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ABSTRACT
Opinion target extraction (OTE) or aspect extraction (AE) is a fun-
damental task in opinion mining that aims to extract the targets (or
aspects) on which opinions have been expressed. Recent work focus
on cross-domain OTE, which is typically encountered in real-world
scenarios, where the testing and training distributions differ. Most
methods use domain adversarial neural networks that aim to reduce
the domain gap between the labelled source and unlabelled target
domains to improve target domain performance. However, this ap-
proach only aligns feature distributions and does not account for
class-wise feature alignment, leading to suboptimal results. Semi-
supervised learning (SSL) has been explored as a solution, but is
limited by the quality of pseudo-labels generated by the model. In-
spired by the theoretical foundations in domain adaptation [2], we
propose a new SSL approach that opts for selecting target samples
whose model output from a domain-specific teacher and student net-
work disagree on the unlabelled target data, in an effort to boost the
target domain performance. Extensive experiments on benchmark
cross-domain OTE datasets show that this approach is effective and
performs consistently well in settings with large domain shifts.

CCS CONCEPTS
• Computing methodologies → Information extraction; Semi-supervised
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1 INTRODUCTION
The growth of e-commerce websites has allowed consumers to di-
rectly interact with products, leading to an increase in user-generated
content. In particular, reviews of products generated by users has
grown at an astronomical rate with the increasingly accessibility
and affordability of the internet. These reviews, which are often
expressed as text, contain sentiment information or opinion words
expressed on different aspects of products (referred to as opinion
targets or aspect terms). As a result, opinion words along with its
corresponding aspect terms have become an important resource to
improve recommender systems for Web resource discovery. A typ-
ical example is the recommendation of a book in Goodreads [34]
based on the opinions expressed on a specific section in the book.

This phenomenon has led to the increased research in opinion
mining [25]. This paper focuses on opinion target extraction (OTE)
(or aspect extraction (AE)), a fundamental step in opinion mining.
AE aims to extract from opinionated sentences the aspects on which
opinions have been expressed. Traditional approaches [16, 42] uti-
lize hand-crafted features, which heavily rely on feature extraction.
With the advances in deep learning, recent approaches [21, 26, 39]
are based on neural networks that are trained in a supervised man-
ner. However, as with any other supervised learning method, these
approaches perform poorly when there is a change in domain upon
deployment. Cross-domain OTE [9] has emerged as a solution by
using unsupervised domain adaptation (UDA) techniques [3, 13, 44]

ar
X

iv
:2

30
2.

14
71

9v
1 

 [
cs

.C
L

] 
 2

8 
Fe

b 
20

23

https://doi.org/10.1145/3543507.3583325
https://doi.org/10.1145/3543507.3583325


WWW ’23, May 1–5, 2023, Austin, TX, USA Sun et al.

to reduce the domain shift between a labelled source and unlabelled
target domain.

One typical line of work aims to reduce domain shifts via do-
main adversarial neural networks (DANN) [10]. Given a labelled
source and unlabelled target domain data, DANNs attempt to learn
representations that are discriminative on the source domain and
invariant to the domain distribution. However, DANNs align the
feature distributions of the source and target data inputs (i.e., align-
ing the marginal distribution), neglecting the feature alignment at
the class-level [32]. As a consequence, the resulting target features
are non-discriminative with respect to the class labels, which conse-
quently leads to suboptimal target domain performance.

Semi-supervised learning (SSL) [4] has been explored to learn
target discriminative features by generating pseudo-labels from the
unlabelled target data. While SSL approaches have been heavily
employed to boost domain adaptation in vision tasks [17, 33, 40], it
has been lightly touched in cross-domain OTE [43, 45]. The state-
of-the-art method Adaptive Hybrid Framework (AHF) [45] adapts a
mean teacher (i.e., teacher and student networks) [33] into the task.
The teacher is modelled as a feedforward network while the student
is a DANN (i.e., developed by augmenting the feedforward network
with a discriminator). Here, knowledge on the target’s output of
the teacher-student networks is shared among the networks to learn
the target-discriminative features. Although AHF demonstrates the
importance of SSL, the fundamental weakness of the mean-teacher
cannot be ignored. Specifically, Ke et al. [17] provided theoretical
and empirical proof to show that the weights of the teacher quickly
converges to that of the student as training progresses, which conse-
quently leads to a performance bottleneck.

Figure 1: Illustrative example of source and target distribu-
tions induced by a teacher and student network (Best viewed
in color). Target samples that change class due to adversarial
learning by the student network are selected to self-train the
student.

These findings motivate us to decouple the student-teacher net-
works and optimize the networks through independent paths to pre-
vent the networks from collapsing into each other [17]. We propose
a novel SSL approach, which performs Self-training through Classi-
fier Disagreement (SCD), to effectively explore the outputs of the
student and teacher networks on the unlabelled target domain. SCD
is inspired by the theory of domain adaptation [2], which allows us

to detect high-quality pseudo-labelled target samples in the student
feature space to self-train the student for cross-domain OTE. As
demonstrated in Fig. 1, SCD achieves this by comparing the two
target distributions induced separately by the student and teacher
networks. These high-quality pseudo-labelled target samples are
those that disagree (i.e., discrepancy in target predictions) with their
correspondence in the teacher feature space. We perform extensive
experiments and find that SCD not only achieves impressive perfor-
mance but also performs consistently well in large domain shifts on
cross-domain OTE.

Our contribution can be summarized as follows:

• We develop a novel SSL approach for cross-domain OTE,
referred to as Self-training through Classifier Disagreement
(SCD) which leverages high-quality pseudo-labelled target
samples in the student feature space to improve target perfor-
mance in cross-domain OTE.

• We demonstrate that SCD is favourable in large domain di-
vergence - a key direction in the domain adaptation research.

• We perform extensive experiments and show that SCD achieves
state-of-the-art results in nine out of ten transfer pairs for the
cross-domain OTE task.

2 RELATED WORK
There is a growing literature on OTE [21–23, 26, 39, 41] but they
mostly focus on single domain learning. However, in real-world
scenarios, the training distribution used by a classifier may differ
from the test distribution, which is a big challenge for single domain
learning methods.

Cross-domain learning has been explored for the OTE task. Tra-
ditional methods use hand-crafted domain-independent features and
use Conditional Random Fields (CRFs) [7, 16, 20]. While hand-
crafted features are useful, they are manually engineered and re-
quire human experts, making them time-consuming and expensive
to obtain. So far, some neural models have been proposed for cross-
domain OTE [6, 9, 11, 24, 38, 43, 45]. The common paradigm in
prior work is to reduce the domain shift between the source and
target domains. Among recent work, Ding et al. [9] proposed a hier-
archical network trained with joint training (Hier-Joint). This method
uses domain-independent rules to generate auxiliary labels and use
a recurrent neural network to learn a domain-invariant hidden rep-
resentation for each word. However, the manually defined rules
have limited coverage. A similar method, namely, Recursive Neural
Structural Correspondence Network (RNSCN) [38] introduces an
opinion word extraction as an auxiliary task based on a critical as-
sumption that associative patterns exist between aspect terms and
opinion words irrespective of the domain. They use syntactic rela-
tions in dependency trees as the pivot to bridge the domain gap for
cross-domain OTE. However, the external linguistic resources used
are derived from traditional feature-engineered NLP systems which
may propagate errors. More recent methods, including the Aspect
Boundary Selective Adversarial Learning model (AD-SAL) [24]
uses an adversarial network with attention mechanisms to learn
domain-invariant features. Gong et al. [11] proposed BERTE-UDA
to integrate BERT fine-tuned on domain information for the task.
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Chen and Qian [6] proposed a Semantic Bridge network (Sem-
Bridge) which constructs syntactic and semantic bridges to transfer
common knowledge across domains.

While significant progress has been made, the majority of the pro-
posed models neglect the feature distribution alignment at the class-
level. Hence, their performance cannot be guaranteed because they
do not learn target discriminative features. Recently, a Cross-Domain
Review Generation model based on BERT (BERTE-CDRG) [43]
generated target domain data with fine-grained annotations aiming
to learn the target discriminative features. Perhaps, AHF [45] is the
first to use SSL in the task. AHF adapts a mean teacher in which the
teacher and student networks are found to be tightly coupled dur-
ing training, leading to a performance bottleneck [17]. Elsewhere,
researchers have delicately designed SSL approaches that allow
individual models to iteratively learn from each other, thus, prevent-
ing these models from collapsing into each other [5, 17, 31]. Such
approaches have demonstrated substantial improvements over the
mean-teacher.

3 PRELIMINARIES
Our method is inspired by the theory of domain adaptation proposed
by Ben-David et al. [2], which provides an upper bound on the tar-
get error in terms of the source error and the domain divergence.
Suppose ℎ ∈ H is a hypothesis, Ben-David et al. [2] theorized that
the target error 𝜖T (ℎ) (which can also be viewed as the target per-
formance) is bounded by the source error 𝜖S (ℎ) (i.e., the source
performance) and the symmetric difference hypothesis divergence
HΔH -divergence between the source S and target T distributions,
denoted as 𝑑HΔH (S,T) (i.e., a measure of the domain shift). For-
mally,

∀ℎ ∈ H , 𝜖T (ℎ) ≤ 𝜖S (ℎ) +
1
2
𝑑HΔH (S,T) + 𝛽 (1)

where 𝛽 is the optimal joint error on the source and target domains
which should be small for domain adaptation. Note, 𝛽 is a constant
which is independent of ℎ. To obtain a better estimate of 𝜖T (ℎ), a
learner can either reduce the source error 𝜖S (ℎ) or/and the diver-
gence 𝑑HΔH (S,T), which can be estimated from finite samples of
the source and target domains [2].

4 PROBLEM STATEMENT
The OTE task is formulated as a sequence labeling problem. Given
the 𝑗-th input sentence x𝑗 = {𝑥𝑖 𝑗 }𝑛𝑖=1 with 𝑛 words, the word 𝑥𝑖 𝑗
is represented as a feature vector. The goal is to predict the label
sequence y𝑗 = {𝑦𝑖 𝑗 }𝑛𝑖=1, with 𝑦𝑖 𝑗 ∈ Y = {B, I,O}, denoting the
Beginning, Inside and Outside of an opinion target or aspect term.

In this paper, we focus on the cross-domain setting which is
typically tackled through unsupervised domain adaptation (UDA).
Particularly, UDA aims to transfer knowledge from a labelled source
domain to an unlabelled target domain, whose data distribution has a
considerable shift from that of the source domain. Formally, suppose
a labelled source domain dataset with 𝑁S sentence and label pairs
𝐷S = {(xS

𝑗
, yS

𝑗
)}𝑁S

𝑗=1, and an unlabeled dataset in a target domain

with 𝑁T unlabelled sentences 𝐷T = {(xT
𝑗
)}𝑁T

𝑗=1. Our goal is to

predict labels of testing samples in the target domain using a model
trained on 𝐷S ∪ 𝐷T . 1

5 METHODOLOGY
Our method is based on a teacher-student network structure. Teacher
𝐴 learns on the source data 𝐷S ; and Student 𝐵 learns on both the
source 𝐷S and target domain data 𝐷T . Both trained networks gener-
ate pseudo-labelled target samples on the unlabelled target domain,
which are then compared to detect high quality pseudo-labelled
target samples to self-train the student for cross-domain OTE.

5.1 Teacher Network
The teacher network 𝐴 = {𝐴𝑒 , 𝐴𝑙 } is a neural network, consisting
of a feature encoder 𝐴𝑒 and a label classifier 𝐴𝑙 . In our work, 𝐴𝑒

is modelled using a BiLSTM [14] or BERT [8] since they are both
widely used approaches for sequence labelling problems. 𝐴𝑙 on
the other hand is modelled using a softmax function. Although the
CRF [18] is a typical choice to model the label classifier for sequence
labelling problems, the softmax offers comparable performance in
cross-domain OTE [24]. Hence, given the sentence x𝑗 = {𝑥𝑖 𝑗 }𝑛𝑖=1,
𝐴𝑒 extracts the context features f𝐴𝑒

𝑗
= {𝑓 𝐴𝑒

𝑖 𝑗
}𝑛
𝑖=1. Now, for each

word-level feature 𝑓
𝐴𝑒

𝑖 𝑗
, the label classifier 𝐴𝑙 is applied to output

the prediction probability 𝑃 (𝑦𝐴𝑙

𝑖 𝑗
) over the tag set Y. As the teacher

is trained over the source data only, the classification loss by the
teacher network is given by:

L𝐴
𝑦 =

1
𝑁S

𝑁S∑︁
𝑗=1

𝑛∑︁
𝑖=1

ℓ (𝑃 (𝑦𝐴𝑙

𝑖 𝑗
), 𝑦𝑖 𝑗 ) (2)

where 𝑃 (𝑦𝐴𝑙

𝑖 𝑗
) is the probability prediction for the word 𝑥𝑖 𝑗 ∈ xS

𝑗

and 𝑦𝑖 𝑗 ∈ yS
𝑗

is the ground-truth of 𝑥𝑖 𝑗 . ℓ is the cross-entropy loss
function.

Now suppose F𝐴𝑒

S and F𝐴𝑒

T are fixed representations of the respec-
tive source and target domain data produced by the trained teacher
𝐴𝑒 . The upper bound on the target error 𝜖T (𝐴𝑙 ) of the label classifier
𝐴𝑙 can be expressed as:

𝜖T (𝐴𝑙 ) ≤ 𝜖S (𝐴𝑙 ) +
1
2
𝑑HΔH (F𝐴𝑒

S , F𝐴𝑒

T ) + 𝛽 (3)

It is easy to see that the teacher network simply reduces the source
error 𝜖S (𝐴𝑙 ) by (2) while the domain shift 𝑑HΔH (F𝐴𝑒

S , F𝐴𝑒

T ) remains
large since the network does not have an appropriate component to
reduce the domain shift. This leads to a suboptimal estimate for the
bound of the target errors 𝜖T (𝐴𝑙 ).

5.2 Student Network
As we have seen in the previous section, the teacher applies domain-
specific knowledge (i.e., the source domain) for inference, which
may underperform on the target domain due to difference in the data
distribution. Ideally, the network should have the ability to perform
in different domains. We introduce the student network as a solution.

The student network is analogous to a student who learns several
subjects simultaneously in order to perform well in those subjects.

1Hereinafter, subscripts or superscripts are omitted for clarity, and the term “aspect”
will be used instead of “opinion target” to avoid confusion with the target domain.
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This is different from teachers who are normally experts in a single
subject. This implies that the student network not only desires to
be as excellent as the domain-specific teacher on the source data
but also aims to perform well on the target data. To this end, the
student network is developed by augmenting a teacher network
with a discriminator (or domain classifier), following DANN [10].
Accordingly, the student network 𝐵 = {𝐵𝑒 , 𝐵𝑙 , 𝐵𝑑 } consists of a
feature encoder 𝐵𝑒 ; label classifier 𝐵𝑙 ; and domain classifier 𝐵𝑑 ,
which determines if the sample comes from the source or target
domain. 𝐵𝑒 extracts the context features f𝐵𝑒

𝑗
from the sentence x𝑗 ∈

𝐷S ∪ 𝐷T and feeds to 𝐵𝑙 to learn discriminative features on the
source domain, following a similar classification loss with Eqn. (2).
Formally, the classification loss is defined as:

L𝐵
𝑦 =

1
𝑁S

𝑁S∑︁
𝑗=1

𝑛∑︁
𝑖=1

ℓ (𝑃 (𝑦𝐵𝑙

𝑖 𝑗
), 𝑦𝑖 𝑗 ) (4)

where 𝑃 (𝑦𝐵𝑙

𝑖 𝑗
) is the probability prediction for the word 𝑥𝑖 𝑗 ∈ xS

𝑗

and 𝑦𝑖 𝑗 ∈ yS
𝑗

is the ground-truth. At the same time, f𝐵𝑒

𝑗
is fed to a

domain classifier 𝐵𝑑 to learn domain-invariant features through a
gradient reversal layer (GRL) [10]. Formally, the GRL 𝑅𝜆 (·) acts
as an identity function in the forward pass, i.e., 𝑅𝜆 (f𝐵𝑒

𝑗
) = f𝐵𝑒

𝑗
, and

backpropagates the negation of the gradient in the backward pass,
i.e., 𝜕𝑅𝜆 (f𝐵𝑒

𝑗
)/𝜕f𝐵𝑒

𝑗
= −𝜆𝐼 . Consequently, 𝐵𝑒 maximizes the domain

classification loss L𝐵
𝑑

through the GRL while 𝐵𝑑 minimizes L𝐵
𝑑

to

make f𝐵𝑒

𝑗
domain-invariant. The domain classification loss L𝐵

𝑑
is

defined as follows:

L𝐵
𝑑
=

𝑁∑︁
𝑗=1

𝑑 𝑗 log(𝑃 (𝑑𝐵𝑑
𝑗

)) + (1 − 𝑑 𝑗 ) log(1 − 𝑃 (𝑑𝐵𝑑
𝑗

)) (5)

where 𝑑 𝑗 = 1 indicates that the 𝑗-th sentence comes from the source
domain, otherwise 𝑑 𝑗 = 0; 𝑃 (𝑑𝐵𝑑

𝑗
) is the domain probability predic-

tion of the sentence-level feature x𝑗 ; 𝑁 = 𝑁S + 𝑁T .
Suppose F𝐵𝑒

S and F𝐵𝑒

T are fixed representations of the respective
source and target domain data produced by the trained student en-
coder 𝐵𝑒 . The upper bound on the student label classifier 𝐵𝑙 can be
expressed as:

𝜖T (𝐵𝑙 ) ≤ 𝜖S (𝐵𝑙 ) +
1
2
𝑑HΔH (F𝐵𝑒

S , F𝐵𝑒

T ) + 𝛽 (6)

The source error 𝜖S (𝐵𝑙 ) is comparable with 𝜖S (𝐴𝑙 ) since the
student and teacher are trained on the source data using the same net-
work pipeline (comparing (2) and (4), and also empirically demon-
strated in Table 5). But the student network has been shown to re-
duce the domain divergence with a theoretical guarantee via the
GRL [10]. This means 𝑑HΔH (F𝐵𝑒

S , F𝐵𝑒

T ) is relatively small, i.e.,

𝑑HΔH (F𝐵𝑒

S , F𝐵𝑒

T ) ≤ 𝑑HΔH (F𝐴𝑒

S , F𝐴𝑒

T ), and therefore leads to a better
estimate of 𝜖T (𝐵𝑙 ). In other words, the student performs better than
the domain-specific teacher on the target data due to the mitigation
of the domain shift.

𝐷T

Student Encoder 𝐵𝑒

Student Classifier 𝐵𝑙

L̄𝐵
𝑦

Teacher Encoder 𝐴𝑒

Teacher Classifier 𝐴𝑙

𝐷𝑑 𝐷𝑎 Labeled Source
Labeled Target
Unlabel Target
Class 1
Class 2

𝐷𝑑 𝐷𝑎 𝐷S

Train

Predict

Compare

Figure 2: Overview of our SSL Approach. Both Teacher and
Student networks have been earlier trained by Eqn. (2), (4) and
(5). The Student network alone is further self-trained through
classifier disagreement on the target domain. This figure is best
viewed in color.

5.3 Self-training through Classifier Disagreement
The student network improves target performance by aligning the
source and target data distributions. It just so happens that it simply
aligns the data distribution without considering the alignment at
the class-level [32], leading to suboptimal performance. Such a
situation occurs due to the lack of labelled target data to learn target
discriminative features. The fundamental challenge is that we do not
have access to labelled target data.

To this end, we introduce a strikingly simple approach to collect
high-quality pseudo-labelled target samples to improve the class-
level alignment of the student network. Fig 2 shows an overview of
our approach, which we refer to as Self-training through Classifier
Disagreement (SCD). Suppose the trained student and teacher net-
works (i.e., trained by Eqn. (2), (4) and (5)) assign pseudo-labels
to the unlabelled target data. Eqns (3) and (6) indicate that the in-
crease in target performance by the student can be explained by the
target samples that have shifted toward the domain-invariant feature
space (i.e., the student feature space). Our goal is to self-train the
student network by leveraging the target samples responsible for the
performance improvement in the target domain.

This strategy is only beneficial if the domain shift is large since
this will lead to a large set of high-quality pseudo-labelled target
samples. Otherwise, both networks will have comparable perfor-
mance on the unlabelled target domain and the performance gain is
minimal. To extend the approach to problems with close similarity
between domains, we split the self-training learning problem by pay-
ing attention to: 1) 𝐷𝑑 , the target samples in the student feature space
that disagree with their counterpart in the teacher feature space; and
2) 𝐷𝑎 , the target samples in the student feature space that agree with
their counterpart in the teacher feature space.

Formally, let us suppose the student and teacher networks are
already trained (i.e., without self-training). As we aim to self-train
the Student network, we can rewrite the classification loss expressed
in (4) as L𝐵 (0)

𝑦 to represent the initial classification loss of the Stu-
dent network. Now, let us suppose the teacher and student networks
assign the pseudo-labels ȳ𝐴𝑙

𝑗
= {𝑦𝐴𝑙

𝑖 𝑗
}𝑛
𝑖=1 and ȳ𝐵𝑙

𝑗
= {𝑦𝐵𝑙

𝑖 𝑗
}𝑛
𝑖=1 for
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each sentence xT
𝑗
∈ 𝐷T , respectively. Self-training is formulated as

training the student network on the set 𝐷S ∪ 𝐷𝑑 ∪ 𝐷𝑎 , where the
sets 𝐷𝑑 and 𝐷𝑎 are defined as follows:

𝐷𝑑 := {(xT𝑗 , ȳ
𝐵𝑙

𝑗
) |∃𝑥𝑖 𝑗 ∈ xT𝑗 s.t. 𝑦𝐵𝑙

𝑖 𝑗
≠ 𝑦

𝐴𝑙

𝑖 𝑗
}

𝐷𝑎 := {(xT𝑗 , ȳ
𝐵𝑙

𝑗
) |∀𝑥𝑖 𝑗 ∈ xT𝑗 s.t. 𝑦𝐵𝑙

𝑖 𝑗
= 𝑦

𝐴𝑙

𝑖 𝑗
}

(7)

Here, 𝑦𝐴𝑙

𝑖 𝑗
∈ ȳ𝐴𝑙

𝑗
is the teacher network’s pseudo-label assignment on

𝑥𝑖 𝑗 ∈ xT
𝑗

. Let 𝑟 index the self-training round. Then the self-training
loss for the student network at a specific self-training round 𝑟 can be
formulated as follows:

L̄𝐵 (𝑟 )
𝑦 = L𝐵 (𝑟 )

𝑦 + 1

|𝐷 (𝑟 )
𝑑

|

∑︁
(xT

𝑗
,ȳ𝐵𝑙

𝑗
) ∈𝐷 (𝑟 )

𝑑

∑︁
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where 𝑟 ≥ 1, 𝜂 ∈ [0, 1] is a variable to control the weight of the loss
on 𝐷

(𝑟 )
𝑎 . Since the similarity between source and target domains can

only be measured empirically, 𝜂 is treated as a hyper-parameter to be
tuned. 𝜂 is expected to be large when the source and target domains
are similar, otherwise small. Notice that when 𝜂 = 1, L̄𝐵 (𝑟 )

𝑦 becomes
a special case of the pseudo-labelling loss function expressed in Eq.
15 of [19] with 𝛼 (𝑡) = 1, which we refer to as a standard pseudo-
labelling method.

The total loss function L for SCD can now be formulated as

L = L𝐵
𝑑
+ L𝐵 (0)

𝑦 +
∑︁
𝑟 ≥1

L̄𝐵 (𝑟 )
𝑦 (9)

In each self-training round, 𝐷 (𝑟 )
𝑝𝑙

= 𝐷
(𝑟 )
𝑑

∪ 𝐷
(𝑟 )
𝑎 is generated using

the current trained student network. The self-training stops when
𝐷
(𝑟 )
𝑝𝑙

is approximately equal in successive rounds.

6 EXPERIMENTS AND RESULTS
6.1 Experimental Setup
6.1.1 Comparison Methods. We evaluate SCD as well as our
BERT-based version BERT-SCD in this section. Comparison meth-
ods include, CRF [16], FEMA [42], Hier-Joint [9], RNSCN [38],
AD-SAL [24], AHF [45] as well as the BERT-based models BERTE-
UDA [11] and BERTE-CDRG [43]. Two strong single-domain OTE
models BERTB and BERTE [11], which are trained only on the
source-domain to investigate the capacity of BERT without domain
adaptation. SemBridge [6] is excluded in our comparison since its
dataset setup is different from that used in compared works.

6.1.2 Datasets. We use benchmark datasets from four domains
following previous work [24, 38]. The Laptop dataset consists of
reviews in the laptop domain taken from the SemEval ABSA chal-
lenge 2014 [30]. The Restaurant dataset is the set of all restaurant
reviews in SemEval ABSA challenge 2014, 2015 and 2016 [28–30].
The Device dataset, originally provided by [15] contains reviews in
the device domain. The Service dataset, introduced by [35] contains

reviews related to the web service domain. We use the preprocessed
data provided by [24]. Dataset statistics are shown in Table 3.

6.1.3 Evaluation Protocol. We follow prior work [11, 24] and
evaluate on 10 transfer pairs 𝐷S → 𝐷T from the datasets. We use
the test set of the source domain as a development set to tune our
models. The test set of the target domain is used for evaluation
purposes. We evaluate an exact match,2 and compute the Micro-F1
score. Reported results are the average over 5 runs.

6.1.4 Implementation Details. Following Zhou et al. [45], we
use 100-dim fixed pretrained Word2Vec emebeddings [27] or BERT-
Mini embeddings for word features.3 We use Adam with 1𝑒−3 learn-
ing rate, 100 epochs for both Teacher and Student networks, and
50 epochs during self-training, word embedding dropout rate in
[0.3, 0.5, 0.7], BiLSTM dimensions in [100, 200, 300], adaption rate
𝜆 ∈ [1.0, 0.7, 0.5, 0.3], batch size in [32, 64, 128] and 𝜂 ∈ [0.0, 0.1, . . . ,
0.9, 1.0, 1𝑒−2, 1𝑒−3]. Each batch contains half labeled source and half
unlabelled target data. All sentences are padded to a max length
𝑛. During self-training, we adopt repeated sampling on the labeled
source data with the same size as the pseudo labeled target data in
each epoch.

6.2 Main Results
Table 1 summarizes our main results. We find that neural meth-
ods, including RNSCN and Hier-Joint surpass hand-crafted feature
methods FEMA and CRF, highlighting the importance of leveraging
neural networks for the task. We also find that adversarial methods
such as AD-SAL and AHF outperforms both Hier-Joint and RN-
SCN, indicating that adversarial learning is effective in mitigating
the domain shift to yield performance. However, by learning target
discriminative features, the SOTA method AHF achieves a better
performance over AD-SAL by about 5.45 F1 on average. We see sim-
ilar performance on the SOTA BERT-based model BERTE-CDRG
that consider learning target discriminative features . Specifically,
BERTE-CDRG outperforms the previous SOTA BERTE-UDA by
about 4.47 F1 on average. This clearly shows the importance of
learning target discriminative features. However, AHF considers the
a mean teacher while BERTE-CDRG considers a generation model
to learn these target discriminative features. In contrast, we consider
to learn an adversarial model (i.e., Student) based on self-training
through classifier disagreement. Our results suggest the effectiveness
of our approach where we outperform AHF and BERTE-CDRG by
an average F1 of 5.92 and 7.08. In particular, we obtain SOTA results
on nine out of 10 transfer pairs with relative stability when compared
to AHF.

6.3 Ablation Study
We study the contribution of model components. Table 2 presents
our results. The upper portion of the table shows the performance of
different ablated models. The lower portion is the Maximum Mean
Discrepancy (MMD) [12], which measures the distance between
source and target domain distributions.4

2Exact Match: the predicted label sequence should exactly match the gold label sequence
3We use BERT-Mini implementation from https://github.com/google-research/bert
4MMD from https://github.com/easezyc/deep-transfer-learning/

https://github.com/google-research/bert
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Model S→ R L→ R D→ R R→ S L→ S D→ S R→ L S→ L R→ D S→ D AVG
CRF 17.00 17.00 2.50 8.80 8.60 4.50 10.90 11.60 9.00 9.70 9.96
FEMA 37.60 35.00 20.70 10.80 14.80 8.80 26.60 15.00 22.90 18.70 21.09
Hier-Joint 52.00 46.70 50.40 19.80 23.40 23.50 31.70 30.00 32.00 33.40 34.29
RNSCN 48.89 52.19 50.39 30.41 31.21 35.50 47.23 34.03 46.16 32.41 40.84
AD-SAL 52.05 56.12 51.55 39.02 38.26 36.11 45.05 35.99 43.76 41.21 43.91
AHF 54.98 58.67 61.11 40.33 47.17 45.78 56.58 36.62 48.24 44.16 49.36±3.23
SCD 59.52 71.40 61.85 48.30 48.67 52.58 59.68 42.40 54.45 54.01 55.28±1.07
BERTB 54.29 46.74 44.63 22.31 30.66 33.33 37.02 36.88 32.03 38.06 37.60
BERTE 57.56 50.42 45.71 26.50 25.96 30.40 44.18 41.78 35.98 35.13 39.36
BERTE-UDA 59.07 55.24 56.40 34.21 30.68 38.25 54.00 44.25 42.40 40.83 45.53
BERTE-CDRG 59.17 68.62 58.85 47.61 54.29 42.20 55.56 41.77 35.43 36.53 50.00
BERT-SCD 64.10 67.61 64.75 55.83 51.33 58.92 55.64 49.76 49.62 53.29 57.08±1.17

Table 1: Comparison of F1 performance. Best performance is in bold format.

Model S→ R L→ R D→ R R→ S L→ S D→ S R→ L S→ L R→ D S→ D AVG
SCD 59.52 71.40 61.85 48.30 48.67 52.58 59.68 42.40 54.45 54.01 55.28±1.07
SCD(𝜂 = 0.0) 59.18 71.40 61.85 48.22 48.52 52.25 57.81 40.13 52.78 45.95 53.80±1.91
SCD(𝜂 = 1.0) 57.76 67.49 59.06 47.83 46.13 51.03 55.62 42.40 53.80 54.01 53.51±0.96
Student 55.39 63.69 56.52 47.19 45.48 50.69 52.66 41.22 52.39 44.28 50.95±1.23
Teacher 52.10 57.46 48.02 24.88 28.48 33.09 48.08 40.92 50.75 45.35 42.87±1.10
Student(MMD) 0.041 0.040 0.046 0.035 0.094 0.080 0.054 0.042 0.045 0.043 0.052±0.009
Teacher(MMD) 0.215 0.197 0.415 0.364 0.170 0.263 0.198 0.134 0.158 0.106 0.222±0.023

Table 2: Ablation Study: F1 Performance of different ablated models (top). Student(MMD) (or Teacher(MMD)) is an estimate of the
discrepancy between the learned source and target distributions by the Student (or Teacher).

Dataset Domain Sentence Train Test
L Laptop 1869 1458 411
R Restaurant 3900 2481 1419
D Device 1437 954 483
S Service 2153 1433 720

Table 3: Statistics of the datasets.

First, we note that the Teacher and Student networks have com-
parable performance on the source domain (see results in Table 5).
This means the performance of the Student over Teacher is due
to the divergence (measured by MMD). Since Student(MMD) is
lower than Teacher(MMD) for all transfer pairs, it is not surpris-
ing to see the Student network outperforming the Teacher network.
Conversely, SCD(𝜂 = 1.0) is simply standard pseudo-labelling. Al-
though it improves performance, we find that SCD(𝜂 = 0.0) of-
fers comparable performance for the average F1 by focusing on
learning only on pseudo-labelled samples with prediction disagree-
ment with the Teacher network. Interestingly, we find that on pairs
such as S → L and S → D, Teacher(MMD) is already low. Al-
though Student(MMD) becomes smaller due to adversarial learning,
SCD(𝜂 = 0.0) cannot leverage sufficient pseudo-labelled samples to
achieve satisfactory performance. This is because Student can only
shift few samples to the domain invariant-distribution to bring about
a prediction disagreement. But we see the benefit of prediction dis-
agreement on pairs such as D→ R, where Teacher(MMD) is large

and corresponding Student(MMD) is low, improving the Student
network from 56.52 to 61.85 (i.e., performance on SCD(𝜂 = 0.0)).

These results indicate that the pseudo-labelled samples help to
learn the discriminative features, achieving better performance as
compared to recent works.

6.4 Sensitivity of Hyperparameter 𝜂
We now study the sensitivity of our model for the hyperparameter
𝜂. At 𝜂 = 0, we pay attention to the learning of pseudo-labelled
samples by the student network that disagree with those produced
by the Teacher network. At 𝜂 = 1, we are simply performing the
standard pseudo-labelling. We study the sensitivity of 𝜂, particularly
on pairs that have a high or low MMD on the Teacher network. That
is, the respective D → R and S → D pairs. With low MMD, the
source and target domains are similar, but diverges with high MMD.
The idea is to understand how the domain divergence affects 𝜂.

Figure 3 shows the results on this experiment where we report
the F1 performance for different values of 𝜂 on the pairs. We find
that on S→ D, the learning problem moves toward standard pseudo-
labelling since the best performance is achieved at 𝜂 = 1.0. However,
on D→ R the best performance is achieved at 𝜂 = 0. These results
suggest the importance of attention placed on the learning of these
pseudo-labelled samples. Particularly, we observe that when the
domain divergence is high it is beneficial to learn on pseudo-labelled
samples that disagree with the Teacher network. On the other hand,
when the source and target domains are similar, pseudo-labelling
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seems sufficient for the problem. This model behaviour guides in
the selection of 𝜂.
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Figure 3: F1 Performance of SCD for different 𝜂 values on D→
R (left) and S→ D (right) .

6.5 Quality of Pseudo-Labels
We perform additional experiments to study the quality of pseudo-
labels generated by our method. Figure 5 shows the experiments,
where we report the F1 performance for different models for the pairs
under study; D→ R (left) and S→ D (right). Since SCD(𝜂 = 0.0)
and SCD have equivalent performance on D→ R and SCD(𝜂 = 1.0)
and SCD have equivalent performance on S→ D, we omit the curves
of SCD to clearly show the benefit of pseudo-labelled samples under
different strategies. Other compared methods include AHF.

On D → R, we find that both SCD(𝜂 = 0.0) and SCD(𝜂 = 1.0)
improves steeply but becomes unstable after the fifth and eight
epochs respectively. However, the improvement of SCD(𝜂 = 0.0)
over SCD(𝜂 = 1.0) is highly notable. This observation points us to
the fact, with high Teacher(MMD), prediction disagreement offers
high quality pseudo-labelled samples particularly in the early rounds
of training to improve performance. However, when Teacher(MMD)
is low such as on the S→ D, we are not able to take advantage of
pseudo-labelled samples with prediction disagreement. Hence, the
standard pseudo-labelling can outperform prediction disagreement as
seen in the figure. AHF on the other hand underperforms, indicating
that our SSL approach is effective as compared to the mean teacher.

6.6 Feature Visualization
Fig. 4 depicts the t-SNE [36] visualization of features learned using
the Teacher, Student and SCD models on the transfer pair D→ R
(1000 instances sampled randomly in each domain). As there are
three class labels, namely BIO labels, an ideal model should clearly
align the source and target data into three clusters. For the Teacher
network, we can observe that the distribution of source samples is
relatively far from the distribution of the target samples. Through do-
main adaptation, the Student network improves the alignment of the
source and target samples. However, by learning target discrimnative
features through SCD, we gradually observe three clusters forming.
The results indicate that SCD improves the class-level alignment.

6.7 Case Study
To test the effectiveness of our approach, some case examples from
the transfer pair with the largest domain divergence (D → R) are

selected for demonstration. Table 4 shows the aspect term extraction
results on these case examples.

In the first case, we find that the Teacher, Student and SCD are
all capable of identifying the aspect terms “service” and “space”. As
these aspect terms appear in both Device and Restaurant domains,
domain adaptation is not necessary to extract the aspect terms. It is
therefore not surprising to observe that all models identify the aspect
terms in the Restaurant domain.

In the second case example, the aspect terms “ambience”, “food”
and “catfish” are found in the Restaurant domain and not the Device
domain. However, the Teacher was able to extract the aspect terms
“ambience” and “food”. Introspecting further, we found that 81%
of aspect terms extracted by the Teacher in the Restaurant domain
are accompanied with opinion words (e.g., “great”) that are also
present in the Device domain. Hence, the Teacher was able to learn
the correspondences between opinion words and aspect terms in the
Device domain and use that knowledge to locate “ambience” and
“food” in the Restaurant domain. However, both Teacher and Student
networks fail to extract the aspect term “catfish”. This highlights the
importance of learning target discriminative features, as there is no
correspondence between the word “delicious” and an aspect term to
be learned in the Device domain but only in the Restaurant domain.
SCD solves this problem by collecting high quality pseudo-labelled
samples in the Restaurant domain. As a result, SCD is able to extract
the aspect term “catfish”.

In the third case example, we found that the Teacher network
failed to identify the aspect terms “pasta primavera” and “veggies”
as they do not exist in the Device domain. However, by reducing the
domain shift between the two domains, the Student network is able
to extract “pasta primavera” but not “veggies”. Upon investigation,
we found that the opinion word “fresh” which expresses an opinion
on “veggies” frequently appears 83 times in the Restaurant dataset
and 0 times in the Device dataset. Ideally, by learning target discrim-
inative features, we can learn correspondences that exist between
“fresh” and aspect terms. Such knowledge as learned by SCD offers
supervisory training signals, enabling SCD to detect the aspect term
“veggies”.

Finally, in the fourth case example, both the Teacher and Stu-
dent networks completely failed to detect the aspect term “martinis”.
While it is no surprise that the Teacher network fails (i.e., “marti-
nis” is not seen during training), the failure of the Student network
highlights the limitations of simply reducing the domain shift and
suggests the importance of learning target discriminative features
for successful cross-domain OTE.

6.8 Performance Comparison on Source Domain
We argued that the difference between the target errors (or F1 per-
formance) of the teacher and student networks can be explained
by the HΔH divergence when the source errors of these networks
are approximately equal. According to Ben-David et al. [2], the
source error as well as the divergence can be estimated from finite
samples of the source and target domains, under the assumption of
the uniform convergence theory [37]. Table 5 therefore reports the
F1 performance on the source test set. We discover that for each
transfer pair, the F1 performance is approximately equal, compar-
ing the Teacher and Student. This suggest that adversarial learning
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Figure 4: The t-SNE visualization of features learned by the (a) Teacher, (b) Student, and (c) SCD for the transfer pair D→ R (light
shade: target, dark shade: source)

Case Sentence Teacher Student SCD
1 But the space is small and lovely, and the

service is helpful.
space, service space, service space, service

2 Although small, it has beautiful ambience,
excellent food and catfish is delicious.

ambience, food ambience, food ambience, food, catfish

3 The pasta primavera was outstanding as
well, lots of fresh veggies

NULL pasta primavera pasta primavera, veggies

4 I would definitely go back, if only for some
of those exotic martinis on the blackboard.

NULL NULL martinis

Table 4: Case study on D→ R. Gold aspect terms are boldfaced. “NULL” indicates that no aspect term has been extracted.

Model S→ R L→ R D→ R R→ S L→ S D→ S R→ L S→ L R→ D S→ D AVG
Teacher 69.63 76.35 66.73 82.67 75.43 67.59 80.00 69.20 79.74 69.16 73.65±0.60
Student 67.48 77.88 65.72 82.63 74.44 67.53 80.17 70.03 80.64 69.41 73.59±0.62

Table 5: F1 performance of Teacher and Student on the test set of the source domain.
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Figure 5: F1 performance of different models for training
epochs, aiming to evaluate the quality of pseudo labels.

performed by the Student to reduce the domain shift has little to
no effect on the classification on the source data. Most importantly,
the results suggest that the difference between the Teacher and Stu-
dent on the target data is due to the target samples shifted to the
domain-invariant space within the Student feature space.

7 CONCLUSION
We have proposed a Self-training through Classifier Disagreement
for cross-domain OTE. We demonstrated that by simultaneously
training a Teacher and a Student network, we can benefit from the
information that comes from their predictions on the unlabelled
target domain. Specifically, by leveraging pseudo-labelled samples
that disagree between the Teacher and Student networks, the Student
network is significantly improved, even in large domain divergences.
This model behaviour however leads to the potential limitation.
In cases of small domain shifts, the model tends to favor pseudo-
labeling [19], an SSL approach that risks confirmation bias [33] (i.e.,
prediction errors are fit by the network). Nevertheless, small domain
shifts have little to no interest in cross-domain learning since the
source and target domains can be considered to be similar. In the
future, we will consider data augmentation strategies to mitigate
confirmation bias brought by pseudo-labelling in such situations
[1]. We believe our model is generic and can be applied to other
cross-domain tasks such as cross-domain named entity recognition.
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