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ABSTRACT

Cross-domain recommendation aims to leverage knowledge from
multiple domains to alleviate the data sparsity and cold-start prob-
lems in traditional recommender systems. One popular paradigm
is to employ overlapping user representations to establish domain
connections, thereby improving recommendation performance in
all scenarios. Nevertheless, the general practice of this approach is
to train user embeddings in each domain separately and then aggre-
gate them in a plain manner, often ignoring potential cross-domain
similarities between users and items. Furthermore, considering
that their training objective is recommendation task-oriented with-
out specific regularizations, the optimized embeddings disregard
the interest alignment among user’s views, and even violate the
user’s original interest distribution. To address these challenges,
we propose a novel cross-domain recommendation framework,
namely COAST, to improve recommendation performance on dual
domains by perceiving the cross-domain similarity between entities
and aligning user interests. Specifically, we first construct a uni-
fied cross-domain heterogeneous graph and redefine the message
passing mechanism of graph convolutional networks to capture
high-order similarity of users and items across domains. Targeted
at user interest alignment, we develop deep insights from two more
fine-grained perspectives of user-user and user-item interest in-
variance across domains by virtue of affluent unsupervised and
semantic signals. We conduct intensive experiments on multiple
tasks, constructed from two large recommendation data sets. Exten-
sive results show COAST consistently and significantly outperforms
state-of-the-art cross-domain recommendation algorithms as well
as classic single-domain recommendation methods.
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Figure 1: (a) illustrates that the behavior of an overlapping
user in different domains is driven by the same distribution
of interests. (b) illustrates that we improve the recommen-
dation performance of the two domains through knowledge
transfer of overlapping users.

1 INTRODUCTION

In an effort to alleviate information overload [6, 27], various well-
known platforms such as Netflix [11] and Amazon [23] deploy
recommender systems to capture users’ personalized preferences.
Despite their excellent performance, data sparsity and cold-start
problems, as two serious challenges, pose obstacles to model user
interests accurately and efficiently [36].

To address these headaches, researchers put their insights into
cross-domain recommender systems (CDR), i.e., transfer knowledge
from informative recommendation scenarios (source domain) to
scenarios with sparse interactions (target domain) via transfer learn-
ing techniques [34]. This directed transfer essentially enhances the
knowledge of the target domain and achieves promising results
on multiple recommendation data sets [46]. Further, several re-
searchers engage in bidirectional cross-domain recommendation,
arguing that reasonable model structures can facilitate the mutual
transfer of source and target domain knowledge [22]. For instance,
user Jack searches and browses a large number of computer cost-
effective related posts in the online community (source domain),
and we can simultaneously recommend various types of comput-
ers to him in the online mall (target domain), and vice versa. This
dual recommendation paradigm can not only alleviate the negative
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transfer phenomenon, but also promote the upper bound on the
target domain by improving the recommendation ability of the
model in the source domain [43].

To our best knowledge, the mainstream taxonomy of dual cross-
domain recommendation can be separated into collective matrix fac-
torization, mapping-based methods, graph neural network-based ap-
proaches, and representation combination of overlapping entities [34].
This paper strives to kick the last paradigm upstairs, the general
practice of which is to train user and item representations separately
in the two domains, and then perform specific aggregations (concat,
dot, pooling) on them for knowledge transfer [41]. Even with the re-
markable results [37], they still encounter three serious challenges.
Firstly, vast majority of these studies conduct experiments on ex-
plicit data sets with fully overlapping users, which significantly
pole apart from rich implicit content and partial user overlap in
real-world scenarios [26]. Secondly, the general practice of inde-
pendently training entity representations in each domain struc-
turally isolates the interactions among users-items, thereby failing
to perceive higher-order similarities between entities. Thirdly, con-
sidering the recommendation task-oriented optimization objective,
these work cannot guarantee the alignment of overlapping users’
interests across domains [1]. In other words, we argue that the plain
aggregations of entity representations across domains without any
regularizations are incapable of distinguishing users’ personal pref-
erences at the instance level, nor can it ensure that users’ interests
in items are consistent, or even cause conflicting interests among
users’ views.

With the aim of addressing these challenges, we propose a Cross-
domain recOmmendation viA uSer inTerest alignment, i.e. COAST,
which endeavors to improve cross-domain recommendation with
partial user overlap, as shown in Figure 1(b). Unlike previous stud-
ies, we extract enough features from the affluent content data
(comments, tags, user/item profiles) to form an implicit data set
to capture more feedback. Meanwhile, we modernize the previ-
ous approach of separately training representations into a unified
cross-domain heterogeneous graph to assimilate the cross-domain
similarity of users and items. Targeted at overlapping users’ inter-
est alignment across multiple domains, we gain in-depth insights
from both user-user and user-item perspectives. Specifically, for
user-user interest alignment, we believe that users’ behaviors in
different domains are driven by the same interest distribution, thus
encouraging all views of the user to possess similar interest distribu-
tions over K interest representations, as shown in Figure 1(a). This
not only allows the model to distinguish users at the instance level,
but also mitigates conflicting interests in views of the same user.
For user-item interests alignment, we contend that interacted items
are a observation of user interests, and all user views should exhibit
consistent preferences for them. Particularly, benefiting from the
rich semantics of gradients [10], we employ gradient alignment
to encourage higher-order projections across views to follow the
same optimization path.

In this paper, we make the following contributions:

o To the best of our knowledge, we make significant efforts in
cross-domain recommendation by considering cross-domain
similarity and user interest alignment. Our framework performs
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dual knowledge transfer on basis of partial user overlap to im-
prove recommendation performance.

e Instead of training entity representations separately, we con-
struct a unified cross-domain heterogeneous graph, and cor-
respondingly develop a novel message passing mechanism to
capture the cross-domain similarity between entities.

e We resort to contrastive learning and gradient alignment to con-
strain user-user and user-item interest alignment, respectively,
thereby enhancing the interest consistency across views.

o We compare COAST to state-of-the-art algorithms for real-world
recommendations, achieving significant improvements on all
tasks. We promise the code and data sets will be released for

further comparison after acceptance .

The rest of this paper is organized as follows. Section 2 briefly
introduces related work, and then introduces the details of our
proposed model. The experimental results and analysis are given
in Section 4. Finally, we summarize the paper in the fifth section.

2 RELATED WORK

Our proposed framework stems from two research areas: cross-
domain recommendation [34] and contrastive learning [17]. We
respectively summarize their main research paradigms, pros and
cons, and close links with our research.

2.1 Cross-domain Recommendation

Cross-domain recommendation strives to explore data from multi-
ple domains to simultaneously improve the recommendation per-
formance of the model in all scenarios [18].

A rudimentary idea is to incorporate several constraints of cross-
domain knowledge to decompose the user-item interaction matri-
ces in both domains simultaneously [14, 28, 39]. This genre can be
extended on a large number of matrix factorization-based single-
domain recommendations [31], whereas its performance is inferior
to deep learning approaches. Another paradigm is to customize a
mapping function whose optimization objective is that the trans-
formed cold-start user representation generalizes well in the target
domain [29, 45]. The effiency of this paradigm depends on the rea-
sonableness and representational power of the mapping function
and whether enough overlapping entities are available for training,
which limits the generalizability of the model. The third paradigm
resorts to the popular knowledge graph technology [35], which
builds shared graphs to represent the relationships among users,
items, and attributes, and learns entity representations through
graph embeddings [4, 20]. Despite the excellent extraction capabil-
ity of graph structure, the high demands of computational resources
make the scalability of these methods potentially limited. Recently,
algorithms utilizing overlapping user representations and combi-
nations is trendy, and their standard practice is to learn entity
representations from various domains, and then combine overlap-
ping entity representations to enrich the knowledge of each do-
main [9, 44]. Apparently, the lack of cross-domain similarity and the
rough combination way limit their recommendation performance.

Our approach falls within the last paradigm, but strives to con-
quer the proposed drawbacks. The closest algorithm to ours in this
paradigm is GADTCDR [42], but they are fundamentally different.

!https://github/anonymous/COAST
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First, at the data level, apart from explicit interactions, we attach
exploration of content information. Second, at the algorithm level,
we construct a unified cross-domain heterogeneous graph and user
interest alignment for training, which enhances the generalization
of the model. Finally, at the optimization level, we optimize in an
end-to-end manner, avoiding the potential target inconsistency
brought by two-stage training.

2.2 Contrastive Learning

Contrastive learning emphasizes learning common features be-
tween different views of an instance, with the intention of instance-
level discrimination [24]. In contrast to supervised learning, it learns
in a self-supervised manner.

Early contrastive learning architectures favored large batch sizes
to aggregate enough negative examples, but the scalability of such
methods was limited by GPU memory [3]. Aiming to improve on
this, Wu et al. [33] applied a memory bank to store a large number
of sample representations as negative examples, thus avoiding the
common out-of-memory. Despite the approximate performance, a
potential pitfall of this approach is that representation updates in
the memory bank can be computationally expensive as it becomes
outdated quickly within a few iterations. Consequently, He et al.
[12] further improved the form of the static repository, using a mo-
mentum encoder to generate a dictionary as a queue for encoding
keys, the current mini-batch is enqueued, and the oldest mini-batch
is dequeued. This approach eliminates the need to use two separate
models for feature extraction, and dynamic queues avoid exces-
sive memory consumption. All of the above architectures place
insight into using specific metrics to measure sample similarity,
i.e., encouraging different views of the same entity to be closer
in the projected space and vice versa [32]. Recently, Caron et al.
[2] abandoned the traditional comparison of positive and negative
examples, and launched a new exploration of contrastive learning
from the perspective of clustering.

Inspired by contrastive learning, we intend to discriminate user
representations at the instance level. Particularly, following the
idea of clustering, we encourage different views of the same user to
aggregate into the same interest center, thereby generating better
user interest representations.

3 PROPOSED METHOD

In this section, we introduce the proposed COAST framework.
Specifically, we first elaborate the definition of the general CDR
problem, then outline our framework, and finally detail the sub-
modules and optimization methods.

3.1 Problem Formulation

This work considers a general CDR scenario with two domains S
(source) and 7 (target), where the former contains rich and informa-
tive interactions and the latter is relatively sparse. Suppose source
domain Dg = (Us, Vs, Eg, Xs), target domain Dg- = (Uq, Vi,
Eq, Xg), where U,V, E, X are user set, item set and edge set, at-
tribute set in each domain, respectively. In particular, the user sets
Ugs and Ug contain an overlapping user subset U,. Then, the
user set can be redefined as Us = {Us, Uy}, U = {Ur, Uy},
where Us and U; are non-overlapping/distinct user sets in the
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two domains. For simplicity of exposition, we further introduce
two binary matrices to store user-item interactions, namely Ag =
{0, 1} UsXI1Vs| Ag = {0, 1} UTIXIVr| where element A;; in each
domain denotes whether the user u; € U and item v; € V have an
interaction in the edge set . The definition of dual cross-domain
recommendation is as follows,

Given the observed interaction and content of S and T, dual CDR
aims to leverage knowledge transfer from overlapping users to im-
prove recommendation performance in both domains. Formally, given
As, Ag, Xs, X7, we expect to recommend v; € Vg, vj € Vg
respectively in domains S and T .

Important mathematical notes can be found in Appendix A.

3.2 Overview of COAST Framework

[mee] | [wee ]
4 gradients’
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Figure 2: Overall framework of COAST.

In this section, we outline the proposed cross-domain recommen-
dation framework COAST, whose architecture is shown in Figure 2.
First, we construct a unified cross-domain heterogeneous graph,
and improve the message passing mechanism of graph convolu-
tional network to capture the cross-domain similarity of users and
items. Then, for each overlap user, we utilize contrastive learning
and gradient alignment from both user-user and user-item perspec-
tives to ensure the alignment of user interests. Finally, following
previous studies, we adopt a negative sampling mechanism to cal-
culate the supervision loss of the two domains, which is jointly
optimized with the above two losses for alignment.

3.3 Cross-domain Graph Convolution

We argue that previous separately trained representations can only
capture single-domain information; therefore we construct a unified
cross-domain heterogeneous graph and a novel message passing
mechanism to capture cross-domain similarity.

3.3.1 Construction. We determine nodes and edges in the hetero-
geneous graph G on basis of A g and Aq-. Note that for items from
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both domains, we treat them as nodes of the same type, the differ-
ence being the type of edges users interact with them. For the initial
embeddings of nodes, we generate them in the following data pre-
processing manner. Specifically, for common numerical attributes
and category attributes, we perform normalization and one-hot
encoding respectively. For text attributes (tags, comments, profiles,
etc.), we first aggregate the text associated with the entity into
a large document, which is then converted into semantic vectors
using doc2vec technique [5]. Note that we perform joint encoding
on users of both domains. Finally, we get the initial embedding for
each user and item, i.e., e € Heyy, ef’s € Hsg, e“T € Hq. Formally,

e if ueUs
et = egj ifueU, 1)

eg®e$., ifue,
where ® is max pooling operation. Overlapping users have behav-
iors in both domains, so we aggregate their representations in both
domains. Without loss of generality, we adopt max pooling here.
We experimented with operations such as sum and averaging, and
found no significant improvement.

3.3.2  Propagation. To capture the high-order cross-domain sim-
ilarity of users and items, we improve upon the message passing
mechanism of graph convolution networks [30]. Formally,

1

Mycoy = ———
VNGNS INT

where N represents set of 1-hop neighbors, W is a trainable parame-
ter, and © denotes the element-wise product. We add cross-domain
user-item interactions to the message passing mechanism of graph
convolution operation, expecting to capture historical interaction
information. This approach not only enriches the embedding rep-
resentation, but also enhances the capture of cross-domain collabo-
rative signals. Formally, the user embedding propagation is,

(Wie" + W (eg0e") +Ws(eq-0e")), (2)

= LeakyReLU(ml(ll)_u + Z m,(f()_v , (3)
veNy,
where [ represents the [-th GNN layer. We also support stacking of
GNN layers to perceive higher-order similarities. Formally,

ED = o((L+DEFD WY + LEFD o EE-D D
+LED o E-Dw D), @
where o is activation function Relu, E is the representations for
users and items, I denotes an identity matrix. L represents the
Laplacian matrix for the graph. Formally,
1 1
L=D}AD"% andA:[ ROT ﬁ ] )
where D is the diagonal degree matrix, A is the adjacency matrix,
R is the user-item interaction matrix and 0 is all zero matrix. We
concat the user and item representations of each layer, i.e., e¥ =
10 S @ eu(l) el = ev(ﬂ) ® 0 ey(l) el = eU(O) ® 0 eU<l).
S S S T T T
Our approach has several advantages. On the one hand, we
form a unified graph structure for user-item interactions in differ-
ent domains, which is intuitive and easy to capture cross-domain

e

Trovato and Tobin, et al.

similarity. On the other hand, we generalize the message passing
mechanism to cross-domain scenarios, enhancing the practicality
of traditional graph convolution operators.

3.4 User Interest Alignment

Previous studies applied plain representation aggregation to trans-
fer knowledge of both domains; however we argue that this ap-
proach ignores the alignment of user interests. Consequently, we
align user interests from user-user and user-item perspectives to
constrain user representation.

3.4.1 User-User Alignment. To discriminate users at the instance

Viewl = U-feature@ Neighbors-U
View2 =3 U-feature @ Neighbors-U K

Figure 3: User-User interest alignment.

level, we separately aggregate users’ second-order neighbors’ repre-
sentation in different domains to obtain corresponding contrastive
views, as shown in Figure 3. The motivation behind it is that the
user’s context can enhance the user’s interest representation in this
domain, which is widely used in single-domain graph recommen-
dation [25]. Formally, for u € U,

e = Z aje’i, e = Z aje’, (6)
ieNy, ieN?,
exp (s (u;,u))
2jen,,, exp(s(uju))
s(-) represents the scoring function, and without loss of generality,
we use the dot product.

Then we feed e'g and e into the feature extractors Fg and
Fq respectively, and get their representations z g, zg~. We assume
that overlapping users have a total of K interests, i.e., {c1, - ,cx}.
According to our assumption, the distribution of interests among
different views of the same user should be consistent. Formally,

where Ny, 2 is the 2-hop neighbors of u and a; =

k k
tzr.gs) == ) q4 logpl
k
, 7
(k) _ exp(%z}ck) @)
by = T 1T~

1
S exp(Lzlep)

where g is the higher-order projection through the Q extractor and
7 is a temperature parameter. In other words, we encourage the
contrastive views of u to posses the same clustering results over
interest distribution. The user-user alignment loss is as follows,

Lyu =1t(zr.qs) +t(zs,97), 8)

Moreover, we follow the same solution in swav [2], which restricts
the transportation of tensors in the mini-batch to ensure that the
model is memory efficient.
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3.4.2  User-Item Alignment. To ensure consistent user interest in
items, we encourage different views of u to be closer to the inter-
acted item representation, as shown in Figure 4. A straightforward
motivation of this insight is that both user views and interacted
items can represent the user’s real interests; therefore they should
be close in the projected space, even if the views and items are in
different domains. Consequently, benefit from the rich semantics of
gradients [10], we introduce gradient alignment to induce different
views to follow the same optimization path for interacted items.
Formally, we define g5 and g4 to represent the expected gradients
on the user’s source and target views.

9s = [V lee (F'(e¥) - (F (N yuo)l, (9

E
(w,0)~(Uo,Vs)
where F¥, F? are tower structures for extracting the representations

of users and items in the source domain, both composed of Multi-
Layer Perceptrons (MLPs).

97 = E [Veflu [ce(F?(eu) : (F;}(eu))T’ Yuo)l,  (10)

(w,0)~(Uo,Vr)
We aim to minimize discrepancy between gs and gg-. Without loss
of generality, we use cosine similarity as the discrepancy measure.

T
95 9T
Lyj=1-—>" ) (11)
llgsllzllgsllz
where || - ||2 represents the 2-Norm.

Ij' ----- ;

Igradienti

Figure 4: User-Item interest alignment.

Overall, we constrain user representations from a more fine-
grained perspective, i.e., user interest alignment. On the one hand,
this approach acts as a regularizer to prevent overfitting of user
representations. On the other hand, contrastive learning utilizes
unsupervised information and gradient alignment utilizes semantic
information, both of which further enrich the transfer of cross-
domain knowledge.

3.5 Model Optimization

In this section, we first elaborate the supervised prediction of
COAST, and then illustrate the joint optimization process.

3.5.1 Supervised Estimation. Similar to the previous work [21], we
adopt a dual-tower structure to capture high-order representations
of users and items, where the tower structure is composed of MLPs.
The structure of MLPs uses [D, 2D, 4D, 8D, 4D, 2D, D], which has
been shown to be effective in feature extraction [42].
I LCONGCON
s =
ESIES ]
G RGACON
=
ELIIES ]

+ A1 (lle]] + lleg)
. (12)

+ A ([le“]] + [leD)
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where ||e|] is the embedding regularizer. To avoid our model over-
fitting Y* (ground truth), we randomly select a certain number of
unobserved user-item interactions as negative instances, denoted
Y™,y = {Y", Y™ }. This negative sampling-based training strategy
has been widely used in existing algorithms [40]. Formally, we
optimize using binary cross-entropy,

£(y,9) = ylogg + (1 -y)log(1 - 7), (13)
The supervised loss is optimized in both domains simultaneously,
Ls = £(ys, Ys) + £(yz, r) (14)

3.5.2 Total Loss. Loss functions for each part are added together
for joint optimization. The overall loss function is

L=Ls+2(Luy + Ly, (15)

where A3 is the weight of the two interest alignment constraints.

Overall, we propose an end-to-end solution for dual cross-domain
recommendation, which can improve the recommendation perfor-
mance of both domains while ensuring the alignment of overlapping
user interests. The overall optimization process of the algorithm is
shown in Algorithm 1 in Appendix B.

4 EXPERIMENTS

To demonstrate the state-of-the-art and robustness of our model, we
conduct extensive experiments to answer the following questions:

e RQ1: How does COAST perform on common metrics compared
to state-of-the-art algorithms?

e RQ2: How do overlapping user ratios and sub-modules affect
model performance?

e RQ3: What impact do several key parameters have on model
performance?

4.1 Experimental Settings

In this section, we present the statistics of the data sets, necessary
parameter settings for the model, and state-of-the-art algorithms
for comparison.

4.1.1 Data Sets. We conduct extensive experiments using large-
scale anonymized data sets obtained from Douban and a well-
known industrial platform. They both allow users to rate and review
a range of items from different domains, each of which represents
the user’s interests. On that account, the combination of explicit
user feedback and implicit domain knowledge is unique and valu-
able for cross-domain recommendation.

e Douban data set. We choose a subset containing the three
largest domains, including books, movies, and music. They are
linked together by a shared user ID that identifies the same user.
Correspondingly, we construct three cross-domain recommen-
dation tasks: movie-book, movie-music, and book-music.

o Industrial data set. This platform has two scenarios, mall and
community, which are connected by a shared user id. Conse-
quently, we constructed a task mall-community, expecting to
improve the recommendation performance in both domains.

Statistics on the two data sets can be found in Table 1. For both
data sets, the user’s content features are aggregated by user com-
ments, user tags, and user profiles, and the item’s content features
are composed of its profile and the comments below it. Note that



Conference’17, July 2017, Washington, DC, USA

Table 1: Statistics of data sets.

data sets Douban Industrial Platform
Domains | Movie |Music| Book | Mall |Community
Users 2,712 1,672 | 2,110 | 35,233 29,355
Items 34,893 | 5,567 | 6,777 | 1,749 2,452
Interactions | 1,278,401 | 69,709 | 96,041 | 319,795 175,802
Density 1.35% | 0.75% | 0.67% | 0.52% 0.24%

Tasks Richer| Sparser |Overlap
Task1 | Movie Book 2,106
Douban Task2 | Movie Music 1,666
Task3 | Book Music 1,566
Industrial Platform | Task4 | Mall |Community | 3,146

each user may interact with items from different domains, but each
item belongs to only one domain. To improve data quality, we filter
all data sets to keep users and items with at least 5 interactions [42].
We normalize the scoring range from 0 to 1.

4.1.2  Parameter Settings. Our framework is implemented using
Pytorch. Except for the necessary concat operation, the embedding
size is 64. We adopt Kaiming method [13] for parameter initial-
ization. For gradient descent, we take Adam [19] with the initial
learning rate 5e-4 for model optimization. In our proposed model,
we set batch size to 4096 and the training maximum epoch to 100.
We initialize the user’s interest K to 256, set the regularization
weight A1 and alignment weight A5 to le-2 and 1e-3, respectively.

Similar to previous work [7], we adopt a leave-one-out approach
to evaluate model performance. Specifically, for each user in the
test set, we randomly sample 99 items that the user has not inter-
acted with as negative examples, and calculate the ground truth
hit rate and ranking position. The results of model and baselines
are evaluated by Hit Ratio (Hit) and Normalized Discounted Cu-
mulative Gain (NDCG) values, where HR measures whether the
test item is ranked on the Top-N list while NDCG measures the
specific ranking quality that assigns high scores to hits at top posi-
tion ranks [16]. Note that this paper is evaluated with @10 unless
otherwise specified.

4.1.3  Baselines. To verify the effectiveness of cross-domain recom-
mendation and the superiority of our model, we choose the classic
single-domain recommendation algorithms and cross-domain rec-
ommendation approaches for comparison.

e NMF [16]: NMF aims to find a reasonable user-item interaction
function for recommendation by combining the linearity of MF
and the nonlinearity of MLP.

e LightGCN [15]: LightGCN only obtains node embeddings by
neighborhood aggregation because it believes that feature trans-
formation and nonlinear activation have little effect on collabo-
rative filtering, and even damage recommendation performance.

e MVDNN [8]: MVDNN maps users and items from multiple do-
mains into a common latent space, and optimizes by maximizing
the similarity between users and their preferred items.

e DTCDR [41]: DTCDR extends NMF to cross-domain recom-
mendation, leveraging the textual and rating representations of
overlapping users from both domains for knowledge transfer.
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e DDTCDR [21]: DDTCDR seeks to learn a latent orthogonal
mapping function between domains to obtain cold-start user
representations in other domains.

e DML [22]: DML further extends DDTCTR based on dual metric
learning, which exploits multiple orthogonal mapping functions
to explore the transfer of cold-start user representations.

e GADTCDR [42]: GADTCDR adds user-user and item-item
edges to heterogeneous graphs based on content similarity to
improve representation capabilities.

e CDRIB [1]: CDRIB uses the information bottleneck principle
to debias recommendations in two domains.

Please note that NMF and LightGCN are single-domain recom-
mendation algorithms, and experiments are performed on the two
domains separately. The others are cross-domain recommenda-
tion algorithms, where DDTCDR and DML are mapping-based
methods, while MVDNN, DTCDR, GADTCDR, and CDRIB are
representation-combination-based approaches. To be fair, we tune
the hyper-parameters of each model to achieve the best results.

4.2 Comparison with Baselines (RQ1)

The results of all algorithms on the four tasks are shown in Ta-
ble 2, with the last row representing the improvement of our model
over the best baseline for that task. To summarize, benefiting from
perception of cross-domain similarity and user interest alignment,
COAST achieved 0.32%-10.22% improvement compared to the best
performance on different tasks.

These experiments reflect some interesting findings: (1) Cross-
domain algorithms outperform single-domain algorithms in most
tasks, demonstrating the importance of knowledge transfer in cross-
domain recommendation. Underperforming cross-domain baselines,
especially those based on mapping genres, over-rely on overlapping
user ratios such as DDTCDR, DML. (2) Algorithms incorporating
implicit features outperform models using only explicit interac-
tions, indicating the importance of capturing content similarity.
(3) The representation-combination-based models outperform the
mapping-based approaches, proving that a custom simple map-
ping function cannot reflect the complex transformation of user
representations across domains. (3) The improvement of the tar-
get domain is greater than that of the source domain. On the one
hand, the source domain can provide more information, and on the
other hand, the improvement of the recommendation capability
of the source domain leads to a further promotion in the upper
bound of the recommendation performance of the target domain.
(4) Furthermore, we observe that the proposed model improves the
movie-book task larger than the movie-music task. The possible rea-
sons are differences in data set size and the number of overlapping
users, which determine the richness of knowledge and the caliber
of transfer. We plan to leave this as a topic for future research.

4.3 Robust Testing (RQ2, RQ3)

We perform overlap ratio tests, ablation experiments, and hyper-
parameter tests to verify the robustness of our model.

4.3.1 Length N. We also examine the performance of COAST as
well as the most competitive algorithms in single-domain, cross-
domain baselines, i.e., Light GCN, GADTCDR, on different recom-
mendation list lengths, as shown in Figure 5.
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Table 2: Performance comparison for cross-domain recommendation.

Task1 Task2 Task3 Task4
Algorithm Movie Book Movie Music Book Music Mall Community
Hit NDCG Hit NDCG Hit NDCG Hit NDCG Hit NDCG Hit NDCG Hit NDCG Hit NDCG
NMF 0.5445 0.3154 0.3916 0.2224 0.5445 0.3154 0.3959 0.2206 0.3916 0.2224 0.3959 0.2206 0.5850 0.3265 0.3793 0.2048
LightGCN 0.6174 0.3492 0.3805 0.2226 0.6174 0.3492 0.3528 0.2023 0.3805 0.2226 0.3528 0.2023 0.5848 0.2933 0.5119 0.2490
MVDNN 0.6382 0.3689 0.4654 0.2575 0.6414 0.3641 0.3965 0.2238 0.5104 0.2947 0.3923 0.2390 0.5963 0.3002 0.5211 0.2507
DTCDR 0.6420 0.3794 0.4302 0.2394 0.6197 | 0.4278f | 0.3593 0.2211 0.51081 | 0.32631 0.2848 0.2017 0.5580 0.3109 0.3632 0.2643
DDTCDR 0.5937 0.3558 0.4436 0.2511 0.5921 0.3722 0.3467 0.2189 0.4540 0.2666 0.3086 0.2042 0.5135 0.2884 0.3729 0.1886
DML 0.6060 0.3638 0.4662 0.2662 0.6093 0.4059 0.3821 0.2287 0.4521 0.2616 0.4253F | 0.25487 0.5491 0.3181 0.4283 0.2124
GADTCDR 0.68171 | 0.4205F | 0.4882F | 0.30267 || 0.6818F | 0.4276 | 0.43837 | 0.24987 0.4492 0.2761 0.3571 0.1933 0.66541 | 0.4055F | 0.5173F | 0.29077
CDRIB 0.6114 0.3301 0.4630 0.2772 0.6411 0.3578 0.4103 0.2272 0.5021 0.2654 0.2866 0.2038 0.5744 0.3007 0.4802 0.2814
COAST 0.6905 0.4271 0.5052 0.3174 0.6938 0.4292 0.4497 0.2515 0.5138 0.3293 0.4688 0.2712 0.6769 0.4073 0.5503 0.3195
Improvement | 1.2909% | 1.5696% | 3.4821% | 4.8909% || 1.7600% | 0.3273% | 2.6001% | 0.6805% || 0.5873% | 0.9194% | 10.2280% | 6.4364% || 1.7283% | 0.4439% | 6.3793% | 9.9071%
+ means the strongest baseline’s performance.
op- Hit @movie) Top-N NDCG amovie) Table 3: Overlap ratio test.
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Figure 5: Top-N performance.

Obviously, the performance of all algorithms increases as the
recommendation list grows, because the longer the list, the higher
the fault tolerance. Meanwhile, compared with the LightGCN and
GADTCDR algorithms, our algorithm achieves the best perfor-
mance in all scenarios, especially in the difficult N = 3 scenario
with the greatest improvement, which shows our superiority.

4.3.2  Overlap Ratio M. To investigate the robustness of our model,
we experiment with scaling the number of overlapping users.
Table 3 reports the recommendation performance of COAST,
GADTCDR trained on corresponding cross-domain scenarios with
overlapping users of 25%, 50%, 75%, and 100%, respectively. From
Table 3, we have the following observations. (1) With the increase
of the overlapping user training ratio,the recommendation perfor-
mance of all algorithms steadily improves, which demonstrates that
overlapping ratio is effective to enhance the correlation across do-
mains. (2) Our model shows robust performance to make recommen-
dations for both domains than the strongest baseline GADTCDR,
even with only 25% user overlap. This is attributed to the unified

graph message passing mechanism and user interest alignment,
which enable the model to perceive the cross-domain similarity
between entities and ensure consistent interests across views. (3)
Further, we observe that the overlap ratio has little improvement on
75%—100% than 25% — 50%, as the absolute number of overlapping
users is large enough to ensure basic knowledge transfer.

4.3.3 Ablation Studies. We further compare COAST with several
ablation variants to demonstrate the effectiveness and advance-
ment of different sub-modules. For fairness, other settings are kept
unchanged except for the specified ablation module.
e COAST-NF: This variant uses only explicit interactions.
o COAST-NS: Instead of constructing cross-domain heteroge-
neous graphs, each domain trains representations separately.
e COAST-NM: No user-item interaction in section 3.3.2.
e COAST-NU: This variant is not subject to user-user consis-
tency.
o COAST-NI: This variant is not subject to user-item consistency.
As reported in Figure 6, COAST-NF has the worst performance
but is still stronger than the vast majority of baselines (except for
GADTCDR), illustrating that our model structure is able to mine
structural similarities from explicit data. Regarding COAST-NS and
COAST-NM, as ablations of the cross-domain graph module, both
decrease compared with COAST. The former cannot capture cross-
domain similarity due to the isolation of user-item cross-domain
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Figure 6: Ablation studies.
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Figure 7: The impact of D.

interactions at the graph structure level, while the latter is insuffi-
cient to characterize the collaborative filtering relationship due to
ignoring the collaborative signal of user-item. Meanwhile, with the
same structure, COAST improve over COAST-NU, COAST-NI. This
demonstrates that using user interest alignment as a constraint can
not only effectively prevent overfitting, but also, as a fine-grained
knowledge utilization, significantly enhance the generalization of
user representations across domains. From a deeper perspective,
contrastive learning and gradient alignment leverage the poten-
tial unsupervised signals and semantic features in the data, which
greatly facilitates the extraction of domain-invariant features. In
general, each submodule of COAST plays an indispensable role and
contributes significantly to the model performance.

4.3.4 Hyper-testing. In this subsection, we present the tuning of
several key hyper-parameters in our framework.

Embedding size D. Embedding size is one of the most important
hyper- parameters in deep learning and is closely related to model
capacity [38]. To improve the performance of the proposed COAST,
we perform a hyper-parameter search on the embedding size.

Trovato and Tobin, et al.
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Figure 9: The impact of A;.

As shown in Figure 7, our algorithm performs best when D = 64
on any metrics. The larger the embedding size, the more expressive
the model is, but too high embedding size will slow down the
convergence speed and lead to overfitting. In consequence, we
choose D = 64 as the embedding size in COAST.

Number of Interests K. In section 3.4.1, we constrain users’ con-
trasting views to belong to the same cluster center. In view of this,
we perform a test on the number of interest cluster centers K.

As shown in Figure 8, our model is sensitive to K. We argue that
this phenomenon arises because K represents an abstract interest
center rather than a concrete interest. Meanwhile, we propose
that higher K can be chosen to characterize the distribution of
user interests when the number of items and users increases. This
is intuitive, as the number of users increases, the interests will
obviously become more diverse. Consequently, we choose K = 256.
Consistency weight 1;. The consistency weight A3 is a trade-off
between task interest and user interest alignment. To improve the
recommendation effect, we have tuned it.

The larger A, is, the stronger the constraint on user interest
consistency is, but hinders domain-specific user representation,
thereby impairing recommendation performance on that domain.
Conversely, the smaller A, is, our model will degenerate into a
general representation combination model, which cannot solve
user interest alignment. Experimentally, we set A2 = 0.01.

5 CONCLUSION

In this work, we propose the COAST framework, which aims to
improve model performance in dual cross-domain recommenda-
tion scenarios. This work represents an attempt to leverage rich
content information and user interest alignment for bidirectional
knowledge transfer. Specifically, we model the interaction of users
and items in two domains as a unified cross-domain heterogeneous
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graph, and improve the message passing mechanism of graph con-
volution to capture the cross-domain similarity of users and items.
Further, we utilize contrastive learning and gradient alignment to
constrain overlapping user interest alignment from both user-user
and user-item perspectives. Overall, our solution has several ad-
vantages. First, at the data level, our task is constructed on data
sets with partial user overlap and exploits both explicit and implicit
information, which has a wider range of application scenarios. Sec-
ond, at the algorithm level, we learn better representations from
high-order cross-domain similarity and user interest alignment com-
pared to previous plain combinations. Finally, at the experimental
level, we conduct extensive experiments, all of which demonstrate
the state-of-the-art and superiority of our model.

There are still several limitations of our study for future work.
First, how to extend our work to more complex scenarios, such as
the case of overlapping items or multi-domain recommendation.
Second, how to integrate data from other modalities or integrate
more complex interactions, such as images, attribute nodes, in fea-
ture extraction module. Finally, we should validate the robustness
of COAST on more large cross-domain recommendation data sets.
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A IMPORTANT NOTATIONS

Table 4: Mathematical Notation

Symbol Notation

ST source/target domain
U user set
Vv item set
A user-item interaction matrix

X, H features before/after preprocessing

G =(U,V,E H) | heterogeneous graph of user-item interactions

N neighbors set
m message passing function
K the total number of interests in the user set
g gradient calculation
y whether the user clicked on the item

B ALGORITHM

Algorithm 1 The Algorithm of COAST

Input: Interaction matrix Ag, Aq,Xs,X7;

Output: Parameters ©;

1: Random initialize model parameters ©,
2: Data preprocessing e € Hyy, eg € Hs, el € Hy
3: Graph construction G = (U, V, &, H)
4: while not converged do
Sample a batch of training data
Graph propagation, getting e*, e

User-User interest alignment Ly iy
User-Item interest alignment Ly 1

5
6
7. foru € U, do
8
9

10: end for

11:  Supervise loss L

12:  Joint optimization £
13:  Update the parameters

14: end while

15: return Parameters ©
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