
CausIL: Causal Graph for Instance Level Microservice Data
Sarthak Chakraborty

Adobe Research
Bangalore, India

sarchakr@adobe.com

Shaddy Garg∗
Adobe

Bangalore, India
shadgarg@adobe.com

Shubham Agarwal∗
Adobe Research
Bangalore, India

shagarw@adobe.com

Ayush Chauhan†
The University of Texas at Austin

Austin, USA
ayushchauhansma.97@gmail.com

Shiv Kumar Saini
Adobe Research
Bangalore, India

shsaini@adobe.com

ABSTRACT
AI-based monitoring has become crucial for cloud-based services
due to its scale. A common approach to AI-based monitoring is to
detect causal relationships among service components and build
a causal graph. Availability of domain information makes cloud
systems even better suited for such causal detection approaches. In
modern cloud systems, however, auto-scalers dynamically change
the number of microservice instances, and a load-balancer manages
the load on each instance. This poses a challenge for off-the-shelf
causal structure detection techniques as they neither incorporate
the system architectural domain information nor provide a way to
model distributed compute across varying numbers of service in-
stances. To address this, we develop CausIL, which detects a causal
structure among servicemetrics by considering compute distributed
across dynamic instances and incorporating domain knowledge
derived from system architecture. Towards the application in cloud
systems, CausIL estimates a causal graph using instance-specific
variations in performance metrics, modeling multiple instances of
a service as independent, conditional on system assumptions. Simu-
lation study shows the efficacy of CausIL over baselines by improv-
ing graph estimation accuracy by ∼25% as measured by Structural
Hamming Distance whereas the real-world dataset demonstrates
CausIL’s applicability in deployment settings.

CCS CONCEPTS
• Causal Structure Detection → Causal Graph; • AI-based
Monitoring→ Causal Graph; • Cloud Systems→ Reliability.

KEYWORDS
Causal Structure Detection, Microservices, System Monitoring,
Causal Graph

∗Equal Contribution
†Work done at Adobe Research, India

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30-May 4, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583274

ACM Reference Format:
Sarthak Chakraborty, Shaddy Garg, Shubham Agarwal, Ayush Chauhan,
and Shiv Kumar Saini. 2023. CausIL: Causal Graph for Instance Level Mi-
croservice Data. In Proceedings of the ACMWeb Conference 2023 (WWW ’23),
April 30-May 4, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583274

1 INTRODUCTION
Modern cloud-based applications follow amicroservice architecture
[8], consisting of a large number of components connected through
complex dependencies [1, 5] that run in a distributed environment.
These applications have a simple development process and flexible
deployment in general [31]. A modern microservice ecosystem [30]
deploys multiple instances of the same service (which are some-
times referred to as pods [7], though similar in meaning) and often
increases and decreases their number in response to the change
in the load and utilization. The number of unique instances is nu-
merous, short-lived and varying over time. As an illustrative exam-
ple, in a small microservice at Adobe, 1117 unique instances were
spawned within 3 months, with an average of 8 instances active at
any time instant. The median life of the instances was only 350 mins.
Auto-scalers are configured to automatically scale the number of
instances up or down depending on the load and utilization, and a
load balancer manages and distributes the load to each of these in-
stances. Due to their large scale and complexity, such architectures
are vulnerable to failures. Hence, to maintain the availability and
reliability of the system, an accurate structural understanding of
the system is required to perform multiple performance diagnosis
tasks [11, 12, 19, 22, 27, 32, 33].

Building a causal dependency graph to represent system archi-
tecture is an approach being used extensively [11, 12, 17, 22, 47]
in the domain of performance diagnosis. Each deployed instance
of a microservice is monitored by numerous system indicator met-
rics [14] like load request, resource utilization, HTTP errors, etc.,
thus resulting in thousands of such metrics for an entire system.
The objective is to learn a graph with causal dependencies among
all these metrics using causal structure estimation approaches, such
that metrics form the nodes and edge (𝑎, 𝑏) denotes that metric
𝑎 causally affects metric 𝑏. A failure in one metric can be traced
back to the subsequent anomalies in other metrics across multiple
microservices using the discovered causal graph.

With multiple instances getting deployed and remaining active
for a microservice, it is natural to use metrics from each of the
instances in the causal structure estimation. Aggregating metric

ar
X

iv
:2

30
3.

00
55

4v
2

 [
cs

.D
C

]
 1

9
M

ar
 2

02
3

https://doi.org/10.1145/3543507.3583274
https://doi.org/10.1145/3543507.3583274

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Chakraborty, et al.

values over all instances reduce the instance-specific variations
of metrics, hence losing a significant amount of information [28],
which even we show in §4.2.2 and §6. However, none of the off-the-
shelf causal discovery algorithms [22, 37, 39] can handle the task
of instance-level causal structure learning. Past works [11, 15, 20,
27] build a causal graph only at an aggregate level and overlook
the deployment strategy of microservices over multiple instances.
However, even a few instances failing can degrade the quality of
service, which might not be captured in an aggregate statistics.
Hence, one must perform a diagnosis at the instance level, which
can only be possible by capturing instance-specific variations in a
causal graph. However, with each instance being short-lived and the
total number of instances varying over time, modeling at instance-
level is a challenging task, which we aim to solve.

In this work, we propose a novel instance-specific causal struc-
ture estimation algorithm, which to the best of our knowledge is the
first-of-its-kind, that considers metric variations for each instance
deployed per service while building the causal structure, implicitly
modeling the decisions of auto-scalers and load balancers. It further
incorporates domain knowledge backed by system-based metric
semantics combined with intuitive assumptions in a scalable way
to improve the accuracy of the structure detection algorithm. We
call our approach Causal Structure Detection using Instance Level
Simulation CausIL. We have made our code publicly available1. We
validate our approach on synthetic and semi-synthetic datasets, on
which it outperforms the baselines by ∼ 25%. We also observe that
a large impact is seen by incorporating domain knowledge where
accuracy improves by 3.5×, as measured by Structural Hamming
Distance. We further validate CausIL on a real-world dataset and
show performance gain against baselines. The contributions of our
work can be summarized as:

(1) We study multiple ways of incorporating instance-specific
variations in metrics including aggregation strategies and
discuss their shortcomings empirically

(2) We propose a novel causal structural detection algorithm at
the instance level (CausIL) to model instance-level data for
microservices. It accounts for multiple data points belonging
to multiple instances at each time period due to distributed
compute (load-balancer) as well as can model the dynamic
number of instances (spawned by an autoscaler), wherein
each instance can be short-lived.

(3) Domain Knowledge Inclusion: Based on practical assump-
tions derived from the service dependency graph and metric
semantics, we provide a list of general rules in the form of
prohibited edges along with ways to incorporate them in
CausIL to improve computation time and accuracy.

2 RELATEDWORK
With the recent upsurge of work in the field of performance diagno-
sis of large and complex modern microservice architectures [10, 11,
17, 27, 29], researchers at many cloud-based companies are actively
working on alerting and monitoring solutions [12, 21, 44]. Alerting
services like Watchdog, New Relic and Splunk diagnose systems by
constructing causal graphs between services or using threshold-
ing techniques. These service [4] monitor performance for each
1https://github.com/sarthak-chakraborty/CausIL

instance by setting alerts for each instance deployed for a microser-
vice. As a result, service reliability tools that use causal dependency
graphs should use instance-level data rather than aggregated data
for accurate representation. This also allows for the identification
and isolation of issues that would otherwise go unnoticed with
aggregated data.

Initial works [32, 33] have built dependency graphs among ser-
vices (also called as service call graphs) to diagnose performance
during faults, which show control flow from one service to another,
which allow analysis of faults at the service level granularity, that is
identifying which service is faulty. Service dependency graphs are
also used to answer “what-if" based system questions on bandwidth
management and application latencies [16, 18, 41, 42]. Grano [44]
builds a causal dependency graph among physical resources for
fault diagnosis. However, performance diagnosis is often demanded
at a more granular level.

Multiple works [11, 27, 45–47] aim to build a causal graph at the
performance metric level to diagnose a system in terms of faulty
metrics of a service. They utilize the PC algorithm [39], a causal
structure estimation algorithm, to construct a causal dependency
graph at the performance metric level, with each metric represent-
ing a node. [27] proposed a variation of the PC algorithm to build
the causal graph by utilizing the temporal relationships between
the metrics of various services. Other nuances in causal graph con-
struction involves using knowledge graph in conjunction with PC
algorithm [35], or using alerts which are triggered when a metric
crosses a threshold [12]. However, these approaches are agnostic to
the deployment strategy of a microservice which involves multiple
instances being spawned and auto-scaled for load-balancing.During
a high-load period, aggregating information across all deployed
instances to construct the causal graph can result in information
loss. [28]. Understanding instance-specific metric variations is crit-
ical for better capturing system state.

Furthermore, incorporating knowledge of the system architec-
ture can improve the accuracy of the estimated causal graph by
removing unnecessary or redundant connections between met-
rics and enforcing connections that are inherent in microservice
systems. Some works [15, 20] have developed a causal Bayesian
network of the system using system knowledge and causal assump-
tions. However, to the best of our knowledge, no previous studies
have combined instance-level variations in metric data with system
knowledge to estimate a causal graph at the performance metric
level, which is the main contribution of our research.

3 PROBLEM FORMULATION
3.1 Preliminaries
A causal structure for a microservice based application (also called
dependency graph) is built either with nodes as services or as
various performance metrics like latency, load request, utilization
etc. The latter approach provides a richer understanding of the
entire system and fault localization can be achieved at a more
granular level [11, 17, 27, 46] by indicating that a particular metric
of a service is faulty. Our solution utilizes the second approach,
with a causal graph at the metric level (Fig. 1) where nodes will
indicate a set of performance metrics (denoted as parent set for
a metric) being responsible for causally influencing an affected

https://github.com/sarthak-chakraborty/CausIL

CausIL: Causal Graph for Instance Level Microservice Data WWW ’23, April 30-May 4, 2023, Austin, TX, USA

metric. Throughout this paper, we have interchangeably used the
term service and microservice.

load

CPU Mem

Lat Err

load

CPU Mem

Lat Err

load

CPU Mem

Lat Err

Figure 1:Causal dependency graph between performancemet-
rics of 3 services. Each service is denoted by a dotted blue circle.
Dotted lines indicate dependencies that span across services.
The white solid circles are the performance metrics.

3.1.1 Causal Graph Structure. Let G(𝑉 , 𝐸) be a causal graph (di-
rected acyclic graph DAG) where the set of nodes𝑉 are the metrics
observed in the system, and 𝐸 are the causal edges between those
metrics. An edge 𝑣𝑖 → 𝑣 𝑗 , where 𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 in G denote that metric
𝑣𝑖 is the cause for the metric 𝑣 𝑗 and 𝑣 𝑗 ⊥⊥ 𝑉 ′ |𝑣𝑖 , where 𝑉 ′ = 𝑉 − 𝑣𝑖 ,
that is metric 𝑣 𝑗 is conditionally independent of all other metric
given 𝑣𝑖 . The process to estimate a causal graph that is faithful [34]
to a given dataset is known as causal structure estimation/discovery.

3.2 Problem Definition
For a microservice S, let 𝑥𝑖 𝑗𝑡 be the value for the 𝑖𝑡ℎ metric (e.g.,
latency, CPU utilization, etc.) of 𝑗𝑡ℎ instance of S at 𝑡𝑡ℎ time period.
We suppress the subscript for S for ease of exposition. Let 𝑥𝑖 𝑗𝑡
be a child metric causally dependent on the set P(𝑥𝑖 𝑗𝑡) of parent
metrics. Thus the conditional distribution of 𝑥𝑖 𝑗𝑡 given P(𝑥𝑖 𝑗𝑡) can
be written as:

𝑥𝑖 𝑗𝑡 = 𝑓𝑖 𝑗 (P(𝑥𝑖 𝑗𝑡)) + 𝜖𝑖 𝑗𝑡 (1)
where, 𝜖𝑖 𝑗𝑡 is the residual. The task of a causal structure estimation
algorithm is to identify the parents P for each metric 𝑥𝑖 𝑗𝑡 as well as
the causal function 𝑓𝑖 𝑗 (.). Given the set of causal parents for each
child metric, an estimator 𝑓𝑖 𝑗 estimates the strength of the relation-
ship between the parent metrics and the child metric. CausIL uses
fGES [37], a score-based causal discovery algorithm, which is a fast
and parallelized form of Greedy Equivalent Search (GES) [13, 26]
designed for discovering DAGs with random variables denoting the
causal structure. Following literature, we use a penalized version of
the Bayesian Information Criterion (BIC) [38] as the scoring func-
tion which is maximized to select the appropriate causal structure
for continuous variables. Modeling performance metrics of multiple
instances for a service in a causal graph G is not trivial, and no
principled strategy exists in literature, which we circumvent.

4 SOLUTION OVERVIEW
In this section, we first describe the causal assumptions that we
make while determining the parents of a particular metric node
in the causal graph, followed by two preliminary approaches and
their shortcomings in modeling a microservice system. We then
propose a novel method named CausIL that leverages metrics for

each instance spawned for a microservice while estimating the
causal structure of the entire system.

4.1 Metrics Data and Causal Assumptions
Multiple performance metrics are observed in a microservice sys-
tem, and there is a little global knowledge of which metrics are
more important. Previous approaches have used various feature
selection methods [43] to select a subset of influential metrics. How-
ever, such approaches are out of the scope for this paper. For each
microservice, CausIL observes performance metrics in 5 different
categories - (i) Workload (𝑊), (ii) CPU Utilization (𝑈 𝑐), (iii) Mem-
ory Utilization (𝑈𝑚) (iv) Latency (𝐿), and (v) Errors (𝐸), which are
widely used for system monitoring in industries and are termed
as the golden signals [9]. Any metric can be essentially classified
into one of these categories. For example, the latency metric en-
capsulates disk I/O latency, web transaction time, network latency,
etc. Throughout this paper, we consider these broad categories of
metrics in our formulation, while individual monitoring metrics
can be plugged into the categories.

Figure 2: Causal metric graph for each instance of a service.

Similar to a previous approach [20], we define certain causal
assumptions between the metric categories based on domain knowl-
edge of system engineers to define a causal metric graph (Fig. 2). A
workload request at a microservice in turn demands resource uti-
lization within the microservice, while the latency is the final effect
of the request and hence is the leaf node in the metric graph. Such
an assumption holds for all the microservices and their instances.

For request delivery across microservices, we employ the as-
sumption that holds for a generic microservice architecture, that
is, the latency and error metrics of a service depend on the callee mi-
croservice, while the workload depends on the workload of the caller
microservices. Concisely, for a request trace from microservice A to
B, where B is the callee microservice and A is the caller microser-
vice, the ground-truth interservice edges that we consider in our
formulation are𝑊𝐴

𝑡 → 𝑊 𝐵
𝑡 , 𝐿𝐵𝑡 → 𝐿𝐴𝑡 , and 𝐸𝐵𝑡 → 𝐸𝐴𝑡 . A causal

metric graph with a different selection of metrics can be easily
integrated through data-specific domain knowledge.

4.2 Preliminary Approaches
We describe two approaches and identify how they fail to capture
the system state in the estimated dependency graph.

4.2.1 Instances as Dedicated Nodes. A naïve approach to model
each instance of a service in the causal graph G is to have a dedi-
cated node for each 𝑥𝑖 𝑗 representing a metric from each instance of
a serviceS. However, whether causal functions are distinct for each
instance of S can be tested by running the hypothesis 𝑓𝑖 𝑗 = 𝑓𝑖 ∀𝑗 ,
given enough data. But, due to the short-lived and ever-changing
nature of instances being spawned, some instances might get killed
and not be re-spawned again with identical physical characteristics.

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Chakraborty, et al.

Figure 3: Variation of CPU Utilization against timestamp for
3 instances and their average CPU utilization.

Hence, available metric data for some instances might be scarce
and a stable relational function might not be obtained, making the
solution infeasible. In addition, with the number of instances vary-
ing over time due to auto-scaler decisions, a dynamic causal graph
might be needed if each node in the causal graph corresponds to an
individual instance of a service. Moreover, the naïve solution incurs
huge computation to run causal structure estimation with 1000’s of
instances deployed per service in a large microservice ecosystem.

4.2.2 Value Aggregation across Instances. For each microservice
S, this approach (termed as Avg-fGES) groups relevant metrics
that causally affect metrics in S to identify the causal structure
of S, i.e., all the five metrics for each instance of S, along with
the workload for all instances of caller services and latency and
error metrics for all instances of callee services of S in the service
call graph. However, the number of metric values for each service
(which is equal to the number of instances) changes with time due
to the changing number of instances. Hence at each time instant 𝑡 ,
to consolidate the metric values for all the instances of a service
𝑥𝑖 𝑗𝑡∀𝑗 , Avg-fGES averages (other aggregation methods can be used)
them across the number of instances to form a single aggregated
metric 𝑦𝑖𝑡 . Formally,

𝑦𝑖𝑡 =
1

𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 (S)

𝑛𝑢𝑚_𝑖𝑛𝑠𝑡 (S)∑︁
𝑗=1

𝑥𝑖 𝑗𝑡 (2)

Thus, using the aggregatedmetric values𝑦𝑖𝑡∀𝑖 filtered for service
S and running fGES yields the causal structure.

Why Aggregation Fails? Averaging the metric values across
all instances for a service results in loss of information [24, 28] and
hence fails to capture the true dependency relationships among
the metrics. A subset of instances of a service might suffer from
high utilization periods, but averaging the metric values across all
instances dilute the effect of certain instances (Fig. 3), and we lose
critical dependencies for such instance exhibiting extreme behavior
due to aggregation. Hence the causal relationships will not capture
such extreme behaviors.

Furthermore, system metrics exhibit non-linear dependencies
amongst themselves [25], which get deformed when metric values
are averaged (Fig. 4). For example, as shown in Fig. 4b obtained from
real data, latency shows a non-linear dependency with CPU utiliza-
tion, with dependencies differing between high and low utilization
periods. Consequently, CausIL models non-linear dependencies
among the performance metrics at an instance level. Similar is-
sues prevail for any aggregation metric (sum, max, percentile, etc.).

(a) (b)

Figure 4: Averaging data across instances changes the rela-
tionship between two metrics. In (b), where metric value for
each instance is plot, it shows a quadratic-type relationship
between latency and cpu utilization, which gets distorted in
(a) due to averaging.

Summing-up metrics like CPU-Usage might drown out signals from
faulty instances on receiving noise from normal instances. For ex-
ample, the CPU utilization of two instances increasing by 10%might
be normal but one increasing by 20% while another staying same
might be a fault signal, the difference not being captured by just
summing up the utilization values.

4.3 CausIL: Proposed Approach
To alleviate the issues elicited in the above sections, we propose
CausIL that models data observed in multiple instances for each
service. We further describe how system domain knowledge can be
used to improve accuracy of any causal graph learning algorithm.

4.3.1 Instances as IID Draws. To motivate the design of CausIL,
we look at how Kubernetes or similar platforms deploy services
where multiple instances (or pods) of a microservice are launched
with the same configurations [6]. Secondly, these containerized
instances are isolated and mostly operate independently of each
other [3], making them conditionally independent on upstream and
downstream metrics like utilization and latency. Their deployment
in general, guarantees that there is no interference from other in-
stances of the same service due to co-location [2]. It can be safely
inferred that conditioned on the load received at the service, its
different instances are essentially independent and identical, which
we use as an explicit assumption in modeling CausIL. In short, let
𝑊𝑗 ,𝑈 𝑗 be the workload and CPU Usage for instance 𝑗 of a service
respectively, then the conditional distribution 𝑈 𝑗 |𝑊𝑗 is indepen-
dent of 𝑈𝑘 |𝑊𝑘 , whereas whereas 𝑈 𝑗 and 𝑈𝑘 are almost certainly
dependent.

During high-load requests, the auto-scalers scale up the number
of instances for a particular service, and the load balancer distributes
the load almost equally (as we observe from real data) to each of
the instances. Performance metrics for an instance depend on the
amount of load distributed to only that instance. Following our
assumption of instances being conditionally independent given the
workload, it implies that the causal function for each instance is
the same. Hence, Eq. 1 can be rewritten as:

𝑥𝑖 𝑗𝑡 = 𝑓𝑖 (P(𝑥𝑖 𝑗𝑡)) + 𝜖𝑖 𝑗𝑡 (3)

4.3.2 Structure Estimation. Similar to Avg-fGES, CausIL identifies
the causal structure between the metric nodes, as in §4.1, for one

CausIL: Causal Graph for Instance Level Microservice Data WWW ’23, April 30-May 4, 2023, Austin, TX, USA

(a) (b)

Service

Service

(c)

Service

Service

(d)

Figure 5: (a) shows an example estimated causal graph for
individual services A and B where B calls A. (b) shows the
merged causal graph with error and workload merged. Figure
(c) and (d) shows the parentmetrics for latency of instance 𝑗 of
A. In (c) latency of B depends onmetrics of B and latencies of
all instances ofA. In (d) an aggregated latency node composed
from the latencies of all instances ofA is constructed, acting
as a latent node.

service at a time, making it highly scalable since its complexity
will be linear in terms of the number of services. Causal structures
of each microservice are then merged appropriately to form the
final causal structure as shown in Fig. 5b. Following the conditional
independence assumption of the instances at time 𝑡 , metrics for
each instance of a service can be treated as an iid sample from a
distribution, realized by flattening the data over the instances.

To reduce computation and improve accuracy while estimat-
ing the set of parents for a metric, CausIL selects relevant parent
metrics from the concerned service S and its adjacent services S𝑐
that causally affects some metrics of S before running fGES. For
any metric 𝑥𝑖 𝑗𝑡 of instance 𝑗 of service S, viable parent metrics
set include all the metrics from the same instance, the workload
for all instances of caller services and latency and error metrics for
all instances of callee services of S. For example, latencies of all
instances of callee service can affect the latency of an instance of
their caller (Fig. 5c). Metrics for all the instances belonging to only
the adjacent services are aggregated for each service as illustrated
in Fig. 5d. This is supported by our domain knowledge, since all
instances of caller service can call an instance of callee service,
which gets managed by the load balancer. Thus, the possible metric
nodes that can exhibit dependencies with instance 𝑗 of S are all the
metrics {𝑥𝑖 𝑗𝑡 },∀𝑖 , and union of the aggregation of all the metrics
𝑖 ′ over all instances of adjacent S𝑐 that causally affect S in the
interservice edges of the call graph, or {𝑥𝑎𝑔𝑔

𝑖′𝑡 }.
After filtering the data for eachmicroserviceS, CausIL discovers

the causal structure between the nodes. We minimize the BIC-based
score function of fGES, which is computed by running a regression

model with 𝑥𝑖 𝑗𝑡 data flattened across number of instances as the
dependent variable and parent metrics P(𝑥𝑖 𝑗𝑡) as the predictors.
The score function is defined as

𝑆𝑐𝑜𝑟𝑒 (𝑥𝑖 𝑗𝑡 ,P(𝑥𝑖 𝑗𝑡)) = − 2
∑︁
𝑗,𝑡

log (𝐿(𝑓𝑖 (P(𝑥𝑖 𝑗𝑡)) |𝑥𝑖 𝑗𝑡 ,P(𝑥𝑖 𝑗𝑡)))

+ 𝜌𝑘 log𝑛𝑖
(4)

where, 𝜌 is a penalty term that penalizes the estimation of an over-
fitting function with large number of parameters, 𝑘 number of
parameters in 𝑓𝑖 , and𝑛𝑖 is the number of observation after flattening
the data. We found 𝜌 = 2 to be optimal for our experiments via
hyperparameter tuning.

4.3.3 Structural Graph Post-Processing. CausIL generates a com-
pleted partially directed acyclic graph (CPDAG) comprising of di-
rected as well as undirected edges. However, undirected edges
render the causal graph infeasible to use for a downstream task like
root cause analysis. Thus, we direct the undirected edges. To avoid
cyclic dependency, we topologically sort the nodes and then assign
the direction 𝑛𝑖 → 𝑛 𝑗 where 𝑖 < 𝑗 in topological ordering for the
undirected edges. This prevents the cycles and results in a directed
acyclic graph (DAG).

Algorithm 1: Discover Causal Structure
Input: Service Call Graph(𝐺𝑐), Metrics Data at instance

level(D)
Output: Estimated Causal Graph

1 Read Data D
2 Read Service Call Graph 𝐺𝑐

3 𝐺𝑜𝑢𝑡 ← 𝑛𝑢𝑙𝑙

// Iterate over each service

4 for each service 𝑁 do
5 D𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ←Data for metrics of all instances of service

𝑁

6 D𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ←Agg ‘latency’ and ‘error’ over all instances
for all child services of 𝑁

7 D𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ←Agg ‘workload’ over all instances for all
parent services of 𝑁

8 Stack data D𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

9 𝐺 ′ ← Run fGES on D𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 with domain knowledge
10 Append 𝐺 ′ to 𝐺𝑜𝑢𝑡

11 Connect inter-service edges in 𝐺𝑜𝑢𝑡

12 return 𝐺𝑜𝑢𝑡

4.3.4 Algorithm Specifics. Algorithm 1 presents the workflow of
CausIL. Note that we take only latency and error metrics for the
child nodes and workload metric for the parent nodes due to the
relationship stated in §3.

If the total latency of a request is larger than the data collection
granularity, past workloads can affect metrics at the current times-
tamp. However, we observe that latency of requests is much lower
(<100 ms) than the data collection granularity (15 min). Thus, past
workloads on current system state is minimal and hence we do not
consider the lags in metrics during structural graph construction.

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Chakraborty, et al.

4.4 Incorporating Domain Knowledge
Domain knowledge plays an important role in improving the per-
formance of CausIL in terms of accuracy and computation time.
System data and metric semantics provide several easy ways to
generalize rules applicable to any microservice architecture with-
out needing a system expert. We apply such rules to form a list of
commonly prohibited edges. Nevertheless, any system expert can
append to the domain knowledge already provided, which however
can be time-consuming and hence we omit them in this paper. A
prohibited edge list reduces the space-time complexity of the causal
discovery algorithm and restricts the formation of unnecessary
edges from system architecture point of view. We propose a list of
rules based on Site Reliability Engineers’ (SREs) input to automate
the prohibited edge generation process.

Based on expert advice over the metric categories defined in §3,
we prohibit edges in the causal graph at a single service level such
that: (i) No other metric within the same service for any instance
can affect workload, it can be either an exogenous node or depend
on the workload of caller service. (ii) latency cannot affect resource
utilization. Furthermore, rules for prohibiting inter-service edges
are: (i) Prohibit all edges between services if they are not connected
in the call graph. (ii) Prohibit all edges between services that are
connected except (a) Workload metric in the direction of the call
graph and (b) Latency and Error metrics in the opposite direction of
the call graph. This follows from the informed causal assumptions
across microservices presented in §4.1. This list of prohibited edges
for all the microservices serves as the domain knowledge to be
introduced to the causal discovery algorithm.

5 EXPERIMENTAL SETUP
In this section, we give a brief description of the setup, dataset
characteristics and the metrics used for the evaluation of our model.
We implemented CausIL in Python while adapted and optimized
publicly available libraries (fges-py and tetrad) for running fGES.
We have run CausIL on a system having Intel Xeon E5-2686 v4
2.3GHz CPU with 8 cores.

5.1 Baselines and Models
We compare our proposed strategy CausIL against various base-
lines defined below. The algorithms below were tested with and
without the application of Domain Knowledge (DK), which will be
indicated as yes/no in the evaluation tables.

(1) FCI: Fast Causal Inference is a constraint-based algorithm
algorithm [39] which provides guarantees in causal discov-
ery in the presence of confounding variables. We use the
version of FCI that averages data across all instances.

(2) Avg-fGES2: Implementation of the algorithm described in
§4.2.2. Multiple estimation functions 𝑓𝑖 in Eq. 3 estimating
the dependency score between parent metrics and the child
metric have been implemented; (i)Avg-fGES-Lin: Ordinary
Least Square 𝑓𝑖 , (ii) Avg-fGES-Poly2: Polynomial 𝑓𝑖 of de-
gree 2, (iii) Avg-fGES-Poly3: Polynomial 𝑓𝑖 of degree 3.

(3) CausIL: Different versions of the proposed method has been
implemented that varies in their estimation functions 𝑓𝑖 ;

2Comparison against baselines implementing other aggregation functions are reported
in appendix §A.2

(i) CausIL-Lin: Ordinary Least Square 𝑓𝑖 , (ii) CausIL-Poly2:
Polynomial 𝑓𝑖 of degree 2, (iii) CausIL-Poly3: Polynomial 𝑓𝑖
of degree 3.

5.2 Datasets
We evaluated CausIL against a set of synthetic and semi-synthetic,
while a case study on a real-world dataset is presented as well.

Synthetic (D𝑠𝑦𝑛): Three datasets are generated with 10/20/40
services and each service having 5 metric nodes, thus making a total
of 50/100/200 nodes respectively in the causal graph. The metric
nodes within and across the services were connected according
to §4.1, and data was generated according to Alg. 3 in appendix,
which accurately mimics the behavior of a load-balancer and auto-
scaler in a real scenario. We present evaluations for each dataset
by averaging across 5 graphs. For each instance of a service, time
series dataset of a metric xijt = 𝑓𝑖 (P(xijt)) is generated, where 𝑓

is a non-linear quadratic function. Workload for a service 𝑠 (𝑊𝑠) is
distributed across each instance uniformly. Across adjacent services
𝑎 → 𝑏,𝑊𝑏 = 𝛽𝑊𝑎 , where 𝛽 ∈ [0, 1].

Semi-Synthetic (D𝑠𝑒𝑚𝑖−𝑠𝑦𝑛): With the same graphs generated as
in above, causal relationships across metrics are learnt based on
data gathered from a real-world service. For each edge in Figure
2, we learn a random forest regressor and then generate output
metric value with added random error given parent metric inputs
to the function. The function learnt for a metric 𝑥𝑖 remains same
for each instance and service. Workload for exogenous services is
equal to the workload of real-world services.

5.3 Evaluation Metrics
Following existing works [36], we evaluate the causal graph gener-
ated by CausIL using the following metrics.

(1) Adjacency Metrics (Adj) denotes the correctness of the edges
in the graph as estimated by CausIL by disregarding the
directions of the edges.

(2) Arrow Head Metrics (AH) considers the causal orientations of
the edge when considered against the true graph and penal-
izes for the incorrectly identified directions of the correctly
identified adjacencies.

(3) Structural Hamming Distance (SHD) reports the number of
changes that must be made to an estimated causal graph to
recreate the ground truth graph.

We report precision (P), recall (R) and F1-score (F) with their usual
semantics for Adjacency and Arrow Head metrics. While adjacency
metric records precision/recall of identified edges and rewards cor-
rectly identified edges, SHD measures edit distance between two
graphs and penalizes misidentified/missing edges

6 EVALUATION RESULTS
This section presents the evaluations performed to demonstrate the
effectiveness of CausIL against the various baselines.

6.1 Impact of Domain Knowledge
We state in §4.4 that the use of domain knowledge for the system
architecture in the form of prohibited edge list greatly boosts the
accuracy of CausIL. Additionally, it also reduces computational
time and complexity. In this section, we elucidate this improvement

https://github.com/eberharf/fges-py
https://github.com/cmu-phil/tetrad

CausIL: Causal Graph for Instance Level Microservice Data WWW ’23, April 30-May 4, 2023, Austin, TX, USA

(a) (b)

(c) (d)

(e) (f)

Figure 6: Demonstrating how domain knowledge (DK) helps
in causal structure estimation. Fig. (a), (c) and (e) show the
difference in SHD for the three datasets, while (b), (d) and (f)
show the improvements in time (logarithmic scale).

in performance with synthetic data for different version of CausIL
in Fig. 6. We only report SHD in this section since it can effectively
penalize redundant edges estimated when CausIL is employed
without domain knowledge. Thus it forms a more decisive metric
than the others in evaluating the impact of domain knowledge in
the construction of the causal graph.

Fig. 6 shows that using domain knowledge of the system archi-
tectures improves the SHD of the estimated causal graph by more
than 3.5× across all models. With domain knowledge restricting
the formation of edges that violate system rules, CausIL can better
understand the structure of the system metrics and keep only the
relevant edges. It also reduces the time taken for CausIL to esti-
mate the causal graph by more than 70× because computing the
causal dependency score and function estimation by the underlying
fGES is not required for certain child-parent pairs. Also, because
the dataset was generated using a non-linear function, the model
version implementing the linear estimation function performs the
worst for each dataset. The benefit of introducing domain knowl-
edge can be observed across various scales of the dataset. We will
report the results of the remaining evaluations when estimation
involved domain knowledge.

6.2 Baseline Comparison
Table 1 summarizes the performance of CausIL for synthetic and
semi-synthetic data and demonstrates how preserving the instance-
specific variations across various services helps. The estimated
causal graph is evaluated against the ground truth causal graph

constructed during data generation, and thus, CausIL aims to im-
plicitly learn the data generation process.

We observe from Table 1 that all estimation functions of CausIL
outperform their corresponding versions of Avg-fGES by ∼ 25%
on average. CausIL captures more granular information about the
system structure and how instance-specific variation of each met-
ric causally affects other metrics. Thus, the causal graph learned
by CausIL is more accurate than the baselines when compared
against ground-truth (more correctly identified edges and fewer
missing edges). We demonstrate this using a toy example (§A.1),
where Avg-fGES could not discover (cpu utilization, latency) and
(memory, error) edges, which CausIL predicted. Qualitatively, for
downstream tasks like root cause detection, inaccurate graph es-
timated by the baselines can lead to incorrect conclusions about
faulty service if graph traversal algorithms [11] are used, which a
graph estimated by CausIL can limit.

Furthermore, for each of the baseline categories, the one imple-
menting the non-linear estimation function provides better metric
values than the linear counterpart. With data being generated from
a non-linear function, it is intuitive that a linear estimation function
won’t be able to capture the relationships succinctly. With increase
in the degree of non-linearity in estimation function, CausIL shows
a general trend in performance. We have implemented multiple ver-
sions of polynomial estimation functions 𝑓𝑖 differing in their degree.
However, a score-based approach (BIC) can also guide the function
choice. CausIL also outperforms FCI in SHD. We notice that arrow
head recall for FCI is more than CausIL, though precision is less.
This implies that FCI generates a causal graph with a large number
of directed edges as compared to ground truth, trying to estimate a
denser graph. In terms of memory overhead, CausIL incurs 100MB
more than baseline on average.

We further observe that CausILwith synthetic data outperforms
when run on semi-synthetic data for the same graph and the same
model. This is because semi-synthetic data have correlated and de-
pendent values among various exogenous nodes as well as maintain
autoregressive nature of the time series, which makes it intrinsically
harder for an algorithm to establish causal dependencies.

6.3 Real-World Use Case Study
We further evaluate CausIL against a real-world dataset collected
from a part of a production-based microservice system of an en-
terprise cloud-service. The call graph for the system follows a star-
shaped architecture with a total of 1 monolith calling 9 microser-
vices (§B). The data was collected from Grafana, a monitoring tool
that tracks and logs the metric values of several components of a
running system at certain time intervals. We collected data for a
span of 2 months with 5 minutes granularity.

With the unavailability of a ground truth causal graph between
performance metrics for real data, we construct it based on the
causal assumptions stated in §4.1 and then evaluate the estimated
causal graph against it. We observe from Table 2 that CausIL-Poly2
performs the best among the other models. Though versions of Avg-
fGES have high adjacency values, that is, they can estimate edges
between the metrics, but the direction of the edges suffers, which
is evident from their low arrow head metrics. FCI also performs
poorly with real data. Each of the models on average estimates
25-30 undirected edges out of possible 113 ground truth edges.

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Chakraborty, et al.

Services,
Metrics Model D𝑠𝑦𝑛 D𝑠𝑒𝑚𝑖−𝑠𝑦𝑛

SHD AdjP AdjR AdjF AHP AHR AHF SHD AdjP AdjR AdjF AHP AHR AHF

10, 50

FCI 53 0.772 0.841 0.805 0.704 0.909 0.793 53 0.762 0.873 0.814 0.69 0.906 0.783

Avg-fGES-Lin 54 0.794 0.854 0.822 0.686 0.864 0.765 54 0.793 0.851 0.82 0.68 0.857 0.759

Avg-fGES-Poly2 48 0.81 0.861 0.834 0.723 0.892 0.799 50 0.807 0.845 0.825 0.713 0.883 0.789

Avg-fGES-Poly3 46 0.837 0.839 0.837 0.747 0.893 0.814 46 0.837 0.838 0.836 0.745 0.89 0.811

CausIL-Lin 51 0.788 0.878 0.83 0.695 0.882 0.777 53 0.788 0.874 0.829 0.684 0.868 0.765

CausIL-Poly2 38 0.889 0.852 0.869 0.795 0.895 0.842 36 0.892 0.877 0.883 0.795 0.892 0.84

CausIL-Poly3 32 0.909 0.878 0.891 0.823 0.905 0.862 35 0.909 0.875 0.89 0.797 0.877 0.835

20, 100

FCI 105 0.773 0.85 0.81 0.702 0.909 0.792 105 0.772 0.856 0.811 0.699 0.906 0.79

Avg-fGES-Lin 103 0.814 0.832 0.82 0.706 0.867 0.778 104 0.813 0.827 0.818 0.709 0.872 0.782

Avg-fGES-Poly2 95 0.823 0.872 0.847 0.716 0.87 0.786 93 0.826 0.886 0.855 0.713 0.864 0.781

Avg-fGES-Poly3 88 0.845 0.867 0.857 0.74 0.876 0.802 85 0.846 0.871 0.836 0.782 0.869 0.798

CausIL-Lin 95 0.812 0.856 0.832 0.728 0.897 0.803 100 0.809 0.836 0.82 0.722 0.892 0.797

CausIL-Poly2 66 0.908 0.895 0.901 0.801 0.883 0.84 68 0.907 0.892 0.899 0.795 0.876 0.833

CausIL-Poly3 67 0.913 0.881 0.896 0.807 0.884 0.844 72 0.911 0.859 0.884 0.804 0.882 0.841

40, 200

FCI 204 0.792 0.814 0.803 0.719 0.907 0.803 206 0.781 0.802 0.791 0.706 0.904 0.793

Avg-fGES-Lin 203 0.837 0.78 0.807 0.742 0.886 0.808 206 0.837 0.778 0.806 0.737 0.88 0.802

Avg-fGES-Poly2 197 0.853 0.782 0.815 0.749 0.879 0.809 200 0.852 0.779 0.813 0.746 0.876 0.806

Avg-fGES-Poly3 204 0.862 0.741 0.795 0.763 0.886 0.82 203 0.862 0.746 0.799 0.759 0.882 0.816

CausIL-Lin 186 0.835 0.811 0.824 0.759 0.897 0.827 188 0.833 0.811 0.822 0.755 0.905 0.823

CausIL-Poly2 152 0.919 0.828 0.871 0.825 0.899 0.86 155 0.92 0.817 0.864 0.809 0.879 0.843

CausIL-Poly3 160 0.922 0.783 0.846 0.83 0.909 0.863 162 0.922 0.784 0.847 0.821 0.89 0.854

Table 1: Comparison of CausIL against the baselines for all types of datasets.

Model SHD AdjP AdjR AdjF AHP AHR AHF

FCI 59 0.756 0.796 0.775 0.697 0.922 0.794

Avg-fGES-Lin 52 0.829 0.858 0.843 0.692 0.835 0.757

Avg-fGES-Poly2 53 0.823 0.823 0.823 0.708 0.86 0.777

Avg-fGES-Poly3 51 0.852 0.814 0.833 0.722 0.848 0.78

CausIL-Lin 50 0.807 0.814 0.81 0.737 0.913 0.816

CausIL-Poly2 40 0.818 0.876 0.846 0.785 0.96 0.864

CausIL-Poly3 46 0.824 0.867 0.845 0.739 0.898 0.811

Table 2: Experiments on Real Data

7 DISCUSSION
Scalability: CausIL discovers service-specific causal structures
and then combines them to form the entire causal graph. Adding a
new microservice will scale the computation time linearly. Based
on the experiments using CausIL-Poly2 on multiple datasets, the
average time for causal discovery for each service is 12-13s, with a
standard deviation of 1.09s. Furthermore, parallelizing the discovery
for each microservice would further improve the computation time.

Domain Knowledge: Aggregating minimal domain knowledge
is not expensive since the edge exclusion list that CausIL uses is
based on generic system architecture rules and principles. However,
system engineers can decide to modify the rules as well, which
might be expensive but not necessary, hence not compromising the
estimation accuracy. Though argued to be a bad architectural de-
sign [40], some real systems might also exhibit cyclic dependencies
[23], making it hard to model. However, even in the presence of
circular requests, microservice operations differ either in terms of

multiple regional placements or distinct components are invoked. In
such cases, we can essentially split it up into sub-services perform-
ing individual operations which can easily be handled by CausIL.
On the contrary, circular dependency on services having identical
operations will lead to an infinite loop and hence is not observed
in real systems.

8 CONCLUSION
In this paper, we present a novel causal structure detection method-
ology CausIL that leverages metric variations from all the instances
deployed per microservice. It makes a practical assumption based
on system domain knowledge that the multiple instances of a ser-
vice are identical and independent to each other conditioned on the
load request received. Thus, CausIL filters relevant system metrics
and models the causal graph at the metric-level using instance-level
data variations. It estimates a causal graph for each microservice
individually and then aggregates them over all microservices to
form the final graph. An added advantage is its capability to cope
with instances’ distinct and transitional nature, usually observed
in a microservice deployment due to auto-scaler configuration.

We further show that incorporating system domain knowledge
improves causal structure detection in terms of accuracy and com-
putation time. It helps in estimating the essential edges and ignoring
the non-existential edges. From our evaluations on simulated data,
we show that our method outperforms the baselines by ∼ 25%, and
the introduction of domain knowledge improves SHD by ∼ 3.5×
on average. We also evaluate on real data elucidating the practical
usefulness of CausIL.

CausIL: Causal Graph for Instance Level Microservice Data WWW ’23, April 30-May 4, 2023, Austin, TX, USA

REFERENCES
[1] 2015. Why You Can’t Talk About Microservices Without Mention-

ing Netflix. https://smartbear.com/blog/why-you-cant-talk-about-microservices-
without-ment/. (2015).

[2] 2016. Borg, Omega, and Kubernetes https://queue.acm.org/detail.cfm?id=2898444.
(2016).

[3] 2019. Application containerization https://www.ibm.com/in-
en/cloud/learn/containerization/. (2019).

[4] 2019. Caring for Container-Based Services with Checks, Monitoring, and Alerts.
https://newrelic.com/blog/how-to-relic/container-service-checks. (2019).

[5] 2021. CRISP: Critical Path Analysis for Microservice Architec-
tures. https://eng.uber.com/crisp-critical-path-analysis-for-microservice-
architectures/. (2021).

[6] 2022. Horizontal Pod Autoscaling https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/. (2022).

[7] 2022. Pods. https://kubernetes.io/docs/concepts/workloads/pods/. (2022).
[8] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices ar-

chitecture enables devops: Migration to a cloud-native architecture. Ieee Software
33, 3 (2016), 42–52.

[9] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site
Reliability Engineering: How Google Runs Production Systems (1st ed.). O’Reilly
Media, Inc.

[10] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, María S Pérez,
and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020), 110432.

[11] Pengfei Chen, Yong Qi, Pengfei Zheng, and Di Hou. 2014. Causeinfer: Auto-
matic and distributed performance diagnosis with hierarchical causality graph in
large distributed systems. In IEEE INFOCOM 2014-IEEE Conference on Computer
Communications. IEEE, 1887–1895.

[12] Yujun Chen, Xian Yang, Qingwei Lin, Hongyu Zhang, Feng Gao, Zhangwei Xu,
Yingnong Dang, Dongmei Zhang, Hang Dong, Yong Xu, et al. 2019. Outage
prediction and diagnosis for cloud service systems. In The World Wide Web
Conference. 2659–2665.

[13] David Maxwell Chickering. 2002. Learning equivalence classes of Bayesian-
network structures. The Journal of Machine Learning Research 2 (2002), 445–498.

[14] Scott Emmons Coburn Watson and Brendan Gregg. 2022. A Microscope on Mi-
croservices netflixtechblog.com/a-microscope-on-microservices-923b906103f4/.
Netflix Technology Blog (2022).

[15] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. 2021.
Sage: practical and scalable ML-driven performance debugging in microservices.
In Proceedings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 135–151.

[16] Jianpeng Hu, Linpeng Huang, Tianqi Sun, Yuchang Xu, and Xiaolong Gong.
2018. Log2Sim: automating what-if modeling and prediction for bandwidth
management of cloud hosted Web services. In 2018 IEEE International Conference
on Web Services (ICWS). IEEE, 99–106.

[17] Muhammad Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini,
Saurabh Bagchi, and Murat Kocaoglu. 2022. Root Cause Analysis of Failures
in Microservices through Causal Discovery. In Advances in Neural Information
Processing Systems. https://openreview.net/forum?id=weoLjoYFvXY

[18] Yurong Jiang, Lenin Ravindranath Sivalingam, Suman Nath, and Ramesh Govin-
dan. 2016. WebPerf: Evaluating what-if scenarios for cloud-hosted web applica-
tions. In Proceedings of the 2016 ACM SIGCOMM Conference. 258–271.

[19] Ignacio Laguna, Subrata Mitra, Fahad A Arshad, Nawanol Theera-Ampornpunt,
Zongyang Zhu, Saurabh Bagchi, Samuel P Midkiff, Mike Kistler, and Ahmed
Gheith. 2013. Automatic problem localization via multi-dimensional metric
profiling. In 2013 IEEE 32nd International Symposium on Reliable Distributed
Systems. IEEE, 121–132.

[20] Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and
Dan Pei. 2022. Causal Inference-Based Root Cause Analysis for Online Service
Systems with Intervention Recognition. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. 3230–3240.

[21] Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj Singh,
Xinsheng Yang, Qingwei Lin, Youjiang Wu, Sebastien Levy, et al. 2020. Gandalf:
An intelligent, end-to-end analytics service for safe deployment in large-scale
cloud infrastructure. In 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20). 389–402.

[22] Dewei Liu, Chuan He, Xin Peng, Fan Lin, Chenxi Zhang, Shengfang Gong, Ziang
Li, Jiayu Ou, and Zheshun Wu. 2021. Microhecl: High-efficient root cause local-
ization in large-scale microservice systems. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
IEEE, 338–347.

[23] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing microservice de-
pendency and performance: Alibaba trace analysis. In Proceedings of the ACM
Symposium on Cloud Computing. 412–426.

[24] MA Marvasti. 2010. Quantifying information loss through data aggregation.
VMware Technical White Paper (2010), 1–14.

[25] Dimosthenis Masouros, Sotirios Xydis, and Dimitrios Soudris. 2020. Rusty: Run-
time interference-aware predictive monitoring for modern multi-tenant systems.
IEEE Transactions on Parallel and Distributed Systems 32, 1 (2020), 184–198.

[26] Christopher Meek. 1997. Graphical Models: Selecting causal and statistical models.
Ph. D. Dissertation. PhD thesis, Carnegie Mellon University.

[27] Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin
Zhang, Chenyang Jia, Zhaogang Wang, and Dan Pei. 2020. Localizing failure
root causes in a microservice through causality inference. In 2020 IEEE/ACM 28th
International Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[28] Maryam Moghimi and Herbert W Corley. 2020. Information Loss Due to the
Data Reduction of Sample Data from Discrete Distributions. Data 5, 3 (2020), 84.

[29] Shanka Subhra Mondal, Nikhil Sheoran, and Subrata Mitra. 2021. Scheduling of
Time-Varying Workloads Using Reinforcement Learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 9000–9008.

[30] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and Mike Amundsen. 2016.
Microservice architecture: aligning principles, practices, and culture. " O’Reilly
Media, Inc.".

[31] Sam Newman. 2021. Building microservices. " O’Reilly Media, Inc.".
[32] Hiep Nguyen, Zhiming Shen, Yongmin Tan, and Xiaohui Gu. 2013. Fchain:

Toward black-box online fault localization for cloud systems. In 2013 IEEE 33rd
International Conference on Distributed Computing Systems. IEEE, 21–30.

[33] Hiep Nguyen, Yongmin Tan, and Xiaohui Gu. 2011. Pal: P ropagation-aware
a nomaly l ocalization for cloud hosted distributed applications. In Managing
Large-scale Systems via the Analysis of System Logs and the Application of Machine
Learning Techniques. 1–8.

[34] Judea Pearl et al. 2000. Models, reasoning and inference. Cambridge, UK: Cam-
bridgeUniversityPress 19, 2 (2000).

[35] Juan Qiu, Qingfeng Du, Kanglin Yin, Shuang-Li Zhang, and Chongshu Qian. 2020.
A causality mining and knowledge graph based method of root cause diagnosis
for performance anomaly in cloud applications. Applied Sciences 10, 6 (2020),
2166.

[36] Vineet K Raghu, Allen Poon, and Panayiotis V Benos. 2018. Evaluation of causal
structure learning methods on mixed data types. In Proceedings of 2018 ACM
SIGKDD Workshop on Causal Discovery. PMLR, 48–65.

[37] Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour.
2017. Amillion variables andmore: the Fast Greedy Equivalence Search algorithm
for learning high-dimensional graphical causal models, with an application to
functional magnetic resonance images. International journal of data science and
analytics 3, 2 (2017), 121–129.

[38] Gideon Schwarz. 1978. Estimating the dimension of a model. The annals of
statistics (1978), 461–464.

[39] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. 2000.
Causation, prediction, and search. MIT press.

[40] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. 2020. Microservices anti-
patterns: A taxonomy. In Microservices. Springer, 111–128.

[41] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and
Mostafa Ammar. 2008. Answering what-if deployment and configuration ques-
tions with wise. In Proceedings of the ACM SIGCOMM 2008 conference on Data
communication. 99–110.

[42] Mukarram Bin Tariq, Kaushik Bhandankar, Vytautas Valancius, Amgad Zeitoun,
Nick Feamster, and Mostafa Ammar. 2013. Answering “what-if” deployment
and configuration questions with WISE: Techniques and deployment experience.
IEEE/ACM Transactions on Networking 21, 1 (2013), 1–13.

[43] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhatotia,
Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer. 2017. Sieve:
Actionable insights from monitored metrics in distributed systems. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference. 14–27.

[44] Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Kopru, Gene Zhang, Sanjeev
Katariya, and Sami Ben-Romdhane. 2019. GRANO: Interactive graph-based root
cause analysis for cloud-native distributed data platform. Proceedings of the VLDB
Endowment 12, 12 (2019), 1942–1945.

[45] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao Huang, Jiamu Wang, Selcuk
Kopru, and Tao Xie. 2021. Groot: An Event-graph-based Approach for Root
Cause Analysis in Industrial Settings. arXiv preprint arXiv:2108.00344 (2021).

[46] Ping Wang, Jingmin Xu, Meng Ma, Weilan Lin, Disheng Pan, Yuan Wang, and
Pengfei Chen. 2018. Cloudranger: root cause identification for cloud native
systems. In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID). IEEE, 492–502.

[47] Li Wu, Johan Tordsson, Jasmin Bogatinovski, Erik Elmroth, and Odej Kao. 2021.
MicroDiag: Fine-grained Performance Diagnosis for Microservice Systems. In
ICSE21 Workshop on Cloud Intelligence.

[48] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and Eric P. Xing. 2018. DAGs
with NO TEARS: Continuous Optimization for Structure Learning. In Advances
in Neural Information Processing Systems.

https://smartbear.com/blog/why-you-cant-talk-about-microservices-without-ment/
https://smartbear.com/blog/why-you-cant-talk-about-microservices-without-ment/
https://queue.acm.org/detail.cfm?id=2898444
https://www.ibm.com/in-en/cloud/learn/containerization
https://www.ibm.com/in-en/cloud/learn/containerization
https://newrelic.com/blog/how-to-relic/container-service-checks
https://eng.uber.com/crisp-critical-path-analysis-for-microservice-architectures/
https://eng.uber.com/crisp-critical-path-analysis-for-microservice-architectures/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/workloads/pods/
https://netflixtechblog.com/a-microscope-on-microservices-923b906103f4/
https://openreview.net/forum?id=weoLjoYFvXY

WWW ’23, April 30-May 4, 2023, Austin, TX, USA Chakraborty, et al.

Figure 7: Illustration of the benefits of CausIL on a toy graph.

A ADDITIONAL EVALUATIONS
A.1 Illustration on Toy Graph
We illustrate why CausIL works better than the baseline via an ex-
ample of a small toy call graph (Figure 7). We consider two services
𝐴 and 𝐵, such that 𝐴 calls 𝐵 (𝐴 → 𝐵). For each of the service, we
generate synthetic data (§5.2) for the metrics categories listed in
§4.1 and create a ground truth causal graph following the causal
assumptions. We run CausIL-Poly2 and Avg-fGES-Poly2 with do-
main knowledge on the synthetically generated data and report
our findings here.

We observe that the Structural Hamming Distance for the esti-
mated causal graph with CausIL is lower than the one estimated
with the baseline method. Furthermore, some edges were not identi-
fied by Avg-fGES, which was identified by CausIL. This is because
of the non-linearity in the dataset is reduced when the correspond-
ing metrics for multiple instances are averaged. It does not capture
the true distirbution of the data generation process. An evident
example for this is the edge from memory utilization to latency
for service 𝐴, which has been identified by CausIL, but Avg-fGES
misses it. The adjacency and arrow head F1 score for CausIL are
0.857 and 0.774 respectively, while the same for Avg-fGES are 0.645
and 0.636 respectively, furthering bolstering the efficacy of CausIL.

A.2 Comparison against multiple aggregation
function-based baselines

In §6.2, we have evaluated and compared CausIL against Avg-fGES,
which aggregates a particular metric values for all the instances
running for a service at any time 𝑡 by averaging them. However,
though we argue that any aggregation function like summation,
maximum etc. will have the same shortcoming as doing averaging
where the entire spectrum of the relationship will not be captured,
we empirically show this in Table 3.

We have evaluated on the synthetic dataset generated at multiple
scales, that is, with 50 metric nodes, 100 metric nodes and 200metric
nodes. We report SHD, adjacency F1 score and ArrowHead F1 score.
The baselines that we have evaluated against are:

(1) Avg-fGES, where metric values over all instances are aver-
aged at any particular time 𝑡

(2) Max-fGES, where the maximum metric value over all the
instances is taken at any time instant 𝑡

(3) Min-fGES, where the minimum metric value is chosen

(4) Sum-fGES, where metric values for all the instances are
summed at any time instant 𝑡

We observe that CausIL outperforms all the baselines with Avg-
fGES and Sum-fGES being the better performing baselines. This
proves our claim empirically and the need for the design of a causal
structure estimation method that takes into account instance spe-
cific variations.

B REAL GRAPH DETAILS

Figure 8: Service Call Graph for real data

In our study with the real data, the underlying service architecture
from which the data was collected is illustrated in Figure 8. We
collect metrics for each service belonging to the metric categories
defined in §4.1, and construct a causal structural graph against
which we evaluate. Though, ground truth graph is unknown in a
real world setting, we use our constructed graph as a proxy for the
ground truth.

CausIL: Causal Graph for Instance Level Microservice Data WWW ’23, April 30-May 4, 2023, Austin, TX, USA

Services,
Metrics

Estimation
Function

Avg-fGES Max-fGES Min-fGES Sum-fGES CausIL

SHD AdjF AHF SHD AdjF AHF SHD AdjF AHF SHD AdjF AHF SHD AdjF AHF

10, 50
Linear 54 0.822 0.765 53 0.832 0.749 56 0.796 0.779 53 0.804 0.79 51 0.83 0.777

Poly2 48 0.834 0.799 53 0.824 0.765 53 0.813 0.778 50 0.822 0.8 38 0.869 0.842

Poly3 46 0.837 0.814 56 0.797 0.776 50 0.801 0.817 47 0.825 0.821 32 0.891 0.862

20, 100
Linear 103 0.82 0.778 98 0.834 0.785 109 0.807 0.775 101 0.816 0.801 95 0.832 0.803

Poly2 95 0.847 0.786 97 0.827 0.802 99 0.822 0.801 89 0.853 0.799 66 0.901 0.84

Poly3 88 0.857 0.802 106 0.813 0.778 106 0.797 0.801 86 0.847 0.825 67 0.896 0.844

40, 200
Linear 203 0.807 0.808 204 0.802 0.812 229 0.765 0.802 211 0.791 0.812 186 0.824 0.827

Poly2 197 0.815 0.809 211 0.789 0.813 228 0.76 0.809 205 0.807 0.802 152 0.861 0.86

Poly3 204 0.795 0.82 214 0.777 0.821 224 0.757 0.823 204 0.803 0.808 160 0.846 0.863
Table 3: Comparison of CausIL against multiple baselines. Avg-fGES averages the metric values over all instances for each
time instant. Similarly, Max-fGES computes the maximum, Min-fGES computes the minimum and Sum-fGES computes the
sum of the metric values over all instances for any time 𝑡 .

C DATA GENERATION
From a given structural graph, we generate synthetic and semi-
synthetic data. We construct a directed acyclic graph of services
(call graph) and use it to generate a ground truth causal graph at the
metrics level, following existing work [48]. The data is generated
by using the edges between performance metrics for each service.
Algorithm 2 is used to generate a random graph between services,
which is then trivially extended to form the graph between perfor-
mance metrics using the causal assumptions and rules described in
§4.1.

Algorithm 2: Generate Random Graph
Input: Number of nodes 𝑁𝑛 , Number of edges 𝑁𝑒

Output: Service Call Graph G(𝑁𝑛, 𝑁𝑒)
1 Initialize G(𝑉 , 𝐸), where 𝑉 = {1, 2, . . . , 𝑁𝑛}, 𝐸 = 𝜙

2 for 𝑖 ∈ {2, 3, . . . , 𝑁𝑛} do
3 𝑗 ← sample a node from {1, 2, . . . , 𝑖 − 1} randomly
4 𝐸 ← 𝐸 ∪ {(𝑖 → 𝑗)}
5 for 𝑘 ∈ {𝑁𝑛, . . . , 𝑁𝑒 } do
6 𝑖 ← sample a node from {2, 3, . . . , 𝑁𝑛}
7 𝑗 ← sample a node from {1, 2, . . . , 𝑖 − 1}
8 if (𝑖 → 𝑗) ∉ 𝐸 then
9 𝐸 ← 𝐸 ∪ {(𝑖 → 𝑗)}

10 return G

Algorithm 3 shows the steps required to generate synthetic or
semi-synthetic data for a given call graph G. We first create work-
load metric values for the exogenous nodes, that is, the nodes with-
out any parent metrics. Workload for the service is distributed to its
instances almost equally (Mean being total workload over number
of instances). This is based on the observation from the real data
where workload at instances were almost equal. Cpu and memory
utilization values were computed based on the learned/generated

Algorithm 3: Generate Synthetic/Semi-synthetic Data
Input: Real Data D𝑟𝑒𝑎𝑙 , Service Call Graph G
Output: Synthetic/Semi-Synthetic Data D

1 for each dependency edge 𝑖 in Figure 2 do
2 Generate quadratic/Learn function 𝑓𝑖

3 Learn function 𝑓0 :𝑊 𝑎𝑔𝑔 → 𝑅 // 𝑅 = # instances

4 D𝑒𝑥𝑜𝑔 ← random distribution /D𝑟𝑒𝑎𝑙 [𝑊 𝑎𝑔𝑔]
5 for 𝑡 = 1, 2, . . . do
6 for service 𝑖 do
7 if 𝑖 = exogenous service then
8 𝑊

𝑖,𝑎𝑔𝑔
𝑡 ← D𝑡

𝑒𝑥𝑜𝑔

9 else
10 𝑊

𝑖,𝑎𝑔𝑔
𝑡 ← ∑

𝑗 ∈P(𝑖) 𝛽 𝑗,𝑖 ∗𝑊
𝑗,𝑎𝑔𝑔
𝑡

11 Compute 𝑅𝑡 using 𝑓0

12 For each instance 𝑗 ,𝑊𝑖 𝑗𝑡 ← 𝑁 (` =
𝑊

𝑖,𝑎𝑔𝑔

𝑡

𝑅𝑡
, 𝜎 =

`
10)

13 Compute CPU and Mem. Util. of 𝑖 based on 𝑓𝑖 + 𝜖
14 if 𝑖 is leaf node then
15 compute Latency and Error based on 𝑓𝑖 + 𝜖
16 Recurse back
17 for 𝑘 ∈ child(𝑖) do
18 Goto Step 6 for service 𝑘
19 if all child(𝑖) is computed then
20 Compute 𝐿𝑎𝑔𝑔 and 𝐸𝑎𝑔𝑔 for each child(𝑖)
21 Assign Latency and Error based on 𝑓𝑖 + 𝜖

22 D ← all data generated for each service return D

functions, and then themetrics for the child services were computed
similarly in a recursive nature. It is to be noted that we add a random
gaussian error to the values of the metrics to avoid deterministic
relationship of metric values across services.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Preliminaries
	3.2 Problem Definition

	4 Solution Overview
	4.1 Metrics Data and Causal Assumptions
	4.2 Preliminary Approaches
	4.3 CausIL: Proposed Approach
	4.4 Incorporating Domain Knowledge

	5 Experimental Setup
	5.1 Baselines and Models
	5.2 Datasets
	5.3 Evaluation Metrics

	6 Evaluation Results
	6.1 Impact of Domain Knowledge
	6.2 Baseline Comparison
	6.3 Real-World Use Case Study

	7 Discussion
	8 Conclusion
	References
	A Additional Evaluations
	A.1 Illustration on Toy Graph
	A.2 Comparison against multiple aggregation function-based baselines

	B Real Graph Details
	C Data Generation

