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ABSTRACT
Retrieval models based on dense representations in semantic space
have become an indispensable branch for first-stage retrieval. These
retrievers benefit from surging advances in representation learning
towards compressive global sequence-level embeddings. However,
they are prone to overlook local salient phrases and entity men-
tions in texts, which usually play pivot roles in first-stage retrieval.
To mitigate this weakness, we propose to make a dense retriever
align a well-performing lexicon-aware representation model. The
alignment is achieved by weakened knowledge distillations to en-
lighten the retriever via two aspects – 1) a lexicon-augmented con-
trastive objective to challenge the dense encoder and 2) a pair-wise
rank-consistent regularization to make the dense model’s behav-
ior incline to the other. We evaluate our model on three public
benchmarks, which shows that with a comparable lexicon-aware
retriever as the teacher, our proposed dense one can bring con-
sistent and significant improvements, and even outdo its teacher.
In addition, we show our lexicon-aware distillation strategies are
compatible with the standard ranker distillation, which can further
lift state-of-the-art performance.1
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1 INTRODUCTION
Large-scale passage retrieval [2] aims to fetch relevant passages
from a million- or billion-scale collection for a given query to meet
users’ information needs, serving as an important role in many
downstream applications including open domain question answer-
ing [20], search engine [56], and recommendation system [54], etc.
Recent years have witnessed an upsurge of interest and remarkable
performance of dense passage retrievers on first-stage retrieval.
Built upon powerful pre-trained language models (PLM) [9, 30, 36],
dense retrievers [20, 35, 49] encode queries and passages into a
joint low-dimensional semantic space in a Siamese manner (i.e.
dual-encoder), so that the passages could be offline pre-indexed
and query could be encoded online and searched via approximate
nearest neighbor [19], reaching an efficiency-effectiveness trade-off.

Although dense retrieval becomes indispensable in modern sys-
tems, a long-term challenge is that the dense representations in
a latent semantic space are abstractive and condensed, exposing
the systems to a risk that pivot phrases and mentions may be
overlooked and thus leading to sub-optimal efficacy. For exam-
ple, DPR [20] didn’t regard “Thoros of Myr” as an entity mention
in the query “Who plays Thoros of Myr in Game of Thrones?”. Anal-
ogously, given the query “What is an active margin”, ANCE [49]
overlooked the “active margin” as an entire local salient phrase and
hence retrieved passages related to the financial term “margin”. As
a remedy, prior works resort to either coupling a dense retriever
with the term matching scores (e.g., TF-IDF, BM25) [7, 14, 26, 33] or
learning BM25 ranking into a dense model as additional features to
complement the original one [4]. But, these approaches are limited
by superficial combinations and almost unlearnable BM25 scoring.

To circumvent demerits from the superficial hybrid or learn-
ing with inferior lexicon-based representations upon PLM, we
propose a brand-new lexicon-enlightened dense (LED) retriever
learning framework to inject rich lexicon information into a single
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dense encoder, while keeping its sequence-level semantic repre-
sentation capability. Instead of prevailing BM25 as lexicon-rich
sources, we propose to leverage the recently advanced lexicon-
centric representation learning model transferred from large-scale
masked language modeling (MLM), and attempt to align a dense
encoder with two brand-new weakened distilling objectives. On
the one hand, we present lexicon-augmented contrastive learning
that incorporates the hard negatives provided by lexicon-aware
retrievers for contrastive training. Intuitively, the negatives given
by the lexicon-aware models could be regarded as adversarial ex-
amples to challenge the dense one, so as to transfer lexical knowl-
edge to the dense model. On the other hand, inspired by previous
work [1, 8], we propose a pair-wise rank-consistent regularization
as a weak supervision to guide dense model’s behavior incline to
the lexicon-aware ones. Compared to distribution regularization
such as KL-divergence [53] and strict fine-grained distillation like
Margin-MSE [16], LED provides weak supervision signals from the
lexicon-aware retrievers, leading to desirable partial knowledge
injection while maintaining the dense retriever’s own properties.

We evaluate our method on three real-world human-annotated
benchmarks. Experimental results show that our methods consis-
tently and significantly improve dense retriever’s performance,
even outdoing its teacher. Notably, these significant improvements
are brought by the supervision of a performance-comparable lexicon-
aware retriever. Besides, a detailed analysis of retrieval results
shows that our knowledge distillation strategies indeed equip the
dense retriever with lexicon-aware capabilities. Lastly, we show
our lexicon-aware distillation strategies are compatible with the
standard ranker distillation, achieving further improvement and a
new state-of-the-art performance.

Our contributions are three-fold: (1) We consider improving the
dense retriever by imitating the retriever based on the lexicon-aware
representation model upon PLM; (2) We propose two strategies
including lexicon-augmented contrastive training and pair-wise
rank-consistent regularization to inject lexical knowledge into the
dense retriever; (3) Evaluation results on three benchmarks show
that our method brings consistent and significant improvements to
the dense retriever with a comparable lexicon-aware retriever as a
teacher and a new state-of-the-art performance is achieved.

2 RELATEDWORK
Current passage retrieval systems are widely deployed as retrieve-
then-rank pipelines [18, 56]. The first-stage retriever (i.e., dual-
encoder) [27, 29, 35, 38, 47, 49] selects a small number of candidate
passages (usually at most thousands) from the entire collection,
and the second-stage ranker (i.e., cross-encoder [55]) scores these
candidates again to provide a more accurate passages order. In this
paper, we focus on enhancing the first-stage retriever.

Dense Retriever. Built upon Pre-trained Language Models [9,
30], dense retriever [20, 35] is to capture the semantic meaning of
an entire sequence by encoding sequential text as a continuous
representation into a low-dimensional space (e.g., 768). In this way,
the dense retriever could handle vocabulary and semantic mismatch
issues within the traditional term-based techniques like BM25 [40].
To train a better dense retriever, various techniques are proposed for
providing hard negatives including reusing in-batch negatives [20,

31, 35], iteratively sampling [49], mining by a well-trained model
or dynamic sampling [52, 53], and denoising by cross-encoder [35].
To build retrieval-specific pre-trained language models, Lee et al.
[23] proposed an unsupervised pre-training task, namely Inverse
Cloze Task (ICT), Gao and Callan [12] decoupled model architecture
during pre-training and further designed corpus-level contrastive
learning [13] for better passage representations.

Lexicon-Aware Retriever. Another paradigm of work [11, 14,
26] takes advantage of strong PLMs to build lexicon-aware sparse
retrievers by term-importance [7, 26] and top coordinate terms [10,
11]. These models have lexical properties and could be coupled
with inverted indexing techniques. Based on contextualized rep-
resentation generated by PLMs [9], Dai and Callan [7] learned
to estimate individual term weights, Mallia et al. [33] further op-
timized the sum of query terms weights for better term interac-
tion, COIL-series works used token-level interactions on weight
vector [14] or scalar [26] to obtain exact word matching scores,
and Formal et al. [10, 11] trained a retriever encoding passages as
vocabulary-size highly sparse embeddings. Recently, Chen et al. [4]
trained a PLM-based retriever from scratch with data generated by
BM25. The trained lexicon-aware retriever could encode texts as
low-dimensional embeddings and have identical lexical properties
and comparable performance with BM25.

Hybrid Retriever. Arguably, dense sequence-level retrievers
and lexicon-aware retrievers have distinctive pros and are com-
plementary to each other. This fact triggered researchers to investi-
gate how to combine their advantages, such as direct score aggre-
gation [22], weighted sum [25, 26, 28, 31, 46], multiplication [50],
or concatenation [4, 32, 43] in an ensemble system. The above
hybrid retrievers require two dense and lexical retrievers to first
compute individually and then combine their results in feature-
level [4, 32, 43] or relevance-score-level [22, 25, 26, 28, 31, 46, 50]
to obtain a final result. In contrast, our method only needs one
model to achieve both dense and lexicon-aware retrieval behaviors,
significantly decreasing the memory footprint and inference speed
meanwhile providing a more in-depth fusion of lexicon-aware and
dense retrieval views.

KnowledgeDistillation. Cross-encoder empirically outperforms
dual-encoder for it inputs query and passage as a whole, so that
attention mechanism will be applied between them, leading to in-
depth token-level interactions. Its superior performance motivates
many works [16, 53] to enhance dual-encoders by knowledge dis-
tillation from cross-encoder. KL-Divergence, which minimizes the
distances of distributions between teacher and student, has proven
effective inmanyworks [42, 53]. Margin-MSE [16] aims tominimize
the difference of margins in two passages, and it’s been applied in
later works [10, 17]. Reddi et al. [37] used the teacher’s top passages
as positive examples to teach students point-wisely. ListNet [3, 48]
ensured the consistency of list-wise ranking order by minimizing
the difference in score distributions over passages.

The above methods are designed for the cross-encoder teacher
that is much stronger than the dense student. But in our situa-
tion, the lexicon-aware teacher can only achieve comparable per-
formance with a dense retriever. In practice (i.e., Tab. 2), we find
that existing distillation methods may not be perfect choices in our
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Figure 1: The training framework of our LED retriever. The Lexical teacher is independently trained following a two-stage pro-
cess. After warming up, LED is trained with negatives mined by self and two lexicon-aware retrievers for lexicon-augmented
contrastive learning, during which the Lexical Model (𝜃 lex2) enhances LED with pair-wise rank-consistent regularization.

setting. Therefore, we propose two novel strategies, namely lexicon-
augmented contrastive training and pair-wise rank-consistent reg-
ularization to transfer lexical knowledge.

3 METHODOLOGY
We first introduce the task formalization, general training frame-
work, and retriever architectures in Sec. 3.1. Then we present our
Lexical- Enlightened Dense (LED) retriever in Sec. 3.2.

3.1 Preliminary
Task Definition. In the first-stage retrieval, given a query 𝑞, a

retriever is required to fetch top-𝑘 relevant passages from a million-
even billion-scale passage collection C. Due to the efficiency re-
quirement, dual-encoder architecture is widely applied in this task
for its lightweight metric calculation. Formally, dual-encoder rep-
resents text 𝑥 (could be query 𝑞 or passage 𝑝) to 𝑑-dimensional
embeddings, i.e.,

𝒙 = Dual-Enc (𝑥 ;𝜃 ) ∈ R𝑑 , (1)

where 𝜃 could be dense retriever (𝜃den) or lexicon-aware retriever
(𝜃 lex). With separately encoded query 𝒒 and passage 𝒑, we could
calculate the relevance score via dot product for retrieval, i.e.,

R(𝑞, 𝑝;𝜃 ) = 𝒒𝑇𝒑. (2)

The dual-encoder architecture and lightweight dot product evalua-
tion enable us to encode and index all passages in the collection C
beforehand, so we only need to encode the given query for online
retrieval, achieving more efficiency.

Learning Framework for Retriever. To train the dual-encoder
𝜃 , we utilize contrastive learning following previous works [15, 49].
Specifically, with a given query 𝑞, a labeled positive passage 𝑝+, and
negative passages N , contrastive loss can be applied to optimize
the dual-encoder 𝜃 by maximizing the relevance of the 𝑞 and 𝑝+

while minimizing that of 𝑞 and 𝑝 ∈ N , i.e.,

L𝑐𝑙
𝜃

= − log
exp(R(𝑞, 𝑝+;𝜃 ))∑

𝑝∈{𝑝+ }∩N exp(R(𝑞, 𝑝;𝜃 )) , (3)

where negative passage set N can be generated from top-ranked
non-answer passages in retrieval results of BM25 model [34] or a
trained retrievers [52, 53], i.e.,

N =
{
𝑝 | 𝑝 ∼ 𝑃

(
C\

{
𝑝+

}
| 𝑞;𝜃 samp)} , (4)

where 𝑃 is a probability distribution over C, which can be defined
as non-parametric (e.g., 𝜃 samp = ⊘) or parametric (e.g., 𝜃 samp ≠ ⊘).

Dense & Lexicon-Aware Retrievers. Both dense retriever (𝜃den)
and lexicon-aware retriever (𝜃 lex) follow dual-encoder architecture
and the encoders are built upon PLMs like BERT [9]. Precisely, a
PLM (𝜃plm) encodes a given text (i.e., query 𝑞 or passage 𝑝), 𝑥 =

{𝑡1, 𝑡2, ...𝑡𝑛}, to contextualized embeddings, i.e.,

𝑯𝑥 = PLM(𝑥 ;𝜃plm)

= PLM
(
[CLS], 𝑡1, 𝑡2, ..., 𝑡𝑛, [SEP];𝜃plm

)
,

(5)

eventually 𝑯𝑥 = [𝒉𝑥[CLS] ,𝒉
𝑥
1 , ...,𝒉

𝑥
𝑛,𝒉

𝑥
[SEP] ]. [CLS] and [SEP] are

special tokens designed for sentence representation and separation
by recent PLMs [9, 30]. Dense retriever [35, 49] represents text by
using the embedding of special token [CLS] (i.e., 𝒉𝑥[CLS] ) as follows,

𝒙den = Dual-Enc(𝑥 ;𝜃den) = CLS-Pool(𝑯𝑥 ), (6)

where 𝜃den = 𝜃plm with no additional parameters.
For lexicon-aware retriever, we adopt SPLADE [10] which learns

to predict the weights of terms in PLM vocab for each token in the
input 𝑥 by the Masked Language Modeling (MLM) layer and sparse
regularization, then max-pooling these weights into a discrete text
representation after log-saturation. Formally, with 𝑯𝑥 encoded by
the PLM (𝜃plm), a MLM layer (𝜃mlm) linearly transform it into 𝑯̃

𝑥 ,
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then term weight representation of 𝑥 could be obtained as follows,

𝒙 lex = Dual-Enc(𝑥 ;𝜃 lex)

= MAX-Pool(log(1 + ReLU(𝑾𝑒 · 𝑯̃𝑥 ))),
(7)

where𝑾𝑒 ∈ R |𝑉 |×𝑒 is the transpose of the input embedding matrix
in PLM as the MLM head, and the 𝜃 lex = {𝜃plm, 𝜃mlm,𝑾𝑒 }.

The dense encoder represents texts as global sequence-level
embeddings and is good at global semantic matching, while the
lexicon-aware encoder represents local term-level embeddings and
handles salient phrases and entity mentions well. Both encoders
can be optimized with the Eq. 3.

3.2 Lexical Enlightened Dense Retriever
Fig. 1 illustrates the training workflow of our LED retriever. Specif-
ically, we follow a two-stage training procedure. In the Warmup
stage, we independently train the dense and lexicon-aware retriev-
ers by Eq. 3, both with BM25 negatives (Nbm25). This stage ends
up with two retrievers, namely the Lexical Warm-up (𝜃 lex1) and the
Dense Warm-up (𝜃den1).

Then, we sample negative passages (N lex1) with the Lexcial
Warm-up checkpoint (𝜃 lex1) for the second stage, namely Contin-
ual Training stage. With the fixed negative passages (N lex1), we
continually train the lexical retriever initialized from the warm-up
checkpoint (𝜃 lex1) by Eq. 3. After the second stage, we could obtain
the model named Lexical (𝜃 lex2), which plays a role of a teacher for
later lexical knowledge teaching.

With a well-trained lexicon-aware teacher (𝜃 lex2) and dense stu-
dent after warming up (𝜃den1), we enlighten the student by trans-
ferring knowledge from the teacher. The knowledge transfer is
achieved from two perspectives – 1) a lexicon-augmented con-
trastive objective to challenge the dense encoder and 2) a rank-
consistent regularization to make the dense model’s behavior in-
clined to its lexicon-aware teacher. We will detail the two objectives
in the following paragraphs.

Lexicon-AugmentedContrastive. Following previouswork [52],
we use the dense negatives (Nden1) sampled by the Dense Warm-
up (𝜃den1) to boost dense retrieval. Meanwhile, inspired by Chen
et al. [4] who trained a lexical retriever with negatives provided by
term-based techniques such as BM25, we try to enhance the dense
retriever from the negatives augmentation perspective.

Considering the similar backbone (i.e., both are fine-tuned on
PLMs) and the same optimization objectives (i.e., Eq. 3) of both
dense and lexicon-aware retrievers, their significant differences in
retrieval behaviors may partially stem from training with different
negative passages. So intuitively, dense one can use the lexical neg-
atives (N lex1) to partially imitate the training process of the lexical
teacher (𝜃 lex2), thus learning lexicon-aware ability. One step further,
we use the lexical negatives (N lex2) for learning more and harder
lexical knowledge. Meanwhile, compared to the dense negatives
(Nden1), these lexical negatives (N lex1 andN lex2) can provide more
diverse examples and could be regarded as adversarial examples to
challenge the dense retriever for robust retriever training. Formally,

the lexicon-augmented contrastive loss for LED is,

L𝑐𝑙

𝜃 led = − log
exp(R(𝑞, 𝑝+;𝜃 led))∑

𝑝∈{𝑝+ }∩Nmix exp(R(𝑞, 𝑝;𝜃 led))
, (8)

where Nmix = {N lex1 ∩ N lex2 ∩ Nden1}.

Rank-Consistent Regularization. From the retrieval behav-
ior perspective, for given query-passage pairs, we utilize the lexicon-
aware teacher (𝜃 lex2) to generate ranking pairs to regularize and
guide LED’s retrieval behavior.

Specifically, given a query 𝑞 and passages from D𝑞 = {𝑝 ∈
{𝑝+} ∩ Nmix}, the Lexical (𝜃 lex2) scores each query-passage pair
(abbr. R(𝑝 ;𝜃 lex2)) with Eq. 2 and generate ranking pairs as follows,

K𝑞 =

{
(𝑝𝑖 , 𝑝 𝑗 ) |𝑝𝑖 , 𝑝 𝑗 ∈ D𝑞, R(𝑝𝑖 ;𝜃 lex2) > R(𝑝 𝑗 ;𝜃 lex2)

}
. (9)

Then, a pair-wise rank-consistent regularization is employed to
make the dense model’s behavior incline to the lexicon-aware one
by minimizing the following margin-based ranking loss,

L𝑙𝑙

𝜃 led =
1

| K𝑞 |
∑︁

𝑝𝑖 ,𝑝 𝑗 ∈K𝑞

max[0, R(𝑝𝑖 ;𝜃 led) − R (𝑝 𝑗 ;𝜃 led) ], (10)

where R(𝑝;𝜃 led) is the abbrivation of relevance R(𝑞, 𝑝;𝜃 led) cal-
culated by LED (𝜃 led) with Eq. 2. Compared to logits distillation
with a list-wise KL-divergence loss, our training objective provides
a weak supervision signal pair-wisely, thus keeping the effects of
injecting lexical knowledge on dense properties at a minimum level.
Especially since we don’t punish the dense student as long as its
ranking of a given pair is the same as the teacher, without strict
requirements on the score gap like Margin-MSE [16]. Experiments
in Tab. 2 demonstrate the merit of our method.

Training and Inference. To incorporate lexicon-aware ability
while keeping its sequence-level semantic representation ability
for passage retrieval, we combine contrastive loss (L𝑐𝑙

𝜃 led ) in Eq. 8
and lexical learning loss (L𝑙𝑙

𝜃 led ) in Eq. 10 to train our LED retriever
(𝜃 led) as follows,

L𝜃 led = L𝑐𝑙

𝜃 led + 𝜆L𝑙𝑙

𝜃 led , (11)
where 𝜆 is a hyperparameter to control how intensive the training
inclines to transfer lexical-ware knowledge from the lexicon-aware
teacher (𝜃 lex2).

For inference, LED pre-computes the embeddings of all passages
in the entire collection C and builds indexes with FAISS [19]. Then
LED encodes queries online and retrieves top-ranked 𝑘 passages
based on the relevance score.

Remark. Our framework injects lexicon-aware capability into a
sequence-level representation model, showing two-fold advantages
in comparison to previous methods superficially combining dense
and lexicon-aware retrievers: 1) Compared to using two separate
PLM-based dense and lexicon-aware retrievers [4, 26, 28, 44], our
LED retriever could achieve hybrid retrieval results and comparable
performances with only one model. We no longer need to maintain
multiple index systems for both retrieval models in an ensemble
system or to encode an online query twice with different retrievers,
reducing memory footprint and inference time. 2) Compared to
fusing PLM-based dense and traditional term-matching retrievers
like BM25 [4, 24–26, 28, 31, 32, 43, 46], our single method could
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achieve better results since the lexicon-aware capability of LED is
learned from a strong retriever (shown in Tab. 3).

4 EXPERIMENTS
We evaluate our retriever on three public human-annotated real-
world benchmarks, namely MS MARCO [34], TREC Deep Learning
2019 [6], and TREC Deep Learning 2020 [5]. MS-MARCO Dev has
6980 queries, TREC 2019 has 43 queries, and TREC 2020 includes 54
queries. In all three benchmarks, first-stage retrievers are required
to fetch relevant passages from an 8-million scale collection. We
report MRR@10, Recall@50, and Recall@1000 for MS MARCO Dev,
as well as NDCG@10 for both TREC Deep Learning 2019 and TREC
Deep Learning 2020. For all three datasets, we use the official TREC
evaluation files to conduct the evaluation protocol.2

4.1 Baselines
We compare with previous state-of-the-art baselines including
traditional term-based techniques like BM25 [40], and dense [13,
17, 21, 28, 38, 39, 42, 49, 51–53] as well as lexicon-aware retriev-
ers [4, 7, 10, 14, 26]. More details about the baselines are provided
in Appendix A. We report the models used during the two-stage
training pipeline for a detailed comparison. For lexicon-aware re-
trievers, we report the models after the warm-up training, namely
LEX (Warm-up), and continual training, namely LEX (Continue).
Note that LEX (Continue) is the lexical teacher used for teaching.
Similarly, for dense retrievers, we show DEN (Warm-up) and DEN
(Continue). Note that the DEN (Warm-up) is the dense student
where our LED model starts from and DEN (Continue) is indepen-
dently trained with the hard negatives provided by DEN (Warm-up)
by Eq. 3. We also report the DEN (Continue) further enhanced with
a strong ranker distillation (i.e., DEN (w/ RT)).

4.2 Implementation Details
All experiments run on 1 NVIDIA Tesla A100 GPU having 80GB
memories with a fixed random seed. We train our models with
mixed precision to speed up the training and meet the huge mem-
ory need. The training time will last about 32 hours. For the lexical
teacher, we train a DistilBERT [41] following SPLADE-max [10].3
Following previous work [55], in the warm-up stage, we train the
lexical retriever with batch size 48, 5 negatives for each query ran-
domly sampled from BM25 negatives, and a learning rate 3𝑒−5 for
three epochs. In the second stage, we remain all hyperparameters
unchanged except lower the learning rate to 2𝑒−5 and use negative
passages randomly sampled from the top 200 self-mining hard neg-
atives. For dense retriever, we train coCondenser [13] checkpoint
with batch size 16, 7 negatives per query, and a learning rate of
1𝑒−5 for three epochs.4

Particularly, in the LED training stage, with other hyperparame-
ters unchanged, we set the learning rate 5𝑒−6 and randomly select
32 hard negatives from the mixture of each top 200 negatives mined
by the warm-up dense student, warm-up lexical teacher, and final

2https://github.com/usnistgov/trec_eval
3https://huggingface.co/distilbert-base-uncased
4https://huggingface.co/Luyu/co-condenser-marco. We chose the coCondenser as the
dense retriever due to its retrieval-oriented pre-training and its superior performance
compared to vanilla BERT and DistilBERT checkpoints. We tested our proposed strate-
gies on these models as well and saw similar improvements as with coCondenser.

lexical teacher. The number of negatives per query 32 is selected
from {8, 16, 24, 32}. The higher number of negatives per query indi-
cates the more pair-wise ranks constructed by the lexical teacher,
leading to more lexical knowledge transfer.

For rank-consistent regularization, we set loss weight 𝜆 = 1.2
after searching from {1.0, 1.2, 1.5, 1.8, 2.0}.

4.3 Main Results
As shown in Tab. 1, we present the evaluation results on the afore-
mentioned three public benchmarks.

Firstly, our LED retriever achieves comparable performance
with state-of-the-art methods ColBERTv2 [42] and AR2 [53] on
MS MARCO Dev, although both baselines are taught by the pow-
erful ranking model (i.e., cross-encoder). After coupling with a
similar ranker distillation, our LED retriever (i.e., LED (w/ RT)) can
be further improved and meanwhile outperforms state-of-the-art
baselines on all three datasets, showing the compatibility of distilla-
tion from lexicon-aware sparse retriever.5 Note that we neither use
heavy ranker teacher in AR2 [53] normultiple vector representation
applied in ColBERTv2 [42].

Secondly, LED (w/ RT) achieves better performance thanDEN (w/
RT) on all three datasets, demonstrating that our training method
can transfer some complementary lexicon-aware knowledge not
covered by the cross-encoder. The weak intensity of the supervision
signal makes our lexical-enlightened strategy a promising plug-and-
play technique for other dense retrievers.

Thirdly, our LED retriever taught by a smaller lexicon-aware
retriever is similarly performant as the dense retriever taught by a
strong cross-encoder (i.e., DEN (w/ RT)), showing the effectiveness
of injecting lexical knowledge into the dense retriever. The reasons
are two-fold: (1) The dual-encoder architecture of the lexicon-aware
teacher enables the relevance calculation can be easily integrated
into in-batch techniques to scale up the teaching amount. (2) More
importantly, lexicon-aware retriever could provide self-mining hard
negatives for more direct supervision while cross-encoder can only
provide score distribution over given passages.

4.4 Further Analysis
Comparison of Teaching Strategies. Tab. 2 shows the com-

parison of our proposed pair-wise rank-consistent regularization
with other teaching strategies. Filter means the negatives with high
scores (i.e., false negatives) are filtered by LEX (Continue). The other
three strategies (e.g., Margin-MSE, ListNet, and KL-Divergence) are
borrowed from knowledge distillation in IR domain. From the table,
we can find that all strategies can bring performance gain, even in an
indirect way like Filter. This observation proves that learning from
the lexicon-aware representation model leads to a better dense re-
triever. Also, our rank-consistent regularization outperforms other
baselines on MRR@10 metric by a large margin, showing the su-
periority of our method. Besides, we can find that the point-wise
objective (i.e., Margin-MSE) brings the least gain, followed by the
list-wise objectives (i.e., ListNet and KL-Divergence) and our pair-
wise rank-consistent regularization brings the most significant

5Like AR2 [53] and ColBERTv2 [42], we use KL-divergence to distill the ranker’s scores
into the LED model, but we use ERNIE-2.0-base [45] instead of ERNIE-2.0-large in
AR2. The KL loss is directly added to Eq. 11 during the training of LED.
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Table 1: Experimental results onMSMARCO, TREC DL 2019 (DL’19), and TREC DL 2020 (DL’20) datasets (%). Wemark the best
results in bold and the second-best underlined. Numbersmarkedwith ‘*’ mean that the improvement is statistically significant
compared with the baseline (t-test with 𝑝-value < 0.05).

Methods PLM Ranker Multi MS MARCO Dev DL’19 DL’20

Taught Vector MRR@10 R@50 R@1k NDCG@10 NDCG@10
Lexicon-Aware Retriever
BM25 [40] - 18.7 59.2 85.7 50.6 48.0
DeepCT [7] BERTbase 24.3 69.0 91.0 55.1 55.6
COIL-full [14] BERTbase 35.5 - 96.3 70.4 -
UniCOIL [26] BERTbase 35.2 80.7 95.8 - -
SPLADE-max [10] DistilBERT 34.0 - 96.5 68.4 -
DistilSPLADE-max [10] DistilBERT ✓ 36.8 - 97.9 72.9 -
UniCOIL Λ [4] BERTbase 34.1 82.1 97.0 - -
Dense Retriever
ANCE [49] RoBERTabase 33.0 - 95.9 64.5 64.6
ADORE [52] RoBERTabase 34.7 - - 68.3 66.6
TAS-B [17] DistilBERT ✓ 34.7 - 97.8 71.7 68.5
TAS-B + CL-DRD [51] DistilBERT ✓ 38.2 - - 72.5 68.7
TCT-ColBERT [28] BERTbase ✓ 35.9 - 97.0 71.9 -
ColBERTv1 [21] BERTbase ✓ 36.0 82.9 96.8 67.0 66.8
ColBERTv2 [42] BERTbase ✓ ✓ 39.7 86.8 98.4 72.0 62.1
coCondenser [13] BERTbase 38.2 - 98.4 - -
PAIR [38] ERNIEbase ✓ 37.9 86.4 98.2 - -
RocketQAv2 [39] ERNIEbase ✓ 38.8 86.2 98.1 - -
AR2-G [53] BERTbase ✓ 39.5 - - - -
Our Models
LEX (Warm-up) DistilBERT 36.1 84.2 97.5 67.4 66.4
LEX (Continue) DistilBERT 38.3 85.9 98.0 72.8 67.7
DEN (Warm-up) BERTbase 36.1 83.5 97.7 64.7 65.9
DEN (Continue) BERTbase 38.1 86.3 98.4 69.1 67.8
DEN (w/ RT) BERTbase ✓ 39.6 86.7 98.4 71.8 69.7

LED BERTbase 39.6 86.6 98.3 70.5 67.9
LED (w/ RT) BERTbase ✓ 40.2∗ 87.6∗ 98.4 74.4∗ 70.2∗

Table 2: Evaluation results of different teaching strategies
on MS MARCO Dev (%). ‘*’ refers to statistical significance.

Methods MRR@10 R@1k

No Distillation 38.1 98.4

Filter [35] 38.4 98.4
Margin-MSE [16] 38.5 98.3
ListNet [48] 38.7 98.2
KL-Divergence [53] 39.0 98.4

Ours 39.6∗ 98.3

gain. The phenomenon implies that a soft teaching objective is
more functional for transferring knowledge from the lexicon-aware
model than strict objectives. In fact, enforcing dense retrievers to
be aligned with fine-grained differences between scores of the LEX
often leads to training collapse. Concretely, only equipped with

carefully chosen hyperparameters, especially small distillation loss
weight, Margin-MSE can enhance the dense retriever.

Comparison of EnsembleRetrievers. Weare also curiouswhether
our LED can improve the performance of ensemble retrievers. With
LEX (Continue) (𝜃 lex2) and LED (𝜃 led), we simply use the summa-
tion of the normalized relevance scores of two retrievers, and then
return a new order of retrieval results. Tab. 3 gives the evaluation re-
sults of our systems and other strong baselines reported in previous
work [4, 26, 28]. Note that previous work [26, 28] utilized weighted
score sum after hyper-parameter searching while we directly sum
the normalized scores of two retrievers without any tuning. From
the results in Tab. 3, we can observe:

(1) Aligned with results in SPAR [4], the ensemble of two dense
retrievers (i.e., DEN (Continue) + LED and DEN (Continue) + DEN
(w/ RT)) is not as performant as that of one dense and one lexicon-
aware retriever. In particular, the ensemble of two dense retrievers
is even less competitive than a single LED or DEN (w/ RT). The
results are rational because two base models have similar retrieval



LED: Lexicon-Enlightened Dense Retriever for Large-Scale Retrieval WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 3: Comparisonwith Ensemble Systems onMSMARCO
Dev (%). The first block results are copied from [4, 26, 28].
Λ [4] refers to a dense retriever trained with data generated
by lexicon-based methods such as BM25 and UniCOIL. ‘*’
indicates statistical significance compared to their counter-
parts without our training strategies.

Ensemble Systems MRR@10 R@50 R@1k

TCT-ColBERT + BM25 [28] 36.9 - -
TCT-ColBERT + UniCOL [26] 37.8 - -
TCT-ColBERT + UniCOL [26] 38.2 - -
ANCE + BM25 [4] 34.7 81.6 96.9
RocketQA + BM25 [4] 38.1 85.9 98.0
RocketQA + UniCOIL [4] 38.8 86.5 97.3
RocketQA + BM25 Λ [4] 37.9 85.7 98.0
RocketQA + UniCOIL Λ [4] 38.6 86.3 98.5

DEN (Continue) + BM25 30.4 87.1 98.6
DEN (Continue) + LED 39.3 86.9 98.5
DEN (Continue) + DEN (w/ RT) 39.4 87.0 98.5
DEN (Continue) + LEX (Continue) 40.4 88.4 98.7
DEN (w/ RT) + LEX (Continue) 40.7 88.4 98.7
LED + LEX (Continue) 40.9∗ 88.3 98.6
LED (w/ RT) + LEX (Continue) 41.1∗ 88.5 98.7

behaviors and the strong one will be impeded by the weak one if
they have the sameweight in the ensemble system. The latter reason
could also be used to explain why the ensemble of dense and the
traditional term-based technique like BM25 (i.e., DEN (Continue) +
BM25) is less good than the single DEN (Continue).

(2) Although coupling with LEX (Continue) will not introduce
new knowledge to the hybrid ensemble system where LED is the
base retriever, LED + LEX (Continue) can further boost the perfor-
mance of DEN (Continue) + LEX (Continue). The reason behind
this is that the LED scores golden query-passage pairs higher than
DEN, so these pairs are ranked higher in the later ensemble process.
This behavior could be regarded as an instance-level weighted score
aggregation inside the network and it is more feasible to obtain
than tuning the weights of retrievers for each query in the ensemble
system. This observation could from the side prove that our dense
and lexicon-aware abilities fusion inside the network is better than
a superficial ensemble.

(3) LED (w/ RT) + LEX (Continue) is slightly better than LED +
LEX (Continue) and DEN (w/ RT) + LEX (Continue), once again
proving that our lexical rank-consistent regularization is comple-
mentary to the ranker distillation.

Impact ofDifferentComponents. We conduct an ablation study
to further investigate the impact of lexical hard negatives and
rank-consistent regularization method. Tab. 4 reports the results
of removing each component. We can observe that pair-wise rank-
consistent regularization plays an important role in lexical learning
because removing it will bring significant performance degradation
on MRR@10 metric. In addition, we can find that both negatives
provided by LEX (Warm-up) and LEX (Continue) are both helpful
for the contrastive training of the dense retriever, and removing
both of them results in a more obvious performance drop.

Table 4: Ablation Study onMSMARCODev (%). Negs is short
for negatives. ‘*’ indicates statistical significance.

Retrievers MRR@10 R@1k

LED 39.6∗ 98.3

w/o Rank Regularization 37.9 98.5
w/o LEX Continue Negs (Nlex2) 39.4 98.3
w/o LEX Warm-up Negs (Nlex1) 39.4 98.3
w/o LEX Mixed Negs (Nlex1 ∩ Nlex2) 39.2 98.4
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Figure 2: Distributions of model prediction for DEN (Con-
tinue), LEX (Continue), and LED retrievers over MSMARCO
Dev. For visual clarity, we use the query-passage pairs which
the LEX and DEN predict discrepantly as data samples. The
discrepancy is determined by that there is a > 0.2 margin
between their predicted scores normalized over passages re-
trieved for a 𝑞. To ensure diversity, we consider two normal-
ization cases, LEX-biased pairs (i.e., LEX’s top-100) and LEX-
unbiased pairs (i.e., LEX’s bottom-100 out of 1000).
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Figure 3: (a) Effects of the number of negatives per query on
MS MARCO Dev. (b) Effects of the regularization weight 𝜆
on MS MARCO Dev.

Effects on Model Predictions. To further check the effects of
learning lexicon-aware capability on the LED, we illustrate the dis-
tribution shift of predictions of dense retrievers before and after
lexical enlightenment in Fig. 3. We can make the following obser-
vations: (1) In both two sets of query-passage pairs, compared to
DEN distributions, the score distributions of LED are clearly shift-
ing to the LEX, showing the success of lexical knowledge learning.
(2) LED’s distribution remains more overlaps with DEN instead of
LEX, which proves that our rank-consistent regularization method
could keep LED’s dense retriever properties, thanks to the weak
supervision signal.
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Table 5: The average rank of golden passages by four retriev-
ers on MS MARCO Dev. We bin the dev examples into buck-
ets with the rank predicted by LEX and calculate the average
ranking of other retrievers by group.

Ranges Count Average Ranking

LEX DEN LED LED (w/ RT)

Top 1 1,787 1.0 2.5 2.3 2.4
(1, 5] 2,242 3.1 6.4 5.2 4.8
(5, 10] 875 7.8 14.7 13.8 12.7
(10, 50] 1,428 23.3 31.4 31.1 28.9
(50, 100] 358 70.5 80.0 75.9 74.0
(100, 500] 445 216.8 156.3 166.7 154.1
(500, 1000] 69 698.0 298.9 334.7 289.1

Impacts of Hyperparameters. We conduct extra experiments
to explore the impact of hyperparameters on LED retriever training.
Fig. 3(a) illustrates the impact of changing negative passages on
the LED. We can observe that as the number of negative passages
increases, the MRR@10 performance goes up and the R@1k perfor-
mance reaches the peak when 16 and decreases gradually. The main
table shows that Lexical is less performant than Dense at R@1k
metric (98.0 < 98.4). So the trend of increasing the number of nega-
tives proves that imitating too much the lexical retriever will also
be negatively influenced by the weakness of the teacher. These two
trends indicate that, with more negatives, the teacher will construct
more rank pairs for more lexical knowledge transfer. Fig. 3(b) shows
the performance with regard to different regularization weights 𝜆.
It is observed that the performances don’t fluctuate significantly
as the weight 𝜆 changes, demonstrating the robustness of lexical
enhancement strategies. Interestingly, the increase in MRR@10
comes with the drop in R@1k to some extent, once again showing
that a well-enhanced LED also inherits the weakness of Lexical.

Zoom-in Study of Retrieval Ranking. Tab. 5 shows how the
average rank of golden passages varies across different rank ranges,
bucketed by LEX-predicted ranks of the golden passages. We can
observe that: (1) More than 50% golden passages are ranked in the
top 5 by the LEX, paving the way for good lexical teaching. (2)
The average ranking of golden passages by LED is consistently
improved until the top 100, which means approximately 90% of
answers are ranked higher by the retriever after learning lexical
knowledge, proving the effectiveness of our lexical knowledge trans-
fer. Meanwhile, similar even more gain can also be observed in LED
(w/ RT), once again proving that our method is complementary to
distillation from a cross-encoder. (3) In the queries that the LEX
performs unfavorably (i.e., ground truth ranked lower than 100),
LED and LED (w/ RT) are negatively impacted by the lexicon-aware
teacher’s mistakes. Interestingly, their original rankings of these
ground truths are not very high, either. So these queries are in-
tractable for both dense and lexicon-aware retrievers, which we
leave for future work.

4.5 Case Study
Tab. 6 shows the three case queries with rankings of 4 retrievers.
With lexicon-aware capability, LED and LED w/ RT could retrieve

Table 6: Case study onMS-Marco Dev. ‘Passage+’ denotes the
golden passage of the corresponding query. ‘Rank’ indicates
the ranking of golden passage by retrievers.

Query ID: 1090413// state the benefits of internet
Passage+ ID: 7998365// What Are Some Benefits of Using the Inter-

net?<sep>Some of the benefits of the Internet include re-
duced geographical distance and fast communication. The
Internet is also a hub of information where users can simply
upload, download and publish ideas...

Rank LEX: 1; DEN: 3; LED: 1; LED w/ RT: 1
Retrieved DEN’s 1st. ID: 7339157 // -<sep>Advantages of the Internet.

The Internet provides opportunities galore, and can be used
for a variety of things. Some of the things that you can do
via the Internet are: 1 E-mail: E-mail is an online correspon-
dence system. 2 With e-mail you can send and receive instant
electronic messages, which works like writing letters.

Query ID:1033652// what is the purpose of pencil tool
Passage+ ID: 7212314// Pencil<sep>Should I remove Pencil by Evolus

Co? Pencil is built for the purpose of providing a free and
open-source GUI prototyping tool that people can easily
install and use to createmockups in popular desktop platforms.

Rank LEX: 1; DEN: 11; LED: 1; LED w/ RT: 1
Retrieved DEN’s 1st. ID:313304 // Pencil<sep>This article is about the

writing implement. For other uses, see Pencil (disambiguation).
A pencil is a writing implement or art medium constructed of
a narrow, solid pigment core inside a protective casing which
prevents the core from being broken or leaving marks on the
users hand during use.

golden passages as the top-1 result like their teacher LEX. In partic-
ular, in the first case, DEN mismatches the “benefits” in the query
with “advantages” in the passage since they are both positive words.
On the contrary, the LEX and LED-series retrievers could exactly
match the phrase “benefits of the Internet”. In the second query,
the “Pencil tool” refers to a specific GUI prototyping tool (as high-
lighted in the positive passage). DEN misunderstands the mention
“Pencil tool” in the query and returns passages about the vanilla
pencil, which is non-relevant to the user’s intention. The above
two cases show that retrievers with lexicon-aware capability (i.e.,
LEX, LED, LED w/ RT) could well capture the salient phrases and
entity mentions, providing more precise retrieval results.

5 CONCLUSION
In this paper, we consider developing a lexicon-enlightened dense
retriever by transferring knowledge from a lexicon-aware sparse
representation model into a dense one. To achieve this end, we
propose to enlighten a dense retriever from two aspects, namely
the lexicon-augmented contrastive objective and the pair-wise rank-
consistent regularization. Experimental results on three real-world
retrieval benchmarks show that with a performance-comparable
lexicon-aware representation model as the teacher, our strategies
can improve a dense retriever consistently and significantly, even
outdoing its teacher. Further extensive analysis and discussions
demonstrate the effectiveness and compatibility of our training
strategies, as well as the interpretability of the LED retriever.
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A BASELINES
We compare with previous state-of-the-art baselines including tra-
ditional term-based techniques like BM25 [40], and dense as well as
lexicon-aware retrievers. For lexicon-aware retrievers, DeepCT [7]
was trained to predict term weights.COIL [14] used contextual-
ized representation for exact term matching and UniCOIL [26]
compressed vectors in COIL into scalars. DistilSPLADE-max and
SPLADE-max [10] were both trained with Eq. 7 and the latter one
was further enhanced by a cross-encoder. The UniCOIL Λ was a
lexicon-aware model trained with UniCOIL’s top-ranked passages
and nagatives [4]. For dense retrievers, ANCE [49] selected hard
training negatives from the entire collection. ADORE [52] used self-
mining static negatives and then dynamic negatives. TAS-B [17]
proposed balanced topic-aware negative sampling strategies for
effective teaching. CL-DRD [51] taught the retriever in a curricu-
lum learning fashion, starting from coarse-grained pair examples
and progressing to fine-grained ones. ColBERTv1 [21] and Col-
BERTv2 [42] utilized late-interaction and the latter one further
incorporates ranker distillation. TCT-ColBERT [28] utilized Col-
BERTv1 as the tightly-coupled teacher to enable in-batch distilla-
tion. The coCondenser [13] augmented MLM loss with contrastive
learning and based a model architecture [12] with a decoupled sen-
tence and token interaction. PAIR [38] introduced passage-centric
loss to assist the contrastive loss and combine cross-encoder teach-
ing. RocketQAv2 [39] utilized K-L divergence to align the list-wise
distributions between retriever and ranker and proposed hybrid
data augmentation. AR2-G [53] used an adversarial framework to
train the retriever and ranker simultaneously. Notably, AR2 used a
different Recall@N evaluation from the official TREC Recall@N.6
Therefore, we don’t report their Recall@N performances in Tab. 1.

6https://github.com/microsoft/AR2/tree/main/AR2
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