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ABSTRACT
Graph convolutional networks (GCNs) are currently the most promis-
ing paradigm for dealing with graph-structure data, while recent
studies have also shown that GCNs are vulnerable to adversarial
attacks. Thus developing GCN models that are robust to such attacks
become a hot research topic.

However, the structural purification learning-based or robustness
constraints-based defense GCN methods are usually designed for
specific data or attacks, and introduce additional objective that is
not for classification. Extra training overhead is also required in
their design. To address these challenges, we conduct in-depth explo-
rations on mid-frequency signals on graphs and propose a simple yet
effective Mid-pass filter GCN (Mid-GCN). Theoretical analyses
guarantee the robustness of signals through the mid-pass filter, and
we also shed light on the properties of different frequency signals
under adversarial attacks. Extensive experiments on six benchmark
graph data further verify the effectiveness of our designed Mid-GCN
in node classification accuracy compared to state-of-the-art GCNs
under various adversarial attack strategies.

CCS CONCEPTS
• Mathematics of computing → Spectra of graphs; • Computing
methodologies → Artificial intelligence.
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1 INTRODUCTION
Recently, graph convolutional neural networks (GCNs) have achieved
promising performance in graphs, which bridge the gap between tra-
ditional structured-data-oriented deep learning methods and graph-
structured data. Therefore GCNs are applied in a broad range of
fields, such as molecular prediction [8, 16], traffic prediction [40, 41],
web search [12, 37] and so on. However, a host of recent studies
have shown that GCNs are vulnerable to adversarial attacks [22, 24,
45, 46], and the lack of robustness may lead to security and privacy
problems. For instance, under criminal accomplice prediction on
social networks, in order to disguise themselves, accomplices can di-
rectly trade with people with high credit, which leads to pollution of
first-order neighbors of the high credit group and reduce their credi-
bility. Similarly, with the explosive growth of network resources, a
tremendous amount of illegal advertisements and phishing websites
are flooding the world wide web. These malicious web pages can
pursue a high search engine recommendations ranking through links
from high-quality websites (with some black hat SEO technology.)
Such cases can be of great challenges to GCNs; therefore, how to de-
velop GCNs capable of resisting adversarial attacks is a particularly
critical issue.

Current adversarial attack methods on GCNs can be divided into
targeted attacks and non-targeted attacks. Targeted attacks mainly fo-
cus on fooling GCNs to misclassify target nodes, and the most repre-
sentative method, nettack [45], generates unnoticeable perturbations
by preserving degree distribution and imposing constraints on feature
co-occurrence. As for non-targeted attacks, attackers intend to re-
duce the overall test set accuracy, and mettack [46] is the classic one
that generates poisoning attacks based on meta-learning. Revisiting
these effective defense GCNs we discover that existing studies pay
more attention to restoring a clean graph, that is, restoring deleted
original edges and deleting adversarial edges [11, 14, 15, 26, 35, 38].
These methods require additional plug-ins and introduce some in-
ductive biases, which cause a series of problems: (1) The elaborate
network architecture or optimization objective of mainstream de-
fense models is based on specific data or attack paradigms, leading
to unstable and even degraded performance on different datasets or
attacks. For example, GCN-SVD [11] is designed for nettack attacks,
and will performance worse after the mettack attacks. (2) The robust
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regularization term or model component of defense models aims to
defend adversarial attacks [4, 11, 15, 35, 43], which is inconsistent
with the desirable node classification prediction accuracy, and thus
the learned representations are not the optimal ones for this task.
(3) Model complexity increases with the additional network com-
ponents or regularization objective, and it also raises the burden on
computation resources as well as the consuming time. Since there
are many drawbacks of extra design for defending the adversarial
attacks, a potential solution would be re-design GCNs, more pre-
cisely, elaborate a graph filter that is capable of preserving more
attack-insensitive information.

To fill this gap, we conduct an experiment to investigate the
impact of adversarial attacks on the eigenvalues of real-word cita-
tion graphs as graph filter is always associated with its eigenvalues.
From Figure 1 we can observe that eigenvalues of two real-graph
within mid-frequency are less affected by adversarial attacks.
In this paper, the theoretical analysis provides us an insight that mid-
frequency signals tend to preserve information from higher-order
neighbors. Considering attacks on graphs, direct perturbations on
one-hop neighbors of nodes are always more effective than on multi-
hop neighbors [44]. Besides, the exponential growth of the number
of high-order neighbors also increases the difficulty of attacks. It in-
dicates the potential benefit of defending against adversarial attacks
on GCNs by preserving information from neighbors of higher order,
i.e., by utilizing mid-frequency signals.
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Figure 1: Eigenvalues variation before and after metattack on
Cora and Citeseer.

Hence, we study the mid-frequency signal of GCN and propose
a general mid-pass filtering GCN (Mid-GCN) in this paper. Un-
like higher-order polynomial filtering-based spectral GCNs with
many parameters and hyperparameters that may cause over-fitting,
or first-order information-based GCN such as vanilla GCN only
low-frequency signals [27] are exploited and FAGCN [1] weighting
high-frequency and low-frequency signals, Mid-GCN focuses on
the mid-frequency signals whose Laplacian eigenvalue is around
1. We theoretically verify the robustness of Mid-GCN under struc-
tural perturbations. Extensive experiments on various graph datasets
under different adversarial attacks also exhibit the superiority of
our proposed Mid-GCN over other state-of-the-art defense methods.
More surprisingly, Mid-GCN outperforms vanilla GCN for the node
classification task on unperturbed graphs.

The contributions of this paper are summarized as follows:

• This paper, to the best of our knowledge, is the first study that
explores mid-frequency signals of GCNs from the perspective
of robustness, and a critical inspiration is that mid-frequency
signals are not susceptible to adversarial attacks.

• we design a mid-pass filtering GCN model Mid-GCN due to
the robustness of middle-frequency signals against adversarial
attacks. We theoretically prove such a property of the mid-
frequency signal-based GCN.

• Extensive experimental results demonstrate the effectiveness
of our proposed Mid-GCN under various adversarial attack
strategies.

2 RELATED WORK
In this section, we introduce related work from spectral graph neural
networks and defense models.

2.1 Spectral Graph Neural Network.
Spectral graph neural network is a main type of graph neural network,
which mainly focuses on the filter design of the eigenvalues of the
Laplacian matrix [3]. Earlier, [10] used Chebyshev polynomials to fit
the filter shape, enabling fast convolution of spectral neural networks.
On this basis, GCN [17] truncates the first two Chebyshev polyno-
mials to further simplify the entire operation and bring improved
performance and many subsequent work [18, 23, 34, 39] on spectral
graph neural networks are based on GCN. Scattering GCN [25] uses
wavelet matrix to approximate the bandpass filter to assist solve
the problem of over-smoothing on the graph. GPRGNN [6] directly
learns the parameters of the polynomial, i.e., learns the shape of the
filter. BernNet [13] and JacobiConv [33] use different polynomials
with fortunate properties to learn approximate filters. The above
methods can obtain various types of filters through polynomials of
different orders, including low-pass filter, high-pass filter, band-pass
filter, band-stop filter, etc. However, they contain too many parame-
ters and hyperparameters, which will lead to slow hyperparameter
optimization, overfitting and other risks. Recently EvenNet [20]
found that even-hop neighbors are more robust, so they proposed an
even-polynomial graph filter. However, the current methods do not
pay attention to the middle frequency signal. This article is the first
to discover the power of the middle frequency signal in the defense
adversarial attack.

2.2 Adversarial Attacks and Defense for GNNs.
In the field of deep learning, model robustness and adversarial at-
tack/defense have always been an important part of exploring model
capabilities. Adversarial attacks are deliberately designed pertur-
bations to minimize the performance of the model and these per-
turbations are often not easily detected. Due to the special graph
structure of GNN, the previous methods cannot be used in adver-
sarial attacks, so many works have explored the adversarial attack
of graph structures [9, 21, 22, 24, 42, 45, 46] . Attack methods can
be divided into two types: 1. Targeted attack [9, 45]. For a specific
node attack, misleading the model to classify the target node, the
most representative method is nettack [45], which generates imper-
ceptible perturbations by preserving degree distribution and feature
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co-occurrence. 2.Non-targeted attack [46]. It is not attacking a cer-
tain node, but the goal is to make the overall effect on the test set
worse, metattack [46] attacks graph structure through meta-learning.
For the above-mentioned adversarial attacks, researchers also pay
attention to how the GNN model can cope with these attacks. We
divide defense methods into two categories,

• Graph structure purification methods. This kind of method
is based on some properties of the graph to restore the original
graph structure, such as GCN-Jaccard [35] purifies graphs by
Jaccard similarity based on feature homophily assumption. CLD-
GNN [26] diffuses the training set labels into the test set through
label propagation, then preserves the edges between nodes of the
same class and deletes edges between different node classes. GCN-
SVD [11] found that the nettack attack only affects the part of the
adjacency matrix with smaller singular values. Naturally, the noise
can be removed by approximating the original adjacency matrix
with low rank. and state-of-the-art model Pro-GNN [15] constrains
the graph structure to be low-rank and sparse through regular
terms, so that the graph structure is close to the real structure. The
same as Pro-GNN is GNNGUARD [38], which detects the adverse
effects existing in the relationship between the graph structure and
node features by neighbor importance estimation and layer-wise
graph memory.

• Robust network methods. This type of method usually designs
a robust network structure that can well defend against the impact
of adversarial attacks. A typical method is RGCN [43], which
represents the node features with a Gaussian distribution to absorb
the effects of adversarial changes. LFR [4] is a spectral method
to bring the robustness information from eligible low-frequency
components in the spectral domain.

3 PRELIMINARIES
Notations. Let G = (𝑉 , 𝐸) be an undirected and unweighted graph
with node set 𝑉 and edge set 𝐸. The nodes are described by a fea-
ture matrix 𝑋 ∈ R𝑛×𝑓 , where 𝑛 is the number of nodes and 𝑓 is
the number of features for each node. One node is associated with
a class label that is depicted in the label matrix 𝑌 ∈ R𝑛×𝑐 with a
total of 𝑐 classes. We represent the graph by its adjacency matrix
𝐴 ∈ R𝑛×𝑛 and the graph with self-loops can be denoted as �̃� = 𝐴+𝐼𝑛 .

Graph Fourier Transform and Graph Signals. In the light of
graph signal theory [30], graph convolution is equivalent to the
Laplacian transform of graph signals from the spatial domain to
the spectral domain. Let 𝐿 = 𝐼𝑛 − 𝐷− 1

2𝐴𝐷− 1
2 be the normalized

graph Laplacian matrix, which is positive semi-definite and has
a complete set of orthogonal eigenvectors {𝑢𝑙 }𝑛𝑙=1 with 𝑢𝑙 ∈ R𝑛

corresponding to the eigenvalue _𝑙 ∈ [0, 2]. Specifically, 𝐿 = 𝑈Λ𝑈𝑇

where Λ = diag( [_1, . . . , _𝑛]). Eigenvectors of the Laplacian matrix
are analogous to the basis functions of Fourier transform that can
transform signals from the spatial domain to the spectral domain
as 𝑥 = 𝑈𝑇 𝑥 , and the inverse transform is 𝑥 = 𝑈𝑥 . Hence, the
convolution operation over graph signal 𝑥 with the kernel 𝑓 can be
formulated as:

𝑓 ∗G 𝑥 = 𝑔\ ★ 𝑥 = 𝑈𝑔\𝑈
𝑇 𝑥, (1)

where 𝑔\ = diag(\ ) is a diagonal matrix that make modifications on
the spectral domain.

4 METHODOLOGY
In this section, we describe our designed mid-pass filtering GCN
and theoretically analyze the benefits of mid-frequency signals in
defending against adversarial attacks in detail. Some cases are also
provided to intuitively demonstrate the advantages of mid-frequency
signals.

4.1 Mid-GCN: Mid-Pass Filtering GCN
As depicted in Figure 2, low-pass filter suppresses the high-frequency
signals and enhances the low eigenvalues while the high-pass filter
inhibits the low-frequency signals and the high eigenvalues gains.
Intuitively, to achieve the maximum value when _ is around 1, the
filter should be a quadratic function-like shape. Hence, we design a
simple mid-pass filter as:

𝑔\ = Λ(2𝐼 − Λ),

F = (𝐼 − 𝐷− 1
2𝐴𝐷− 1

2 ) (𝐼 + 𝐷− 1
2𝐴𝐷− 1

2 ) .
(2)
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Figure 2: Shape of low-pass, mid-pass and high-pass filter.

We further increase the model flexibility by introducing a hyper-
parameter 𝛼 to balance between the high-frequency and low-frequency
signals, and the Mid-pass filtering GCN can be denoted as:

𝑍 = (𝛼𝐼 − 𝐷− 1
2𝐴𝐷− 1

2 ) (𝐼 + 𝐷− 1
2𝐴𝐷− 1

2 )𝑋𝑊 , (3)
with 𝛼 ∈ [0, 2]. When 𝛼 → 0, it tends to be a high-pass filter, and
it will become a low-pass filter if 𝛼 → 2. 𝑊 ∈ R𝑓 ×ℎ is learnable
parameters for feature transformation over signals. Figure 2 also
provides a more intuitive image of the mid-pass filter.
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Figure 3: Rank growth of 𝐴 and 𝐴2 under metattack.
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Rank growth of 𝐴 and 𝐴2 under attacks. Previous work [15]
shows that real-world graph structures are generally low-rank, and
rank of its adjacency matrix 𝐴 increases as the metattack perturba-
tion rate rises. Since the graph filter of GCN is the first order of 𝐴
and that of Mid-GCN is 𝐴2, we apply attacks to Cora and Citeseer
to see the variations of the rank of 𝐴 and 𝐴2 in Figure 3. It inspires
us that rank of higher-order graph filter is more robust to metattack.
Moreover, higher-order filters capture information from higher-order
neighbors and can avoid the potential risk of perturbations on first-
order neighbors, which is consistent with our original purpose and
also shares similar ideas with some existing research [44].

4.2 Analysis of Structural Attack Influence on
Node Representation Distance

As mentioned in existing studies [44, 45], direct perturbations on
one-hop neighbors of nodes are more effective than perturbations
on multi-hop neighbors. Therefore, we conduct an in-depth analysis
to explore the influence of signals within different frequency bands
on the distance of first-order neighbors. Apart from the low-pass
filter F𝐿 from GCN and the mid-pass filter F𝑀 of our Mid-GCN,
We design a high-pass filter F𝐻 as:

F𝐿 = 𝐼 + 𝐷− 1
2𝐴𝐷− 1

2 = 2𝐼 − 𝐿

F𝐻 = 𝐼 − 𝐷− 1
2𝐴𝐷− 1

2 = 𝐿

F𝑀 = (𝐼 − 𝐷− 1
2𝐴𝐷− 1

2 ) (𝐼 + 𝐷− 1
2𝐴𝐷− 1

2 ) = 𝐿(2𝐼 − 𝐿),

(4)

According to the above filters, the processed graph signals can be
written as follows:

F𝐿 ∗G 𝑥 = 𝑈 [2𝐼 − Λ]𝑈𝑇 𝑥

F𝐻 ∗G 𝑥 = 𝑈 [Λ]𝑈𝑇 𝑥

F𝑀 ∗G 𝑥 = 𝑈 [Λ(2𝐼 − Λ)]𝑈𝑇 𝑥,

(5)

Previous work [1] have analyzed the impact of high-pass filter
and low-pass filter from the perspective of the distance between
representation of connected nodes, and we further investigate the
effect of the mid-pass filter on this measure. Suppose there is a pair
of connected nodes (𝑢, 𝑣) on the graph, and their representations
are ℎ𝑢 and ℎ𝑣 , respectively. Euclidean distance of two nodes can be
calculated as D = ∥ℎ𝑢 − ℎ𝑣 ∥2. Therefore, we denote D𝐿 , D𝐻 , and
D𝑀 as the node distances of low-frequency/high-frequency/mid-
frequency signals.

D𝐿 =

(ℎ𝑢 + 1
√
𝑑𝑢

√
𝑑𝑣

ℎ𝑣) − (ℎ𝑣 +
1

√
𝑑𝑢

√
𝑑𝑣

ℎ𝑢 )


2

= (1 − 1
√
𝑑𝑢

√
𝑑𝑣

)D

D𝐻 =

(ℎ𝑢 − 1
√
𝑑𝑢

√
𝑑𝑣

ℎ𝑣) − (ℎ𝑣 −
1

√
𝑑𝑢

√
𝑑𝑣

ℎ𝑢 )


2

= (1 + 1
√
𝑑𝑢

√
𝑑𝑣

)D

D𝑀 =

{
(1 + 1√

𝑑𝑢
√
𝑑𝑣

∑
𝑡

1
𝑑𝑡
)D if 𝑡 ∈ N𝑢 and 𝑡 ∈ N𝑣,

D otherwise.

(6)

where 𝑡 is the node connecting 𝑢, 𝑣 and 𝑑𝑡 is the degree of 𝑡 , 𝑑𝑡 ≥ 2.
N𝑣 denotes the neighbor node set of node 𝑣 . We have the following

PROPOSITION 1. The low-frequency signal reduces the distance
of the connected node while the high-frequency signal amplifies the
distance of the connected node. And the mid-frequency signal has
the least impact on the distance, i.e., the distance is slightly enlarged
or stays unchanged.

To prove this proposition, we first introduce Lemma 1 and its
proof is in the appendix.

LEMMA 1. Given a node 𝑢, the following inequality holds:

E

(∑︁
𝑡

1
𝑑𝑡

)
< 1 with 𝑡 ∈ N𝑢 and 𝑡 ∈ N𝑣 (7)

Thus, we can conclude from Equation 6 that ∥D𝑀 − D∥ <

∥D𝐿 − D∥ = ∥D𝐻 − D∥. Furthermore, we can imagine that a
low-pass filter is appropriate for graphs where neighbors of all nodes
are of the same class as it can drive the representations of connected
nodes to be more similar. A high-pass filter suits graphs where neigh-
bor nodes are similar in feature but belong to different classes. In
this case, high-pass filtering is required to increase the degree of
discrimination. However, these properties are not related to our con-
cerning robustness. As for the mid-pass filter, one of its advantages
is the stability of connected node distance regardless of the graph.
We then provide a theory from the perspective of structural attacks.

DEFINITION 1. The distance change rate of the connected node
is defined as:

R(ΔD) =
���� 𝜕D𝜕𝑑 ���� . (8)

And when the distance of the connected nodes is less affected by
the structural attack, i.e., the distance change rate is lower, the model
is supposed to be more robust. We have the following theorem:

THEOREM 1. When the graph structure is perturbed, the distance
change rate of the connected nodes via the mid-frequency signals is
minimum compared with the one of low-frequency or high-frequency,
which can be denoted as R𝑀 (ΔD) < R𝐻 (ΔD) = R𝐿 (ΔD).

PROOF. For convenience, we let 𝑑 = 𝑑𝑢𝑑𝑣 , and the distance
change rate R(ΔD) under each filter can be easily calculated ac-
cording to Equation 8. For the low-pass filter,

R𝐿 (ΔD) =
���� 𝜕D𝐿

𝜕𝑑

���� = ���� 𝜕𝜕𝑑 (1 − 1
√
𝑑
)D

���� = 1
2
𝑑−

3
2 D .

For the high-pass filter,

R𝐻 (ΔD) =
���� 𝜕D𝐻

𝜕𝑑

���� = ���� 𝜕𝜕𝑑 (1 + 1
√
𝑑
)D

���� = 1
2
𝑑−

3
2 D .

For the mid-pass filter,

R𝑀 (ΔD) =
���� 𝜕D𝑀

𝜕𝑑

����
=

{
1
2𝑑

− 3
2 D ∑

𝑡
1
𝑑𝑡

if 𝑡 ∈ N𝑢 and 𝑡 ∈ N𝑣,

0 otherwise.

(9)

Since E
(∑

𝑡
1
𝑑𝑡

)
< 1, so we have R𝐿 (ΔD) = R𝐻 (ΔD) >

R𝑀 (ΔD). Then the theorem is proven. □
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Remark1. When the structure is disturbed, the mid-pass filter has
the least effect on the distance of the connected nodes.
Observation. Theory 1 proves that the mid-pass filter can maintain
the robustness of distance between connected nodes under structural
attacks. We then carry out experiments to verify this theory. We
calculate the average distance change rate of connected nodes on
real datasets. The evaluation metric is formulated as:��D̄0 − D̄25

��
𝑚𝑎𝑥 (D̄0, ¯D25)

where D̄𝑖 represents the average Euclidean distance of the connected
nodes with a perturbation rate of 𝑖%. The result is shown in Table 1.
We can see that after the graph is perturbed, the distance change rate
of connected nodes for Mid-GCN is only about half of that of GCN,
which further verifies the robustness of the mid-frequency signals.

Table 1: Distance change rate of connected nodes whose degree
is greater than 10 under a metattack perturbation rate of 25%.

Datasets GCN Mid-GCN

Cora 5.36% 2.66%
Citeseer 3.92% 2.40%
Github 6.49% 4.15%

4.3 Analysis of Structural Attack Influence on
Spectral Domain

As graph filters directly impact signals on the spectral domain, we
further investigate how perturbations over an edge can affect the
spectral domain at low, mid and high frequencies. If an edge is in-
serted between disconnected node pair (𝑢, 𝑣), or the edge connecting
𝑢 and 𝑣 is deleted, the eigenvalues of graphs will be affected. Math-
ematically, we introduce Lemma 2 to measure the differences in
eigenvalues after structural attacks.

LEMMA 2. Given a graph G = (𝑉 , 𝐸) and one edge 𝑒𝑢,𝑣 to be
perturbed, the change of y-th eigenvalue of the normalized adjacency
matrix 𝐴 after the perturbation is formulated as [4]

Δ_𝑦 =

{
2𝑈𝑦,𝑢 ·𝑈𝑦,𝑣 − _𝑦 (𝑈 2

𝑦,𝑢 +𝑈 2
𝑦,𝑣) if 𝐸 ∪ {𝑒𝑢,𝑣}

−2𝑈𝑦,𝑢 ·𝑈𝑦,𝑣 + _𝑦 (𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣) if 𝐸 \ {𝑒𝑢,𝑣},
(10)

where 𝑈𝑦,𝑢 refers to the 𝑢-th element of eigenvector 𝑈𝑦 of 𝐴. Note
that eigenvalues of 𝐴 discussed here range from -1 to 1.

Then we have the following theorem:

THEOREM 2. Suppose _𝑙 ∈ [𝑝, 1], _𝑚 ∈ (−𝑝, 𝑝), _ℎ ∈ [−1,−𝑝]
is eigenvalue of low/mid/high-frequency signals, respectively, where
𝑝 ∈ (0, 1). Inequality |E(Δ_𝑚) | < |E(Δ_ℎ) | as well as |E(Δ_𝑚) | <
|E(Δ_𝑙 ) | always holds.

From Theorem 2 we can discover that the expectations of changes
in the eigenvalue of mid-frequency signals are lower, indicating the
robustness of mid-frequency signals under structural attacks from
the perspective of spectral graph analysis. Moreover, we conduct
experiments on some graph examples to verify this conclusion.
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Figure 4: Various frequency bands under different structures,
and the red dotted line represents the perturbed edge.

Case study. We provide some examples in Figure 4 to demonstrate
the changes in the graph signals within different frequency bands
after attacks. It can be clearly observed that the graph signals within
the mid-frequency band are more stable after attacks.

In addition, the mid-pass filter also has desirable properties in
some cases; for example, when the structural attacks lead to changes
in the homophily of the label, the mid-pass filter shows remarkable
generalization ability varying from homophily to heterophily, and
the proposition and proof are attached in Appendix A.4.

5 EXPERIMENT
In this section, we compare the performance of Mid-GCN with
other state-of-the-art models on the node classification task under a
variety of graph attacks. Furthermore, we verify its effectiveness on
graph data with different properties. We also conduct experiments
to investigate the model efficiency and impacts of hyperparameter
settings.

5.1 Experiment Settings
5.1.1 Datasets. Following [15, 43], we evaluate the proposed
approach on three benchmark datasets, including two citation graphs
(Cora and Citeseer), and one Github graph [29]. We also select
three additional datasets, including a graph without feature Pol-
blogs [46], a homophilious graph Cora-ML [2] and a heterophilious
graph Film [31] to show the capacity of Mid-GCN under various
datasets. The statistics of datasets are organized in Table 2. More
details of datasets can be found in Appendix B.

5.1.2 Baseline Methods. To verify the effectiveness of Mid-
GCN, we compare it with state-of-the-art GCNs that are listed as:

• GCN[17]: GCN is the most classic low-pass filtering GCNs,
which updates node representations by aggregating neighbor in-
formation.

• GAT[32]: GAT is a graph neural network model that uses a local
self-attention mechanism to generate node representations.
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Table 2: Statistics of experimental datasets

Datasets #Nodes #Edges #Features #Classes

Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Github 3,150 71,310 4,005 2

Polblogs 1,222 16,714 / 2
Cora-ML 2,995 4,208 2,879 5

Film 7,600 33,544 931 5

• RGCN[43]: RGCN represents the features of nodes as Gaussian
distribution, which can improve model robustness by penalizing
nodes with large variance.

• GCN-SVD[11]: GCN-SVD discovers that the nettack will affect
lower singular values of the adjacency matrix and thus restores
graphs by adopting low-rank approximation to preserve large
singular values above a predefined threshold.

• GCN-Jaccard[35]: GCN-Jaccard deletes adversarial edges that
the Jaccard similarity of the node is below a certain threshold, and
the graph can be denoised to be a clean graph. This clean graph is
taken as the input of GCNs.

• GPRGNN[6]: GPRGNN combines Generalized PageRank and
GNN to adaptively learn spectral graph filters.

• Pro-GNN[15] Pro-GNN denoises graphs by constraining graph
data to be low-rank, sparse, and feature smoothing. It is state-of-
the-art defense GCN model. For each experiment, we only report
the best results of its two variants (Pro-GNN-fs and Pro-GNN3).

5.1.3 Experiment Details. We run experiments following the
setup of [15]. For each graph, we randomly choose 10% of nodes
for training, 10% of nodes for validation and the remaining 80% of
nodes for testing except that the Film is divided according to [28].
For GCN and GAT, we use the default parameters in the original
paper. For RGCN, we tune the number of hidden units from {16,
32, 64, 128}. For GCN-Jaccard, the similarity threshold is chosen
from 0.01 to 0.2. For GCN-SVD, the reduced rank of the perturbed
graph is selected from {5, 10, 15, 50, 100, 150, 200}. For Pro-GNN,
we follow the original settings to adjust the hyperparameters. For
Mid-GCN, we only tune the number of hidden layer dimension from
{64, 128}, and the filter hyperparameter 𝛼 from {0.2, 0.3, 0.5, 055,
0.6, 2.0}. The dropout rate is set to 0.6 and the learning rate is 0.01.
We use Adam as the optimizer for model convergence with a weight
decay rate of 5e-4. More reproducibility details are described in
Appendix C.

5.2 Experiment Results
To examine the robustness of Mid-GCN, we design three types of
attacks, i.e., non-targeted attack, targeted attack and feature attack:

• Non-targeted attack. Non-targeted attacks intend to attack the
topology structure of the entire graphs, which reduces the overall
performance of the GCN model. We adopt state-of-the-art non-
targeted attack method metattack [46] to perturbed graphs.

• Targeted Attack. Targeted attacks aim to attack target nodes and
thus fool GCNs into misclassifying them, and only calculate the

classification accuracy of these attacked nodes. We employ a
representative targeted attack method, nettack [45].

• Feature attack. We are also interested in the performance under
feature attacks as the attack on feature is another perturbation
on graphs besides the topology attack [36, 47]. Since features of
Cora, Citeser and Github only contain 0/1, we randomly flip 0/1
as the feature attack.

5.2.1 Against Non-targeted Adversarial Attacks. We first ex-
hibit the node classification accuracy of each model against non-
targeted adversarial attacks under different perturbation rates rang-
ing from 5% to 25%, and the vanilla model performance without
perturbations is also shown. The default settings of metattack are
adopted to generate non-targeted adversarial attacks. The experimen-
tal results are organized in Table 3. Value in bold indicates the best
performance and the underlined value is the suboptimal one. Our
observations are as follows:

• Under metattack, our method achieves the best results at all per-
turbation rates and obtains considerable improvements over the
representative low-pass filtering model GCN. Mid-GCN improves
the performance of GCN by 18% on Cora, 10.8% on Citeseer
and 10.7% on Github under various perturbation rates on average.
Comparing SOTA model Pro-GNN, our method also has appre-
ciable improvements under various perturbation rates, with an
average increase of 2.1% in Cora, 1.7% in Citeseer, and 10.4% in
Github. In particular, under 25% perturbation on the three datasets,
our model improves the performance over GCN by a margin of
25%, 13% and 8%, respectively.

• There are many critical assumptions and constraints on data when
applying Pro-GNN, such as low-rank, feature smoothing and
sparseness, resulting in the poor performance on a dense and
high-rank graph Github. GCN-SVD, which is mainly designed
for targeted attacks, is also of great difficulty in restoring the
graph structure of Github with a large number of global edge
perturbations. GPRGNN that adaptively learns graph filters shows
promising achievements on clean graphs without perturbations;
however, it can not handle attacks on spare graphs like Cora and
Citeseer and the accuracy drops sharply when the perturbation
rate increases.

• An impressive phenomenon that can be seen from results on the
Github dataset is that most of the models are less affected by
adversarial attacks and is capable of obtaining stable results when
the perturbation rate varies. Our method even achieves the best
performance with a perturbation rate of 5% compared with the
vanilla one. The main reason is that the Github graph is much
dense than other graphs (the average node degree is around 45),
and metattack tends to add edges [46] which has fewer impacts
on a dense graph rather than a sparse graph.

5.2.2 Against Targeted Adversarial Attack. In the targeted at-
tack experiment, we adopt the representative nettack method with
default settings of original paper [15, 45], i.e., we impose perturba-
tions on neighbor nodes of each target node with a step size of 1
and the number of affected nodes is 1 ∼ 5. Following [15], we select
nodes whose degree is greater than 10 in the test set as target nodes.
Since the Github graph is relatively dense so we sample 8% of the
nodes for attacks. Experimental results are depicted in Figure 5. We
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Table 3: Node classification accuracy under non-targeted attack Metattack. P(%) denotes the perturbation rate. For each result, we
report the average performance over 10 runs and the corresponding standard deviation.

Datasets P(%) GCN GAT GCN-Jaccard GCN-SVD RGCN Pro-GNN GPRGNN Mid-GCN

Cora

0 83.50±0.44 83.97±0.69 82.05±0.51 80.63±0.45 83.09±0.44 83.42±0.52 85.39±0.81 84.61±0.46

5 76.55±0.79 80.44±0.74 79.13±0.59 78.93±0.54 77.42±0.39 82.78±0.39 81.94±0.36 82.94±0.59

10 70.39±1.28 75.61±0.59 75.16±0.76 71.47±0.83 72.22±0.38 79.03±0.59 76.41±1.35 80.14±0.86

15 65.10±0.71 69.78±1.28 71.03±0.64 66.69±1.18 66.82±0.39 76.40±1.27 72.47±0.47 77.77±0.75

20 59.56±0.92 59.54±0.92 65.71±0.89 58.94±1.13 59.27±0.37 73.32±1.56 61.78±0.79 76.58±0.29

25 47.53±1.96 54.78±0.74 60.82±1.08 52.06±1.19 50.51±0.78 69.72±1.69 57.16±1.25 72.89±0.81

Citeseer

0 71.96±0.55 73.26±0.83 72.10±0.63 70.65±0.32 71.20±0.83 73.28±0.69 73.52±0.23 74.17±0.28

5 70.88±0.62 72.89±0.83 70.51±0.97 68.84±0.72 70.50±0.43 73.09±0.34 72.79±0.18 74.31±0.42

10 67.55±0.89 70.63±0.48 69.54±0.56 68.87±0.62 67.71±0.30 72.51±0.75 71.22±0.35 73.59±0.29

15 64.52±1.11 69.02±1.09 65.95±0.94 63.26±0.96 65.69±0.37 72.03±1.11 69.19±0.39 73.69±0.29

20 62.03±3.49 61.04±1.52 59.30±1.40 58.55±1.09 62.49±1.22 70.02±2.28 63.10±0.50 71.51±0.83

25 56.94±2.09 61.85±1.12 59.89±1.47 57.18±1.87 55.35±0.66 68.95±2.78 55.61±0.88 69.12±0.72

Github

0 72.92±0.13 72.81±0.12 72.93±0.56 73.31±1.15 73.16±0.19 73.34±0.84 79.17±1.17 79.51±0.67

5 72.81±0.07 72.43±1.13 71.85±2.18 72.91±0.12 73.09±0.31 72.89±0.07 80.60±0.81 81.87±1.46

10 72.61±0.57 72.97±0.13 72.63±0.98 72.78±0.09 73.06±0.16 72.75±0.18 80.06±0.53 81.23±1.67

15 72.97±0.11 72.97±0.06 72.79±0.51 72.97±1.13 73.22±0.21 72.98±0.09 80.28±0.51 80.48±0.25

20 72.11±2.27 70.42±2.12 72.24±1.96 72.47±0.14 73.10±0.21 72.98±0.13 80.19±0.51 81.08±0.96

25 72.74±0.41 72.97±1.16 72.32±1.73 72.14±0.07 72.91±0.24 72.56±0.21 79.86±0.87 80.37±1.51
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Figure 5: Node classification accuracy under targeted attack nettack. Pro-GNN is not reported on Github as it times out against
nettack.

can observe that the mid-pass filtering GCN can always maintain
the best performance when the number of targeted attacks increases.
There are significant improvements over the low-pass filtering GCN
and it becomes larger when the attacks are more severe.

5.2.3 Against Feature Attack. Apart from structural perturba-
tions on graphs, feature attack is also a critical attack perspective
as node features are extensively used by GCNs. We follow [36] to
randomly flip 0/1 value on each dimension of Cora and Citeseer. We
design two experiment settings, i.e., normalized features and non-
normalized features after the attacks as the normalization will affect

all the dimension of feature values. Model performance is displayed
in Figure 6 from which we have the following observations:

• Mid-GCN achieves desirable performance regardless of whether
the features are normalized or not, which demonstrates the robust-
ness of Mid-GCN under the feature attacks.

• Mid-GCN and RGCN are both consistently benefited from the nor-
malization operation, but the impact on other models varies, and
it even causes destructive damages to some of them. For example,
on Cora, when the number of perturbations is 70, classification
accuracy of GCN, GCN-Jaccard and Pro-GNN with normalized
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(a) Normalized Cora feature.
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(b) Non-normalized Cora feature.
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(c) Normalized Citeseer feature.
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(d) Non-normalized Citeseer feature.

Figure 6: Results of different models under features attack.

features decreases by 10%, 38% and 21% compared with the
non-normalized one, respectively.

5.3 Evaluation on Various Graphs.
In this section, we study the performance when the graph is heavily
poisoned on more diverse datasets. Specifically, we attack the graph
data with 25% perturbation rate by metattack. Note that Polblogs is
a dataset without node features, whose input only contains the graph
structure. Cora-ML is a homophily graph while Film is a heterophily
graph. From Table 4 we can discover that Mid-GCN can always
perform well even with severe poisoning on different categories of
graph data, which provides powerful support for the promotion of
Mid-GCN.

Table 4: Classification results on three different graphs under
25% perturbation rate metattack.

Models
Polblogs Cora-ML Film

Clean Attacked Clean Attacked Clean Attacked

GCN 95.69±0.38 45.23±1.36 85.85±0.30 48.80±0.91 27.82±1.10 25.36±0.13

Pro-GNN 93.20±0.64 63.18±4.40 85.38±0.14 65.52±0.23 30.08±0.96 27.03±0.61

Mid-GCN 95.80±0.26 64.66±0.86 86.56±0.28 67.18±1.35 34.32±0.84 33.17±0.70

5.4 Time Complexity Study.
Time complexity is a vital indicator of model performance. There-
fore, we illustrate both the effectiveness and efficiency of GCN, GAT,
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Figure 7: Accuracy v.s. running time.
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Figure 8: Hyperparameter study on Cora and Citeseer.

Pro-GNN and Mid-GCN on Figure 7 for a comprehensive under-
standing. Pointers near the top left corner indicate better performance
both in effectiveness and efficiency. It can be found that Mid-GCN
obtains an excellent balance between accuracy and running time.

5.5 Hyperparameter Study.
We also explore the impact of hyperparameters 𝛼 on the model
prediction accuracy. 𝛼 varies from 0 to 2, and the results on Cora
and Citeseer are shown in Fig. 8 under a perturbation rate of 10%
of metattack. We can see that the accuracy remains stable when 𝛼

ranges from 0 to 0.7 where the filter can be treated as a mid-high-pass
filter. In other words, mid-frequency and high-frequency signals play
a critical role in defending against generative adversarial attacks,
and it is consistent with our previous observations.

6 CONCLUSION
In this paper, we discovered the importance of mid-frequency signals
on GCNs that are less studied especially from the perspective of
robustness. We propose a mid-pass filtering GCN model, Mid-GCN,
and conduct an in-depth theoretical analysis to prove its effectivenss
over attacks compared with low-pass and high-pass GCN. Our exper-
iments further verify that Mid-GCN consistently surpasses state-of-
the-art baselines and improves robustness under various adversarial
attacks and graphs with distinct properties. The mid-pass filtering
GCN is believed to be effective in a broader application prospect
and will be the next step of future exploration.
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A PROOF
A.1 Proof for Lemma 1

PROOF. Suppose we have a node 𝑢, 𝑣 ∈ N𝑢 are the first-order
neighbor of 𝑢. Therefore, we can know that 𝑡 ∈ N𝑢 .

The more common neighbors between 𝑢 and 𝑣 , the larger the
expectation value of

∑
𝑡 ∈N𝑢and𝑡 ∈N𝑣

1
𝑑𝑡

, and the largest case is that
the remaining nodes are the common neighbors of u and its first-
order neighbors. Then the graph is a fully connected graph, if there
are 𝑁 nodes, and its expectation is

E(
∑︁

𝑡 ∈N𝑢and𝑡 ∈N𝑣

1
𝑑𝑡

) =
∑𝑁−2 ∑𝑁−2 1

𝑁−1
𝑁 − 2

=
𝑁 − 2
𝑁 − 1

< 1,

Therefore, for any node 𝑢 and its first-order neighbors in the graph,
E(∑𝑡 ∈N𝑢and𝑡 ∈N𝑣

1
𝑑𝑡
) < 1, and the proof is completed. □

A.2 Proof for Theorem 2
PROOF. Firstly, let’s introduce two commonly used lemmas [19]

LEMMA 3. [19]. Let 𝑈𝑦 be a generalized eigenvector of 𝐴, with
associated eigenvalue _. Then, for each 𝑖, the exact deviation from
the centroid of neighbors is,

𝑈𝑦,𝑖 −
∑

𝑗 ∈N(𝑖) 𝐴𝑖, 𝑗𝑈𝑦,𝑗

𝑑𝑖
= (1 − _)𝑈𝑦,𝑖 , (11)

LEMMA 4. For the graph signal, consider connected nodes
whose signal response strengths are 𝑈𝑦,𝑢 and 𝑈𝑦,𝑣 , respectively.
E(𝑈𝑙,𝑢𝑈𝑙,𝑣) > 0 holds for low-frequency signals, and E(𝑈ℎ,𝑢𝑈ℎ,𝑣) <
0 holds for high-frequency ones. For the mid-frequency signals, we
have

��E(𝑈𝑚,𝑢𝑈𝑚,𝑣)
�� < ��E(𝑈𝑙,𝑢𝑈𝑙,𝑣)�� and

��E(𝑈𝑚,𝑢𝑈𝑚,𝑣)
�� < ��E(𝑈ℎ,𝑢𝑈ℎ,𝑣)

��.
which is proved in Appendix A.3.

The one-edge insertion case is similar to one-edge deletion with
an opposite value of Δ_𝑦 . We mainly discuss |Δ_ |.Therefore, we can
write Lemma 2 as

|Δ_ | = |_(𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣) − 2𝑈𝑦,𝑢𝑈𝑦,𝑣 | (12)

Then, We write Δ_ of high, middle and low frequency, respectively.

|Δ_𝑙 | = |_(𝑈 2
𝑙,𝑢

+𝑈 2
𝑙,𝑣
) − 2𝑈𝑙,𝑢𝑈𝑙,𝑣 |

|Δ_𝑚 | = |_(𝑈 2
𝑚,𝑢 +𝑈 2

𝑚,𝑣) − 2𝑈𝑚,𝑢𝑈𝑚,𝑣 |
|Δ_ℎ | = |_(𝑈 2

ℎ,𝑢
+𝑈 2

ℎ,𝑣
) − 2𝑈ℎ,𝑢𝑈ℎ,𝑣 |

(13)

Then, We transform the equation in lemma 3 into

_𝑈 2
𝑦,𝑖𝑑𝑖 =

∑︁
𝑗 ∈N(𝑖)

𝐴𝑖, 𝑗𝑈𝑦,𝑗𝑈𝑦,𝑖 ,

_

𝑁∑︁
𝑖

𝑈 2
𝑦,𝑖𝑑𝑖 =

𝑁∑︁
𝑖

∑︁
𝑗 ∈N(𝑖)

𝐴𝑖, 𝑗𝑈𝑦,𝑗𝑈𝑦,𝑖 ,

_
∑𝑁
𝑖 𝑈 2

𝑦,𝑖
𝑑𝑖

|𝐸 |𝑁 =

∑𝑁
𝑖

∑
𝑗 ∈N(𝑖) 𝐴𝑖, 𝑗𝑈𝑦,𝑗𝑈𝑦,𝑖

|𝐸 |𝑁 , (14)

Next, we can calculate E(𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣),

E(𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣) =
∑ |𝐸 |

(𝑢,𝑣) ∈𝐸 (𝑈
2
𝑦,𝑢 +𝑈 2

𝑦,𝑣)
|𝐸 |

=

∑𝑁
𝑢 𝑑𝑢𝑈

2
𝑦,𝑢

|𝐸 |

(15)

where |𝐸 | is the number of edge, 𝑑𝑢 is degree of node 𝑢 and 𝐷 is
diagonal degree matrix.

From equations 14 and 15, we can get

_E(𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣)
𝑁

=
2E(𝑈𝑦,𝑢𝑈𝑦,𝑣)

2|𝐸 |

_E(𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣) − 2E(𝑈𝑦,𝑢𝑈𝑦,𝑣) = 2( 𝑁

2|𝐸 | − 1)E(𝑈𝑦,𝑢𝑈𝑦,𝑣)

|_E(𝑈 2
𝑦,𝑢 +𝑈 2

𝑦,𝑣) − 2E(𝑈𝑦,𝑢𝑈𝑦,𝑣) | = |2( 𝑁

2|𝐸 | − 1)E(𝑈𝑦,𝑢𝑈𝑦,𝑣) |
(16)

We combine equations 13 and 16 to get

|E(Δ_𝑙 ) | = |2( 𝑁

2|𝐸 | − 1)E(𝑈𝑙,𝑢𝑈𝑙,𝑣) |

|E(Δ_𝑚) | = |2( 𝑁

2|𝐸 | − 1)E(𝑈𝑚,𝑢𝑈𝑚,𝑣) |

|E(Δ_ℎ) | = |2( 𝑁

2|𝐸 | − 1)E(𝑈𝑚,𝑢𝑈𝑚,𝑣) |

(17)

According to Lemma 4 and formula 17, we get |E(Δ_𝑚) | < |E(Δ_𝑙 ) |
and |E(Δ_𝑚) | < |E(Δ_ℎ) |.

□

A.3 Proof for Lemma 4
PROOF. Recall that the Rayleigh quotient of a non-zero vector x

with respect to a symmetric adjacency matrix 𝐴 is

𝑅(𝐴, 𝑥) = 𝑥𝑇𝐴𝑥

𝑥𝑇 𝑥

We replace 𝑥 with the eigenvector of 𝐴 and bring in, then 𝑅(𝐴,𝑈𝑦) =
_𝑦 [7],

_𝑦 =

∑
𝑖

∑
𝑗 𝐴𝑖, 𝑗𝑈𝑦,𝑖𝑈𝑦,𝑗

𝑏
=
E(𝑈𝑦,𝑢𝑈𝑦,𝑣)

𝑏

∑︁
𝑖

∑︁
𝑗

𝐴𝑖, 𝑗 (18)

where 𝑏 = 𝑈𝑇
𝑦𝑈𝑦 is a constant larger than 0.

For matrix 𝐴, its eigenvalue _ ∈ [−1, 1], 𝑝 ≤ _𝑙 ≤ 1,−1 ≤ _ℎ ≤
−𝑝, 𝑝 > _𝑚 > −𝑝, where 𝑝 ∈ (0, 𝑟 ). Combining Equation 18 thus,

E(𝑈𝑙,𝑢𝑈𝑙,𝑣) ≥
𝑏𝑝∑

𝑖

∑
𝑗 𝐴𝑖, 𝑗

,

E(𝑈ℎ,𝑢𝑈ℎ,𝑣) ≤ − 𝑏𝑝∑
𝑖

∑
𝑗 𝐴𝑖, 𝑗

,

𝑏𝑝∑
𝑖

∑
𝑗 𝐴𝑖, 𝑗

> E(𝑈𝑚,𝑢𝑈𝑚,𝑣) > − 𝑏𝑝∑
𝑖

∑
𝑗 𝐴𝑖, 𝑗

,

Thus, we have E(𝑈𝑙,𝑢𝑈𝑙,𝑣) > E(𝑈𝑚,𝑢𝑈𝑚,𝑣) > E(𝑈ℎ,𝑢𝑈ℎ,𝑣) and��E(𝑈𝑚,𝑢𝑈𝑚,𝑣)
�� < ��E(𝑈ℎ,𝑢𝑈ℎ,𝑣)

��.
Then, we can get

��E(𝑈𝑚,𝑢𝑈𝑚,𝑣)
�� < ��E(𝑈𝑙,𝑢𝑈𝑙,𝑣)�� and

��E(𝑈𝑚,𝑢𝑈𝑚,𝑣)
�� <��E(𝑈ℎ,𝑢𝑈ℎ,𝑣)

��. □



Robust Mid-Pass Filtering Graph Convolutional Networks WWW ’23, May 1–5, 2023, Austin, TX, USA

Table 5: Hyperparameters of Mid-GCN for reproducibility.

Hyperparameter Cora Cite. Git. Polb. Cora-ML Film

𝛼 0.5 0.55 0.55 0.2 0.2 2.0
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01

L2 weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Dropout rate 0.6 0.6 0.6 0.6 0.6 0.6

Hidden layer size 128 64 128 64 64 64

A.4 Generalization of Mid-frequency Signals in
Homopgily and Heterophily Ring Graph.

The adversarial attack on the structure will bring the change of
homophily ratio. Let’s introduce Spectral regression loss(SRL) [5],
which associates homophily with spectral domain.

DEFINITION 2. (Spectral regression loss.) Denote 𝛼 = (𝛼0, · · · , 𝛼𝑁−1),
𝛽 = (𝛽0, · · · , 𝛽𝑁−1). In a binary node classification task, Spectral
Regression Loss (SRL) offilter 𝑔(Λ) on graph G is:

𝐿(G) =
𝑁−1∑︁
𝑖=0

( 𝛼𝑖√
𝑁

− 𝑔(_𝑖 )𝛽𝑖√︃∑𝑁−1
𝑗=0 𝑔(_2

𝑗
)𝛽2

𝑗

)2

= 2 − 2
√
𝑁

𝑁−1∑︁
𝑖=0

𝛼𝑖𝑔(_𝑖 )𝛽𝑖√︃∑𝑁−1
𝑗=0 𝑔(_2

𝑗
)𝛽2

𝑗

(19)

We know that naive low-pass filters and high-pass filters work
better on graphs with certain homophily,but Mid-GCN can more
robust under homophily changes. A specific example on ring graphs
is given in the following proposition. We see that Mid-GCN intrinsi-
cally satisfies the necessary condition for perfect generalization.

PROPOSITION 2. Given two ring graphs, G1 and G2, assuming
ℎ(G1) = 0, ℎ(G2) = 1(Where ℎ(G) represents the homophily of G),

mid-pass filtering can make 𝐿(G1) = 𝐿(G2), but high and low-pass
filters can’t achieve it.

PROOF. We can know the necessary condition for a graph filter
𝑔(_) to achieve 𝐿(G1) = 𝐿(G2) is 𝑔(0) = 𝑔(2). from [20]. Then, the
mid-pass filters obviously easily satisfies the condition, but not with
the high/low pass filters. □

B DATASETS DETAILS
Details of each graph dataset we utilize during the evaluation are
listed here:
• Citation networks. Including Cora and Citeseer. They are com-

posed of papers as nodes and their relationships such as citation
relationships, common authoring. Node feature is a one-hot vector
that indicates whether a word is present in that paper. Words with
frequency less than 10 are removed.

• Github. A social network where nodes correspond to developers
and edges refer to mutual followers. Node characteristics are
location, starred repositories, employer, and email address. The
task is to classify nodes as web developers or machine learning
developers. Due to a large amount of data, we take one of the
subgraphs as the current experimental dataset.

• Polblogs. This dataset only has citation relationships between
blogs, and each blog has no features.

• Cora-ML. Like Cora, this graph is also extracted from the original
data of the entire network.

• Film. Co-occurrence network depicts the co-occurrence relation-
ship of actors. Node features correspond to some keywords in the
Wikipedia page. According to the actor’s Wikipedia vocabulary,
nodes are divided into five categories.

C HYPERPARAMETER DETAILS
Table 5 reports the detailed hyperparameters of Mid-GCN.
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