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ABSTRACT
Knowledge graphs (KG) are essential background knowledge providers
in many tasks. When designing models for KG-related tasks, one
of the key tasks is to devise the Knowledge Representation and
Fusion (KRF) module that learns the representation of elements
from KGs and fuses them with task representations. While due
to the difference of KGs and perspectives to be considered during
fusion across tasks, duplicate and ad hoc KRF modules design are
conducted among tasks. In this paper, we propose a novel knowl-
edge graph pretraining model KGTransformer that could serve
as a uniform KRF module in diverse KG-related tasks. We pre-
train KGTransformer with three self-supervised tasks with sampled
sub-graphs as input. For utilization, we propose a general prompt-
tuning mechanism regarding task data as a triple prompt to allow
flexible interactions between task KGs and task data. We evaluate
pretrained KGTransformer on three tasks, triple classification, zero-
shot image classification, and question answering. KGTransformer
consistently achieves better results than specifically designed task
models. Through experiments, we justify that the pretrained KG-
Transformer could be used off the shelf as a general and effective
KRF module across KG-related tasks. The code and datasets are
available at https://github.com/zjukg/KGTransformer.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning.
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1 INTRODUCTION
Knowledge Graphs (KG) representing facts as triples in the form of
(head entity, relation, tail entity), abbreviated as (h,r,t), is a common
way of storing knowledge in theworld, such as (Earth, location, inner
Solar System)1. In recent years, many large-scale KGs including
Wididata [54], YAGO [39] and NELL [4] have been constructed and
applied as background knowledge providers in machine learning
tasks, such as question answering [67], image classification [60],
visual reasoning [13], etc.

When designing models for KG-related tasks, one of the key
tasks is to devise the Knowledge Representation and Fusion (KRF)
module that learns representation of elements from KGs and fuses
them with task representations. As shown in Figure 1, the knowl-
edge graph completion model RotatE [46] represents knowledge in
KGs by learning embedding for entities and relations in the complex
value space and calculates the truth value of triples through a score
function. The zero-shot image classification model GCNZ [60] uses
a graph convolutional network and ResNet [17] to learn represen-
tations of KGs and images, respectively, and fuses them through
aligning results from classifiers on KG representation and image
representation. The knowledge-based question answering model
QA-GNN [67] first encodes the query-KG graph and fuses the rep-
resentation with query representation for prediction. Due to the
difference of KGs and perspectives to be considered, theKRF
modules are different in KG-related taskmodels, leaving du-
plicate works for ad hoc KRF module design.
1Example from Wididata.
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Figure 1: Example of models for KG-related tasks supported by different KGs.

To solve this problem, the pre-trained KG model is proposed to
learn universal embeddings of entities and relations that could be
applied in many tasks [43, 70]. These embeddings are supposed to
contain entity similarities [3], hierarchies [71] and relationships
[50] that could be used for recommender system [58], entity align-
ment [47], question answering [20], etc., helping implicitly access
knowledge in KGs. However, directly applying embeddings from a
pre-trained model is insufficient and meets two challenges: (1) The
first challenge is if task KGs contain different entities and relations
to KGs used for pre-training, the embedding-based method could
not transfer valuable information to downstream task model since
the embeddings are missing. (2) The second challenge is essential
interaction and fusion between KGs and task data is missing, leav-
ing designing a fusion module as part of the work for downstream
task model devising. Thus embedding-based KG models are
not ideal solutions for KRF module across KG-related tasks.

In this work, we solve the first challenge by pre-training KG
structures and transforming parameters unrelated to specific en-
tities and relations into tasks. We solve the second challenge by
a prompt tuning mechanism to enable uniform and flexible fu-
sion between KGs and task data. As a result, we propose a novel
model KGTransformer, constructed by multiple KGTrans-
former layers with a sequence of triples as input. It allows
diverse but constrained interactions between elements in the se-
quence according to a neighborship matrix between elements. We
propose a sub-graph pre-trainingmethodwith three self-supervised
tasks, i.e. Masked Entity Modeling, Masked Relation Modeling, and
Entity Pair Modeling. This enables KGTransformer to capture graph
structures and semantics universally existing in KGs. The set of
parameters 𝜃M in KGTransformer layers helps transfer graph struc-
tural knowledge that is unrelated to specific entities and relations
from pre-training KGs to tasks KGs. For applying KGTransformer
in KG-related tasks, we propose a general prompt tuning mecha-
nism forming each task sample as a prompt concatenated at the
end of the task KG sequence to manipulate the performance of
KGTransformer.

During experiments, we pre-train KGTransformer on a hybrid
dataset consisting of three benchmark datasets with diverse struc-
tures. Then we apply it to three KG-related tasks of different modal-
ities, including one in-KG task triple classification, and two out-of-
KG tasks, zero-shot image classification and question answering.
We compare KGTransformer to recently proposed and specifically

designed methods of these three tasks. Results show that KGTrans-
former performs better, proving the effectiveness of the pre-trained
KGTransformer as a uniform KRF module for KG-related task mod-
els. More importantly, we prove that simply using pre-trained KG-
Transformer layers off the shelf with 𝜃M frozen in tasks is enough
to get promising results. In summary, our contributions are

• We propose the novel KGTransformer, which could capture
graph structural knowledge that is transferable across KGs
by being pre-trained with self-supervised tasks.

• We propose a simple yet effective prompt tuning mechanism
to apply KGTransformer off the shelf to enable flexibly fusing
knowledge in KGs to task data.

• We show that the pre-trained KGTransformer has the capa-
bility of transferring KG structure knowledge across KGs and
is general enough to be applied in various tasks, supported
by experiments on three KG-related tasks.

2 RELATEDWORKS
2.1 Knowledge Graph Representation Methods
KG representation methods encode information in KGs through
parameters and functions in models. They could recover the graph
structures and capture semantics between entities and relations.

Embedding-based methods [3, 30, 46, 50] learn embeddings of
relations and entities and model the truth value of triples through
a score function with embeddings as inputs. After training, these
embeddings could implicitly capture the similarities [3], hierarchies
[71], relationships [46], and axioms [69] between elements in KGs,
thus could be applied as general representations of elements in
many tasks to transfer semantics learned from KGs to tasks.

Structure-based methods [29, 36, 49, 64] learn an encoder with
sub-graph with node features as input, and a decoder for specific
tasks. Typical graph-based methods are independent of embeddings
of entities and thus are entity agnostic that could be applied to
inductive tasks. For example, GraIL [49] generates two-dimensional
node features for each entity in a sub-graph, encodes the sub-graph
through a graph-neural-network-liked module to get the graph-
specific representation of entities, and uses the entity and relation
representations from encoder for link prediction.

Hybrid-based methods [27, 42, 51, 62] learn encoder-decoder to-
gether with embeddings of entities and relations. Specifically, em-
beddings of entities rather than pre-defined node features are used
for graph neural network (GNN) encoder. Our KGTransformer is
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also a hybrid-based method regarding KG representation. While
different from existing hybrid-based methods, apart from one-hop
neighbors of entities, KGTransformer also aggregates information
from connected relations and two-hop neighbors.

Transformer-based methods [5, 6, 19, 23, 26, 33, 45] encode struc-
tural or semantic information in KGs through attentionmechanisms
[52]. GraphWriter [23] proposes a graph Transformer to solve the
problems of non-hierarchical nature, long-distance dependencies,
and structural variation for generating text from KGs. HittER [5]
proposes a hierarchical Transformer to jointly learn entity-relation
composition and relation contexts in KGs. kgTransformer [33] is
pretrained on KGs by formulating logical queries as masked predic-
tion and applied to complex query tasks. GHT [45] is proposed for
temporal KGs reasoning and it utilizes Transformers to capture the
instantaneous structure and evolution information. MKGformer [6]
designs a hybrid Transformer that integrates visual and text repre-
sentation for multimodal KGs completion tasks. TET [19] performs
the entity typing task by encoding KGs’ graph structure through a
local Transformer, a global Transformer, and a context Transformer.

2.2 Knowledge Graph Fusion Methods
Many knowledge graphs are proposed in various domains and are
used to support different downstream tasks. As a kind of important
side information, researchers design sophisticated ways to incor-
porate knowledge graphs into their task-specific methods, and we
term them knowledge graph fusion methods.

Some works [14, 16, 31, 41, 55, 65] use knowledge in KGs in an
out-of-the-box manner. Specifically, these methods usually conduct
representation learning on KGs in advance and use trained rep-
resentations of entities and relations as the input of downstream
models or for ensembling; such pretrained embedding can be frozen
or fine-tuned during training downstream models. For example,
OntoZSL [14] uses trained TransE [3] embeddings for an ontolog-
ical schema to model the prior knowledge for zero-shot learning.
EmbedKGQA[41] uses trained ComplEx [50] embeddings to sup-
port the answer selection in question-answering systems.

Furthermore, other works [40, 56–58, 67] fuse knowledge in an
end-to-end manner. More precisely, these methods design learnable
KG encoder modules and train them with downstream models. For
instance, RippleNet [56] encodes the sub-graph preference prop-
agation in a KG and predicts the user engaging in recommender
systems. KGAT [58] employs an attention mechanism to propagate
representations from neighbors for nodes in a KG containing users,
items, and attributes for the recommendation. QA-GNN [67] uses a
GNN to encode QA-pair-related sub-graphs for joint representation
of QA text information and KG information. Our KGTransformer
is also an end-to-end KG fusion method.

2.3 Pretraining Methods
The great success of pretrained language models (PLMs) [7, 25, 34,
37] has shifted the paradigm of natural language processing from
fully supervised learning to pretraining and fine-tuning [32]. PLMs
with fixed architectures are pretrained on large-scale corpora to
learn robust general-purpose features of a language. By adding ad-
ditional parameters, PLMs could be quickly adapted to downstream
tasks optimized according to the task-specific objective function.

The paradigm of pretraining and fine-tuning is widely adopted in
other areas, such as image processing [2], multimodal processing
[11, 44], and table processing [18, 61]. Since general knowledge
such as axioms also exists in knowledge graphs, this inspires us
to explore pretrained knowledge graph models so as to be quickly
adapted to KG-related tasks.

Among pretraining methods, the auto-regressive Transformer
[52] with multi-head self-attention module is the key part of pre-
trained language models [7, 34]. It has been shown to be very
powerful in processing sequential data such as text. Even for non-
sequential data such as image [35], video [1] and graph [68], Trans-
former with specific designs, such as task data serialization [66],
position encoding [8], structure encoding [68], etc., could also per-
form reasonably well. To adapt Transformer to graph data, Ying
et al. [68] propose Graphomer built on the standard Transformer
with several structural encoding methods, including spatial encod-
ing, edge encoding, and centrality encoding. In the works adapting
Transformer to encode KGs, concatenating surface form or descrip-
tion of the head entity, relation, and tail entity to serialize triple
are commonly applied [21, 66], while they pay more attention to
the text of elements than graph structures. In contrast to encoding
graph structure as it is or allowing connections between all ele-
ments, the KGTransformer layer we propose in this paper allows
constrained connections between parts of elements that are not
directly connected in KG.

During finetuning, the prompt tuning methods on PLM introduce
a flexible and effective way to manipulate the behavior of PLMs
[12, 24, 38] by adding an appropriate prompt related to the tasks.
They inspire us to adapt pretrained knowledge graph models by
adding the task sample as a prompt.

3 METHODOLOGY
In this section, we introduce the model structure of KGTransformer
(3.1), how to pretrain KGTransformer with graph sampling strate-
gies and pretraining tasks (3.2), and the prompt-tuning mechanism
for KG-related tasks (3.3).

3.1 KGTransformer
KGTransformer is constructed by multiple KGTransformer layer
built on traditional Transformer layer [52]. We adapt Transformer
layer to knowledge graph with a set of triples T𝑖𝑛 = {(ℎ𝑖 , 𝑟𝑖 , 𝑡𝑖 ) |𝑖 ∈
[1, 𝑘]} as input and output the representation of each element that
could be used for prediction, where 𝑘 is the number of triples.

Given a T𝑖𝑛 , we first make T𝑖𝑛 as a sequence of tokens

𝑠𝑖𝑛 = [[𝐵], ℎ1, 𝑟1, 𝑡1, [𝑆], ℎ2, 𝑟2, 𝑡2, [𝑆], ..., ℎ𝑘 , 𝑟𝑘 , 𝑡𝑘 , [𝑆]] (1)

where [𝐵] and [𝑆] are special tokens indicating the beginning of
sequence and separation between triples respectively.

Then we generate a matrix𝑀 ∈ R |𝑠𝑖𝑛 |× |𝑠𝑖𝑛 | to indicate the neigh-
borships between triples that are not explicitly modeled in the
sequence 𝑠𝑖𝑛 , where |𝑠𝑖𝑛 | is the length of 𝑠𝑖𝑛 .

𝑀𝑖 𝑗 =


1 if 𝑖 = 1 or 𝑗 = 1
1 if 𝑡𝑟𝑝 (𝑖) ∩ 𝑡𝑟𝑝 ( 𝑗) ≠ ∅
0 otherwise

, (2)

𝑡𝑟𝑝 (𝑛) = {ℎ𝑝 , 𝑟𝑝 , 𝑡𝑝 } where 𝑝 = ⌊(𝑛 − 2)/4⌋ + 1 (3)
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Figure 2: Overview of sub-graph pretraining of KGTransformer.

With 𝑠𝑖𝑛 and 𝑀 , we input 𝑠𝑖𝑛 to the KGTransformer and use 𝑀
to constrain the interactions between elements in 𝑠𝑖𝑛 . Specifically,
similar to traditional transformer, KGTransformer layer includes a
self-attention module and a position-wise feed-forward network.
Suppose the input of self-attention module is 𝐻 = [𝑠⊤1 , ..., 𝑠

⊤
𝑛 ]⊤ ∈

R𝑛×𝑑 with the 𝑖th row as the 𝑑 dimensional hidden state for the 𝑖th
element in the sequence. The self-attention operation 𝐴𝑡𝑡𝑛() is

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 , 𝑉 = 𝐻𝑊𝑉 , (4)

𝐴 =
𝑄𝐾⊤ ⊙ 𝑀√︁

𝑑𝐾

+ (1 −𝑀) ∗ 𝛿, (5)

𝐴𝑡𝑡𝑛(𝐻 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐴)𝑉 , (6)

where𝑊𝑄 ∈ R𝑑×𝑑𝑄 ,𝑊𝐾 ∈ R𝑑×𝑑𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑𝑉 is the projection
matrix to generate the query, key, and value representation of 𝐻 ; ⊙
represents element-wise multiplication; 𝐴 is the attention matrix
with 𝐴𝑖 𝑗 capturing the similarity between the query representation
of 𝑠𝑖 and key representation of 𝑠 𝑗 ; 𝛿 is a large negative number to
make the 𝐴𝑖 𝑗 with 𝑀𝑖 𝑗 = 0 near to 0 after softmax function. Fol-
lowing traditional transformer, multi-head self-attention is applied
in each KGTransformer layer. And the input of the first KGTrans-
former layer is sequential embedding of elements in 𝑠𝑖𝑛 .

Here we discuss benefits of the KGTransformer layer with 𝑠𝑖𝑛 as
input sequence. (1) Compared to conventional Transformer which
allows each element to attend to all elements in the sequence, KG-
Transformer avoids attention between elements in unrelated triples
such as (William Shakespeare, field of work, Fiction) and (France,
capital, Paris) since they do not share any element. (2) Compared to
conventional graph neural networks [42, 53] that explicitly encode
the graph structures via aggregate one-hop neighbors to entities,
KGTransformer allows aggregation from one-hop and two-hop
neighbors to each entity per update. For example, considering
triple (William Shakespeare, field of work, Fiction) and (William
Shakespeare, notable book, Hamlet), Hamlet attends to one-hop
neighbor William Shakespeare and two-hop neighbor Fiction in
KGTransformer layer while only attends to William Shakespeare

in traditional graph neural network. (3) KGTransformer layer en-
ables entities to attend to elements in triples that are not directly
connected but share the same relation, for example, (China, capital,
Beijing) and (France, capital, Paris). In summary, KGTransformer
layer allows diverse but constrained element interactions in KGs.

Finally, KGTransformer is constructed by stacking𝑚 KGTrans-
former layers.

3.2 Sub-graph Pretraining
Given a knowledge graph G, we propose to pretrain the KGTrans-
former by self-supervised tasks with sampled sub-graphs from G.
The overall procedure is shown in Figure 2.

3.2.1 Sub-graph Sampling. We propose two strategies to sample a
sub-graph G𝑒 starting from a randomly selected 𝑒 as target entity.
• Random Walk Sampling. We randomly choose a triple (𝑒, 𝑟, 𝑒 ′) ∈
G or (𝑒 ′, 𝑟 , 𝑒) ∈ G, and add it into G𝑒 . Then regarding 𝑒 ′ as target
entity and repeat this step for 𝑘 times. Such sampling captures
global and long sequential relatedness between triples in KGs.

• Entity-centered Sampling. We randomly choose𝑚𝑎𝑥 (𝑘, 𝑛) triples
from one-hop triple set {(𝑒, 𝑟, 𝑒 ′) ∈ G} ∪ {(𝑒 ′, 𝑟 , 𝑒) ∈ G}, where
𝑛 is the number of one-hop triples of 𝑒 . If one-hop triples are
not sufficient that 𝑛 < 𝑘 , we sample 𝑘 − 𝑛 two-hop triples from
{(𝑒 ′, 𝑝, 𝑒 ′′) ∈ G} ∪ {(𝑒 ′′, 𝑝, 𝑒 ′) ∈ G}. Entity-centered sampling
could capture local relatedness between triples.

After sampling, we serialize the sub-graph G𝑒 into a sequence 𝑠𝑖𝑛
following Equation (1) as the input of KGTransformer.

3.2.2 Pretraining Tasks. In order to make KGTransformer capture
the graph structures and semantics of elements in KGs, we propose
three self-supervised tasks. In the rest of the paper, we use 𝑠𝑚𝑒
to represent the hidden state of element 𝑒 from the last layer of
KGTransformer.
• Masked Entity Modeling (MEM). We randomly replace some en-
tities M𝑒 with mask token [𝑀]. For each masked entity 𝑒 , we
make projected 𝑠𝑚𝑒 via𝑊𝐸𝑀𝐸 ∈ R𝑑×𝑑 to be closed to E(𝑒), the em-
bedding of entity 𝑒 before being input to the first KGTransformer
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Figure 3: Overview of task prompt tuning (left) and examples of three specific tasks (right).

layer, and far away from others. The loss of MEM is

𝐿𝑀𝐸𝑀 (G𝑒 ) =
∑︁
𝑒∈M𝑒

𝐶𝐸 (𝑠𝑚𝑒 𝑊𝑀𝐸𝑀E(𝑒)⊤, 1) (7)

+
∑︁
𝑒′∈△

𝐶𝐸 (𝑠𝑚𝑒 𝑊𝑀𝐸𝑀E(𝑒 ′)⊤, 0), (8)

where CE() is the cross entropy loss function. △ = {𝑒 ′ |𝑒 ′ ≠ 𝑒} is
the set of negative entities that are not equal to masked entity 𝑒 .

• Masked Relation Modeling (MRM). We randomly replace some
relations M𝑟 with [𝑀]. For each masked relation 𝑟 , we conduct
multi-classes classification and the loss is

𝐿𝑀𝑅𝑀 (G𝑒 ) =
∑︁
𝑟 ∈M𝑟

𝐶𝐸 (𝑀𝐿𝑃 (𝑠𝑚𝑟 𝑊𝑀𝑅𝑀 ), 𝑙𝑟 ), 𝑊𝑀𝑅𝑀 ∈ R𝑑×𝑑 (9)

where𝑊𝑀𝑅𝑀 ∈ R𝑑×𝑛𝑟 is a transformation matrix; 𝑙𝑟 is a one-hot
vector label for masked relation 𝑟 .

• Entity Pair Modeling (EPM). Given two sub-graphs G𝑒𝑖 and G𝑒 𝑗
of 𝑒𝑖 and 𝑒 𝑗 , we serialize and concatenate them as input sequence
and the loss function is

𝐿𝐸𝑃𝑀 (G𝑒𝑖 ,G𝑒 𝑗 ) = 𝐶𝐸 (𝑀𝐿𝑃 ( [𝑠𝑚[𝐵 ]𝑒𝑖 | |𝑠
𝑚
[𝐵 ]𝑒𝑗

]), 𝑙 (𝑒𝑖 ,𝑒 𝑗 ) ) (10)

where 𝑠𝑚[𝐵 ]𝑒𝑖
is the hidden state from the last KGTransformer

layer corresponding to [𝐵] in the sequence created from G𝑒𝑖 .
[𝑥 | |𝑦] represents the concatenation of vector 𝑥 and vector 𝑦.
𝑙 (𝑒𝑖 , 𝑒 𝑗 ) is the label for similarity of 𝑒𝑖 and 𝑒 𝑗 . We regard entity
𝑒𝑖 and entity 𝑒 𝑗 to be similar and labeled them 𝑙 (𝑒𝑖 , 𝑒 𝑗 ) = 1 if
they used to be the head(tail) entity of the same relation in G,
otherwise 𝑙 (𝑒𝑖 , 𝑒 𝑗 ) = 0.

With these three self-supervised tasks, the overall pretraining loss
function is

𝐿(G) =
∑︁
𝑒∈E

(𝐿𝑀𝐸𝑀 (G1
𝑒 ) + 𝐿𝑀𝑅𝑀 (G2

𝑒 ) + 𝐿𝐸𝑃𝑀 (G3
𝑒 ,G𝑒′)) (11)

where G1
𝑒 and G2

𝑒 are subgraphs of 𝑒 from random walk sampling
or entity-centered sampling; G3

𝑒 and G𝑒′ is subgraphs of 𝑒 and 𝑒 ′
from entity-centered sampling, where 𝑒 ′ ≠ 𝑒 .

3.3 Task Prompt Tuning
With pretrained KGTransformer, we propose a simple and uniform
prompt tuning mechanism to apply it in KG-related tasks.

Table 1: Statistics of WFC dataset. Std𝑟𝑒𝑙 (Std𝑒𝑛𝑡 ) is the stan-
dard deviation of the number of triples of relations(entities).

#R #E # T Std𝑟𝑒𝑙 Std𝑒𝑛𝑡 Density(×10−6)
WFC 317 133435 1015556 13230 134 0.18

𝑤𝑛18𝑟𝑟 11 40943 93003 12540 9 5.04
𝑓 𝑏15𝑘 − 237 237 14541 310115 2467 128 6.19
𝑐𝑜𝑑𝑒𝑥 69 77951 612437 24664 159 1.46

Before prompt tuning, we continually train KGTransformer with
KGs in tasks following the pretrainingmethod introduced in Section
3.2, with 𝜃M frozen, since the entities and relations are different in
tasks. After such training, we get the element embeddings of task
KGs adapted to the 𝜃M .

During prompt tuning, in a task, one sample includes task data
D𝑡𝑎𝑠𝑘 and a supporting graph G𝑡𝑎𝑠𝑘 . For example, in question
answering, D𝑡𝑎𝑠𝑘 is a question-choice pair and G𝑡𝑎𝑠𝑘 is a knowl-
edge graph extracted based on keywords in the pair. Firstly, with
D𝑡𝑎𝑠𝑘 , we construct a prompt in the form of a triple sequence that
P𝑡𝑎𝑠𝑘 = [[𝑇 ] [𝐻 ] [𝑅] [𝐷]] where [𝑇 ] is a special token indicating
the beginning of task which is randomly initialized during tuning.
[𝐻 ] and [𝑅] indicate the head entity and relation in the task triple.
[𝐷] is the tail entity in task triple and its representation is from a
task encoder with D𝑡𝑎𝑠𝑘 as input. Secondly, for G𝑡𝑎𝑠𝑘 , we serialize
it into a sequence in the form as Equation (1) and concatenate it
with task prompt as the input of KGTransformer. Finally, we take
out some hidden state 𝑠𝑚 from the last KGTransformer layer and
input them into a task layer for prediction. We make parameters in
KGTransformer layers 𝜃M frozen to keep the knowledge of graph
structure unrelated to specific entities and relations learned during
pretraining as it is. The overall process of task prompt tuning is
shown in left part in Figure 3. The right part of Figure 3 shows
examples of three specific tasks. Since the fine-tuning processes in
different tasks are slightly different, we’ll introduce the details of
specific tasks in Section 4.

4 EXPERIMENT
In this section, we introduce the experiments of KGTransformer
on KG-related tasks. We choose the tasks based on the principle to
cover both in-KG and out-of-KG tasks, data of different modalities,
and different overlaps with pretraining dataset. Finally, three tasks,
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Table 2: Statistics of dataset in three tasks. #E, #R, and #T is the number of entities, relations, and triples.

Task KG Task Data Properties
KG #E #R #T Task Sample # Train #Valid #Test Task Type Modality Overlap to WFC

T1: Triple Classification WN18RR 40943 11 - Triple 86835 6068 6268 in-KG KG Yes
T2: ZSL Image Classification AwA-KG 146 16 1595 Image 23527 - 13795 out-of-KG Image+KG No
T3: Question Answering CommonsenQA 64388 16 309444 QA pair 8500 1221 1241 out-of-KG Language+KG No

triple classification, zero-shot image classification, and question
answering, are selected.

After pretraining, in each task, we show the results of specifi-
cally designed tasks models and KGTransformer with three settings
during task tuning: re-using 𝜃M and keeping them frozen (KGTrans-
former); tuning 𝜃M together with task parameters (KGT-finetune);
training KGTransformer from scratch (KGT-scratch).

4.1 pretraining
4.1.1 Datasets. For pretraining of KGTransformer, a KG covers di-
verse graph structures is preferred since KGTransformer is designed
for graph structure pretraining. Thus we created a new dataset
named WFC by combining three common KG datasets with differ-
ent graph properties, including WN18RR, FB15k-237, and Codex.
WN18RR is a dense and unbalanced KG. FB15k-237 is a dense and
balanced KG. Codex is a sparse and unbalanced KG. Containing
these three datasets, WFC covers diverse graph structures. The
statistics of WFC and three datasets are shown in Table 1.

4.1.2 Pretraining Details. The KGTransformer is constructed with
4 KGTransformer layers. The token embeddings and 𝜃M are ran-
domly initialized. In each layer, there are 768 hidden units and 12
attention heads. The number of triples 𝑘 in sampled subgraph is
set to 126. Due to the disorder of the triples in the sub-graphs, the
position embedding is not applied in KGTransformer.

During pretraining, given an entity 𝑒 , we generate multiple sam-
ples for each task. For MEM and MRM tasks, we get a sub-graph by
random-walk sampling or entity-centered sampling and randomly
select 15% of triples to mask either the head or the tail entity in the
MEM task and to mask relation in the MRM task, when serializing
the graph into an input sequence. We randomly sampled 2 entities
in current training batch as 𝑒 ′ in Equation (8) for MEM task. For
the EPM task, we first sample a positive(negative) entity pair (𝑒 , 𝑒 𝑗 )
with a probability of 0.5, where 𝑒 𝑗 and 𝑒 used(not used) to be the
head or tail entity of the same relation. We sample the sub-graph
of 𝑒 and 𝑒 𝑗 by entity-centered sampling. The MLPs in Equation (9)
and Equation (10) are both 1-layer. The model is implemented with
Pytorch and trained on 1 Tsela-A100 GPU with batch size as 4 for
10 epochs (97 hours). The optimizer is Adam whose learning rate
is 0.0001, together with a linear decay learning rate schedule with
warm-up. The model size is 508M containing about 133 million
parameters, among which there are 28 million parameters in 𝜃M ,
that will transfer to KG-related tasks.

4.2 Task1: Triple Classification
4.2.1 KGTransformer Implementation. In this task,D𝑡𝑎𝑠𝑘 = (ℎ, 𝑟, 𝑡)
and G𝑡𝑎𝑠𝑘 is the concatenation of ℎ and 𝑡 centered sub-graph, de-
noted as Gℎ and G𝑡 respectively. P𝑡𝑎𝑠𝑘 = [[𝑇 ] [ℎ] [𝑟 ] [𝑡]]. In the
last layer of KGTransformer, we take out the hidden states corre-
sponding to the first token [𝐵] and task token [𝑇 ], denoted as 𝑠𝑚[𝐵 ]

Table 3: Results of triple classification on WN18RR[46].
Columns with gray background are more important.

Acc. Precision Recall F1

TransE [3] 88.35 93.45 82.48 87.62
RotatE [46] 88.26 93.03 82.71 87.57
ComplEx [50] 85.07 96.73 72.59 82.94

KGTransformer 89.21 85.56 94.32 89.73
KGT-finetune 87.48 83.02 94.22 88.27
KGT-scratch 67.02 67.91 64.55 66.19

and 𝑠𝑚[𝑇 ] which are inputted into a feed-forward network to output
the score of (ℎ, 𝑟, 𝑡). The score of (ℎ, 𝑟, 𝑡) is expected to be 1 for the
positive one and 0 for the negative one. We use a cross-entropy loss
during training. The detailed process is shown in Figure 3.

4.2.2 Training Details. We test and tune KGTransformer onWN18RR
dataset. During tuning, we construct 10 negative triples by ran-
domly replacing ℎ or 𝑡 in (ℎ, 𝑟, 𝑡). Training batch size is set to 16
and optimizer is Adam [22] with learning rate 0.0001.

4.2.3 Results Analysis. We compare results of KGTransformer to
three commonly used KG embedding methods, TransE [3], Com-
plEx [50], and RotatE [46], which has proved to be powerful at KG
predictions. We evaluate models on 4 classification metrics, includ-
ing Accuracy(Acc.), Precision, Recall, and F1 score, among which
accuracy and F1 are more important metrics. Table 3 shows results.

Compared to powerful KGEs, pretrained KGTransformer outper-
forms them and overall achieves the best triple classification results,
especially on metrics of Accuracy and F1 score. KGTransformer is
better at recalling positive triples than KGEs and has a reasonable
precision on predicted positive triples, thus resulting in the best
F1 score. These results prove that the pretrained KGTransformer is
applicable and effective for in-KG task triple classification.

Compared to KGTransformer with 𝜃M frozen, overall results of
KGT-finetune is worse, whose averaged accuracy and F1 is 88.27
while KGTransformer gives 89.73, showing the frozen pretrained
KGTransformer layer introduce better local minima during tuning
which is beyondwhat could be reached based on task data only. This
is further supported by results of KGT-scratch, which is significantly
worse than KGTransformer.

4.3 Task2: Zero-shot Image Classification
Zero-shot(ZS) image classification is a challenging task to train
models on samples with seen classes while test models on samples
with unseen classes that have no training samples. KGs could be
used as auxiliary information for augmenting ZSL tasks[14, 60].

4.3.1 KGTransformer Implementation. Applying pretrained KG-
Transformer to this task, we frame the task as outputting the match-
ing score between the input image 𝐼 and target class𝐶 . G𝑡𝑎𝑠𝑘 is the
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Table 4: Results of ZS image classification on AwA-KG[15]

T1 S U H

DeViSE[10] 43.24 86.44 6.40 11.91
GCNZ[60] 62.98 75.59 20.28 31.98
OntoZSL[14] 62.65 59.59 50.58 54.71

KGTransformer 66.26 61.13 55.14 57.98
KGT-finetune 63.59 63.61 50.08 56.04
KGT-scratch 58.96 56.48 47.93 51.85

class𝐶 centered sub-graph. P𝑡𝑎𝑠𝑘 = [[𝑇 ] [𝐶] [𝑀] [𝑉 ]] where [𝐶]
is the class token sharing the embedding with entity𝐶 ∈ G𝑡𝑎𝑠𝑘 ; [𝑉 ]
is the token for image 𝐼 whose representation comes from a vision
encoder, e.g. ResNet[17]. We take out 𝑠𝑚[𝐵 ] and 𝑠

𝑚
[𝑉 ] and project

them through an MLP layer, and then calculate the cosine similarity
between them as the matching score of the input image 𝐼 and class
𝐶 . Considering that KG is used to augment unseen classes in this
task while not inverse, after generating neighborship matrix 𝑀
following Equation (3), we specifically set values in the columns
corresponding to the prompt token [𝑇 ], [𝐶], [𝑀] and [𝑉 ] in𝑀 as 0.
That is, G𝑡𝑎𝑠𝑘 can directly affect the learning of the prompt repre-
sentation, but not vice versa. We applied Binary Cross Entropy loss
to encourage the cosine similarity to be large for positive pairs and
small for negative pairs. The overall process is shown in Figure 3.

4.3.2 Training Details. Experiments are conducted on AwA-KG
[15], a benchmark includes samples from AwA dataset [63] and a
basic KG G𝑡𝑎𝑠𝑘 containing hierarchies and attribute annotations of
40 seen classes and 10 unseen classes. During tuning, we first train
the new embedding table on G𝑡𝑎𝑠𝑘 with three pretraining tasks
and then tune the model on the image classification task. We use
pretrained ResNet [17] as vision encoder encoding image 𝐼 into
a 2048 dimensional vector and transform the image vector into
768 dimension through a trainable transformation matrix as the
representation for token [𝑉 ]. We tune the model with batch size
set to 24 and Adam [22], whose initial rate is set at 0.0001. During
tuning, we froze the parameters in ResNet for simplicity.

4.3.3 Results Analysis. In Table 4, we compare the KGTransformer
with 3 zero-shot learning (ZSL) methods supporting auxiliary KGs.
We evaluate our methods and baselines on both conventional ZSL
and general ZSL tasks. In conventional ZSL tasks, only images with
unseen classes are tested, and only unseen classes are targeted to
be classified into, which means we know the test image belongs to
unseen classes. In general ZSL tasks, images with seen and unseen
classes are tested. Since we do not know the true class of the image
is seen or unseen, the candidate classes to be classified into include
all seen and unseen classes. Thus general ZSL is a more challenging
task. For conventional ZSL, the class-balanced accuracy is reported
(T1). For general ZSL, the class-balanced accuracy on seen classes
(S), unseen classes (U), and hybrid metrics (H) are reported, where
𝐻 =

2(𝑆∗𝑈 )
𝑆+𝑈 . Overall, the H value is a more important metric for

general ZSL. The results are shown in Table 4.
Compared to baselines, the pretrained KGTransformer achieves

the best results on metrics T1, U, and H and overall performs the
best. On S metrics, DeViSE presents the best results showing that it
is significantly biased to seen classes with limited predictive power

on unseen classes. Comparing different settings of pretrained KG-
Transformer with 𝜃M frozen, KGT-finetune achieves slightly worse
results than KGTransformer and KGT-scratch present significantly
worse results, which are consistent to the results on triple classifica-
tion (Table 3). In summary, Table 4 shows the pretrained KGTrans-
former is applicable and effective in zero-shot image classification.
It successfully builds semantic connections between seen and un-
seen classes, generalizes to unseen classes during test, and has a
better capability of generalizing predictive power on seen classes
to unseen classes than baselines.

4.4 Task 3: Question Answering (QA)
QA task is to select the correct answer given a natural language
question. It is a challenging task requiring complex reasoning over
constraints stated in the question consistent with the relevant
knowledge in the world. KGs are used to provide commonsense
background knowledge for this challenging task[67].

4.4.1 KGTransformer Implementation. Applying KGTransformer
to QA, we make KGTransformer to predict the likelihood of the
input question-choice pair being correct. Given a question-choice
pair 𝑞𝑐 , we extract G𝑡𝑎𝑠𝑘 from ConceptNet[43] according to a set
of keywordsW in 𝑞𝑐 following [67]. P𝑡𝑎𝑠𝑘 = [[𝑇 ] [𝑀] [𝑀] [𝑄]]
where [𝑄] is the token for 𝑞𝑐 whose representation 𝑅𝑞𝑐 come from
a language encoder, such as BERT[7], RoBERTa[34]. Following [67],
in the task layer, we first concatenate 𝑠𝑚[𝐵 ] , 𝑠

𝑚
[𝑄 ] and 𝑅𝑞𝑐 and then

input them into an MLP layer to predict the likelihood of the 𝑞𝑐 .
The overall process is shown in Figure 3.

4.4.2 Training Details. We experiment on CommonsenQA bench-
mark [48], a 5-way multiple-choice QA task. We report the main
results on the in-house (IH) data splits and official test set as did
in [67]. We apply RoBERTa-large [34] as language encoder with
the first 1024 dimensional hidden state in the sequence as 𝑅𝑞𝑐 . We
transform 𝑅𝑞𝑐 into a 768-dimensional one through a transformation
matrix. We regard P𝑡𝑎𝑠𝑘 and a triple in G𝑡𝑎𝑠𝑘 containing words
inW as related during the construction of𝑀 . We tune the model
with batch size set to 128 and Adam[22] whose initial rate set as
0.00001. In the first 4 tuning epochs, the RoBERTa-large is frozen.

4.4.3 Results Analysis. In Table 6, we compare KGTransformer to
recently proposed QA methods and report their accuracy on in-
house valid and test sets. All baselines are using RoBERTa-Large[34]
as language encoder.

Compared to baselines, KGTransformer achieves the best results.
Compared to the RoBERTa-large(ours) that was produced in the
same experiment environment, and code framework, our model
encoding KG related to question-choice pair by the pretrained KG-
Transformer successfully improves the QA accuracy on both valid
and test datasets. The pretrained KGTransformer with three set-
tings all achieves better results than Roberta-Large, among which
results of fine-tuning are the best. Results of freezing are compara-
ble to fine-tuning and are better than training from scratch. The
reason for KGT-finetune performs better than KGTransformer might
be that the QA task mainly relies on the quality of the language
encoder(RoBERTa-Large), for example, RoBERTa-Large achieves
good results on this task, thus fine-tuning 𝜃M will make model
adapt better to RoBERTa-Large and achieves better results.
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Table 5: Ablation Study.

Triple Classification Zero-shot Image Classification Question Answering
Acc. Precision Recall F1 T1 S U H IHdev IHtest

KGTransformer 89.20 85.56 94.32 89.73 66.26 61.13 55.14 57.98 77.64 74.13
- MEM 86.85 82.15 94.16 87.74 63.44 61.49 52.77 56.80 75.84 72.60
- MRM 84.91 79.42 94.22 86.19 62.36 66.41 47.97 55.70 74.45 71.47
- EPM 87.78 83.54 94.10 88.51 65.73 64.13 52.50 57.74 76.33 72.84
-𝑀 74.15 67.43 93.42 78.33 61.47 59.98 36.33 45.25 74.12 69.70
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Figure 4: Prediction results of three settings of KGTransformer on three tasks during training.

Table 6: Accuracy of QA on CommonsenseQA.

IHdev IHtest

RoBERTa-Large [34] 73.07 68.69
RoBERTa-Large [34](ours) 72.24 68.49

+ GconAttn [59] 72.61 68.59
+ KagNet [28] 73.47 69.01
+ MHGRN [9] 74.45 71.11
+ QA-GNN [67] 76.54 73.41

+ KGTransformer 77.64 74.13
+ KGT-finetune 78.05 74.21
+ KGT-scratch 72.32 69.22

4.5 Model Analysis
4.5.1 Ablation Study. In Table 5, we show the results of KGTrans-
former trained without mask entity modeling(-MEM), without mask
relation modeling (-MRM), without entity pair modeling (-EPM),
and without neighborship matrix (-M), to illustrate how effective
they are for pretraining. We adopt frozen tuning in this ablation
study on three tasks. The results show that removing any one of
them will make the task results worse, showing they are beneficial
to the pretraining of KGTransformer. Among three tasks, MRM
contributes the most, and MEM contributes more than EPM. This
is reasonable because MRM is the hardest task. Some MEM tasks
could be trickily solved by copying entities from the sequence if
the masked one is also contained in other triples. Similarly, some
EPM tasks could be trickily solved by comparing whether the two
entities are the head(tail) entities of the same relation in the sub-
graph. Without neighborship matrix, the results of three tasks are
significantly worse than KGTransformer and KGT-finetune, and
slightly better or worse than KGT-scratch. And we find that without
the matrix, the pretraining loss did not significantly change and
the pretraining model didn’t converge. This proves that explicitly
telling model the graph structure of KGs is effective for pretraining.

4.5.2 Training Details. In Figure 4, we show the prediction results
of the pretrained KGTransformer with three settings on three tasks.

We observe the same phenomena across three tasks that (1) tun-
ing KGTransformer with 𝜃M frozen leads to good results, which is
usually better than or comparable to fine-tuning 𝜃M , and it is signif-
icantly better than training from scratch; (2) tuning KGTransformer
with 𝜃M frozen achieves reasonable results faster. For example, in
triple classification, results of 5 epochs from KGTransformer are
comparable to 10 epochs from KGT-finetune.

Thus we conclude that (1) pretraining KGTransformer on KGs
with diverse structures enables it to learn global graph structure
knowledge in KG that could not be sufficiently learned based on
only task KG; (2) we recommend tuning the pretrained KGTrans-
former with 𝜃M frozen to keep and transfer graph structure knowl-
edge learned from G𝑝𝑟𝑒 to downstream tasks better and faster.

5 CONCLUSION AND DISCUSSION
In this paper, we propose a novel KG pretraining model KGTrans-
former and prove it is possible to pretrain a model with a general
knowledge representation and fusion module in multiple tasks sup-
ported by different KGs. We pretrain KGTransformer on a hybrid
KG with diverse graph structures and prompt tuning it uniformly
on three typical KG-related tasks. KGTransformer performs bet-
ter than specifically designed models across different tasks. More
importantly, simply applying pretrained KGTransformer off the
shelf gives promising results, showing the capability of deep graph
structure transfer that the pretrained KGTransformer has.

Though effective, KGTransformer is a heavier KG model than
conventional KGEs. It requires more memory and computation
resources. In the future, we would like to explore how to apply the
pretrained KGTransformer to applications with limited resources,
such as mobile applications and edge computing.
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