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ABSTRACT
Recent years have witnessed the success of heterogeneous graph
neural networks (HGNNs) in modeling heterogeneous information
networks (HINs). In this paper, we focus on the benchmark task of
HGNNs, i.e., node classification, and empirically find that typical
HGNNs are not good at predicting the label of a test node whose
receptive field (1) has few training nodes from the same category
or (2) has multiple training nodes from different categories. A pos-
sible explanation is that their message passing mechanisms may
involve noises from different categories, and cannot fully explore
task-specific knowledge such as the label dependency between dis-
tant nodes. Therefore, instead of introducing a new HGNN model,
we propose a general post-training framework that can be applied
on any pretrained HGNNs to further inject task-specific knowledge
and enhance their prediction performance. Specifically, we first
design an auxiliary system that estimates node labels based on (1) a
global inference module of multi-channel label propagation and (2)
a local inference module of network schema-aware prediction. The
mechanism of our auxiliary system can complement the pretrained
HGNNs by providing extra task-specific knowledge. During the
post-training process, we will strengthen both system-level and
module-level consistencies to encourage the cooperation between
a pretrained HGNN and our auxiliary system. In this way, both
systems can learn from each other for better performance. In ex-
periments, we apply our framework to four typical HGNNs. Exper-
imental results on three benchmark datasets show that compared
with pretrained HGNNs, our post-training framework can enhance
Micro-F1 by a relative improvement of 3.9% on average. Code, data
and appendix are available at https://github.com/GXM1141/HGPF.
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1 INTRODUCTION

(a) Close (red) v.s. Far (yellow) (b) Same (red) v.s. Different (yellow)

Figure 1: Motivation verification on ACM dataset. The per-
formance gaps between red and yellow columns indicate
that all four HGNNs are not good at predicting the label of
a test node: if (a) it’s far from training nodes of the same
category or (b) it has more training nodes from different cat-
egories than the same category in the receptive field. Blue
columns are the performance gains from our post-training
framework.

A heterogeneous information network (HIN) [17–19] can charac-
terize the rich semantic relationship among a set of nodes and edges
with different types. To effectively capture the semantics in an HIN,
heterogeneous graph neural networks (HGNNs) were proposed in
recent years [3, 9, 21, 26], and typical HGNNs will use meta-paths
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to enlarge the receptive field of each node in message passing [4].
The success of HGNNs facilitated the development of HIN-based
applications such as recommendation system [1, 13, 23, 30] and
malware detection system [2, 6, 8].

In this work, we focus on the benchmark task for evaluating
HGNNs, i.e., semi-supervised node classification onHINs.We empir-
ically find that typical HGNNs are not good at predicting the label of
a test node whose receptive field (1) has few training nodes from the
same category or (2) has multiple training nodes from different cat-
egories. For example, we evaluate four typical HGNNs [3, 9, 14, 21]
based on the benchmark setting [29] of ACM dataset. For the first
observation, we compute the average distance from training nodes
of the same category for every test node, and divide the test nodes
into two groups depending on whether the average distance is
larger than the range of receptive field or not. For the second obser-
vation, we build two node groups depending on whether a node’s
receptive field has more training nodes from the same category
than different categories. As shown in Figure 1, the prediction ac-
curacies of all four HGNNs drop significantly for the nodes that (1)
are farther from training nodes of the same category or (2) have
more training nodes from different categories than the same cate-
gory in the receptive field. Note that such nodes occupy around 50
percent of all nodes. A possible reason is that the message passing
mechanisms of typical HGNNs, which highly depend on the range
of receptive fields, may involve noises from different categories,
and cannot fully explore task-specific knowledge such as the label
dependency between distant nodes. Moreover, this drawback can-
not be addressed by simply enlarging the receptive field of HGNNs,
i.e., stacking more message passing layers, since more noises may
be involved and the over-smoothing issue will be intensified.

As the above limitations generally exist in typical HGNNs, in-
stead of introducing a newHGNNmodel, we propose a general post-
training framework that can be applied on any pretrained HGNNs.
Our Heterogeneous Graph Post-training Framework (HGPF) aims
to alleviate the aforementioned limitations and enhance the predic-
tion performance. Specifically, we first design an auxiliary system
which predicts node labels based on a complementary mechanism:
(1) a global inference module will diffuse node labels to distant
nodes by multi-channel label propagation (usually 5 times farther
than the receptive fields of typical HGNNs in our experiments); (2) a
local inference module will predict node labels merely based on ev-
ery node’s network schema instance, and thus exclude the influence
of meta-path-based neighbors from potentially different categories.
During the post-training process, we will optimize system-level
prediction consistency between pretrained HGNN and auxiliary
system, and module-level prediction consistency between global
and local modules. In this way, both systems can learn from each
other, and our auxiliary system can complement HGNNs by inject-
ing extra task-specific knowledge for better performance. After the
post-training, either updated HGNN or learned auxiliary system
can be used for prediction.

To fully evaluate our proposed framework HGPF, we conduct
experiments on three benchmark datasets and test with four typical
HGNN models, including HAN [21], HGT [9], Simple-HGN [14]
and MAGNN [3]. Experimental results show that compared with
a pretrained HGNN, both updated HGNN and learned auxiliary
system can have consistent improvements by learning from each

other, and the learned auxiliary system performs best among the
three. In terms of Micro-F1, the relative improvement of learned
auxiliary system against pretrained HGNN is 3.9% on average. We
also compare our system against a broad range of state-of-the-art
(SOTA) graph algorithms, showing that HGPF is the current SOTA
method on this task.

Our contributions are summarized as follows:
• We focus on the semi-supervised node classification task, and

point out a key limitation of typical HGNNs that they are not good
at predicting the label of a node whose receptive field has few
training nodes from the same category or has multiple training
nodes from different categories.

•We propose a general and novel post-training frameworkHGPF
that can be applied on any pretrained HGNNs to alleviate the above
limitation and improve prediction accuracies. Specifically, we design
an effective auxiliary system complementary with typical HGNNs,
and encourage the two systems to learn from each other for better
performance.

• Experimental results show that systems learned by HGPF con-
sistently outperform pretrained HGNNs by a large margin, and
achieve SOTA performance on all three benchmark datasets com-
pared with a variety of baselines.

2 RELATEDWORKS
Heterogeneous graphneural networks:Recently, many researchers
focus on developingHGNNs forHINmodeling. Specifically, HAN [21]
employed two types of attention mechanism to learn the node-level
and semantic-level structures. MAGNN [3] further considered the
intermediate nodes along the meta-paths on the basis of HAN.
RSHN [31] constructed a coarsened line graph to take edge features
into account, and employed message passing neural network [5] to
propagate information of both nodes and edges. HetGNN [26] used
random walks with restart mechanism to find valuable neighbors
for nodes. HetSANN [7] employed a type-specific graph attention
mechanism to aggregate the direct neighbors of nodes without
meta-paths. GTN [25] was proposed to learn useful meta-paths
automatically for message passing. HGT [9] was a transformer-
based HGNN for modeling web-scale HINs through a graph sam-
pling method. In addition to pairwise proximity, NSHE [29] con-
sidered high-order proximity based on network schema instances.
HGSL [28] was proposed to jointly perform HIN structure learning
and GNN parameter learning for classification. HGNN-AC [10] em-
ployed attention mechanism to complete missing attributes with
MAGNN [3] as its backbone. HGK-GNN [12] proposed Heteroge-
neous Graph Kernel (HGK) based on Mahalanobis distance, and
incorporated it into HGNNs. Simple-HGN [14] designed a simple
HGNN model based on GAT [20], and is the SOTA HGNN model.

Connections with relevant models: There are a few works
that can be applied on homogeneous GNNs to boost their perfor-
mance, though these methods did not use the term “post-training”.
For example, GMNN [15] adopted an EM framework to train two
GCNs iteratively, which can be seen as a multi-stage post-training
method. RDD [27] trained and ensembled multiple GCNs with a
distillation framework to get better performance. CPF [24] used
a knowledge distillation framework to extract the knowledge of
GNNs and utilize more prior knowledge. These approaches are
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only applicable to homogeneous graphs, and their motivations are
also different from ours. In our experiments, we will adopt these
methods as our baselines.

Note that our auxiliary system includes a global and a local
inference module. In fact, there are also some HGNN methods em-
phasizing the usage of global and local information. But these meth-
ods are mainly proposed for unsupervised representation learning
and their definitions of global/local information are quite different
from ours. For example, HDGI [16] minimized the local-global mu-
tual information between node-level representation and meta-path
based graph-level representation. HeCo [22] conducted contrastive
learning between meta-path and schema views of an HIN to learn
node representations in an unsupervised manner. Besides, the key
designs of our auxiliary system, such as the multi-channel label
propagation, have never been explored in previous HGNNs.

3 PRELIMINARIES

(a) An example of HIN

(b) Meta-paths

(c) Network schema

Figure 2: A toy example of an HIN on ACM dataset [29].

Definition 1: Heterogeneous Information Network. A hetero-
geneous information network, denoted as G = {V, E,T ,R, 𝜙, 𝜑},
is a special form of information networks, whereV and E denote
the sets of nodes and edges, respectively. An HIN is also associated
with a node type mapping function 𝜙 : V → T and an edge type
mapping function 𝜑 : E → R, where T and R respectively denote
the sets of node and edge types, with |T | + |R| > 2.

Fig. 2(a) illustrates an example of ACM dataset [29]. The HIN has
three types of nodes, including author (A), paper (P) and subject
(S). There are also two types of edges (i.e., “write” relation between
author and paper, “belong to” relation between paper and subject).
Definition 2: Meta-path.Ameta-path 𝑃 is defined as a path in the

form of 𝑇1
𝑅1−→𝑇2

𝑅2−→· · · 𝑅𝑙−→𝑇𝑙+1 (abbreviated as 𝑇1𝑇2· · ·𝑇𝑙+1), which
describes a composite relation 𝑅 = 𝑅1 ◦ 𝑅2 ◦ · · · ◦ 𝑅𝑙 between node
types 𝑇1 and 𝑇𝑙+1, where ◦ denotes the composition operator on
relations. We denote the meta-path set as P which contains all the
meta-paths in an HIN.

As shown in Fig. 2(b), two papers can be connected via two kinds
of meta-paths, i.e., paper-author-paper (PAP) and paper-subject-
paper (PSP). Different meta-paths represent different semantics in
an HIN. For example, PAP connects two papers written by the same
author, while PSP connects two papers from the same subject.
Definition 3:Network Schema.The network schema 𝑆G = (T ,R)
is the blueprint of an HIN G. Specifically, network schema is a

directed graph defined on the set of node types T , with edges as
relations from the set of edge types R. The network schema of ACM
is shown in the upper half of Fig. 2(c). In addition, the lower half of
Fig. 2(c) presents a network schema instance, which is defined as a
local structure matching the paradigm of network schema.
Definition 4: Semi-supervised node classification on an HIN.
Given an HIN G = {V, E,T ,R, 𝜙, 𝜑} with node featuresX, we aim
to predict the labels for the nodes of a specific type 𝑇 ∈ T . We
denote the the set of nodes with type 𝑇 as the target node setV𝑇 .
Each target node 𝑣 ∈ V𝑇 corresponds to a class label 𝑦𝑣 from the
label set Y. For the semi-supervised setting, the labels of nodes
in labeled set V𝐿 ⊂ V𝑇 are known, and the task is to predict the
labels for the unlabeled nodes inV𝑈 = 𝑉𝑇 \ V𝐿 . Semi-supervised
node classification is the most popular task for evaluating HGNN
models [3, 9, 14, 21].

4 METHODOLOGY
In this section, we will first introduce our design of the auxiliary
system. Then we will present our post-training algorithm which
strengthens the two levels of consistencies. Finally, we will have a
discussion about the proposed framework.

4.1 Formalization of HGNNs
As our framework is agnostic to the neural architecture of HGNNs,
we simply treat them as black boxes. Formally, an HGNN is a layered
network architecture, which takes an HIN G and the corresponding
feature matrix X as input to calculate the representation of each
node. The representations of the last layer will be normalized by
a softmax operator to output the label distribution predictions. In
this paper, we denote an HGNN model parameterized by Θ as 𝑓Θ,
where 𝑓Θ (𝑣) ∈ R |Y | is the label distribution of node 𝑣 predicted by
the HGNN model.

Then the model parameters Θ can be optimized by minimizing
the prediction error on labeled node set 𝑉𝐿 :

min
Θ

∑︁
𝑣∈V𝐿

L(𝑓Θ (𝑣), 𝑦𝑣), (1)

where L(·, ·) denotes the loss function (i.e., the cross entropy loss)
between true label 𝑦𝑣 and predicted label 𝑓Θ (𝑣).

4.2 Design of Auxiliary System
In order to complement with typical HGNNs, our auxiliary sys-
tem consists of two modules to characterize the global and local
dependency. As shown in Fig. 3, the two modules can infer the
label distribution of a node separately, and their predictions can be
further recombined by a learnable weighted average. Formally, we
respectively denote the global and local inference modules as 𝑔𝐺Ω1

and 𝑔𝐿Ω2
. The entire auxiliary system is represented as 𝑔Ω where

Ω = {Ω1,Ω2}. Now we will introduce our global and local modules.

4.2.1 Global Inference Module. For global-level inference, we de-
sign a novel Multi-Channel Label Propagation (MCLP) process
based on meta-paths. The basic assumption of MCLP is that nodes
linked by a meta-path instance tend to have similar labels. In MCLP,
labels will iteratively propagate from nodes to their meta-path based
neighbors for inference. After several layers of propagation, the
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Figure 3: The architecture of our auxiliary system. The global module based on multi-channel label propagation and the local
module based on network schema-aware prediction will infer the label of node 𝑃3 separately. Then their predictions will be
recombined as the final prediction of the auxiliary system.

labels eventually propagate from labeled nodes to unlabeled ones as
predictions. Note that an HIN usually has multiple meta-paths that
define different semantic relations between nodes. Hence we will
perform label propagation along different meta-paths in indepen-
dent channels, and then recombine the predictions from different
channels as the output of the global module. In our implementation,
the global module will diffuse labels to the nodes around 5 times
farther than the receptive fields of typical HGNNs, and thus capture
the label dependency between distant nodes.

Formally, we use 𝑙𝑘
𝑃
to denote the predictions of MCLP based on

meta-path 𝑃 ∈ P after 𝑘 layers of propagation. We initialize the
label prediction 𝑙0

𝑃
before propagation as follows:

𝑙0
𝑃
(𝑣) =


(0, . . . 1, . . . 0) ∈ R |Y |, ∀𝑣 ∈ V𝐿

( 1
|Y| , . . .

1
|Y| , . . .

1
|Y| ) ∈ R

|Y |, ∀𝑣 ∈ V𝑈
, (2)

where each labeled node corresponds to a one-hot label vector and
all unlabeled nodes correspond to the uniform distribution.

We assume that the importance (i.e., propagation intensities) of
different neighbors to a node should be different. Thus, for each
meta-path instance connecting node 𝑢 and 𝑣 , we parameterize its
propagation weight𝑤𝑃𝑢𝑣 ∈ [0, 1] as follows:

𝑤𝑃𝑢𝑣 =
exp(𝑠𝑃𝑢𝑣)∑

𝑢′∈N𝑃
𝑣
exp(𝑠𝑃

𝑢′𝑣)
, (3)

where N𝑃
𝑣 is the set of node 𝑣 ’s neighbors connected by meta-path

instance of 𝑃 , and 𝑠𝑃𝑢𝑣 ∈ R is a learnable parameter representing
the propagation intensity between node 𝑢 and 𝑣 in channel 𝑃 .

At each layer of label propagation, we will update the label
distribution predictions of unlabeled nodes, and fix those of labeled
nodes as one-hot vectors. Specifically, the update function of node

label predictions in the 𝑘 + 1-th layer can be formalized as:

𝑙𝑘+1𝑃 (𝑣) =
∑︁
𝑢∈N𝑃

𝑣

𝑤𝑃𝑢𝑣𝑙
𝑘
𝑃 (𝑢), (4)

where all the meta-path based neighbors of node 𝑣 will compete to
propagate their labels to 𝑣 .

Then we recombine the predictions from different channels to
calculate the final predictions of MCLP as below:

𝑔𝐺Ω1
(𝑣) =

∑︁
𝑃 ∈P

𝛼𝑃𝑣 𝑙
𝐾
𝑃 (𝑣), (5)

where 𝐾 is the number of layers in MCLP, 𝛼𝑃𝑣 ∈ [0, 1] is a trainable
weight parameter for each pair of node 𝑣 and meta-path 𝑃 with∑
𝑃 ∈P𝛼

𝑃
𝑣 = 1, and 𝑔𝐺Φ1

(𝑣) denotes the final predictions for node 𝑣
by the global inference module.

4.2.2 Local Inference Module. We also design a local-level module
to characterize each node’s local neighborhood. The local module
will predict node labels merely based on every node’s network
schema instance, and thus exclude the influence of meta-path-based
neighbors from potentially different categories.

According to the network schema proximity [29], all the nodes
with different types in a network schema instance tend to be sim-
ilar. To take advantage of this proximity, we assume that besides
the nodes with type 𝑇 , all the nodes with other types can also be
projected into the same label spaceY. Then the nodes in a network
schema instance will have similar labels. Therefore, in order to help
predict the label of node 𝑣 , we will average the label distributions of
all the nodes that are in the same network schema instances with 𝑣
for assistance.

Formally, we first apply a node type-specific transformation to
project the features of different types of nodes into the same space:

h𝑢 =𝑊𝜙 (𝑢) · x𝑢 ,∀𝑢 ∈ V, (6)
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where h𝑢 is the projected feature of node𝑢, x𝑢 is the original feature
of 𝑢, 𝜙 (𝑢) is the type of node 𝑢, and𝑊𝜙 (𝑢) is the type-specific
projection matrix.

Afterward, each node 𝑢 will be projected into a label distribution
𝑝𝑢 ∈ R |Y | by

𝑝𝑢 = softmax(MLP(h𝑢 )), (7)
where MLP(·) is a multi-layer perceptron.

Then we denote the set of nodes that are in the same network
schema instances with 𝑣 asN𝑣 . The labels of every node𝑢 ∈ N𝑣 will
be averaged and then combined with 𝑝𝑣 as the label distribution of
node 𝑣 predicted by the local module:

𝑔𝐿Ω2
(𝑣) = 𝛽𝑣𝑝𝑣 + (1 − 𝛽𝑣)

∑
𝑢∈N𝑣

𝑝𝑢

|N𝑣 |
, (8)

where 𝛽𝑣 ∈ [0, 1] is a node-specific trainable parameter to balance
the two parts of predictions.

4.2.3 The Combination of Global and Local Modules. Finally, the
label distribution of node 𝑣 predicted by the auxiliary system is
computed as

𝑔Ω (𝑣) = 𝛾𝑣𝑔𝐺Ω1
(𝑣) + (1 − 𝛾𝑣)𝑔𝐿Ω2

(𝑣), (9)

where 𝛾𝑣 ∈ [0, 1] is a node-specific trainable parameter to bal-
ance the global module and local module. The pseudo code of our
auxiliary system is provided in Appendix A.

4.3 Post-training Algorithm
To facilitate the cooperation of the two systems, we propose to op-
timize system-level and module-level consistencies, i.e.,minimizing
the prediction gap between HGNN 𝑓Θ and auxiliary system 𝑔Ω , as
well as the gap between global module 𝑔𝐺Ω1

and local module 𝑔𝐿Ω2
.

Given a pretrained HGNN model learned by its original training
objective in Eq. 1, we will then optimize the two systems alterna-
tively. Formally, we will update parameter Ω = {Ω1,Ω2} in the
auxiliary system by

min
Ω

∑︁
𝑣∈V𝑈

dist(𝑓Θ (𝑣), 𝑔Ω (𝑣)) + 𝜆dist(𝑔𝐺Ω1
(𝑣), 𝑔𝐿Ω2

(𝑣)), (10)

where dist(·, ·) denotes the distance function between two label
distributions such as KL divergence or Euclidean distance, and 𝜆 is a
hyper-parameter. We empirically set 𝜆 = 0.3 for all our experiments.

Afterward, we will update parameter Θ of HGNN by

min
Θ

∑︁
𝑣∈V𝑈

dist(𝑓Θ (𝑣), 𝑔Ω (𝑣)) +
∑︁
𝑣∈V𝐿

L(𝑓Θ (𝑣), 𝑦𝑣), (11)

where the second term is the prediction error on labeled set to avoid
trivial solutions, e.g., both systems always predict a specific label
𝑦 ∈ Y.

By iteratively optimizing the two systems, they can learn from
each other and both achieve better generalization ability. Note
that both systems can be used for evaluation after training. We
empirically find that the learned auxiliary system has better predic-
tion accuracies. We name our overall framework as Heterogeneous
Graph Post-training Framework, abbreviated as HGPF. The pseudo
code of HGPF is provided in Appendix A. Note that the unlabeled
node setV𝑈 is further divided into the validation setV𝐷 for model
selection and test set V𝑆 for final evaluation. We empirically set

the maximum number of iterations and epochs 𝑁 = 5 and𝑀 = 150
for all experiments.

4.4 Discussion
4.4.1 Computational Complexity. The time and space complexity
of our framework is linear to the scale of an HIN, i.e., the number of
nodes, edges, features and meta-path instances. In fact, the training
of HGPF is very time efficient. For example, if we apply HGPF on
HAN [21], the running time of HGPF on ACM dataset is about 5
minutes with a single GPU device of GeForce RTX 3090.

4.4.2 System Complementarity. Existing HGNN models can only
have one or two stacked message passing layers to avoid the over-
smoothing issue. In contrast, the MCLP process of our auxiliary
system can be stacked for 8 ∼ 10 layers to achieve better results.
Thus, our auxiliary system can utilize more global information than
typical HGNNs. Besides, many meta-path based HGNN models
such as HAN [21] failed to consider the relationship between nodes
with different types but in the same network schema instances.
Hence the local module of our auxiliary system can also provide
complementary knowledge with HGNNs.

4.4.3 Model Compatibility. Our proposed framework is agnostic
to the architecture of HGNNs, and thus can be integrated with
any HGNN models for implementation. After the post-training
phase, we can offer more accurate predictions and have a high
compatibility in improving HGNN models.

5 EXPERIMENTS
In this section, we will conduct experiments to answer the fol-
lowing research questions: • RQ1: Can HGPF improve HGNNs
on semi-supervised node classification task? • RQ2: How does
HGPF perform compared with SOTA graph algorithms? • RQ3:
How does HGPF perform under different settings, i.e., training ra-
tios, ablated models, and hyper-parameters? • RQ4: How about
the interpretability of learned parameters in the auxiliary system?

5.1 Datasets
We adopt three benchmark datasets including ACM [29], DBLP [3]
and IMDB [3] for evaluation. The detailed statistics and descriptions
are listed in Appendix B. For semi-supervised node classification
task, we randomly choose 20 or 50 labeled nodes per class as the
training set, 50 nodes per class as the validation set, and the remain-
ing nodes as the test set. Following previous HGNNs [3, 14, 21], we
also employMicro-F1 andMacro-F1 as evaluation metrics. For auxil-
iary experiments in Section 5.5, we only report the Micro-F1 metric
on ACM for brevity. For the analysis related to interpretability in
Section 5.6, we will focus on DBLP, which has richer semantics
with the largest numbers of node types, edge types and meta-paths.

5.2 Experimental Settings
Here we only present some key settings and more detailed experi-
mental settings are provided in Appendix D.

5.2.1 System Settings. To prove the effectiveness of HGPF, we
explore four typical HGNN models, including HAN [21], HGT [9],
Simple-HGN [14] and MAGNN [3]. Since the implementation with
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MAGNN is much slower than that with the other three HGNNs,
we only evaluate MAGNN in main experiments. All the HGNNs
are carefully tuned according to our dataset splits, and a sufficient
training can be guaranteed during the pretraining phase. For the
hyper-parameter setting of our auxiliary system, we explore MCLP
layers 𝐾 from 6 to 14, and use a 2-layer MLP with hidden size as
128 in our local module.

5.2.2 Optimization Settings. We will alternatively run the two sys-
tems for 150 epochs in each iteration, and choose the best epoch
and iteration according to the performance on the validation set.

5.2.3 Models for Comparisons. In the experiments, we will con-
sider three models in each group of comparison:

• Pretrain. The pretrained HGNN, i.e., a standard HGNN.
• HGPFself. A variant of HGPF where the auxiliary system is

replaced by the same HGNN without sharing parameters.
• HGPF. The learned auxiliary system HGPFAS in our HGPF.

We omit the subscript of AS for brevity. Note that the performance
of updated HGNN HGPFHGNN will be discussed in RQ3, and HGPF
will refer to learned auxiliary system unless specified.

5.3 Performance on Node Classification (RQ1)
Experimental results on three datasets with four HGNNs are pre-
sented in Table 1 and 2. We bold the best result in each group of
comparison, and have the following observations:

(1) Comparing HGPF with Pretrain, we can find that our learned
auxiliary system consistently outperforms the pretrained HGNN
in all 48 groups of comparisons. The relative improvements of
Micro-F1 andMacro-F1 are respectively 3.90% and 3.94% on average.
Also, the standard derivation of HGPF is about ±0.3 and thus the
improvements are significant. Hence our proposed framework can
be successfully integrated with all four HGNNs, and offer more
accurate predictions.

(2) Comparing HGPF with HGPFself where the auxiliary system
has the same architecture with pretrained HGNN, we can see that
our carefully designed auxiliary system has better performance in
47 out of 48 groups of comparisons. The relative improvements
of Micro-F1 and Macro-F1 are respectively 1.87% and 2.04% on
average. This observation shows that our auxiliary system can
better complement with typical HGNNs, which demonstrates the
effectiveness of our model design.

(3) Comparing HGPFself with Pretrain, though two systems have
the same architecture, we can still get some improvement by our
optimization framework. A possible reason is that the two systems
are optimized into different local minimums, and thus can also com-
plement with each other to some extent. Different from ensemble,
the learned system won’t increase the complexity at test stage.

5.4 Comparison with SOTA GNNs (RQ2)
Besides the four HGNNs used in our HGPF, in this subsection we
conduct experiments to compare with more state-of-the-art GNNs,
including two HGNNs (HGSL [28], HeCo [22]) and three frame-
works (RDD [27], CPF [24], HGNN-AC [10]) that can be applied
on any GNNs. For a fair comparison, we use MAGNN [3] as the
backbone in the three frameworks and our HGPF. Also, since a

recent work [14] mentioned that typical homogeneous GNNs per-
form well for HINs in practice, we add GCN [11] and GAT [20]
for comparison as well. Figure 4 shows the comparison results on
the three datasets with 50 labeled nodes per class. The relative im-
provements of Micro-F1 against best performed baselines on three
datasets are respectively 1.10%, 1.13%, 3.12%, which demonstrates
that our HGPF is the SOTA method for this task. Detailed settings
of the seven baselines are provided in Appendix D.

5.5 Performance under Different Settings
(RQ3)

5.5.1 Analysis of Different Training Ratios. In this subsection, we
conduct experiments under different training ratios to further prove
the robustness of our framework. Specifically, we report the clas-
sification results with 10, 20, 50, and 100 labeled nodes per class.
From Figure 5, we can see that the results of HGPF are consistently
better than both the pretrained HGNN models and HGPFself when
the number of labeled nodes increases. Note that HGPF can even
outperform pretrained HGNNs with only 1/5 or 1/10 labeled data.
For example, the performance of HGPF with 10 labeled nodes per
class is better than that of pretrained HAN with 100 labeled nodes
per class. Hence our framework is stable and effective with different
training ratios.

5.5.2 Ablation Study of HGPF. To further demonstrate the effec-
tiveness of our global and local inference modules, we design two
variants of HGPF:

•HGPFG: The variant of HGPF with only global inference mod-
ule in the auxiliary system.

•HGPFL: The variant of HGPF with only local inference module
in the auxiliary system.

Experimental results on ACM dataset are shown in Figure 6.
We can see that HGPF always has better performance than two
ablated models. Compared with HGPFL, HGPF has 1.23% relative
improvement on average. Hence, although HGPFG performs worst
among the three, the global inference module is still an indispens-
able part of our auxiliary system. This experiment demonstrates
the necessity of both global and local modules.

5.5.3 Analysis of Hyper-parameters. In this subsection, we will
investigate the influence of two key hyper-parameters of HGPF

(1)MaximumNumber of Iterations inHGPF: Figure 7 presents
the classification results of HGPFHGNN and HGPFAS in first 5 itera-
tions. Compared with pretrained HGNN in iteration 0, we can see
that the performance of both updated HGNN and learned auxiliary
system can be effectively improved within 5 iterations. Hence we
empirically set the maximum iteration number 𝑁 = 5.

(2) Number of Layers in MCLP: Figure 8 shows the perfor-
mance of HGPF with label propagation layers 𝐾 ∈ {6, 8, 10, 12, 14}.
We can observe that the performance of HGPF is stable as the layer
number 𝐾 changes within a reasonable range. Even the worst per-
formance with 𝐾 from 6 to 14 has already outperformed pretrained
HGNN and HGPFself. Also, HGPF usually achieves the best perfor-
mance with 𝐾 from 6 to 10, which is much larger than the number
of stacked layers in typical HGNNs and thus enables a much wider
receptive field. By propagating labels instead of representations,
we barely encounter the over-smoothing issue.
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Table 1: Classification performance with HAN [21] and HGT [9].

Models
HAN HGT

Pretrain HGPFself HGPF Pretrain HGPFself HGPF

# Labeled Nodes 20 50 20 50 20 50 20 50 20 50 20 50

ACM
Micro-F1 0.8826 0.8838 0.8949 0.9091 0.9163 0.9271 0.8693 0.8701 0.8835 0.8852 0.9173 0.9177
Macro-F1 0.8785 0.8864 0.8901 0.9054 0.9165 0.9280 0.8679 0.8699 0.8827 0.8807 0.9173 0.9174

DBLP
Micro-F1 0.9092 0.9217 0.9251 0.9300 0.9280 0.9349 0.8941 0.9256 0.9011 0.9317 0.9084 0.9342
Macro-F1 0.9038 0.9165 0.9220 0.9242 0.9258 0.9287 0.8871 0.9229 0.8925 0.9239 0.8995 0.9275

IMDB
Micro-F1 0.4581 0.4809 0.4629 0.5060 0.4879 0.5149 0.4600 0.5067 0.4672 0.5117 0.4724 0.5286
Macro-F1 0.4346 0.4817 0.4574 0.5059 0.4792 0.5189 0.4540 0.5123 0.4623 0.5139 0.4611 0.5328

Table 2: Classification performance with Simple-HGN [14] and MAGNN [3].

Models
Simple-HGN MAGNN

Pretrain HGPFself HGPF Pretrain HGPFself HGPF

# Labeled Nodes 20 50 20 50 20 50 20 50 20 50 20 50

ACM
Micro-F1 0.8816 0.8865 0.8945 0.8994 0.9179 0.9216 0.8776 0.8831 0.8917 0.9022 0.9157 0.9179
Macro-F1 0.8815 0.8881 0.8895 0.8943 0.9179 0.9210 0.8715 0.8824 0.8923 0.9014 0.9112 0.9173

DBLP
Micro-F1 0.9108 0.9253 0.9245 0.9315 0.9279 0.9366 0.9121 0.9223 0.9271 0.9322 0.9291 0.9359
Macro-F1 0.9026 0.9249 0.9152 0.9286 0.9177 0.9316 0.9056 0.9228 0.9234 0.9269 0.9252 0.9295

IMDB
Micro-F1 0.4698 0.5109 0.4798 0.5318 0.4925 0.5412 0.4518 0.5090 0.4877 0.5173 0.4962 0.5292
Macro-F1 0.4562 0.5141 0.4522 0.5296 0.4874 0.5396 0.4515 0.5119 0.4880 0.5204 0.4921 0.5256

(a) ACM (b) DBLP (c) IMDB

Figure 4: Performance of HGPF and seven state-of-the-art GNNs and HGNNs on the three datasets.

5.6 Interpretability Analysis (RQ4)
To answer RQ4, we conduct experiments on DBLP dataset, and
investigate whether the learned auxiliary system can properly as-
sign label recombination weights to different components. Specif-
ically, we focus on analyzing the learned balance parameters in
Eq. 9, 5 and 8, i.e., 𝛾𝑣 between global and local modules, 𝛼𝑃𝑣 among
meta-paths, 𝛽𝑣 between a node itself and its network schema-based
neighbors. We will average the balance parameters over all nodes,
and report the results in Figure 9. From the results, we have the
following observations:

(1) As shown in Figure 9(a), we can see that average 𝛾𝑣 will in-
crease with the number of labeled nodes, which indicates that the
global module becomes more important as training ratio increases.

Note that the global module will propagate labels from labeled
nodes to unlabeled ones for inference. Thus, more labeled nodes
will help propagate more accurately and improve the importance
of the global module. In contrast, the local module is based on node
features and local network schema instances, which are less sensi-
tive to the number of labeled nodes. Therefore, our proposed HGPF
can automatically adjust the importance of global/local modules.

(2) As shown in Figure 9(b), we find that the meta-path (APVPA)
always gets the largest weight 𝛼𝑃𝑣 among the three. The partial
order APVPA>APA>APTPA is consistent and independent with
the choice of HGNNs. Note that the labels of authors in DBLP
dataset are determined by their research areas. Hence meta-path
APVPA which links two authors publishing papers in the same
venue will be more suitable to propagate labels than the other two
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(a) HAN (b) HGT (c) Simple-HGN

Figure 5: Classification performance on ACM dataset under different training ratios.

(a) 20 labeled nodes per class. (b) 50 labeled nodes per class.

Figure 6: Ablation study on global/local modules on ACM.

(a) 20 labeled nodes per class (b) 50 labeled nodes per class

Figure 7: Performance of HGPFHGNN and HGPFAS in 5 iter-
ations on ACM dataset. Iteration 0 indicates the pretrained
HGNN. Legend example: HANAS represents the learned aux-
iliary system HGPFAS based on HAN.

meta-paths. This observation demonstrates that our global module
is able to automatically adjust the weights of different meta-paths.

(3) When we apply HGPF on HAN, HGT and Simple-HGN, the
averages of 𝛽𝑣 are 0.4734, 0.4555, 0.4221, respectively. Hence a node
and its network schema-based neighbors are almost equally impor-
tant in our local module, which reflects the necessity of utilizing
nodes in the same network schema instances for modeling.

6 CONCLUSION
In this paper, we propose a post-training framework HGPF to im-
prove HGNNs for semi-supervised node classification. To alleviate
the limitations of HGNNs, we design an auxiliary system with a
complementary prediction mechanism: a global inference module
based on multi-channel label propagation and a local inference
module based on network schema-aware prediction. Two levels of

(a) 20 labeled nodes per class (b) 50 labeled nodes per class

Figure 8: Performance of HGPF with different layer num-
bers in MCLP. Legend example: HAN represents the learned
auxiliary system HGPFAS based on HAN.

(a) Average 𝛾𝑣 (b) Average 𝛼𝑃
𝑣

Figure 9: Analysis of learned balance parameters, including
𝛾𝑣 between global and local modules and 𝛼𝑃𝑣 among meta-
paths. We report the averages of 𝛾𝑣 and 𝛼𝑃𝑣 over all nodes.

consistency can encourage the cooperation between two systems.
Experimental results on three benchmark datasets with four typical
HGNNs demonstrate the effectiveness of HGPF. For future work,
an interesting direction is to generalize our framework for other
graph tasks (e.g., link prediction and clustering) or graph types (e.g.,
dynamic and heterophily graphs) with proper auxiliary systems.
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A PSEUDO CODE
Alg. 1 and 2 show the pseudo code of our auxiliary system and the
entire framework HGPF, respectively.

Algorithm 1: The Implementation of auxiliary system
Input :HIN G = {V, E,T ,R, 𝜙, 𝜑},

node features X = {x𝑣 |∀𝑣 ∈ V},
target node type 𝑇 ∈ T ,
labeled node setV𝐿 ⊂ V𝑇 ,
unlabeled node setV𝑈 = V𝑇 \ V𝐿 ,
metapath set P,
number of layers 𝐾 in the global module;

Output :Predicted label distribution 𝑔Ω (𝑣) for every
unlabeled node 𝑣 ∈ V𝑈 ;

// Global Inference Module:

1 for 𝑃 ∈ P do
2 Initialize the label prediction 𝑙0

𝑃
(𝑣) for 𝑣 ∈ V𝑇 by Eq. 2;

3 for 𝑘 = 1, 2 . . . 𝐾 do
4 for 𝑣 ∈ V𝑈 do
5 Update the label prediction of 𝑣 by Eq. 4;
6 end
7 end
8 end
9 for 𝑣 ∈ V𝑈 do
10 Combine the predictions from different channels as the

global-level output by Eq. 5;
11 end

// Local Inference Module:

12 for 𝑣 ∈ V do
13 Perform type-specific feature transformation by Eq. 6;
14 Perform label projection by Eq. 7;
15 end
16 for 𝑣 ∈ V𝑈 do
17 Compute the local-level output by Eq. 8:
18 end

// Combination of Two Modules:

19 for 𝑣 ∈ V𝑈 do
20 Compute the prediction of auxiliary system by Eq. 9;
21 end

B DETAILS AND STATISTICS OF DATASETS
Table 3 shows the statistics of three datasets, and the detailed de-
scriptions about the three datasets are as follows:

• ACM1 [29] is a citation network with the target node type as
Paper (P). All the papers in the HIN are divided into three classes:
database, wireless communication, and data mining. We use the
bag-of-words representations of keywords as the node features of
paper nodes.

• DBLP2 [3] is a bibliography website of computer science. The
target node type is Author (A), and the authors are divided into four
classes according to their research areas (database, data mining,
1https://github.com/Andy-Border/NSHE
2https://github.com/cynricfu/MAGNN

Algorithm 2: The Overall Framework of HGPF
Input :HIN G = {V, E,T ,R, 𝜙, 𝜑},

node features X,
labeled node setV𝐿 ⊂ V𝑇 ,
unlabeled node setV𝑈 = V𝑇 \ V𝐿 ,
validation node setV𝐷 ⊂ V𝑈 ,
test node setV𝑆 = V𝑈 \ V𝐷 ,
number of iterations 𝑁 , number of epochs𝑀 ;

Output :Trained node label predictors 𝑓Θ, 𝑔Ω .
1 Pretrain the HGNNs with labeled node setV𝐿 by Eq. 1;
2 for 𝑖 = 1, 2 . . . 𝑁 do
3 for 𝑒𝑝𝑜𝑐ℎ = 1, 2 . . . 𝑀 do
4 Update parameter Ω of auxiliary system by Eq. 10;
5 Evaluate Ω on validation setV𝐷 ;
6 end
7 Select Ω as the epoch with the best performance on V𝐷 ;
8 for 𝑒𝑝𝑜𝑐ℎ = 1, 2 . . . 𝑀 do
9 Update parameter Θ of HGNNs by Eq. 11;

10 Evaluate Θ on validation setV𝐷 ;
11 end
12 Select Θ as the epoch with the best performance on V𝐷 ;
13 end

artificial intelligence, and information retrieval). The features of
authors are also described by bag-of-words representations of their
paper keywords.

• IMDB3 [3] is a website about movies and television programs.
We use an HIN with the target node type as Movie (M). All the
movies are labeled as one of three classes (action, comedy, and
drama) according to their genres. The features of movies are de-
scribed by a bag-of-words representation of its plot keywords.

For all three datasets, the features of nodes with other types are
one-hot vectors.

C IMPLEMENTATION DETAILS
We implement HGPF based on PyTorch and Deep Graph Library
(DGL)4. For all experiments, we employ the GPU device of GeForce
RTX 2080 and 3090.

D DETAILS OF EXPERIMENTAL SETTINGS
In this section, we will describe detailed settings of our HGPF.

D.1 HGNNs Settings
In this subsection, we provide the detailed settings of the four
HGNNs used in our HGPF.

•HAN [21] is an HGNN model which learns meta-path-specific
node representations by leveraging node-level attention and semantic-
level attentionmechanism.We use 8 attention heads and 64-dimensional
hidden size in our experiments.

• HGT [9] is a transformer-based HGNN model with hetero-
geneous subgraph sampling. We employ a 2-layer HGT with 4 to

3https://github.com/cynricfu/MAGNN
4https://github.com/dmlc/dgl
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Table 3: Dataset statistics with more details.

Dataset # Nodes # Edges # Features # Meta-paths # Classes # Training # Validation # Test

ACM
Author (7167)
Paper (4019)
Subject (60)

P-A (13407)
P-S (4019) 1902 P-A-P

P-S-P 3 20 × 3
50 × 3

50 × 3
50 × 3

3809
3719

DBLP

Author (4057)
Paper (14328)
Term (7723)
Venue (20)

P-A (19645)
P-T (85810)
P-V (14328)

334
A-P-A

A-P-V-P-A
A-P-T-P-A

4 20 × 4
50 × 4

50 × 4
50 × 4

3777
3657

IMDB
Movie (4278)
Director (2081)
Actor (5257)

M-D (4278)
M-A (12828) 3066 M-A-M

M-D-M 3 20 × 3
50 × 3

50 × 3
50 × 3

4068
3978

8 attention heads and 256-dimensional hidden size in our experi-
ments.

• Simple-HGN [14] is an improved version of GAT [20] with
learnable edge-type embedding and residual connections. In our
experiments, we use a 2-layer Simple-HGN with attention heads
from 4 to 8, hidden size from {64, 128, 256} and 32-dimensional
edge-type embedding.

• MAGNN [3] is an improved HAN with several meta-path
encoders to embed all the nodes along a meta-path. In our exper-
iments, we use 8 attention heads, hidden size from {64, 128, 256},
attention vector dimension from {32, 64, 128}, and batch size from
{16, 32, 64, 128, 256, 512}.

For the pretraining settings of HGNNs, we will run HGNN mod-
els for 150 epochs, and choose the best epoch according to the
performance on the validation set. For hyper-parameter settings,
we use dropout rate from 0.2 to 0.8, learning rate from 0.001 to 0.05,
and weight decay of Adam optimizer from {0, 0.0001, 0.0005, 0.001}.

We also tried GTN [25], but omit its results since GTN performs
worse (either with or without HGPF) than the above four HGNNs
under our experimental settings.

D.2 Auxiliary System Settings
We explore dropout rate of local module from {0.4, 0.5, 0.6, 0.7},
and use Adam optimizer with learning rate as 0.01 for training, the
weight decay of the optimizer is set as 0.0005 for ACM/IMDB and 0
for DBLP.

D.3 Optimization Settings
For distance functions, we use Euclidean distance between two
systems, and KL-divergence between global and local modules in
Eq. 10. For Eq. 11, we employ the KL-divergence function. We use
Xavier normal distribution to initialize parameters.

D.4 Detailed Settings in Section 5.4
In this subsection, we provide the detailed settings of the models
in Section 5.4.

• GCN [11]: We set hidden size 𝑘 = 128 for all datasets. For
ACM, we set layers 𝐿 = 2, we set layers 𝐿 = 3 for DBLP and IMDB.

• GAT [20]: We set hidden size 𝑘 = 64 , layers 𝐿 = 3, the number
of attention heads 𝑛 = 4 and negative slope 𝑠 = 0.05 for all datasets.

• CPF [24]: We set hidden size 𝑘 = 64, LP layers 𝐿 = 5, MLP
layers 𝑙 = 2 for all datasets.

• RDD [27]: We set hidden size 𝑘 = 64, parameters 𝛾 = 3 and
𝛽 = 10 for all datasets.

• HGNN-AC [10]: We employ MAGNN as the backbone of
HGNN-AC, and we set hidden size 𝑘 = 128, attention vector size
𝑎 = 128, and the number of attention heads 𝑛 = 8 for all datasets.
For DBLP, we set the batch size 𝑏𝑧 = 8.

• HeCo [22]: We set hidden size 𝑘 = 256 for ACM and IMDB,
for DBLP, we set 𝑘 = 64.

• HGSL [28]: We set hidden size 𝑘 = 64 for DBLP, for ACM and
IMDB, we set 𝑘 = 256. We set the number of heads ℎ = 2 for all
datasets.

D.5 Detailed Settings in Section 5.6
For 𝛾𝑣 between global and local modules in Eq. 9: We conduct
experiments by gradually increasing the number of labeled nodes,
and report the changing trend of the average of 𝛾𝑣 over all node
𝑣 ∈ V𝑇 .

For 𝛼𝑃𝑣 among meta-paths in Eq. 5: To prove that our global in-
ference module is capable of identifying the importance of different
meta-paths, we report the average of 𝛼𝑃𝑣 over all node 𝑣 ∈ V𝑇 for
every meta-path 𝑃 . Here we use 100 labeled nodes per class for
training, because there are larger weights of the global module (i.e.,
𝛾𝑣 ) under this setting and the difference of 𝛼𝑃𝑣 will contribute more
to the final prediction of auxiliary system. In addition, we also mark
the standard deviation of 𝛼𝑃𝑣 on each column in Figure 9(b). We
can see that the weights of different nodes can vary greatly, which
means that it is necessary to use node-specific balance parameters
for modeling.

For 𝛽𝑣 which balances the importance of the label distribution
of a node itself and its network schema-based neighbors in Eq. 8:
We also use 100 labeled nodes per class as 𝛼𝑃𝑣 for training for con-
sistency.

E TIME AND MEMORY COST OF HGPF
We report the time cost to run a single epoch for the four HGNNs
and AS on the ACM dataset in Table 4. The running speed of AS is
second only to SimpleHGN and much faster than that of MAGNN
and HGT. In addition, we also compared the memory consumption
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of HGPF and pretrained HGNNs on the ACM dataset in Table 5.
The memory cost of HGPF is similar to that of pretrained HGNNs,
which indicates that the memory overhead of HGPF is negligible.

Table 4: Training time per epoch.

HAN MAGNN SimpleHGN HGT AS

Time 0.185s 0.581s 0.093s 0.331s 0.171s

Table 5: Memory cost during training.

HAN MAGNN SimpleHGN HGT

Pretrain 4591MB 9108MB 3865MB 5791MB

HGPF 4665MB 9243MB 3873MB 5846MB

F CASE STUDY
As illustrated in the introduction section, there are two types of
nodes difficult to predict by HGNNs: (1) nodes far from training
nodes of same category; (2) nodes with more training nodes from
different categories than the same category in the receptive field.
Here we present case study for such “hard nodes” to show the
effectiveness of HGPF. We select two representative nodes from
each type on ACM dataset for analysis: HAN predicts these cases
incorrectly, while HGPF can predict their accurate labels.

Case 1 (ID 2883): The node has a distance greater than 4 from
all training nodes of the same category. In HGPF, the node-specific
balance parameter 𝛾𝑣 = 0.59, which means that the prediction of
this case is more dependent on the global module to capture more
information from remote training nodes. And themeta-path balance
parameter 𝛼𝑃𝐴𝑃𝑣 = 0.41, 𝛼𝑃𝑆𝑃𝑣 = 0.59, which means meta-path PSP
is more helpful for this case.

Case 2 (ID 2948): Similar to case 1, there is no training node
with a distance less than or equal to 4 from this node. The parameter
𝛾𝑣 of this case is 0.73, the prediction of global module also has larger
weight than local module. And the meta-path balance parameter
𝛼𝑃𝐴𝑃𝑣 = 0.49, 𝛼𝑃𝑆𝑃𝑣 = 0.51, which means that both meta-paths PAP
and PSP are important for this node.

Case 3 (ID 3499): Among the 4-hop neighbors of this case, the
numbers of training nodes with label 0, 1, and 2 are 4, 20, and
3 respectively, and HAN incorrectly predicts it as label 1, since
the training node neighbors with label 1 disturb the prediction of
HGNNs. For HGPF, the 𝛾𝑣 of this case is 0.31, which means that the
local module play a more important role in the prediction of this
case than global module. The network schema based local module
can effectively reduce the noise cause by training node neighbors
from different categories.

Case 4 (ID 3032): Similar to case 3, in its 4-hop neighborhood,
the number of training nodes with label 0, 1, and 2 are 15, 1, and
12 respectively. In this case, the 𝛾𝑣 of this case is only 0.13, the
prediction highly relies on the local module to reduce the noise
from training node neighbors from different categories.

As shown from the above case studies, for HGPF, the prediction
of case 1 and case 2 (type 1) is more dependent on the global infer-
ence module, while the prediction of case 3 and case 4 (type 2) is
more dependent on the local inference module, which is consistent
with our motivation.
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