100. The choice for R@100 is due to the objective
of increasing the retrievability of items considering the first 100
options12. We perform Students t-tests at the confidence level of
0.95 with Bonferroni correction to compare the difference between
models with statistical significance.

To evaluate how biased the retrieval system is in terms of retriev-
ability, we first estimate the retrievability of an entity 𝑒 as defined
by [5]: 𝑟 (e) = ∑

q∈Q 𝑜𝑞 · 𝑓
(
𝑘𝑒𝑞, 𝑐

)
, where Q is the set of queries13,

𝑜𝑞 is the weight of each query—here we use the number of users
that issued the query—and 𝑓

(
𝑘𝑒𝑞, 𝑐

)
is 1 if the entity 𝑒 is ranked

above 𝑐 by the search system (in our experiments we set c=100)
and 0 otherwise. In order to get a number that summarizes how
concentrated or biased the retrievability scores are we calculate the
Gini score [24]: 𝐺 =

∑𝑁
𝑖=1 (2∗𝑖−𝑁−1)∗𝑟 (ei)

𝑁
∑𝑁

𝑗=1 𝑟 (ej)
, where G=1 means only

one entity concentrates all the retrievability, and G=0 means every

8This was shown to be effective for the validation sets of Podcasts and Books. For
Tracks we did not observe the same, so we used a fixed prompt with the same two
examples randomly selected from the dataset.
9https://bigscience.huggingface.co/blog/bloom
10We explore larger GPT-3 models on the appendix and see that the larger 175B
parameter one does not significantly improve over smaller models.
11https://www.sbert.net/docs/pretrained_models.html
12A second stage re-ranker in this pipeline could be precision-focused if the retriever
is able to find enough relevant and diverse options.
13The size of Q is 100k for all computations.

entity in the collection has the same retrievability score. In order
to perform statistical testing for the Gini scores we follow [22].

5 RESULTS
In this section, we first describe the experimental results on H1—
training dense retrieval models on synthetic queries leads to less
retrievability bias than training on real queries and clicked entities—
followed by the results forH2—suggesting broad queries generated
by our proposed method CtrlQGen leads to less retrievability bias
when compared to the set of queries from the logs.

5.1 H1: Modifying the Ranker with Generated
Queries as Training Data

Evaluationwithnarrow intent queries. Table 2 displays R@100
and Gini scores for different retrieval models on the three datasets
which contain mostly narrow intent queries. Zero-shot models
do not have access to any Click relevance labels for training. As
expected, a Bi-Encoder that has no access to the target domain
queries and entities does not perform well, and it has worse effec-
tiveness than BM25 (30% less R@100 on average, as seen row a vs
row b). When using the target training data to fine-tune the dense
retrieval model (Bi-EncoderClick) we observe that it outperforms
zero-shot models significantly, with absolute gains of R@100 up
to 158% (row h vs row b). However, both the model trained on
the Click data (row h) and the pre-trained Bi-Encoder (row c)
have significantly more bias than BM25, as seen by the Gini scores
increases of 9.2% and 10% respectively.

When using the synthetic queries created by any of the query
generation models to train the dense retrieval methods (InPars,
QGen, CtrlQGen) as described in Section 3.2.1, we observe signifi-
cant drops of 10% Gini on average (rows d,e,f vs row h), indicating
positive evidence for our first hypothesis that a model trained
on the synthetic queries lead to less retrievability bias than the
model trained on the Click data. Specifically, with CtrlQGen14 we
show that we can get statistically significant better effectiveness
and retrievability for Tracks and Books than the query generation
baselines with 24% more R@100 and 3% less Gini on average over
all datasets and baselines (row f vs rows d, e). We also show that
we improve the retrievability over the model trained on Click data
(row f vs row h) by 10% Gini. This effectively makes more than
62k (9%) entities in the Tracks dataset retrievable compared to
Bi-EncoderClick, i.e. the entity goes from zero to a non-zero value.

We see also that with a combination of synthetic queries from
CtrlQGen and queries from the Click dataset 15 (row g) we can
achieve similar effectiveness to the model training on the Click
dataset (no statistical difference) while having less retrievability bias
for both Tracks and Podcasts datasets with statistical significance,
being Pareto optimal when considering both objectives.

Evaluation with broad intent queries. In order to understand
how the models perform for exploratory and complex information
needs, we take a closer look at the effectiveness and retrievability
of the models in a set containing only broad intent queries. Table 3
14We employ here CtrlQGen𝑛𝑎𝑟𝑟𝑜𝑤 which sets (𝑃𝑛𝑎𝑟𝑟𝑜𝑤 , 𝑃𝑏𝑟𝑜𝑎𝑑) as (100%, 0%) and
WeakLabeling-IP as found to be optimal in the validation experiments (c.f. Table 4).
15We set the percentage as the optimal one in the validation set: 10% synthetic queries
and 90% queries and clicks from Click.

https://bigscience.huggingface.co/blog/bloom
https://www.sbert.net/docs/pretrained_models.html

Improving Content Retrievability in Search with Controllable Query Generation WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 2: Retrieval effectiveness (R@100↑ the higher the better) and retrievability bias (Gini ↓ the lower the better) of dense
retrieval models trained on different training data for predominantly narrow queries (Click test sets). Bold indicate the best
model for each category with statistical significance and superscripts indicate statistically significant improvements over the
respective model using students t-test at 0.95 confidence with Bonferoni correction for multiple comparisons. The values for
the Books dataset on row (𝑐) are not included as they are already a synthetic set of queries.

R@100↑ Gini↓
Zero-shot
(no target domain Click training data) Tracks Podcasts Books Tracks Podcasts Books

(a) BM25 0.182𝑏 0.436𝑏 0.721𝑏𝑑 0.752𝑏ℎ 0.666𝑏𝑐𝑑𝑒 𝑓 ℎ 0.779𝑏

(b) Bi-Encoder 0.142 0.323 0.415 0.818ℎ 0.765 0.836𝑑
(c) Bi-EncoderWeakLabeling-Un (Ours) 0.222 𝑎𝑏𝑑 0.465𝑏 - 0.748𝑎𝑏ℎ 0.730𝑏ℎ -
Fine-tuned on synthetic data
(target domain Click training data to train query generators)

(d) Bi-EncoderInPars [15] 0.202𝑎𝑏 0.474𝑎𝑏 0.492𝑏 0.712𝑎𝑏𝑐ℎ 0.677𝑏𝑐ℎ 0.842
(e) Bi-EncoderQGen [40] 0.296𝑎𝑏𝑐𝑑 0.503𝑎𝑏𝑐 0.755𝑎𝑏𝑑 0.701𝑎𝑏𝑐𝑑ℎ 0.674𝑏𝑐𝑑 𝑓 ℎ 0.766𝑎𝑏𝑔ℎ
(f) Bi-EncoderCtrlQGen (Ours) 0.333𝑎𝑏𝑐𝑑𝑒 0.500𝑎𝑏𝑐 0.770𝑎𝑏𝑑𝑒 0.693𝑎𝑏𝑐𝑑𝑒ℎ 0.676𝑏𝑑𝑐ℎ 0.762𝑎𝑏𝑒𝑔ℎ

Fine-tuned on target data or in combination with synthetic data
(access to target domain Click training data)

(g) Bi-EncoderClick+CtrlQGen (Ours) 0.361𝑎𝑏𝑐𝑑𝑒 𝑓 0.622𝑎𝑏𝑐𝑑𝑒 𝑓 0.775𝑎𝑏𝑑𝑒 0.817𝑏ℎ 0.741𝑏ℎ 0.768 𝑎𝑏

(h) Bi-EncoderClick 0.366𝑎𝑏𝑐𝑑𝑒 𝑓 0.634𝑎𝑏𝑐𝑑𝑒 𝑓 0.769𝑎𝑏𝑑𝑒 0.856 0.763𝑏 0.767𝑎𝑏𝑔

Table 3: Retrieval effectiveness (R@100↑ the higher the better) and retrievability bias (Gini ↓ the lower the better) of dense
models trained on different training data for a subset of broad queries. Bold indicates the best model for each category with
statistical significance and superscripts indicate statistically significant improvements over the respective model using Stu-
dents t-test at 0.95 confidence with Bonferoni correction. When the set of queries Q ′ were generated with (𝑃𝑛𝑎𝑟𝑟𝑜𝑤 , 𝑃𝑏𝑟𝑜𝑎𝑑) as
(100%, 0%), we refer to it as CtrlQGen𝑛𝑎𝑟𝑟𝑜𝑤 , with (0%, 100%) we call it CtrlQGen𝑏𝑟𝑜𝑎𝑑 and with (50%, 50%) as CtrlQGen𝑏𝑜𝑡ℎ .

Method R@100 ↑ Gini ↓
Tracksbroad Podcastsbroad Tracksbroad Podcastsbroad

(a) Bi-EncoderCtrlQGen𝑏𝑟𝑜𝑎𝑑 0.074𝑏𝑐𝑑𝑒 𝑓 0.800𝑒 𝑓 0.596𝑏 0.831𝑏𝑓
(b) Bi-EncoderClick 0.035𝑑𝑒𝑓 0.756𝑓 0.878 0.846
(c) Bi-EncoderCtrlQGen𝑏𝑜𝑡ℎ 0.033𝑑𝑒𝑓 0.780𝑓 0.492 𝑎𝑏𝑒𝑓 0.831𝑏𝑓
(d) Bi-EncoderInPars [15] 0.010 0.827𝑐𝑒 𝑓 0.489𝑎𝑏𝑐𝑒 𝑓 0.816𝑎𝑏𝑐 𝑓

(e) Bi-EncoderQGen [40] 0.009 0.744𝑓 0.540𝑎𝑏 0.820𝑎𝑏𝑐 𝑓
(f) Bi-EncoderCtrlQGen𝑛𝑎𝑟𝑟𝑜𝑤 0.003 0.609 0.517𝑎𝑏𝑒 0.835𝑏

shows that a model trained on synthetic queries from CtrlQGen
gets significantly better when we include broader queries in the
training (going from 0, 50 and 100% on rows f, c and a).

A model trained only on synthetic broad queries outperforms
a model trained on Click data by 111% of R@100 for Tracksbroad
with statistical significance (row a vs row b). We also observe sig-
nificant drops in the retrievability bias when we compare models
trained with CtrlQGen queries with models trained with Click
data, going from 0.878 to 0.596 and from 0.846 to 0.831 as seen in Ta-
ble 3 (row a vs row b). Baseline models to generate queries (rows d
and e) also have significantly less retrievability bias than the model
trained on click data (row b) showing again positive evidence for
our first hypothesis that models trained on synthetic queries lead
to less retrievability bias.

Contribution of each module of CtrlQGen. When using the
set of queries generated by WeakLabeling-Un(no supervision avail-
able) to train the dense retriever, we get statistically significant
improvements over the model that is not fine-tuned (row c vs row
b, going from 0.142 to 0.222 R@100 and from 0.323 to 0.465 R@100
for the Tracks and Podcasts datasets as seen in Table 2. Using the
remaining components of CtrlQGen we obtain significant improve-
ments over using solely WeakLabeling-Un. A natural question is
from which modules the improvements are coming. To answer this
question Table 4 displays an ablation study on the components of
CtrlQGen. If we remove all components of CtrlQGen we end up
with the baseline QGen (first line of the table). We incrementally
add each component of the model in the following rows.

WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 4: Ablation study where we add components of the proposed CtrlQGen to QGen one at a time using Click validation
sets which has predominantly narrow queries. We also report the effectiveness for the broad queries only datasets. The †
superscripts indicate statistically significant improvements over QGen using students t-test at 0.95 confidence.

Predominantly narrow queries Broad queries
R@100↑ Gini ↓ R@100↑ Gini ↓

Tracks Podcasts Books Tracks Podcasts Books Tracksbroad Podcastsbroad

QGen [40] 0.289 0.512 0.756 0.701 0.674 0.766 0.009 0.744 0.540 0.820

+ (1) Serialization 0.312† 0.509 0.761† 0.694† 0.666† 0.761† 0.006 0.711 0.528† 0.824

+ (2a,3) Intent-aware Generation 0.305† 0.505 0.761† 0.688† 0.669† 0.756† 0.008 0.751 0.528† 0.820
WeakLabeling-IP

+ (2a,2b,3) Intent-aware Generation 0.289 0.508 - 0.704 0.704 - 0.036† 0.787† 0.486† 0.829
WeakLabeling-IP+WeakLabeling-Un

+ (1,2a,3) CtrlQGen 0.300† 0.522† 0.763† 0.694† 0.676 0.760† 0.007 0.713 0.522† 0.822
WeakLabeling-IP

+ (1,2a,2b,3) CtrlQGen 0.283 0.490 - 0.701 0.674 - 0.033† 0.780† 0.480† 0.833
WeakLabeling-IP+WeakLabeling-Un

The main findings are that (I) the serialization component, where
we indicate which the metadata columns and their respective values
as opposed to values only, is beneficial for both R@100 and Gini for
both the narrow evaluation set of queries and broad set of queries
and (II) the WeakLabeling-Un is only beneficial for the broad set of
queries as WeakLabeling-IP cover narrow queries well (they are
the majority of the available existing queries).

5.2 H2: Modifying the Set of Queries by
Suggesting Generated Queries

In order to test our second hypothesis that suggesting broad queries
with CtrlQGen leads to less retrievability bias compared to the
queries found in the logs, we rely on a simulation where a percent-
age of suggested queries are accepted and added into the set of
queries as described in Section 3.2.2. For each entity in the top-5
ranked list for the log queries we create 3 query suggestions.

Figure 4 displays the results of this simulation. We see that if the
Bi-Encoder is trained on a set of broad queries, the retrievability of
the system drops significantly as higher percentages of suggested
broad queries by CtrlQGen are accepted, with decreases of Gini
up to 11% and 7% for Tracks and Podcasts showing positive evi-
dence for our second hypothesis. If we consider that all queries
are accepted by the users a total of 78k (11%) entities for the Tracks
dataset would become retrievable, i.e. retrievability different than
zero, compared to using CtrlQGen𝑏𝑜𝑡ℎ with the log queries. We
also see that only modifying the set of queries is not enough, as a
Bi-Encoder trained on the Click data does not achieve the same
effect, showing that it is also necessary to employ a model that was
trained for both narrow and broad queries.

6 CONCLUSION
We propose here CtrlQGen, a new approach to generate synthetic
queries for entities that allows to control for the query intent and

Tracks Podcasts

0 25 50 75 100 0 25 50 75 100

0.7

0.8

% suggested queries accepted

G
in

i (
re

tr
ie

va
bi

lit
y

bi
as

)

Bi − EncoderClick

CtrlQGenboth

Figure 4: Suggesting broad querieswith CtrlQGen reduces the
retrievability of a model trained on synthetic data.

that can work in the absence of annotated data through the use
of a weak-labeling function that leverages content metadata. We
study the impact that the generated queries have on decreasing
the retrievability bias and effectiveness, i.e. on helping the search
engine surface more entities while avoiding negative effects on
the relevance of results. Our experimental results in three different
domains show that training dense retrieval models on synthetic
queries from CtrlQGen leads to significant decreases in the retriev-
ability bias of the system with comparable effectiveness. We also
demonstrate how to reduce the retrievability bias by suggesting
queries generated by CtrlQGen.

As future work, we believe important directions to be: (I) taking
into account the interplay between recommendation and search
in the measure of the accessibility of an entity, (II) improving the
representation of entities for which most metadata information is
not available and (III) study methods to reduce the retrievability of
a system for re-ranking scenarios (IV) study the impact of increased
content retrievability on content discovery.

Improving Content Retrievability in Search with Controllable Query Generation WWW ’23, May 1–5, 2023, Austin, TX, USA

REFERENCES
[1] Maryam Aziz, Alice Wang, Aasish Pappu, Hugues Bouchard, Yu Zhao, Benjamin

Carterette, and Mounia Lalmas. 2021. Leveraging Semantic Information to Fa-
cilitate the Discovery of Underserved Podcasts. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. 3707–3716.

[2] Leif Azzopardi and Maarten De Rijke. 2006. Automatic construction of known-
item finding test beds. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and Development in Information Retrieval. 603–604.

[3] Leif Azzopardi, Maarten De Rijke, and Krisztian Balog. 2007. Building simulated
queries for known-item topics: an analysis using six european languages. In
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. 455–462.

[4] Leif Azzopardi and Vishwa Vinay. 2008. Accessibility in information retrieval. In
European Conference on Information Retrieval. Springer, 482–489.

[5] Leif Azzopardi and Vishwa Vinay. 2008. Retrievability: An evaluation measure for
higher order information access tasks. In Proceedings of the 17th ACM conference
on Information and knowledge management. 561–570.

[6] Peter Bailey, Alistair Moffat, Falk Scholer, and Paul Thomas. 2017. Retrieval
consistency in the presence of query variations. In Proceedings of the 40th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 395–404.

[7] David Bainbridge, Sally Jo Cunningham, and J Stephen Downie. 2003. How
people describe their music information needs: A grounded theory analysis of
music queries. (2003).

[8] Shariq Bashir and Andreas Rauber. 2010. Improving retrievability of patents
in prior-art search. In European Conference on Information Retrieval. Springer,
457–470.

[9] Shariq Bashir and Andreas Rauber. 2017. Retrieval Models Versus Retrievability.
In Current Challenges in Patent Information Retrieval. Springer, 185–212.

[10] Elias Bassani and Gabriella Pasi. 2021. Semantic Query Labeling Through Syn-
thetic Query Generation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Virtual Event,
Canada) (SIGIR ’21). Association for Computing Machinery, New York, NY, USA,
2278–2282. https://doi.org/10.1145/3404835.3463071

[11] Nicholas J. Belkin, Paul Kantor, Edward A. Fox, and Joseph A Shaw. 1995. Com-
bining the evidence of multiple query representations for information retrieval.
Information Processing & Management 31, 3 (1995), 431–448.

[12] Rodger Benham, Joel Mackenzie, Alistair Moffat, and J Shane Culpepper. 2019.
Boosting search performance using query variations. ACM Transactions on
Information Systems (TOIS) 37, 4 (2019), 1–25.

[13] Toine Bogers and Marijn Koolen. 2018. “I’m looking for something like. . . ”:
Combining Narratives and Example Items for Narrative-driven Book Recommen-
dation. In Knowledge-aware and Conversational Recommender Systems Workshop.
CEUR Workshop Proceedings.

[14] Toine Bogers and Vivien Petras. 2017. Supporting book search: A comprehensive
comparison of tags vs. controlled vocabulary metadata. Data and Information
Management 1, 1 (2017), 17–34.

[15] Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. 2022.
InPars: UnsupervisedDataset Generation for Information Retrieval. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2387–2392.

[16] Huanhuan Cao, Daxin Jiang, Jian Pei, Qi He, Zhen Liao, Enhong Chen, and
Hang Li. 2008. Context-aware query suggestion by mining click-through and
session data. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining. 875–883.

[17] Messaoud Chaa, Omar Nouali, and Patrice Bellot. 2018. Combining tags and
reviews to improve social book search performance. In International Conference
of the Cross-Language Evaluation Forum for European Languages. Springer, 64–75.

[18] Anirban Chakraborty, Debasis Ganguly, and Owen Conlan. 2020. Retrievability
based document selection for relevance feedback with automatically generated
query variants. In Proceedings of the 29th ACM International Conference on Infor-
mation & Knowledge Management. 125–134.

[19] Sukmin Cho, Soyeong Jeong, Wonsuk Yang, and Jong C Park. 2022. Query
Generation with External Knowledge for Dense Retrieval. In Proceedings of Deep
Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction
and Integration for Deep Learning Architectures. 22–32.

[20] Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov,
Kelvin Guu, Keith B Hall, and Ming-Wei Chang. 2022. Promptagator: Few-shot
Dense Retrieval From 8 Examples. arXiv preprint arXiv:2209.11755 (2022).

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[22] Luis Fernando Gamboa, Andrés García-Suaza, and Jesús Otero. 2010. Statistical
inference for testing Gini coefficients: An application for Colombia. Ensayos
sobre Politica Economica 28, 62 (2010), 226–241.

[23] Jean Garcia-Gathright, Brian St. Thomas, Christine Hosey, Zahra Nazari, and
Fernando Diaz. 2018. Understanding and evaluating user satisfaction with mu-
sic discovery. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 55–64.

[24] Joseph L Gastwirth. 1972. The estimation of the Lorenz curve and Gini index.
The review of economics and statistics (1972), 306–316.

[25] Derek Greene and Pádraig Cunningham. 2013. Discovering latent patterns from
the analysis of user-curated movie lists. arXiv preprint arXiv:1308.5125 (2013).

[26] Fred X Han, Di Niu, Kunfeng Lai, Weidong Guo, Yancheng He, and Yu Xu. 2019.
Inferring search queries from web documents via a graph-augmented sequence
to attention network. In The World Wide Web Conference. 2792–2798.

[27] Christine Hosey, Lara Vujović, Brian St. Thomas, Jean Garcia-Gathright, and
Jennifer Thom. 2019. Just give me what I want: How people use and evaluate
music search. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–12.

[28] Rosie Jones, Ben Carterette, Ann Clifton, Maria Eskevich, Gareth JF Jones, Jussi
Karlgren, Aasish Pappu, Sravana Reddy, and Yongze Yu. 2021. TREC 2020 podcasts
track overview. arXiv preprint arXiv:2103.15953 (2021).

[29] Jaehun Kim, Julián Urbano, Cynthia Liem, and Alan Hanjalic. 2020. One deep
music representation to rule them all? A comparative analysis of different repre-
sentation learning strategies. Neural Computing and Applications 32, 4 (2020),
1067–1093.

[30] Marijn Koolen, Toine Bogers, Maria Gäde, Mark Hall, Iris Hendrickx, Hugo
Huurdeman, Jaap Kamps, Mette Skov, Suzan Verberne, and David Walsh. 2016.
Overview of the CLEF 2016 social book search lab. In International conference of
the cross-language evaluation forum for European languages. Springer, 351–370.

[31] Ravi Kumar, Silvio Lattanzi, and Prabhakar Raghavan. 2011. An algorithmic treat-
ment of strong queries. In Proceedings of the fourth ACM international conference
on Web search and data mining. 775–784.

[32] Audrey Laplante. 2008. Everyday life music information-seeking behaviour of
young adults: an exploratory study. (2008).

[33] Ang Li, Jennifer Thom, Praveen Chandar, Christine Hosey, Brian St Thomas, and
Jean Garcia-Gathright. 2019. Search mindsets: Understanding focused and non-
focused information seeking in music search. In The World Wide Web Conference.
2971–2977.

[34] Ruohan Li, Jianxiang Li, Bhaskar Mitra, Fernando Diaz, and Asia J Biega. 2022.
Exposing Query Identification for Search Transparency. In Proceedings of the
ACM Web Conference 2022. 3662–3672.

[35] Davis Liang, Peng Xu, Siamak Shakeri, Cicero Nogueira dos Santos, Ramesh
Nallapati, Zhiheng Huang, and Bing Xiang. 2020. Embedding-based zero-shot
retrieval through query generation. arXiv preprint arXiv:2009.10270 (2020).

[36] Yen-Chieh Lien, Rongting Zhang, F Maxwell Harper, Vanessa Murdock, and
Chia-Jung Lee. 2022. Leveraging Customer Reviews for E-commerce Query
Generation. In European Conference on Information Retrieval. Springer, 190–198.

[37] Jimmy Lin, Rodrigo Nogueira, and Andrew Yates. 2021. Pretrained transform-
ers for text ranking: Bert and beyond. Synthesis Lectures on Human Language
Technologies 14, 4 (2021), 1–325.

[38] Binsheng Liu, Xiaolu Lu, and J Shane Culpepper. 2021. Strong natural language
query generation. Information Retrieval Journal 24, 4 (2021), 322–346.

[39] Yidan Liu, Min Xie, and Laks VS Lakshmanan. 2014. Recommending user gener-
ated item lists. In Proceedings of the 8th ACM Conference on Recommender systems.
185–192.

[40] Ji Ma, Ivan Korotkov, Yinfei Yang, Keith Hall, and Ryan McDonald. 2020. Zero-
shot neural passage retrieval via domain-targeted synthetic question generation.
arXiv preprint arXiv:2004.14503 (2020).

[41] Craig Macdonald and Nicola Tonellotto. 2020. Declarative Experimentation
inInformation Retrieval using PyTerrier. In Proceedings of ICTIR 2020.

[42] Rishabh Mehrotra. 2021. Algorithmic Balancing of Familiarity, Similarity, & Dis-
covery in Music Recommendations. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management. 3996–4005.

[43] Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. 2008. Query suggestion
using hitting time. In Proceedings of the 17th ACM conference on Information and
knowledge management. 469–478.

[44] Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019. From doc2query to
docTTTTTquery. Online preprint 6 (2019).

[45] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. 2019. Document
expansion by query prediction. arXiv preprint arXiv:1904.08375 (2019).

[46] Gustavo Penha, Arthur Câmara, and Claudia Hauff. 2022. Evaluating the ro-
bustness of retrieval pipelines with query variation generators. In European
Conference on Information Retrieval. Springer, 397–412.

[47] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the lim-
its of transfer learning with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683 (2019).

[48] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

https://doi.org/10.1145/3404835.3463071
https://arxiv.org/abs/1908.10084

WWW ’23, May 1–5, 2023, Austin, TX, USA

[49] Stephen E Robertson and Steve Walker. 1994. Some simple effective approxi-
mations to the 2-poisson model for probabilistic weighted retrieval. In SIGIR’94.
Springer, 232–241.

[50] Dwaipayan Roy, Zeljko Carevic, and Philipp Mayr. 2022. Studying retrievability
of publications and datasets in an integrated retrieval system. arXiv preprint
arXiv:2205.00937 (2022).

[51] Bruno Sguerra, Marion Baranes, Romain Hennequin, and Manuel Moussallam.
2022. Navigational, Informational or Punk-Rock? An Exploration of Search
Intent in the Musical Domain. In Proceedings of the 30th ACM Conference on User
Modeling, Adaptation and Personalization. 202–211.

[52] Xinyao Shen, Jiangjie Chen, Jiaze Chen, Chun Zeng, and Yanghua Xiao. 2022.
Diversified query generation guided by knowledge graph. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining. 897–907.

[53] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. 2020. Mpnet:
Masked and permuted pre-training for language understanding. Advances in
Neural Information Processing Systems 33 (2020), 16857–16867.

[54] Giorgos Stamatelatos, George Drosatos, Sotirios Gyftopoulos, Helen Briola, and
Pavlos S Efraimidis. 2021. Point-of-interest lists and their potential in recommen-
dation systems. Information Technology & Tourism 23, 2 (2021), 209–239.

[55] Ning Su, Jiyin He, Yiqun Liu, Min Zhang, and Shaoping Ma. 2018. User intent,
behaviour, and perceived satisfaction in product search. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining. 547–555.

[56] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna
Gurevych. 2021. BEIR: A heterogenous benchmark for zero-shot evaluation of
information retrieval models. arXiv preprint arXiv:2104.08663 (2021).

[57] Federico Tomasi, Rishabh Mehrotra, Aasish Pappu, Judith Bütepage, Brian Brost,
Hugo Galvão, and Mounia Lalmas. 2020. Query Understanding for Surfacing
Under-served Music Content. In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management. 2765–2772.

[58] Irfan Ullah and Shah Khusro. 2020. Social book search: the impact of the social
web on book retrieval and recommendation. Multimedia Tools and Applications
79, 11 (2020), 8011–8060.

[59] Irfan Ullah, Shah Khusro, and Ibrar Ahmad. 2021. Improving social book search
using structure semantics, bibliographic descriptions and social metadata. Multi-
media Tools and Applications 80, 4 (2021), 5131–5172.

[60] Mengting Wan and Julian J. McAuley. 2018. Item recommendation on mono-
tonic behavior chains. In Proceedings of the 12th ACM Conference on Recom-
mender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, Sole Pera,
Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan (Eds.). ACM, 86–94.
https://doi.org/10.1145/3240323.3240369

[61] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. 2021. Gpl:
Generative pseudo labeling for unsupervised domain adaptation of dense retrieval.
arXiv preprint arXiv:2112.07577 (2021).

[62] Colin Wilkie and Leif Azzopardi. 2013. Relating retrievability, performance and
length. In Proceedings of the 36th international ACM SIGIR conference on Research
and development in information retrieval. 937–940.

[63] Colin Wilkie and Leif Azzopardi. 2014. A retrievability analysis: Exploring the
relationship between retrieval bias and retrieval performance. In Proceedings of the
23rd ACM International Conference on Conference on Information and Knowledge
Management. 81–90.

[64] Shengyao Zhuang, Houxing Ren, Linjun Shou, Jian Pei, Ming Gong, Guido
Zuccon, and Daxin Jiang. 2022. Bridging the Gap Between Indexing and Re-
trieval for Differentiable Search Index with Query Generation. arXiv preprint
arXiv:2206.10128 (2022).

[65] Guido Zuccon, Joao Palotti, and Allan Hanbury. 2016. Query variations and their
effect on comparing information retrieval systems. In Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management.
691–700.

A UNSUPERVISEDWEAK LABELING
FUNCTIONS

In this appendix, we define the functions used in WeakLabeling-Un.

A.1 Random Terms Selection
Samples words from the entity 𝑒 , given possible 𝑃 length percent-
ages for the query with probability 𝑃𝑟 .
def sample_words(e, P, Pr):

words = tokenize(e)
p_words_to_sample = np.random.choice(P, 1, p=Pr)
n = int(len(words) * p_words_to_sample)
words = np.random.choice(words , n, replace=False)
return words

A.2 Query Variation Ordering
Generates a query variation by shuffling two random words from
the query.
def qv_ordering(q):

words = tokenize(q)
idxs = [i for i in range(0, len(words))]
p1, p2 = np.random.choice(idxs , 2, replace=False)
words[p1], words[p2] = words[p2], words[p1]
return " ".join(words)

A.3 Query Variation Misspelling
Generates a query variation by adding a misspelling error with 𝑃

probabilities of removing and addition.
def qv_misspelling(q, P):

t = np.random.choice(["rem", "mdf"], 1, p=P)
idxs=[i for i in range(len(query))]
l=string.ascii_letters
if t == "rem":

idx_rem = np.random.choice(idxs , 1)[0]
qv = q[0:idx_rem] + q[idx_rem+1:]

elif t == "mdf":
idx_mdf = np.random.choice(idxs , 1)[0]
char_add = np.random.choice(len(l), 1)[0]
qv = q[0:idx_mdf] + l[char_add] + q[idx_mdf+1:]

return qv

A.4 Query Variation Prefix
Generates a query variation by removing 𝑃 percentages of the suffix
of the query with probabilities 𝑃𝑟 .
def qv_prefix_query(q, P, Pr):

rem = np.random.choice(P, 1, p=Pr)
return q[:int((1-rem)*len(q))]

A.5 Query from Free-Text Column by
Summarization

Generates a query by summarizing the value of a free-text column
(broad-fields-ft). For our experiments we rely on the pre-trianed
summarizer model snrspeaks/t5-one-line-summary16.
from transformers import pipeline
def q_summarizer(ft, m):

pipe = pipeline("text2text -generation",
model = m)

return pipe("summarize: {}".format(ft))[0]

B BIAS MITIGATION FOR THE CLICK
DATASET

In this appendix, we investigate if it is possible to mitigate the biases
of the Click data with a simpler approach.

When fine-tuning the Bi-Encoder with Click data in our exper-
iments we do not employ the same combination of queries and
entities twice, even if that pair is highly popular in the logs. This is
already a way of reducing the bias in the Click dataset. However,
there are still many query variations that lead to the same enti-
ties, i.e. queries with different forms but with the same underlying
information need, which are not removed when we get distinct
queries for training. In order to mitigate this bias from the Click
data by removing multiple queries that lead to the same entity, we
16https://huggingface.co/snrspeaks/t5-one-line-summary

https://doi.org/10.1145/3240323.3240369
https://huggingface.co/snrspeaks/t5-one-line-summary

Improving Content Retrievability in Search with Controllable Query Generation WWW ’23, May 1–5, 2023, Austin, TX, USA

randomly select only one of the queries for each entity to train the
Bi-Encoder model on.

The result of this experiment is that such a bias mitigation
strategy indeed improves the retrievability of the system: the Gini
scores go from 0.856 to 0.803 for Tracks and from 0.763 to 0.713 for
Podcasts. However the mitigated Click data approach still leads
to 30% and 5% more retrievability bias than CtrlQGen, for Tracks
and Podcasts respectively.

C SCALING INPARS WITH GPT-3
In this appendix, we test if increasing the model size of the InPars
model using GPT-3 as the language model has a significant effect
on the Bi-Encoder trained with such synthetic queries.

We see from 5 that this is not the case for both datasets, and
the highest R@100 is reached when using the 1.2B GPT-3 model
(babbage-001). Similar results were found in the InPars paper [15].

Figure 5: Scaling InPars baseline using GPT-3.

D OVERLAP OF GENERATED QUERIES
In this appendix, we check if the queries generated by CtrlQGen
have a significant overlap with either the log queries (is CtrlQGen
just copying existing queries?) or with the input entity (is CtrlQGen
just copying words from the input entity?).

D.1 With log queries from Click
Out of the 10k narrow queries generated by CtrlQGen to test the
first hypothesis (results from Tables 2), there are only 6% and 12%
exact matches with set of queries from the logs (Click) for the
Tracks and Podcasts datasets respectively. For the second hypoth-
esis, out of the 376k broad queries generated, there are only 2% and
1% are exact matches with the set of queries from the logs. This
shows the diversity of the generated queries from CtrlQGen, and
that it is not just copying input queries from the log.

D.2 With the input entity
Out of the 10k narrow queries generated by CtrlQGen to test the
first hypothesis, 25% and 48% are not a subset of the serialized entity
for Tracks and Podcasts datasets respectively. For the second
hypothesis, out of the 376k broad queries generated, a total of 70%
of queries are not subsets of the serialized entity for both datasets.
This shows that while for narrow queries substrings of the entity
are the majority of the cases when generating broad queries this

is not the case. Also, this indicates that for both cases the model is
not always selecting parts of the input as the query.

E DATASET DETAILS
For the Books dataset, we take into account the top two most-voted
reviews and use the first 50 tokens. For the Tracks dataset, we
use the first lyric line and the most frequent lyric line and employ
a maximum of 25 descriptors. For the Podcasts dataset, we use
the first 50 tokens of the description and of the transcript. For the
Books and Tracks datasets we use a maximum of 25 playlists.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Entity Search
	2.2 Retrievability
	2.3 Query Generation

	3 Controllable Query Generation
	3.1 Model Components
	3.2 Applications

	4 Experimental Setup
	4.1 Datasets
	4.2 Implementation Details
	4.3 Evaluation Procedure

	5 Results
	5.1 H1: Modifying the Ranker with Generated Queries as Training Data
	5.2 H2: Modifying the Set of Queries by Suggesting Generated Queries

	6 Conclusion
	References
	A Unsupervised Weak Labeling Functions
	A.1 Random Terms Selection
	A.2 Query Variation Ordering
	A.3 Query Variation Misspelling
	A.4 Query Variation Prefix
	A.5 Query from Free-Text Column by Summarization

	B Bias mitigation for the Click dataset
	C Scaling InPars with GPT-3
	D Overlap of generated queries
	D.1 With log queries from Click
	D.2 With the input entity

	E Dataset details

