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ABSTRACT
The multi-modal entity alignment (MMEA) aims to find all equiva-
lent entity pairs between multi-modal knowledge graphs (MMKGs).
Rich attributes and neighboring entities are valuable for the align-
ment task, but existing works ignore contextual gap problems that
the aligned entities have different numbers of attributes on specific
modality when learning entity representations. In this paper, we
propose a novel attribute-consistent knowledge graph representa-
tion learning framework for MMEA (ACK-MMEA) to compensate
the contextual gaps through incorporating consistent alignment
knowledge. Attribute-consistent KGs (ACKGs) are first constructed
via multi-modal attribute uniformization with merge and generate
operators so that each entity has one and only one uniform feature
in each modality. The ACKGs are then fed into a relation-aware
graph neural network with random dropouts, to obtain aggregated
relation representations and robust entity representations. In order
to evaluate the ACK-MMEA facilitated for entity alignment, we
specially design a joint alignment loss for both entity and attribute
evaluation. Extensive experiments conducted on two benchmark
datasets show that our approach achieves excellent performance
compared to its competitors.
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1 INTRODUCTION
Knowledge graphs (KGs) have become a popular data structure
for representing factual knowledge in form of RDF triples. Re-
cently, there is a growing trend to incorporate multi-modal in-
formation into KGs, i.e., Multi-Modal Knowledge Graphs (MMKGs),
which support various cross-modal tasks, e.g., recommendation
systems [19, 28] and question answering systems [11, 27]. However,
MMKGs often suffer from low coverage and incompleteness. To
improve the coverage of these MMKGs, a viable approach termed as
multi-modal entity alignment (MMEA) is proposed to identify the
equivalent entity pairs (i.e., alignment seeds) in different MMKGs,
by integrating the attribute information of text and image. In this
way, MMKGs can obtain useful knowledge from other KG.

Although the rich attributes and neighboring entities in MMKGs
provide valuable pieces of evidence for MMEA [14], the inevitable
heterogeneity of MMKGs makes it difficult to learn and fuse knowl-
edge representations from distinct modalities. A series of effective
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Figure 1: An example of the MMEA task between KG1 and
KG2. The yellow and orange circles are the entity node and
attribute nodes, respectively.

methods have been developed to conquer these challenges, and the
detailed description is in Appendix A. The PoE method [14] com-
posited representations of entities by concatenating all modality
features, which could not capture the potential interactions among
heterogeneous modalities and therefore limited the performance of
MMEA. Later works [3, 7] designed multi-modal fusion modules
to properly integrate attributes and entities, in order to better pre-
dict alignments according to aggregated embeddings. All of these
methods would learn entity representations by harnessing their
whole associated attributes and neighboring entities. Nevertheless,
they ignore the contextual gaps between entity pairs and in turn
constrain the effectiveness of the entity alignment.

The contextual gap, which means entities may associate with
different numbers of attributes or even lack some modalities, is
inevitable due to information redundancy or absence. Such incon-
sistencies between the equivalent entity pairs make alignments
error-prone. Figure 1 illustrates a toy example of the contextual gap
in MMEA. (a) Difference in the number of attributes. The entity
Donald Trump in KG1 associates with only one text attribute US.
With such limited contextual information, it is not easy to deter-
mine the identity of entity Donald Trump. In contrast, the identity
of entity D.J Trump in KG2 will be more specific as he contains
richer text attributes, which causes that similarity of text attributes
(between US and American) is diluted by existing aggregation-based
approaches. The contextual gaps caused by different numbers of
text attributes make it hard to obtain the attribute-consistent align-
ment knowledge and judge that both actually refer to the same
real-world identity. (b) Lack of modal attribute. Missing attributes
also leads to contextual gap problems since unique attributes are
neglected for alignment on existing fusion baselines, as such miss-
ing image attribute of Donald Trump makes D.J Trump difficult to
align with it.

To overcome the above challenges, we propose a novel Multi-
Modal EntityAlignment framework based onAttribute-Consistent
Knowledge graph representation learning , termed as ACK-MMEA1.
Specifically, for the attribute information, we design a multi-modal
attribute uniformization method to obtain attribute-consistent KGs
(ACKGs) with one uniform attribute for each modality of all enti-
ties. That means in the ACKGs every entity will possess only one
attribute for each modality (i.e., one text and one image attribute).
To generate such an attribute-consistent MMKG, we devise merge
1The source code is available at https://github.com/xiaoqian19940510/ACK-MMEA.

and generate operators for each entity to deal with the attribute
redundancy and absence respectively. The former is to compress
associated multiple attributes into one with an attention-based ap-
proach to filter out the noise attributes, while the latter is to expand
a new attribute if the entity has no attribute in specific modality.
We further devise a ConsistGNN to enforce consistent attribute
aggregation for entity representation. Given a relation triple in the
above ACKGs, ConsistGNN first obtains an aggregated relation rep-
resentation by simultaneously integrating relational features under
every modality (i.e., entity/text/image). Then entity representations
are obtained using a relation-aware entity encoder. As the newly
constructed ACKGs may introduce noises, random dropouts on
neighbors are employed to produce more robust representations.
Finally, we design a joint alignment loss for entity and attribute eval-
uation. Experimental results show that our approach can achieve
excellent performance on two MMEA benchmark datasets. Our
contributions are summarized as follows:

• Wepropose a novel multi-modal entity alignment framework
to incorporate the consistent alignment knowledge through
leveraging an attribute-consistent knowledge graph repre-
sentation learning method. To the best of our knowledge,
this is the first work to tackle the contextual gap problems
in the MMEA task.
• We design a multi-modal attribute uniformization method
using merge and generate operators to derive an attribute-
consistent MMKG, and a ConsistGNN model to aggregate
consistent information.
• Experimental results indicate the framework achieves state-
of-the-art performance on two public MMEA datasets.

2 PRELIMINARIES
We first provide the definitions of multi-modal knowledge graph
(MMKG) and multi-modal entity alignment (MMEA) as follows.

Definition of MMKG. A multi-modal knowledge graph, de-
noted as 𝐾𝐺 = (E,R,A), is composed of relations between entities
and associated attributes. Specifically, E,R,A are the sets of enti-
ties, relations, and multi-modal attributes, respectively, with size of
𝑛𝐸 , 𝑛𝑅, 𝑛𝐴 . We suppose that a 𝐾𝐺 has two kinds of attributes, i.e.,
the text attributes T and image attributes I.

In this paper, we aims to resolve the problem of contextual gaps
for the entity alignment task on MMKG. In general, the entity
alignment task includes cross-language entity alignment and multi-
source entity alignment [30]. Following previous MMEA studies [3,
7, 13], this paper focuses on the latter one.

Definition of MMEA Task. The multi-modal entity alignment
task [3, 7, 13] is to identify whether a pair of entities in two multi-
modal knowledge graphs is equivalent or not. Concretely, given two
multi-modal knowledge graphs 𝐾𝐺1 and 𝐾𝐺2 with a pair of entity
alignment seed (𝑣, 𝑣 ′), where 𝑣 and 𝑣 ′ are entities in 𝐾𝐺1 and 𝐾𝐺2,
the multi-modal entity alignment aims to identify whether they are
equivalent. The main procedure is to learn entity representations
in two multi-modal knowledge graphs and calculate the similarity
between alignment seed (𝑣, 𝑣 ′). The set of entity alignment seeds
is S = {(𝑣, 𝑣 ′) | 𝑣 ∈ E, 𝑣 ′ ∈ E ′, 𝑣 ≡ 𝑣 ′}.

https://github.com/xiaoqian19940510/ACK-MMEA
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Figure 2: The framework of ACK-MMEA. (I) Two new attribute-consistent MMKGs (𝐴𝐶𝐾𝐺1 and 𝐴𝐶𝐾𝐺2) are generated by per-
forming the multi-modal attribute uniformization on the original ones (𝐾𝐺1 and 𝐾𝐺2). (II) ConsistGNN: Relation-aware GNN
with dropouts is to aggregate consistent attributes and learn robust representations of entities. (III) Joint alignment loss with
three objectives is used for parameter optimization.

3 FRAMEWORK
This section introduces our proposed framework ACK-MMEA. As
shown in Figure 2, ACK-MMEA consists of the following three mod-
ules: attribute uniformization, ConsistGNN and joint alignment loss.
Firstly, the attribute uniformization module generates consistent
attributes for each entity, wherein each entity has one attribute for
every modality, respectively. Then, the ConsistGNN maps entities,
attributes, and relations to a common representation space and
learns heterogeneous relation as well as robust entity represen-
tations by aggregating consistent multi-modal attributes. Finally,
the joint alignment loss combines the losses of entity similarity,
attribute similarity, and neighbor dissimilarity to comprehensively
evaluate the attribute-consistent MMKG.

3.1 Multi-Modal Attribute Uniformization
To better tackle the inconsistency issue of attributes in MMKG, we
divide the original multi-modal knowledge graph 𝐾𝐺 into multiple
knowledge graphs under each modality.

An MMKG contains text and image attributes, which can be di-
vided into three knowledge graphs {𝐾𝐺𝐸 , 𝐾𝐺𝑇 , 𝐾𝐺𝐼 }, correspond-
ing to the entity, text and image graphs, respectively. For each
divided knowledge graph 𝐾𝐺𝑋 , where 𝑋 ∈ {𝐸,𝑇 , 𝐼 }, the represen-
tations of nodes E𝑋 (entities, texts, images) are :

E𝑋 = F𝑋 ·W𝑋 , (1)

where F𝑋 are the initial representations of nodes. For each modal-
ity of nodes, (a) in 𝐾𝐺𝐸 , entity F𝐸 ∈ R𝑛𝐸×𝑑𝐸 is initialized by the

TransE model [1], with 𝑑𝐸 as its dimension; (b) in 𝐾𝐺𝑇 , text at-
tribute F𝑇 ∈ R𝑛𝑇 ×𝑑𝑇 is initialized by the BERT [21], with 𝑑𝑇 as
its dimension; (c) in 𝐾𝐺𝐼 , image attribute F𝐼 ∈ R𝑛𝐼×𝑑𝐼 is initial-
ized by the VGG16 [18], with 𝑑𝐼 as its dimension. W𝐸 ∈ R𝑑𝐸×𝑑 ,
W𝑇 ∈ R𝑑𝑇 ×𝑑 , W𝐼 ∈ R𝑑𝐼×𝑑 are learnable transformation matrix,
mapping the initial representations of different types of nodes into
a common 𝑑-dimensional space.

It is noticed that attributes of entities in the original MMKG
are inconsistent, as shown in Figure 3. The inconsistency means
that the entities in each pair have different number of attributes
for a specific modality as discussed in Section 1. Such contextual
gaps require that the model has the ability to select and generate
attributes that contribute to the MMEA task. However, it is hard
to determine which and how many attributes to use for the entity
alignment, since the contextual gap has no particular structural
pattern and different entities have different severity of problems.

To this end, we want to seek generic solutions to contextual gap
problem in this paper. We implement the following two uniformiza-
tion operators on the original MMKG to map entities, attributes,
and their relations to a common representation space as well as
ensure consistency among them simultaneously. (a) Merge Opera-
tor. We aggregate all attributes of each modality into one through
an attention-based mechanism, to represent the uniform feature of
the entity in the specific modality that is helpful to the MMEA task.
(b) Generate Operator. We propose to use the neighbors’ attributes
to generate the missing attribute. The combination of merge and
generate operators alleviates the problem of contextual gap.



WWW ’23, May 1–5, 2023, Austin, TX, USA Qian Li, et al.

r1
r2

r3 r4
e1

e2 e3

e4T2

I2

T1
T4 I4

T3

I3 T3

Original Knowledge Graph

Text 
Attribute

Image 

Attribute

T1 T4

T2

I3

I4

I2

T3

T1 T4

T2

Merge

Operator

Generate 

Operator

T3T3

I3

I1 I4

I2

(b) KGT: Text Knowledge Graph 

(c) KGI: Image Knowledge Graph 

(a) KGE: Entity Knowledge Graph 

r1
r2

r3 r4
e1

e2 e3

e4

Ent
ity

Figure 3: Schematic diagram of the multi-modal attribute
uniformization. (a) is the entity knowledge graph only in-
cluding entity. (b) and (c) are the text and image knowledge
graphs, connected relying on the relation of (a). We use the
merge and generate operators to make the text and image
attributes uniformization.

Merge Operator. For MMKGs, there may be multiple attributes
{e𝑣,𝐴,𝑖 }𝑛𝑣

𝑖=1 of entity 𝑣 ∈ E in E𝐴 , where 𝐴 ∈ {𝑇, 𝐼 }, and 𝑛𝑣 is the
number of attribute in h𝑣,𝐴 . In order to aggregate information across
the attributes in the same modality, we perform a merge operator
for eachmodality. The operator is implemented by a learnable graph
attention [15] which can discard redundant contextual information
with lower weights, making the final consistent attribute helpful
to the MMEA task. Thus we can obtain an aggregated attribute E0

𝐴
which compresses redundant contextual information:

E(0)
𝐴
[𝑣] = 𝜎 (

𝑛𝑣∑︁
𝑖=1

𝛼𝑖 ·W𝑀e𝑣,𝐴,𝑖 ), (2)

where 𝛼𝑖 is the learned attention weight for 𝑖-th attribute, W𝑀 ∈
R𝑑×𝑑 is a learnable parameter, 𝜎 is ReLU(·) function.

Generate Operator. For the MMKG, many entities miss their
attributes of the specific modality. It is observed that the neighbors’
attributes in the same modality usually provide helpful informa-
tion to generate the attribute of the target entity. Intuitively, the
image attribute of the entity "Donald Trump" is similar to their
children’s, which means their representations are close. Therefore,
to compensate the contextual gap caused by missing attributes, we
generate the attribute E(0)

𝐴
with an average aggregation of only the

first-order neighbor attributes.

E(0)
𝐴
[𝑣] = 𝜎

(
W𝐺 ·MEAN

(
{e𝑢,𝐴 |𝑢 ∈ N (𝑣)}

)
, (3)

where W𝐺 ∈ R𝑑×𝑑 is a learnable transformation matrix, N(𝑣) is
the first-order neighbor set of the entity 𝑣 , 𝜎 is the ReLU(·) function,
and e𝑢,𝐴 = E𝐴 [𝑢].

In this way, the contextual gaps can be relieved, as the attributes
of entities in KGs are consistent via the two uniformization opera-
tors. Such attribute-consistent KGs (ACKGs) would be helpful to
balanced attribute integration during entity representation learning,
leading to more accurate alignments.

3.2 ConsistGNN
We further design a GNN model named ConsistGNN to derive
relation and entity representations respectively based on attribute-
consistent relation representation encoder and relation-aware en-
tity representation encoder, enabling consistent modality aggrega-
tion on attribute-consistent KGs.

In ACKGs, there is only one attribute for every entity under
each modality. It makes sense that the relations between the same
modality of attributes can be somewhat analogous to those between
entities. Thus, we define the representations of entity relations R(0)

and attribute relations R(0)
𝐴

are calculated as follows respectively:

R(0) = R ·W0,R
(0)
𝐴

= R𝐴 ·W0,𝐴, (4)

where R,R𝐴 ∈ R𝑛𝑟×𝑑𝐸 are the initial representations of relations,
which are calculated from TransE. Specifically, for two connected
entities (ℎ, 𝑡), the attribute relation rℎ𝑡,𝐴 = |e𝑡,𝐴 − eℎ,𝐴 | ∈ R𝐴 is
calculated by tail attribute e𝑡,𝐴 and head attribute eℎ,𝐴 .W0,W0,𝐴 ∈
R𝑑𝐸×𝑑 are learnable transformation matrix for mapping initial rela-
tion representations into the common space.

To obtain entity representations containing the consistent at-
tribute information, we first initialize the entity representations of
the ACKGs as follows:

E(0)
𝐸

= 𝜎 (E𝐸W𝑐,𝐸 +
∑︁

𝐴∈{𝑇,𝐼 }
E(0)
𝐴

W𝑐,𝐴), (5)

where W𝑐,𝐸 ,W𝑐,𝐴 ∈ R𝑑×𝑑 are learnable transformation matrices.
We then feed the initial entity and relation representations into Con-
sistGNN equipped with attribute-consistent relation representation
encoder and relation-aware entity representation encoder. Specifi-
cally, we calculate the representations of nodes E(𝑙) = {E(𝑙)

𝐸
, E(𝑙)

𝐴
}

and relations R(𝑙) in the 𝑙-th layer as follows:

E(𝑙) ,R(𝑙)=ConsistGNN
(
E(𝑙−1) ,R(𝑙−1)

)
. (6)

Attribute-ConsistentRelationRepresentation. The attribute
uniformization obtains unique identity of each modality for every
entity. The relation of two entities is close to the attribute rela-
tions of theirs. Thus, we propose to use the consistent attribute
information and utilize the attribute relation for entity relation
learning. Specifically, we propose an attribute-consistent relation
representation encoder for utilizing the multi-modal attribute in-
formation, where the relation of two attributes is represented by
the combination of themselves:

R(𝑙) [𝑢, 𝑣] = ReLU(W(𝑙)
𝐸−𝐸 r(𝑙−1)𝑢𝑣

+
∑︁

𝐴∈{𝑇,𝐼 }
W(𝑙)

𝐸−𝐴 [e
(𝑙−1)
𝑢,𝐴
| |e(𝑙−1)

𝑣,𝐴
]), (7)

where r(𝑙−1)𝑢𝑣 = R(𝑙−1) [𝑢, 𝑣], and ReLU(·) is the activation function.

Relation-aware Entity Representation. To make the entity
representation have fault tolerance ability for the generated ACKGs,
we adopt random dropouts [29] on neighbors to improve the ro-
bustness of entity representation, which assumes that missing part
of entities does not affect the semantic meaning of ACKG. For each
entity 𝑣 , we randomly discard certain portion of neighboring enti-
ties along with the relations connected to themselves. The neighbor
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set of each entity 𝑣 is therefore updated as:

N(𝑣) ← drop (N (𝑣); 𝜌)
={𝑢𝑖 |𝑢𝑖 ∈ N (𝑣), 𝑝 (𝑖) = 1, 𝑝 (𝑖) ∼ Ber(1 − 𝜌)}, (8)

where 𝜌 is the random dropouts rate. drop(·) is the neighbors ran-
dom dropouts function, and Ber(·) is the Bernoulli distribution.
The best random dropouts rate is 0.35. Afterwards, we update the
entity representation with the neighbors random dropouts knowl-
edge graph, utilizing the relation and attribute information for each
entity. The entity representations in the 𝑙-th layer are

E(𝑙)
𝐸
[𝑣]=Wℎ,𝐸 [e

(𝑙−1)
𝑣,𝐸
| | 1
𝐷𝑣

∑︁
𝑢∈N(𝑣)

[e(𝑙−1)
𝑢,𝐸
| |r(𝑙)𝑢𝑣 ]], (9)

where 𝐷𝑣 is the degree of entity 𝑣 . The updates of attribute is the
special case of entity updates. The attribute representations in the
𝑙-th layer 𝐸𝑙

𝐴
[𝑣] are the integration of attribute representations

𝐸𝑙−1
𝐴
[𝑣] and entity representations 𝐸𝑙−1

𝐸
[𝑣] in (𝑙-1)-th layer.

3.3 Joint Alignment Loss
We design a joint alignment loss function, which utilizes the align-
ment losses of entity similarity, attribute similarity and neighbor
dissimilarity to evaluate the attribute-consistent MMKG for multi-
perspective assessment.

Aligned Entity Similarity. The entity similarity constraint
loss is as follows:

L𝐸𝐴
𝑖 = sim(e𝑖 , e′𝑖 ) − sim(e𝑖 , e

′
𝑖 ) − sim(e𝑖 , e

′
𝑖 ), (10)

where (e𝑖 , e′𝑖 ) are the final representations of aligned seeds (𝑣𝑖 , 𝑣 ′𝑖 )
of 𝐾𝐺1 and 𝐾𝐺2. e𝑖 and e′𝑖 are the negative samples of the seeds.
sim(·, ·) is the cosine distance.

Aligned Attribute Similarity. In addition, in order to make
the relation between the same type of attributes similar to the two
adjacent entities, we design the attribute similarity constraint loss
as follows:

L𝑎𝑡𝑡𝑟
𝑖 =

∑︁
𝐴∈{𝑇,𝐼 }

sim(e𝑖,𝐴, e′𝑖,𝐴) . (11)

Aligned Neighbor Dissimilarity. Furthermore, for more pre-
cise alignment of candidate entities, the entity 𝑣 ′

𝑖
in 𝐾𝐺2 should

be characterized similar to entity 𝑣𝑖 in 𝐾𝐺1, and the neighbors
N(𝑣 ′

𝑖
) of 𝑣 ′

𝑖
in 𝐾𝐺2 should be characterized dissimilar to entity 𝑣𝑖

in 𝐾𝐺1. Thus, we introduce the neighbor dissimilarity constraint
loss, inspired by [9, 25]:

L𝑐𝑜𝑛𝑡
𝑖 =−log

exp(sim(e𝑖 ,e′𝑖 )/𝜏)∑
𝑣′𝑗 ∈N(𝑣′𝑖 )exp(sim(e𝑖 ,e

′
𝑗
))/𝜏) , (12)

where 𝑣 ′
𝑗
is the neighbors of entity 𝑣 ′

𝑖
, and 𝜏 is the temperature

coefficient.
The total alignment loss L is the weighted sum of three loss

functions:

L = 𝜆1L𝐸𝐴 + 𝜆2L𝑎𝑡𝑡𝑟 + 𝜆3L𝑐𝑜𝑛𝑡 , (13)

where 𝜆1, 𝜆2, 𝜆3 are the learnable hyper-parameters for joint align-
ment loss.

4 EXPERIMENT
4.1 Dataset
We conducted experiments on FB15K-DB15K and FB15K-YAGO15K
datasets [14], which are the two most popular datasets in MMEA.
FB15K-DB15K is the entity alignment dataset2 of FB15K and DB15K
multi-modal knowledge graph, including 12,846 alignment seeds.
FB15K-YAGO15K is the entity alignment dataset of FB15K and
YAGO15K knowledge graphs, including 11,199 alignment seeds. As
previous works [3, 7] recommended, we divided the two data sets
into training and testing sets at 2:8, 5:5, and 8:2, respectively. We
report the official MRR, Hits@1, and Hits@10metrics for evaluation
on different proportions of alignment seeds. For more details, please
refer to the Appendix B.

4.2 Comparision Methods
We compare our method with six EA methods. They originally
aggregate the text attribute and relation information. Here, we
introduce the image attributes initialized by VGG16 for entity rep-
resentation with the same aggregation manner of text attributes: (1)
TransE [1] assumes that the entity embedding 𝑣 should be close to
the attribute embedding 𝑎 plus their relation 𝑟 . (2) IPTransE [32]
is a translation-based method to jointly optimize entities and re-
lations representation in knowledge graphs with an iterative and
parameter sharing strategy. (3) GCN-align [23] transfers entities
and attributes of per language to a common representation space
through GCN. (4) SEA [16] leverages labeled and unlabeled entities
through adversarial training, and combines the image attributes.
(5) IMUSE [8] uses a bivariate regression to merge the relations
and multiple attributes. (6) AttrGNN [15] divides KG into multiple
subgraphs, effectively modeling various types of attributes.

Furthermore, we compare our method with fourMMEAmethods,
which also do not introduce name attributes and focus on how to
utilize the multi-modal attributes: (7) PoE [14] utilizes the image
features and measures the credibility by matching the semantics
of the entities to mining the relations. (8) PoE-rni [14] uses the
relation, numeric literals and images attributes of PoE with the
best performance. (9) Chen et al. [3] design a fusion module to
integratemulti-modal attributes. (10)HEA [7] characterizesMMKG
in hyperbolic space.

In contrast to thesemethods, ourmethod generates a new attribute-
consistent MMKG to uniform attribute information and learns more
robust entity representations via ConsistGNN with a joint loss.

4.3 Implementation Details
For all baselines, we adopt the best hyper-parameters reported in
their literature. For the EA baselines (1-6), we reproduce the perfor-
mance through adding image attributes. For the MMEA baselines (7-
10), we copy the existing results reported in the literature [3, 7, 14].

Our model is implemented based on PyTorch, an open-source
deep learning framework. The BERT version is bert-base-uncased
in huggingface3 for text attributes initialization and VGG version
is VGG164 for image attributes initialization. The GNN (GCN and
GAT) layer is 2, the training epoch is 200, the L2 regularization value
2https://github.com/mniepert/mmkb
3https://github.com/huggingface/transformers
4https://github.com/machrisaa/tensorflow-vgg
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Table 1: Main experiments on FB15K-DB15K (top) and FB15K-YAGO15K (bottom) with different proportions of entity align-
ment seeds. The best results are highlighted in bold, and the underlined values are the second best result. The "↑" means the
improvement compared to the second best result, and “-" means that the results are not available.

FB15K-DB15K (20%) FB15K-DB15K (50%) FB15K-DB15K (80%)
Methods MRR (%) Hits@1 (%) Hits@10 (%) MRR (%) Hits@1 (%) Hits@10 (%) MRR (%) Hits@1 (%) Hits@10 (%)

TransE [1] 13.4 7.8 24.0 30.6 23.0 44.6 50.7 42.6 65.9
IPTransE [32] 9.4 6.5 21.5 28.3 21.0 42.1 46.9 40.3 62.7
GCN-align [23] 8.7 5.3 17.4 29.3 22.6 43.5 47.2 41.4 63.5
SEA [16] 25.5 17.0 42.5 47.0 37.3 65.7 50.5 51.2 78.4
IMUSE [8] 26.4 17.6 43.5 40.0 30.9 57.6 55.1 45.7 72.6
AttrGNN [15] 34.3 25.2 53.5 54.7 47.3 72.1 70.3 67.1 83.9

PoE [14] 17.0 12.6 25.1 53.3 46.4 65.8 72.1 66.6 82.0
PoE-rni [14] 28.3 23.2 39.0 44.2 38.0 55.7 55.8 50.2 64.1
Chen et al. [3] 35.7 26.5 54.1 51.2 41.7 70.3 68.5 59.0 86.9
HEA [7] - 12.7 36.9 - 26.2 58.1 - 41.7 78.6

ACK-MMEA (ours) 38.7 (↑3.0) 30.4 (↑3.9) 54.9 (↑0.8) 62.4 (↑7.7) 56.0 (↑8.7) 73.6 (↑1.5) 75.2 (↑3.1) 68.2 (↑1.1) 87.4 (↑0.5)

FB15K-YAGO15K (20%) FB15K-YAGO15K (50%) FB15K-YAGO15K (80%)
Methods MRR(%) Hits@1 (%) Hits@10 (%) MRR (%) Hits@1 (%) Hits@10 (%) MRR (%) Hits@1 (%) Hits@10 (%)

TransE [1] 11.2 6.4 20.3 26.2 19.7 38.2 46.3 39.2 59.5
IPTransE [32] 8.4 4.7 16.9 24.8 20.1 36.9 45.8 40.1 60.2
GCN-align [23] 15.3 8.1 23.5 29.4 23.5 42.4 47.7 40.6 64.3
SEA [16] 21.8 14.1 37.1 38.8 29.4 57.7 60.5 51.4 77.3
IMUSE [8] 14.2 8.1 25.7 46.9 39.8 60.1 58.1 51.2 70.7
AttrGNN [15] 31.8 22.4 39.5 46.2 38.0 63.9 67.1 59.9 78.7

PoE [14] 15.4 11.3 22.9 41.4 34.7 53.6 63.5 57.3 74.6
PoE-rni [14] 33.4 25.0 49.5 49.8 41.1 66.9 57.2 49.2 70.5
Chen et al. [3] 31.7 23.4 48.0 48.6 40.3 64.5 68.2 59.8 83.9
HEA [7] - 10.5 31.3 - 26.5 58.1 - 43.3 80.1

ACK-MMEA (ours) 36.0 (↑2.6) 28.9 (↑3.9) 49.6 (↑0.1) 59.3 (↑9.5) 53.5 (↑12.4) 69.9 (↑3.0) 74.4 (↑6.2) 67.6 (↑7.7) 86.4 (↑2.5)

is 0.0001, and themargin gramma value is 1.0. For hyper-parameters,
the best random dropping rate 𝜌 is 0.35 and temperature coefficient
𝜏 is 0.5, and coefficients 𝜆1, 𝜆2, 𝜆3 are 5, 3 and 2. For the learning
rate, we adopt the method of grid search with a step size of 0.001.
The optimal learning rate is 0.001. All hyper-parameter settings are
tuned on the validation data by the grid search with 5 trials. Refer
to Appendix C for more details. All experiments were conducted
on a server with one GPU (Tesla V100). The time analysis of our
method is shown in Appendix D.

4.4 Main Results
To verify the effectiveness of our ACK-MMEA, we report overall
average results in Table 1. It shows performance comparisons on
FB15K-DB15K and FB15K-YAGO15K datasets with different splits
on training/testing data of alignment seeds, i.e., 2:8, 5:5, and 8:2.

From the table, we can observe that: 1) Our attribute-consistent
model outperforms all the baselines of both EA and MMEA meth-
ods, in terms of three metrics on both datasets. Specifically, our
model improves 3.0% − 7.7% (4% on average) on FB15K-DB15K and
2.6% − 9.5% (6% on average) on FB15K-YAGO15K in terms of MRR
for all proportions of training data, respectively. It demonstrates
that our model is robust to different proportions of training re-
source, achieving reliable performance on multi-modal entity align-
ment. 2) Compared to EA baselines (1-4), especially for MRR and

Hits@1, our model improves 5% and 9% up on average on FB15K-
DB15K and FB15K-YAGO15K, tending to achieve more significant
improvements. It demonstrates that effectiveness of multi-modal
consistent-attribute uniformization for incorporating consistent
alignment knowledge. 3) Compared to MMEA baselines (5-8), our
model designs a ConsistGNN model on new attribute-consistent
MMKGs, the average gains of our model regarding MRR, Hits@1
and Hits@10 are 5%, 5%, and 1%, respectively. The reason is that
our method incorporates the consistent multi-modal attributes and
robust relation-aware entity information. 4) In terms of three pro-
portions of training data on both datasets, our model improves
4.5% on average and 8% on average on FB15K-DB15K and FB15K-
YAGO15K for the Hits@1 metric, which means the proportion that
only prediction label is equal to the global label. It demonstrates
that our method is more accurate compared to baselines, which can
provide more correct predictions when only one outcome can be
predicted. All the observations demonstrate the effectiveness of the
ACK-MMEA framework.

4.5 Discussions for Model Variants
To investigate the effectiveness of each module in ACK-MMEA,
we conduct variant experiments, showcasing the results in Table 2
and Figure 4. The "↓" means the value of performance degradation
compared to the ACK-MMEA.
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Table 2: Variant experiments on FB15K-DB15K (80%) and FB15K-YOGA15K (80%). “w/o” means removing corresponding mod-
ule from the complete model. “repl.” means replacing corresponding module with the other module. The "↓" means the value
of performance degradation compared to the ACK-MMEA.

FB15K-DB15K (80%)
Variants MRR (%) Hits@1 (%) Hits@10 (%) △ Avg (%)

ACK-MMEA (ours) 75.2 68.2 87.4 -

w/o attribute uniformization 73.2 (↓2.0) 63.9 (↓4.3) 82.8 (↓4.6) ↓3.6
w/o attribute uniformization (Merge Operator) 74.0 (↓1.2) 65.1 (↓3.1) 83.5 (↓3.9) ↓2.7
w/o attribute uniformization (Generate Operator) 74.2 (↓1.0) 65.6 (↓2.6) 84.1 (↓3.3) ↓2.3
w/o text attribute 73.4 (↓1.8) 66.2 (↓2.0) 85.9 (↓1.5) ↓1.7
w/o image attribute 72.5 (↓2.7) 65.8 (↓2.4) 86.2 (↓1.2) ↓2.1
repl. GCN 73.5 (↓1.7) 66.6 (↓1.6) 82.7 (↓4.7) ↓2.6
repl. GAT 74.1 (↓1.1) 65.5 (↓2.7) 83.1 (↓4.3) ↓2.7
w/o random dropouts 72.7 (↓2.5) 66.0 (↓2.2) 84.6 (↓2.8) ↓2.5
repl. random replacement 71.2 (↓4.0) 64.9 (↓3.3) 83.8 (↓3.6) ↓3.6
w/o attribute similarity loss 74.0 (↓1.2) 68.1 (↓0.1) 85.7 (↓1.7) ↓1.0
w/o neighbor dissimilarity loss 73.6 (↓1.6) 67.7 (↓0.5) 86.9 (↓0.5) ↓0.8

FB15K-YOGA15K (80%)
Variants MRR (%) Hits@1 (%) Hits@10 (%) △ Avg (%)

ACK-MMEA (ours) 74.4 67.6 86.4 -

w/o attribute uniformization 73.6 (↓0.8) 64.2 (↓3.4) 84.3 (↓2.1) ↓2.1
w/o attribute uniformization (Merge Operator) 73.5 (↓0.9) 65.3 (↓2.3) 83.9 (↓2.5) ↓1.9
w/o attribute uniformization (Generate Operator) 74.1 (↓0.3) 66.0 (↓1.6) 84.5 (↓1.9) ↓1.2
w/o text attribute 73.9 (↓0.5) 65.8 (↓1.8) 84.7 (↓1.7) ↓1.3
w/o image attribute 73.6 (↓0.8) 65.7 (↓1.9) 84.6 (↓1.8) ↓1.5
repl. GCN 73.0 (↓1.4) 66.3 (↓1.3) 84.3 (↓2.1) ↓1.6
repl. GAT 73.8 (↓0.6) 65.9 (↓1.7) 83.9 (↓2.5) ↓1.6
w/o random dropouts 72.3 (↓2.1) 65.7 (↓1.9) 84.1 (↓2.3) ↓2.1
repl. random replacement 70.9 (↓3.5) 64.2 (↓3.4) 83.1 (↓3.3) ↓3.4
w/o attribute similarity loss 72.8 (↓1.6) 66.7 (↓0.9) 85.3 (↓1.1) ↓1.2
w/o neighbor dissimilarity loss 73.2 (↓1.2) 67.0 (↓0.6) 86.1 (↓0.3) ↓0.7

From the Table 2, we can observe that: 1) The impact of the
attribute uniformization tends to be more significant on using origi-
nal attributes. We believe the reason is that the consistent attributes
captures more clues for entity alignment. 2) By replacing the Con-
sistGNN to GCN, GAT or without random dropouts on neighbors,
or random replacement on neighbors, the performance decreased
significantly. It demonstrates that the ConsistGNN captures more
effective consistent-attribute and relation information. 3) The im-
pacts of the attribute similarity and neighbor dissimilarity loss tend
to be significant. Since the consistent attributes tackle the contex-
tual gap, and the neighbor loss guides our model to learn robust
representations. 4) When we remove all image attributes as “w/o
image attribute", our method drops 2.1% and 1.5% on average on
FB15K-DB15K and FB15K-YAGO15K. The performance decreases
3.6% and 2.1% on average when we remove attribute uniformiza-
tion module as “w/o attribute uniformization”. It demonstrates that
image attributes can improve model performance and our method
utilizes image attributes effectively through capturing more align-
ment knowledge. All the observations demonstrate the effectiveness
of each component in our model.

To further investigate the impact of multi-modal attributes on
all compared methods, we report the results by deleting different
modality of attributes, as shown in Figure 4. From the figure, we can
observe that: 1) The variants without the text or image attributes
significantly decline on all evaluation metrics, which demonstrates
that the multi-modal attributes are necessary and effective for the
entity alignment task. 2) Our model is less affected by deleting all
multi-modal attributes. The reason we think is that the random
dropouts on neighbors and the neighbor dissimilarity loss are ben-
eficial to obtaining better entity representations. 3) Compared to
other baseline methods, our model derives better results both in the
case of using all multi-modal attributes or abandoning some of them.
It demonstrates our model makes full use of existing multi-modal at-
tributes, and consistent attributes are effective for the multi-modal
entity alignment task. 4) When we delete all attributes as "Del. all
attributes", our method drops 1%-5% in terms of MRR, and performs
best compared to all baselines. It demonstrates that our model
makes the entity representation having fault tolerance through the
relation-aware entity representation and more precise alignment of
candidate entities by the dissimilarity constraint loss. 5) When we



WWW ’23, May 1–5, 2023, Austin, TX, USA Qian Li, et al.

SEA AttrGNN PoE Chen et al. Ours
Models

50

60

70

80

90

M
RR

 (%
)

All
Del. image attributes
Del. text attributes
Del. all attributes

Figure 4: Results of deleting attributes on FB15K-DB15K
(80%). “Del.” means deleting the corresponding attribute.

delete all image attributes as "Del. image attributes", which means
that the original multi-modal knowledge graph transferred into
a KG, our method is better than other baselines. It demonstrates
that our model incorporates consistent alignment knowledge by
the attribute-consistent relation representation encoder and the
relation-aware entity representation encoder. All the observations
demonstrate that the effectiveness of the constructed attribute-
consistent MMKG and the ConsistGNN.

4.6 Impact of Dropping Rate
We investigate the impact of the random dropouts rate on neighbors.
Figure 5 shows the metric values with various hyper-parameter
setting of 𝜌 on the FB15K-DB15K (80%). As the dropping rate in-
creases, the MRR, Hits@1 and Hits@10 gradually increase and then
falling after an optimal value. The peak performance of the model
is when the dropping rate of neighbors reaches 35%, reflecting the
effectiveness to learn the robust entity representation. It demon-
strates the capacity of the random dropouts for improving the fault
tolerance ability and enforcing consistent attribute aggregation.

4.7 Impact of Attribute Number
We investigate the impact of different degrees of the contextual gap
between alignment seeds. To do so, we choose entity alignment
seeds with the same number of image attributes, and vary the
gaps of text attribute number of entity pairs in [0, 24]. Figure 6
shows the performance of different models in the case of varied
attribute gaps on the FB15K-DB15K (80%). From the figure, we can
observe that: 1) With the increase of the gaps on alignment seeds,
the performance of all methods gradually decreases. The main
reason is that the bigger the gaps between entity seeds, the more
difficult it is to match entities. This again confirms our intuition
claimed in the introduction. 2) Compared to baseline methods, the
performance of our model decreased slowly, demonstrating the
superiority of our method in tackling the contextual gap issue.
All the observations demonstrate that our method can reduce the
impact of the contextual gap.
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Figure 5: Analysis of the dropping rate 𝜌 .
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Figure 6: Impact of differences in attribute number.

5 CONCLUSION
This paper proposes a novel multi-modal entity alignment frame-
work, namely ACK-MMEA. It generates an attribute-consistent
MMKG with each entity containing only one attribute of each
modality by the multi-modal attribute uniformization. We further
propose the ConsistGNN to integrate the consistent multi-modal at-
tributes and obtain aggregated relation representations and robust
entity representations. To evaluate the attribute-consistent MMKG,
we design the joint alignment loss with three objectives. Our work
overcomes the contextual gaps between entity pairs, caused by the
information redundancy and absence of the attribute. The empirical
experiments demonstrate that our method tackles the contextual
gap problem. However, the operator of attribute generation will
introduce noise data. In future work, we will study how to avoid
the influence of noise data on the MMEA task.
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A RELATEDWORK
A.1 Entity Alignment
Entity alignment (EA) technologymainly includes early embedding-
based methods [1, 6] and recently popular GNN-based methods [2,
17]. The focus of various GNN-based methods is the aggregation
way of attributes [2, 15], relations [5, 24], and neighbor features [20,
26]. Specifically, the attribute-awared methods [2, 5, 31] aggregate
multi-type attributes or combine multiple models to encode enti-
ties for learning the entity embedding from multiple perspectives.
AttrGNN [15] divides KG into subgraphs for attributes aggregation,
effectively modeling various types of attribute triples. The above
methods demonstrate the effectiveness of aggregating attributes
for EA. Nevertheless, all of these methods ignore the inconsistency
of attributes, as well as the image attributes.

A.2 Multi-Modal Entity Alignment
Furthermore, because of the multi-modal nature of KGs in real-
world, there are several works [10, 22, 33] beginning to focus on the
MMEA technology. Similar to EA on single-modal KG, many tasks
on MMKG [13, 19] provide the possibility of the fusion of multi-
modal attributes and relations. As the first work on the MMEA,
PoE [14] characterized each entity as a single vector wherein all
modality features of entities are concatenated. However, it cannot
capture the potential interactions among heterogeneous modalities,
limiting its capacity for performing accurate entity alignments.
Later, Chen et al. [3] proposed a multi-modal knowledge embedding
method to discriminatively generate knowledge representations
of different types of knowledge, and then designed a multi-modal
fusionmodule to integrate them. Guo et al. [7] developed hyperbolic
multi-modal entity alignment (HEA) approach to combine both
attribute and entity representations in the hyperbolic space and
used aggregated embeddings to predict alignments. MCLEA [12]
and MSNEA [4] reduce the gaps between modalities for each entity
as well as utilize name embeddings. Nevertheless, the above existing
methods ignore contextual gaps between entity pairs and in turn
may constrain the effectiveness of alignment.

B DATASETS AND EVALUATION METRICS
B.1 Datasets
In our experiments, we use two multi-modal datasets which are
built in [14], namely FB15K-DB15K and FB15K-YAGO15K. FB15K is
a representative subset extracted from the Freebase knowledge base.
Aiming tomaintain an approximate entity number of FB15K, DB15K
from DBpedia and YAGO15K from YAGO are mainly selected based
on the entities aligned with FB15K. Table 3 depicts the statistics of
multi-modal datasets.

Table 3: Statistics for the datasets. (Rel.: Relation, Attr.: At-
tribute, Rel. T.: Relational Triple, Attr. T.: Attributes triple.)

Dataset #Entity #Rel. #Attr. #Rel. T. #Attr. T. #Images

FB15K 14,951 1,345 116 592,213 29,395 13,444
DB15K 12,842 279 225 89,197 48,080 12,837
YAGO15K 15,404 32 7 122,886 23,532 11,194

B.2 Evaluation Metrics
We utilize cosine similarity to calculate the similarity between two
entities and employ Hits@n, and MRR as metrics to evaluate all
the models. Hits@n means the rate correct entities rank in the
top n according to similarity computing. MRR denotes the mean
reciprocal rank of correct entities. The higher values of Hits@n
and MRR explain the better performance of the method.

C HYPER-PARAMETERS
To enable replication and foster research, we report our hyper-
parameter settings in Table 4. Note that all the hyper-parameter
settings are tuned on the validation set by the grid search with 5
trials. We adopt bert-large-uncased in huggingface as our encoder,
whose layer number is 24 and the embedding size is 1024. The best
values of hyper-parameters 𝜆1, 𝜆2, 𝜆3 are 5, 3 and 2. Specifically, if
the model does not decrease the loss function of the validation set
for 100 consecutive turns, the operation is stopped. All baseline
models use the same data set partitioning to ensure fairness. To
ensure fairness, all baselines use the same entity representation
dimension, which is set to 128 dimensions. All experiments were
conducted on a server with one GPU (Tesla V100).

D EMPIRICAL RUNTIME ANALYSIS
The time complexity of the proposed framework is acceptable. Ta-
ble 5 shows the time costs of the training of our method and three
good performance baseline methods on FB15K-DB15K and FB15K-
YAGO15K. For fairness, we only use one GPU, including AttrGNN.
Thus, we train the three channels of AttrGNN in turn, which makes
the model take the longest training time. Our method generates
a attribute-consistent knowledge graph, which enhances the time
cost. However, we design a random dropouts mechanism to save
time. Overall, the time complexity of our approach can be on par
with other efficient approaches.

Table 4: Hyper-parameter settings of model.

Hyper-parameters FB15K-DB15K FB15K-YAGO15K

Batch size 512 512
Train epoch 200 200
Learning rate 0.001 0.001
Temperature 0.5 0.5
Negative Sample Number 15 15
Weight Decay 0.01 0.01
Random Dropouts Rate 0.35 0.35
𝜆1 5 5
𝜆2 3 3
𝜆3 2 2

Table 5: Average Training time (s) on the FB15K-DB15K and
FB15K-YAGO15K datasets.

Methods AttrGNN PoE PoE-rni ACK-MMEA

FB15K-DB15K 396 164 162 165
FB15K-YAGO15K 389 155 151 156
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