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ABSTRACT
Uplift modeling aims to measure the incremental effect, which we
call uplift, of a strategy or action on the users from randomized
experiments or observational data. Most existing uplift methods only
use individual data, which are usually not informative enough to
capture the unobserved and complex hidden factors regarding the
uplift. Furthermore, uplift modeling scenario usually has scarce la-
beled data, especially for the treatment group, which also poses a
great challenge for model training. Considering that the neighbors’
features and the social relationships are very informative to char-
acterize a user’s uplift, we propose a graph neural network-based
framework with two uplift estimators, called GNUM, to learn from
the social graph for uplift estimation. Specifically, we design the
first estimator based on a class-transformed target. The estimator is
general for all types of outcomes, and is able to comprehensively
model the treatment and control group data together to approach the
uplift. When the outcome is discrete, we further design the other
uplift estimator based on our defined partial labels, which is able to
utilize more labeled data from both the treatment and control groups,
to further alleviate the label scarcity problem. Comprehensive experi-
ments on a public dataset and two industrial datasets show a superior
performance of our proposed framework over state-of-the-art meth-
ods under various evaluation metrics. The proposed algorithms have
been deployed online to serve real-world uplift estimation scenarios.
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1 INTRODUCTION
Uplift modeling refers to the set of techniques used to estimate
the effect of an action on a user’s outcome. This technology can be
applied to various fields, such as economics[1, 2], medicine[3, 4] and
sociology[5, 6]. For example, an e-commerce company is preparing
to send promotional coupons (i.e., action or treatment) to some
users to attract them to purchase more products (i.e., outcome).
Then estimating the individual uplift can help to find target users.
Uplift modeling is a complicated problem because one needs to
estimate the difference between two outcomes with and without the
treatment which are mutually exclusive to individuals. For example,
we can only observe the outcome of a user getting or not getting
a promotional coupon. The outcome we can observe is called the
factual outcome and the outcome we can not observe is called the
counterfactual outcome. Therefore, uplift modeling also can be seen
as a counterfactual inference problem[7, 8].

To model the counterfactual outcome, existing uplift methods
mainly rely on randomized experiments or observational data: users
will be assigned to either the treatment group or the control group
and we can observe only one type of outcome. Based on these data,
most existing methods [7, 9, 10] utilize user’s individual features
to estimate the user uplift [11, 12]. An accurate uplift modeling is
required to capture the complex and the unobserved hidden factors
(representations) within the user. However, many factors regarding
the user’s uplift are difficult to be captured by only using individual
data for two reasons. Firstly, in real-world scenarios, the individual
features of users, especially the new users, are missing. Secondly,
some informative information for uplift estimation is hidden and
difficult to be characterized by individual features, like social status
and personality.

To resolve the aforementioned problems, we hope to introduce
the social graph. On the one hand, considering that users with close
social relations usually have similar behaviors and preferences, we
can utilize the information from social neighbors as a supplement
to the user’s own features. On the other hand, social graphs can
reveal some informative social information like social status, which
is also beneficial for uplift modeling [13]. From the experiments,
we also demonstrate that the uplift difference between users with
friend relationships is much smaller than the difference between
random users. Therefore, it is very essential to incorporate social
graphs when doing uplift estimation.
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A few of the existing works propose graph-based uplift models
for uplift estimation [6, 13, 14]: They first use graph neural network
(GNN) model to learn the graph-based representations from the so-
cial graphs. Then with the graph-based representations, these works
design uplift estimators, which consist of two separate pathways
of models to predict the outcome with and without the treatment
using the data of the treatment group and control group respectively.
Although these works have achieved substantial improvements, they
still have limitations. In real-world scenarios, since the effect of the
treatment is unpredictable, imposing the treatment on samples may
bring a bad effect like capital loss and user loss. In this way, it is com-
mon that only a little flow will be assigned to the treatment group. In
this way, the number of labeled instances, particularly the instances
from the treatment group, is commonly limited, especially in the
scenario of randomized experiments we mainly focus on. Moreover,
to model the relational data, graph-based models require learning
more parameters. From Figure 4.3.3, compared with tree-based and
NN-based models, the performance of existing graph-based models
will drop more quickly when the labeled data is scarce, thereby
labeled data scarcity is a more severe and unresolved problem for
graph-based representation learning in uplift estimation.

To address aforementioned problems, we propose a general GNN-
based framework with two uplift estimators for uplift modeling. First
of all, a GNN-based model with breadth and depth aggregators is
proposed to generate the graph-based representations for the follow-
ing uplift estimation. And empirically we demonstrate the proposed
uplift estimation framework is general for many existing GNN-based
models. Furthermore, to address the label scarcity problem, we pro-
pose two uplift estimators to utilize the treatment and control group
data and their corresponding social relations. Firstly, we design a
class-transformed target, which we prove is equal to the uplift and is
general for uplift scenarios. Unlike two separate pathways of estima-
tors, our transformed target is able to utilize the training instances
with and without the treatment simultaneously in a common model
to approach the uplift. Furthermore, when the outcome is discrete,
we design partial labels based on the user’s treatment and the ob-
served outcome. Then we design the other uplift estimator with two
classifiers to learn partial labels. The two classifiers can focus on
different facets of the uplift but all require two groups of data for
training. In this way, our model can capture the relations between
two groups of data and utilize the labeled data more effectively. Ex-
perimental results show our proposed framework can outperform the
best-performing baseline method by an improvement of 5% to 10%
in the regression setting and 12% to 25% in the classification setting.

The main contributions of the paper are summarized here:

• Problem: We point out the label scarcity problem is severe
for uplift modeling, especially when trained with the graph-
based model. To the best of our knowledge, it is the first work
trying to solve the label scarcity problem in uplift estimation.
• Methodology: We introduce a novel GNN-based framework

with two uplift estimators for uplift modeling, which can
utilize the two groups of data and the social graph compre-
hensively. Specifically, when the outcome is discrete, we are
the first to introduce partial label learning to uplift estimation,
which is able to utilize the labeled data more effectively to
alleviate the labeled data scarcity problem.

• Results: Extensive experiments on a public dataset and two
industrial datasets demonstrate the superiority of proposed
GNN-based uplift model(GNUM) on different types of out-
comes. Specifically, we find labeled data scarcity is indeed a
serious problem for previous graph-based uplift methods and
our methods are robust to the label scarcity problem.

2 RELATED WORK
2.1 Uplift modeling
Existing uplift methods can be classified into three categories [7], i.e.
the Two-Model methods [15, 16], the Class-Transformation methods
[4] and the methods that model uplift directly [10, 17, 18].

The Two-Model methods construct two independent models for
the two groups of data. One model infers the label using the data
from the treatment group and the other model is for the control group
data. However, [17] points out that the Two-Model methods may
miss the uplift signal. Then The Class Transformation methods are
introduced by [4, 19], which aim to create a new target to approach
the uplift. Then a single model is proposed to learn the new target.
But Class Transformation methods usually require a balanced dataset
between the control and treatment groups. The last type of uplift
method aims to directly infer the uplift. The work [20] proposes a
method based on a modification of the SVM model and the work
[21] focuses on k-nearest neighbors to do the uplift estimation.

The aforementioned works assume that the data of the control
group and treatment group are randomly collected. If the collecting
data is naturally observed, besides uplift estimation, uplift modeling
also needs to reduce the bias of the data from the treatment group and
control group. The most popular methods of this type are the doubly
robust learning methods [22–25]. They usually adopt the Inverse
Propensity Scoring (IPS) [26, 27] to re-weight each instance, aiming
at making the uplift estimator unbiased. And some methods[28, 29]
which estimate individual treatment effect can be used to estimate
the uplift.

However, aforementioned uplift methods assume that the up-
lift can be fully estimated by the individual features. As we have
stated before, the social relationships between users are important
for uplift estimation. Then Guo et. al.[6, 14, 30] first introduce the
networked observational data to the problem of causal effects estima-
tion. NetEst[31] formalize the networked causal effects estimation
to a multi-task learning problem and HyperSCI[32] learning causal
effects on hypergraphs. These methods prove that networked data
is important for predicting causal effects. Although incorporating
the graph data will violate the Stable Unit Treatment Value Assump-
tion(SUTVA), following works [33] have pointed out that SUTVA
is not plausible in real-world scenarios. We will follow these works
[6, 14] to incorporate the graph data but are distinct from them by
addressing the label scarcity problem for graph-based uplift estima-
tion.

2.2 Partial Label Learning
Partial label learning deals with the problem that each sample is
associated with a set of candidate labels, among which only one
label is the ground-truth label to be predicted. Existing partial label
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learning methods can be classified into two categories: the averaged-
based strategy and the identification-based strategy. The averaged-
based strategy assumes that each candidate label contributes equally
to the model training [34, 35], which may suffer from the problem
that the real label is overwhelmed by other labels. To overcome this
drawback, the identification-based methods give different confidence
to different candidate labels by learning the topological information
[36, 37]. Existing partial-label learning is often applied to automatic
face naming, object detection, and web mining. As far as we know,
this is the first work to apply partial label learning to uplift modeling.

Other typical types of weakly-supervised learning include incom-
plete label learning[38] and inaccurate label learning[39]. They are
not closely related to our problem, which will not be discussed here.

2.3 Graph Neural Network
Graph neural networks (GNNs), aiming to generalize neural net-
works to deal with graph data, have drawn increasing research inter-
est recently [40, 41] and show effectiveness in various tasks [42–44].
Generally, current GNNs can be divided into two categories: spectral-
based methods and spatial-based methods. Spectral-based GNNs are
originated from signal processing and are commonly based on the
Laplacian Matrix [45–47]. Spatial-based GNNs regard the graph con-
volution as the ’message-passing’ framework in the spatial domain,
i.e. defining the graph convolution as nodes aggregating information
from neighborhoods [48, 49]. And [50–52] have explored the causal
inference problems with GNN-based models. More GNN-based
models can be referred in recent surveys [41, 53]. However, only a
few works focus on uplift estimation using GNNs and they do not
address some specific and important problems when using GNNs on
uplift estimation.

3 MODEL FORMULATION
3.1 Notations and Preliminaries
Firstly, we describe the notations used in this paper. We denote a
scalar with a letter (e.g., 𝑡), a vector with a boldface lowercase letter
(e.g., x), and a matrix with a boldface uppercase letter (e.g., A).

In our uplift estimation problem, we assume there are 𝑁 users in
total. The data of each user 𝑖 can be represented as {x𝑖 , 𝑡𝑖 , 𝑦𝑖 }, where
x𝑖 ∈ R𝑑 represents the individual feature vector, 𝑡𝑖 ∈ {0, 1} denotes
the observed treatment and 𝑦𝑖 denotes the observed outcome. Note
that 𝑦𝑖 (1) denotes the outcome of user 𝑖 when he receives the active
treatment, and 𝑦𝑖 (0) denotes its outcome with the control treatment.
In this paper, we focus on the scenario of a randomized experiment,
which means that each user is randomly given the treatment or not.
Then, the actual uplift of user 𝑖 is defined as:

𝜏𝑖 = 𝑦𝑖 (1) − 𝑦𝑖 (0), (1)

and our target in this paper is to estimate the uplift of each user.
However, for a specific user 𝑖, we can only observe 𝑦𝑖 (1) or 𝑦𝑖 (0).

The one we can observe is called the factual outcome. And the other
one we cannot observe is called the counterfactual outcome. It is
not difficult to find that the key and the challenging issue of uplift
modeling is to do the counterfactual prediction. As we have stated
before, the user’s social relationships and his/her social neighbors’
features contribute a lot to uplift estimation. Therefore, we introduce
the social graph in our work.

We define the social graph as G = (V , E) 1, where V = {𝑣1, ..., 𝑣𝑁 }
denotes the set of nodes, 𝑁 = |V | is the number of nodes, and
E ⊆ V × V is the set of edges between nodes. Here the node denotes
a user and the edge denotes two users’ social relationships. Let X
be a matrix of node attributes. We define H(𝑙 ) =

[
h(𝑙 )1 , h(𝑙 )2 , ..., h(𝑙 )

𝑁

]
as the hidden representations of nodes in the 𝑙𝑡ℎ layer of the graph
neural networks where h(𝑙 )

𝑖
is the representation of node 𝑣𝑖 . And we

use 𝐿 as the number of layers for the GNN model. For convenience,
we also denote X as H(0) .

3.2 GNUM
To incorporate the social relations and the neighbors’ attributes,
we propose a novel GNN-based uplift model (GNUM). Figure 1
shows the overall framework of the proposed GNUM, which consists
of two components, i.e. graph-based representation learning and
uplift estimation. Specifically, we propose two GNN-based uplift
estimators in this paper working for different scenarios to address
the labeled data scarcity problem for uplift estimation scenarios.

3.2.1 Graph-based Representation Learning. This component
aims to learn the graph-based node (user) representations by extract-
ing the key information from the social relations and neighbors’
attributes. Basically, most GNNs can be represented by:

h̃(𝑙+1)
𝑖

= 𝐴𝐺𝐺𝑅(h̃(𝑙 )
𝑖

, h̃(𝑙 )N𝑖
), (2)

whereN𝑖 represents the neighbors of user 𝑖 and AGGR represents the
aggregation function of the target user’s embedding and his neigh-
bors’ embeddings. Experimentally, we demonstrate our proposed
uplift estimation framework works well with different aggregators
like GCN and GAT.

Inspired by [54], we propose more comprehensive graph-based
aggregators in GNUM, which consist of a breadth aggregator to
learn information from social neighbors of the current layer and a
depth aggregator to ensemble information from different layers. The
𝑙-th graph convolution layer of GNUM is defined as:

h̃(𝑙+1)
𝑖

= 𝑡𝑎𝑛ℎ
©­«

∑︁
𝑗∈𝑛𝑒 (𝑖 )∪{𝑖 }

𝜶 (h(𝑙 )
𝑖

, h(𝑙 )
𝑗
)h(𝑙 )

𝑗
W(𝑙 )ª®¬ . (3)

where 𝜶 (h(𝑙 )
𝑖

, h(𝑙 )
𝑗
) is the attention function of the breadth aggrega-

tor to measure the importance of user 𝑖 and user 𝑗 for uplift modeling,
defined as:

𝜶 (h(𝑙 )
𝑖

, h(𝑙 )
𝑗
) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (v(𝑙 )𝑡𝑎𝑛ℎ(W𝑠h(𝑙 )

𝑖
+W𝑑h(𝑙 )

𝑗
)), (4)

where W𝑠
(𝑙 ) represents the weight for the source node, W𝑑

(𝑙 ) rep-
resents the weight for the target node and v(𝑙 ) denotes a vector to
map the representations to a value.

Given a user 𝑢𝑖 , the breadth aggregator in each layer will adap-
tively gather the information from his neighbors and his own rep-
resentations of the previous layer. Then we further stack multiple
convolution layers and utilize a memory-based depth aggregator to
aggregate the user embedding, defined as:

1For simplicity, we assume the social graph is a directed unweight graph
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Figure 1: Framework of GNUM

𝑖𝑖 = 𝜎

(
𝑊
(𝑙 )⊤
𝑖

h̃(𝑙+1)
𝑖

)
, 𝑓𝑖 = 𝜎

(
𝑊
(𝑙 )⊤
𝑓

h̃(𝑙+1)
𝑖

)
𝑜𝑖 = 𝜎

(
𝑊
(𝑙 )⊤
𝑜 h̃(𝑙+1)

𝑖

)
, 𝐶 = tanh

(
𝑊
(𝑙 )⊤
𝑐 h̃(𝑙+1)

𝑖

)
𝐶
(𝑙+1)
𝑖

= 𝑓𝑖 ⊙ 𝐶 (𝑙 )𝑖
+ 𝑖𝑖 ⊙ 𝐶, h(𝑙+1)

𝑖
= 𝑜𝑖 ⊙ tanh

(
𝐶
(𝑙+1)
𝑖

) .

In this way, our proposed method can extract both local and global
structural information from the social graph to obtain the graph-
based representations for each user, which facilitates the learning of
the following uplift estimators.

3.2.2 Transformed Target-based Uplift Estimator. With the
graph-based hidden representations, an intuitive way is to build two
pathways of models to project the node representations into the label
space, aiming to approach the outcome with and without treatment
using the treatment group data and control group data respectively
[6, 14]. The process can be formulated as 𝑦𝑖 (𝑡) = 𝑓 (𝑡 ) (h(𝐿)

𝑖
), 𝑡 ∈

{0, 1}, where 𝑓 (𝑡 ) (·) is one pathway of the model for treatment or
control group data and 𝑦𝑖 (𝑡) represents the prediction of the user’s
outcome with the treatment or not. Note that 𝑦𝑖 (𝑡) can be continuous
as the regression task or discrete as the multi-classification task.

By optimizing the regression loss or classification loss, the uplift
of user 𝑖 can be estimated as 𝜏𝑖 = 𝑦𝑖 (1) − 𝑦𝑖 (0). However, any one
pathway of their model can only utilize one group of data to learn,
which will suffer from the labeled data scarcity problem. Further-
more, as previous works of literature state [7], Two-Model methods
cannot well capture the relationship between data of the treatment
group and the control group, which limits their performance on uplift
modeling.

To address the problem, we propose a class-transformed target and
prove that by using the transformed target as the learning objective
for both treatment and control group data, the model is equal to do
uplift estimation. We first define the observed outcome of user 𝑖 as:

𝑦𝑜𝑏𝑠𝑖 = 𝑡𝑖𝑦𝑖 (1) + (1 − 𝑡𝑖 )𝑦𝑖 (0) . (5)

Then the class-transformed target can be defined as follows:

𝑧𝑖 = 𝑦𝑜𝑏𝑠𝑖 · 𝑡𝑖 − 𝑝
𝑝 (1 − 𝑝) , (6)

where 𝑝 = E(𝑡𝑖 |x𝑖 ,G) = E(𝑡𝑖 ) = 𝑝 (𝑡𝑖 = 1) is defined as the prob-
ability that user 𝑖 receives the treatment. Since we focus on the
randomized experiment, it is a constant.

We have the following important proposition:

PROPOSITION 1. The uplift of user 𝑖 can be estimated in the
following form: 𝜏𝑖 = E(𝑧𝑖 |x𝑖 ,G).

Inspired by [19], the proof of the proposition can be found in the
Appendix A.1.

Based on the proposition, we can project the node representations
H(𝐿) to form the transformed target. The loss for the GNUM with
class-transformed target (GNUM-CT) is:

L𝐶𝑇 =
∑︁
𝑖∈V
(𝑧𝑖 − 𝑧𝑖 )2 + 𝜆𝐿𝑟𝑒𝑔, (7)

where 𝑧𝑖 has been given in Eq. (6), 𝑧𝑖 = 𝜎 (W𝐶𝑇 h(𝐿)
𝑖
+ b𝐶𝑇 ) is the

prediction of the target, W𝐶𝑇 and b𝐶𝑇 are learnable parameters.
𝐿𝑟𝑒𝑔 is defined as the 𝐿2 regularized loss on all parameters of the
proposed model and 𝜆 is set to 0.0005 in this paper.

In summary, both the treatment group and control group data
are utilized to learn and optimize the proposed transformed uplift
estimator, which can well alleviate the label scarcity problem and
capture the inherent relationship between the two groups of data.
Moreover, we do not make any assumption regarding the proposed
uplift estimator with the class-transformed target. It can work well
for any types of outcome, i.e. continuous and discrete outcome. Ad-
ditionally, the newly proposed target is also general to balanced and
imbalanced data of two groups. If the two groups of data are biased,
we can also replace the 𝑝 in Eq. (6) with the sample’s propensity
score. Therefore, it is a very general uplift estimator which can com-
prehensively utilize the two groups of data for modeling individual
uplift values.

3.2.3 Partial-Label-based Uplift Estimator. When the outcome
is discrete, i.e. a multi-classification outcome prediction problem, we
propose a partial-label-based uplift estimator to further utilize more
labeled data for uplift estimation. For simplicity, we will assume
that the outcome is binary and introduce our solution. It can be
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generalized to a multi-classification problem by transforming the
problem into multiple binary scenarios.

In detail, we divide the whole users into three groups:

• Group A: The group of users who give positive outcomes
regardless of whether they receive the treatment.
• Group B: The group of users who give positive outcomes

only when they receive the treatment.
• Group C: The group of users who do not give positive out-

comes regardless of whether they receive the treatment.

Without loss of generality, in this paper, we consider the cases where
the treatment has a positive impact on the user’s outcome (e.g., pro-
motional coupon). Thus the situation where a user gives a negative
outcome with the treatment but gives a positive outcome without the
treatment does not exist.

Next, we generate a 3-bits coding as the partial label for each
user. Each bit of code corresponds to whether the user belongs to the
above-mentioned group. According to the treatment and observed
outcome, the partial label of 𝑆𝑖 = [𝑠𝐴𝑖 , 𝑠

𝐵
𝑖
, 𝑠𝐶
𝑖
] for user 𝑖 is defined as:

𝑆𝑖 =


[1, 0, 0] 𝑖 𝑓 𝑡𝑖 = 0 𝑎𝑛𝑑 𝑦𝑜𝑏𝑠

𝑖
= 1

[0, 1, 1] 𝑖 𝑓 𝑡𝑖 = 0 𝑎𝑛𝑑 𝑦𝑜𝑏𝑠
𝑖

= 0
[1, 1, 0] 𝑖 𝑓 𝑡𝑖 = 1 𝑎𝑛𝑑 𝑦𝑜𝑏𝑠

𝑖
= 1

[0, 0, 1] 𝑖 𝑓 𝑡𝑖 = 1 𝑎𝑛𝑑 𝑦𝑜𝑏𝑠
𝑖

= 0.

(8)

Taking a user belonging to 𝑡𝑖 = 1, 𝑦𝑜𝑏𝑠
𝑖

= 1 as an example: if we
give the treatment to the user 𝑖, we can observe his positive outcome.
Then based on our aforementioned definition, the user may belong to
Group A or Group B. Therefore, based on our definition, the partial
label is [1, 1, 0] for user 𝑖.

We build two binary classifiers to help estimate the uplift. The
first classifier gives the probability that the user belongs to group
A, i.e. 𝑃 (𝑆𝑖 = [1, 0, 0] |x𝑖 ). Then the instances whose partial labels
are 𝑆𝑖 = [1, 0, 0] are regarded as positive samples, and the instances
with the partial label 𝑆𝑖 ∈ {[0, 1, 1], [0, 0, 1]} are negative samples
for the first classifier. The second classifier gives the probability
that the user belongs to group C, i.e. 𝑃 (𝑆𝑖 = [0, 0, 1] |x𝑖 ). Thus the
instances with the partial label 𝑆𝑖 = [0, 0, 1] are positive samples,
and the instances with 𝑆𝑖 ∈ {[1, 1, 0], [1, 0, 0]} are negative samples.

Then we project the node representations to the partial label space:

𝑦
𝑝𝑙1
𝑖

= 𝜎 (W𝑝𝑙1h(𝐿)
𝑖
+ b𝑝𝑙1)

𝑦
𝑝𝑙2
𝑖

= 𝜎 (W𝑝𝑙2h(𝐿)
𝑖
+ b𝑝𝑙2),

(9)

where 𝑦𝑝𝑙1
𝑖

and 𝑦𝑝𝑙2
𝑖

represent the prediction of the two partial labels,
W𝑝𝑙1, W𝑝𝑙2, b𝑝𝑙1 and b𝑝𝑙2 are learnable parameters.

Then we define the cross-entropy loss as the classification loss
for partial labels. The overall loss function for GNUM with partial-
label-based estimator (GNUM-PL) is defined as:

L =
∑︁
𝑖∈𝑉
(F (𝑦𝑝𝑙1

𝑖
, 𝑦

𝑝𝑙1
𝑖
) + F (𝑦𝑝𝑙2

𝑖
, 𝑦

𝑝𝑙2
𝑖
)) + 𝜆𝐿𝑟𝑒𝑔, (10)

where 𝑦
𝑝𝑙1
𝑖

and 𝑦
𝑝𝑙2
𝑖

are the ground truth for the first and second
partial labels we defined. F (𝑦𝑖 , 𝑦𝑖 ) is defined as the cross-entropy
loss, where F (𝑦𝑖 , 𝑦𝑖 ) = −(𝑦𝑖 log𝑦𝑖 − (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )). 𝐿𝑟𝑒𝑔 is
defined as the 𝐿2 regularized loss on all the parameters of the model
and 𝜆 is set to 0.0005 in this paper.

Using the above loss function, the proposed graph model with
partial labels can be trained. Then the final uplift of user 𝑖 can be
defined in the following ways:

𝜏𝑖 = 𝑝 (𝑦𝑖 (1) |x𝑖 ,G) − 𝑝 (𝑦𝑖 (0) |x𝑖 ),G)
= 1 − 𝑃 (𝑆𝑖 = [0, 0, 1] |x𝑖 ,G) − 𝑃 (𝑆𝑖 = [1, 0, 0] |x𝑖 ,G)

= 1 − 𝑦𝑝𝑙1
𝑖
− 𝑦𝑝𝑙2

𝑖

.

Now we introduce why the proposed model with the partial label
can further improve the performance. Although the graph-based
model with the transformed target we just proposed in Section 3.2.2
utilizes a general target for both treatment group data and control
group data to capture the relationship between two groups of data,
each sample can only be utilized once in each epoch of training.
However, in our partial-label-based uplift estimator, both classifiers
will utilize both the treatment data and the control data but focus
on different facets of information. Specifically, the data with 𝑆𝑖 =

[1, 1, 0] and 𝑆𝑖 = [0, 1, 1] can be utilized by both classifiers. In this
way, on the one hand, more labeled data can be utilized to train
each classifier, ensuring a better performance especially when the
labeled data is scarce in uplift estimation scenarios. On the other
hand, since the two classifiers can both obtain the two groups of
data, the classifiers can better capture the relations and learn useful
information from the two groups to achieve better results.

The pseudo-code and complexity analysis of GNUM-CT and
GNUM-PL can be found in Appendix A.2.

4 EXPERIMENTS
In this section, we conduct experimental results to answer the fol-
lowing three questions:

• Q1: How our method performs compared with all the base-
line methods on a public dataset and two industrial datasets?
(Answered in Section 4.2.1 and Section 4.2.2.)
• Q2: How can our proposed estimators generalize to other

GNNs? (Answered in Section 4.3.1.)
• Q3: What is the relationship between the user uplift and the

social relation? (Answered in Section 4.3.2.)
• Q4: How do our proposed graph-based methods and compar-

ing methods perform with different amounts of labeled data?
(Answered in Section 4.3.3.)

4.1 Experiment settings
4.1.1 Dataset. We evaluate our method on one public dataset and
two real-world industrial datasets.

Firstly, we follow [14] to build a semi-synthetic dataset base on
BlogCatalog: the node features and network structures are collected
from the BlogCatalog. The treatments and outcomes are synthesized.
There are confounders in this dataset and the control and test datasets
are biased. In detail, the node represents a blogger and the edge
denotes their social relationships. The node features are bag-of-
words representations of keywords to describe the bloggers. We
synthesize (1) the outcomes as the rating of readers on the bloggers
and (2) the treatments as whether the blog contents are shown on
mobile devices or desktops. The detailed synthetic process for the
synthetic process can be found in Appendix A.3.1. There are three
different parameters 𝐶,𝜅1, 𝜅2 that control the synthetic results of the
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Table 1: The experimental result on public dataset BlogCatalog. The result of the best performance is in bold and the result of the
second best performance is underlined.

𝜅2 Outcome Type Metric GNUM-PL GNUM-GCN GNUM-GAT GNUM-CT Two-Model CTM Uplift-RF NetDeconf DML DRL
0.5 Continuous

√
𝜖𝑃𝐸𝐻𝐸 / / / 4.164 9.215 8.448 6.760 4.496 5.312 5.407
𝜖𝐴𝑇𝐸 / / / 0.935 4.172 3.317 2.629 0.970 1.244 1.360

Binary
√
𝜖𝑃𝐸𝐻𝐸 0.529 0.642 0.586 0.613 1.253 0.964 0.740 0.621 0.689 0.707
𝜖𝐴𝑇𝐸 0.121 0.147 0.129 0.138 0.470 0.364 0.210 0.135 0.159 0.172

2 Continuous
√
𝜖𝑃𝐸𝐻𝐸 / / / 9.337 23.348 17.277 15.945 9.623 12.134 13.060
𝜖𝐴𝑇𝐸 / / / 2.102 10.920 8.624 8.004 2.243 6.530 7.191

Binary
√
𝜖𝑃𝐸𝐻𝐸 0.353 0.430 0.392 0.411 1.047 0.820 0.699 0.423 0.554 0.598
𝜖𝐴𝑇𝐸 0.105 0.136 0.114 0.126 0.417 0.255 0.202 0.131 0.164 0.160

Table 2: Statistics of datasets. |𝑉 | denotes the number of users,
|𝐸 | denotes the number of edges and |𝐹 | denotes the number of
attributes. 𝑉𝑡 and 𝑉𝑐 represent the set of users in the treatment
group and the set of users in the control group, respectively.

Datasets |𝑉 | |𝐸 | |𝐹 | |𝑉𝑡 | |𝑉𝑐 |
Industry-A 505.2K 2.2M 652 252.6K 252.6K
Industry-B 573.8K 2.6M 915 286.9K 286.9K
Blogcatalog 5.2K 173.5K 8189 1.6K 3.6K

dataset. Following the experimental settings in previous work[14],
we set 𝐶 = 5, 𝜅1 = 10, 𝜅2 ∈ {0.5, 2}.

The two real-world industrial datasets are collected from an inter-
net company2, denoted as Industry-A and Industry-B. The company
has two products and plans to send discount coupons to users who
have not purchased the products. Because the discount coupons are
limited, we need to find the users who are most likely to purchase
the product when receiving the coupons. This can be regarded as a
problem of uplift modeling. For each dataset, the users are randomly
split into the treatment group and the control group. The users of the
treatment group will receive the coupons and the users of the control
group will not. Then we observe whether they will purchase the
product for the following 30 days. The nodes represent users and the
edges represent users’ friendships. The user features mainly consist
of statistical features regarding the user’s profile and behaviors in
our platform. Note that the collection of data removes the user’s
sensitive information and obtains the user’s privacy authorization.

The detail statistics of three datasets are shown in Table 2.

4.1.2 Baseline Methods. To evaluate the effectiveness of GNUM-
PL and GNUM-CT, we compare them with three lines of state-of-the-
art uplift methods, including NN-based methods (Two-Model [15]
and CTM [4]), a tree-based method (Uplift-RF [9]), Causal-effect-
based methods (DML [25] and DRL [23]) and graph-based uplift
methods (NetDeconf [14]). GNUM-GCN and GNUM-GAT are im-
plemented by using the GCN or GAN as the GNN backbones but

2The data set does not contain any Personal Identifiable Information. The data set
is desensitized and encrypted. Adequate data protection was carried out during the
experiment to prevent the risk of data copy leakage, and the data set was destroyed after
the experiment. The data set is only used for academic research, it does not represent
any real business situation.

still use partial-label-based uplift estimator. More details of the com-
paring methods can be found in Appendix A.3.2. And the parameter
settings can be found in Appendix A.3.3.

4.2 Overall Performance
4.2.1 Results on BlogCatalog. Since we have both factual and
counterfactual outcomes for each user in BlogCatalog, we can
measure the performance of different methods by comparing the
predicted average treatment effect (ATE) with the ground-truth
ATE, where ATE is defined as the average uplift over the users
as 𝐴𝑇𝐸 = 1

𝑛

∑𝑛
𝑖=1 𝜏𝑖 . Specifically, we use two evaluation metrics,

i.e. the Rooted Precision in Estimation of Heterogeneous Effect

(𝜖𝑃𝐸𝐻𝐸 =

√︃
1
𝑛

∑
𝑖=1 (𝜏𝑖 − 𝜏𝑖 )2) and Mean Absolute Error on ATE

(𝜖𝐴𝑇𝐸 =
�� 1
𝑛

∑
𝑖=1 (𝜏𝑖 ) − 1

𝑛

∑
𝑖=1 (𝜏𝑖 )

��). Furthermore, we also extend
the setting to the scenario of the discrete outcome, by setting the
outcome of each sample greater than the mean ATE value as 1, oth-
erwise as 0. It is worth noting that these two metrics require both
factual and counterfactual outcomes. Therefore, we only report the
results on semi-synthetic dataset BlogCatalog in Table 1. Then we
have the following observations:

• In the regression setting, our proposed method GNUM-CT
outperforms other baseline methods by 5% to 10%, which
demonstrates that the proposed class-transformed target is
able to utilize the graph-based data more effectively.
• In the classification setting, our proposed method GNUM-PL

outperforms GNUM-CT and other baseline methods by 12%
to 25%, which demonstrates that the proposed partial-label
learning can further utilize the labeled graph data to improve
the overall performance.
• All the graph-based methods achieve a substantial gain over

non-graph-based methods, which demonstrates the impor-
tance of graph data for uplift modeling.
• The result that the Two-Model achieves bad results demon-

strates that it is very important to use a common uplift estima-
tor to utilize the treatment and control group of data together.

4.2.2 Results on Industrial Datasets. Without the counterfac-
tual outcome, we use commonly accepted metrics, i.e. uplift curve
and the Qini Coefficient value to evaluate the performance of differ-
ent methods on our industrial datasets.

In detail, we sort all users in the treatment group and control
group based on their predicted uplift values. Then we will select the
top-𝑘% users to get their uplift 𝑌𝑘 as:
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(c) Qini Coefficient on Industry-A.
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(d) Qini Coefficient on Industry-B.

Figure 2: The uplift curve on (a) Industry-A and (b) Industry-B: The ordinate represents the uplift value defined in Eq. 11, and the
abscissa represents users with top 𝑘% largest predicted uplift values. The Qini Coefficient on (c) Industry-A and (d) Industry-B.

Table 3: The detailed comparison of the uplift curve. The result of the best performance is in bold and the result of the second best
performance is underlined.

Datasets Quantiles GNUM-PL GNUM-GCN GNUM-GAT GNUM-CT Two-Model CTM Uplift-RF NetDeconf DML DRL
Industry-A Top10% 6.92% 6.58% 6.79% 6.67% 4.18% 5.50% 6.00% 6.54% 6.50% 6.44%

Top20% 5.52% 5.22% 5.45% 5.34% 3.12% 3.63% 4.19% 5.19% 5.02% 4.86%
Industry-B Top10% 8.72% 8.38% 8.51% 8.47% 6.44% 6.92% 7.51% 8.35% 8.21% 7.98%

Top20% 8.20% 7.85% 8.11% 7.97% 5.95% 6.21% 6.58% 7.74% 7.67% 7.32%

𝑌𝑘 =
∑︁
𝑖∈𝑉 𝑘

𝑡

𝜏𝑖/|𝑉𝑘
𝑡 | −

∑︁
𝑖∈𝑉 𝑘

𝑐

𝜏𝑖/|𝑉𝑘
𝑐 | (11)

where 𝑉𝑘
𝑡 and 𝑉𝑘

𝑐 are the set of the top 𝑘% samples of the treatment
and control group, and 𝜏𝑖 is the predicted uplift value by the model.
By changing the 𝑘 from 10% to 100%, we can obtain the curve on 𝑌𝑘 .
Note that the leftmost point corresponds to the top 10% users which
the models predict as the most sensitive to the treatment and the
following right part corresponds to the top 20% users. Since the ATE
of the dataset is fixed, all the curves will converge to the same value.
A well-performing model will show a curve with a larger slope. The
left part has larger values than other methods. The results of uplift
curve is shown in Figure 2(a)(b). In addition, we introduce the Qini
metric to measure the overall performance of uplift methods [15].
Similar to the AUC value, the Qini metric measures the distance
between the Qini curve and the random curve. The detail of the
calculation process of Qini curve and Qini Coefficient can be referred
in [15]. We show the results of the Qini Coefficient in Figure 2(c)(d).

From Figure 2, we find that the proposed method GNUM-PL
and GNUM-CT consistently outperform the baseline methods on
two metrics. Specifically, GNUM-PL improves the best performing
baseline method NetDeconf by an improvement of 21% and 14% on
two datasets in terms of Qini Coefficient. It demonstrates that our
proposed methods have a better ranking performance regarding the
user’s uplift. Additionally, the result that GNUM-PL performs better
than GNUM-CT demonstrates that in the classification scenario, the
proposed uplift estimators based on partial label learning can further
improve the overall performance because partial label learning can
utilize the labeled data more effectively. The result that CTM outper-
forms Two-Model demonstrates that a common uplift estimator to
model both the treatment and control group data is very essential.

In many real-world scenarios, we only focus on samples with
uplift values ranking ahead because we will only give actions to users
with larger uplift values. Therefore, we give a detailed comparison

of the users with the largest 20% uplift values in Table 3. We can find
that GNUM-CT and GNUM-PL also achieve better results than other
baseline methods, which demonstrates that our proposed methods
with the two estimators can find users with larger uplift.

4.3 In-Depth Analysis
4.3.1 Generality to different backbones of GNN models. We
further replace our GNN models with GAT and GCN to demonstrate
the generality of our proposed uplift estimators. The results are
shown in Figure 4. We find in most cases, our proposed graph-based
methods GNUM-PL, GNUM-GCN and GNUM-GAT perform better
than NetDeconf and DML. It demonstrates that our proposed uplift
estimators can be adapted to different GNN-based representation
learning methods effectively. Furthermore, GNUM-PL still achieves
the best performance because our breadth and depth aggregators can
utilize more informative information from the social graph.

4.3.2 Correlation between Uplift and Social Relationship.
Previously, we claim that the uplift difference between users with
social relationships is smaller than the uplift difference between
random users. To verify this, for each user we first calculate the
average of the inferred uplift value of his neighbors. Then, according
to the number of his neighbors, we randomly sample the same
number of users to calculate the average of their inferred uplift values.
Finally, we compare the uplift difference between the above two
averaged values and the user’s own inferred uplift value. Specifically,
we use mean-squared error (MSE) as the evaluation metric.

The result of the uplift analysis is shown in Table 4. We can
see that for the graph-based methods, the uplift difference between
neighbors is significantly smaller than the difference between ran-
dom users compared with non-graph-based methods. Compared with
the random sampling strategy, the MSE of inferred uplift calculated
from neighbors drops by more than 30%. It demonstrates that the
graph-based method can indeed learn the similarity information from
neighbors which is useful for uplift modeling. It is worth mentioning
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Table 4: The mean-squared error of the inferred uplift between different users.

Datasets Sampling strategy GNUM-PL GNUM-GCN GNUM-GAT GNUM-CT NetDeconf Two-Model CTM Uplift-RF DML DRL
Industry-A Neighbors 1.05 ∗ 10−3 0.97 ∗ 10−3 1.07 ∗ 10−3 1.11 ∗ 10−3 1.07 ∗ 10−3 1.29 ∗ 10−3 1.30 ∗ 10−3 1.22 ∗ 10−3 1.14 ∗ 10−3 1.18 ∗ 10−3

Random 1.40 ∗ 10−3 1.38 ∗ 10−3 1.40 ∗ 10−3 1.39 ∗ 10−3 1.37 ∗ 10−3 1.35 ∗ 10−3 1.41 ∗ 10−3 1.39 ∗ 10−3 1.36 ∗ 10−3 1.38 ∗ 10−3
Industry-B Neighbors 1.44 ∗ 10−3 1.32 ∗ 10−3 1.42 ∗ 10−3 1.49 ∗ 10−3 1.48 ∗ 10−3 1.75 ∗ 10−3 1.68 ∗ 10−3 1.63 ∗ 10−3 1.50 ∗ 10−3 1.55 ∗ 10−3

Random 1.95 ∗ 10−3 1.94 ∗ 10−3 1.93 ∗ 10−3 1.95 ∗ 10−3 1.91 ∗ 10−3 1.87 ∗ 10−3 1.90 ∗ 10−3 1.88 ∗ 10−3 1.93 ∗ 10−3 1.92 ∗ 10−3
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Figure 3: The Qini Coefficient of the different uplift methods under different percentage of labeled users. The ordinate represents the
value of Qini Coefficient, and the abscissa represents different percentage of labeled users. (c)(d) More comparisons by replacing the
GNN layers in GNUM-PL with GCN/GAT.
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Figure 4: The uplift curve of different graph-based methods.

that the smaller difference of uplift is not representing that the model
performs better necessarily. The result of GNUM-GCN is worse
than that of GNUM-PL and GNUM-GAT because GNUM-GCN
does not capture the attentional weight of different neighbors. The
uplift differences between the neighbors of Two-Model and CTM
are largest, since they can not capture structural information at all.
Therefore, this result demonstrates that it is very essential to utilize
social relations to do the uplift estimation. And the performance gain
can be achieved by proposing the graph-based model to mine the
social relationships between users.

4.3.3 Data Scarcity Analysis. Due to the labeled data scarcity
problem for uplift modeling, we propose GNUM-PL and GNUM-
CT in this paper to alleviate the problem. To prove this point, we
randomly sample 10% to 90% of the labeled users to train different
uplift models and compare their performance on the same test set.
Note that we will not sample the edges of the graph. We use the Qini
Coefficient to evaluate the performance and note that the uplift curve
is consistent with the Qini coefficient. The experimental results are
shown in Figure 3(a)(b) and we have the following observations:

• The performance of GNUM-PL and GNUM-CT are consis-
tently above the curves of baseline methods, which demon-
strates that both the partial-label-based uplift estimator and

the class-transformed uplift estimator are robust to the la-
bel scarcity. Furthermore, in the classification setting, the
partial-label-based uplift estimator can further improve the
performance by utilizing more labeled data explicitly.
• Comparing Netdeconf and other baseline methods, we find

that NetDeconf drops more quickly than other baseline meth-
ods, which proves our assumption that data scarcity is a more
severe problem for the graph-based uplift method because of
the more parameters. Therefore, our solution for alleviating
the labeled data scarcity problem is very critical.

Moreover, as is shown in Figure 3(c)(d), GNUM-GCN and GNUM-
GAT are still robust to the data scarcity problem. It demonstrates
that our partial-label-based uplift estimator can alleviate the data
scarcity problem when using different types of GNN-based models.

5 CONCLUSION
In this paper, we propose GNUM, a novel and general GNN-based
framework with two uplift estimators for user uplift modeling. The
first uplift estimators are general to different uplift scenarios, which
can utilize the two groups of data together to estimate the user uplift.
Specifically, when the outcome is discrete, we further propose an
uplift estimator based on our designed partial labels to address the
labeled data scarcity problem. Experimental results demonstrate that
our proposed methods outperform state-of-the-art uplift methods
under various evaluation metrics. We also give an analysis of the
relationship between the uplift and social relations. And we further
demonstrate the robustness of our proposed model when labeled data
is limited. In the future, we expect to utilize more types of graphs to
estimate the user uplift.
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A APPENDIX
A.1 Proposition Proof

PROOF.

E(𝑧𝑖 |x𝑖 ,G) = E(𝑦𝑜𝑏𝑠𝑖 · 𝑡𝑖 − 𝑝
𝑝 (1 − 𝑝) |x𝑖 ,G)

= E(𝑡𝑖𝑦𝑜𝑏𝑠𝑖 · 𝑡𝑖 − 𝑝
𝑝 (1 − 𝑝) + (1 − 𝑡𝑖 )𝑦

𝑜𝑏𝑠
𝑖 · 𝑡𝑖 − 𝑝

𝑝 (1 − 𝑝) |x𝑖 ,G)
(12)

Given 𝑡𝑖 ∈ {0, 1}, we have 𝑡2
𝑖
= 𝑡𝑖 and (1 − 𝑡𝑖 )2 = (1 − 𝑡𝑖 ). Simulta-

neously with the definition in Eq. (5), we have:{
𝑡𝑖𝑦

𝑜𝑏𝑠
𝑖

= 𝑡2
𝑖
𝑦𝑖 (1) + 𝑡𝑖 (1 − 𝑡𝑖 )𝑦𝑖 (0) = 𝑡2

𝑖
𝑦𝑖 (1) = 𝑡𝑖𝑦𝑖 (1)

(1 − 𝑡𝑖 )𝑦𝑜𝑏𝑠𝑖
= 𝑡𝑖 (1 − 𝑡𝑖 )𝑦𝑖 (1) + (1 − 𝑡𝑖 )2𝑦𝑖 (0) = (1 − 𝑡𝑖 )𝑦𝑖 (0).

Then we can rewire Eq. 12 as 3:

E(𝑡𝑖𝑦𝑜𝑏𝑠𝑖 · 𝑡𝑖 − 𝑝
𝑝 (1 − 𝑝) + (1 − 𝑡𝑖 )𝑦

𝑜𝑏𝑠
𝑖 · 𝑡𝑖 − 𝑝

𝑝 (1 − 𝑝) |x𝑖 ,G)

= E(𝑡𝑖𝑦𝑖 (1)
𝑡𝑖 − 𝑝

𝑝 (1 − 𝑝) + (1 − 𝑡𝑖 )𝑦𝑖 (0)
𝑡𝑖 − 𝑝

𝑝 (1 − 𝑝) |x𝑖 ,G, 𝑡
1
𝑖 ) ∗ 𝑝 (𝑡

1
𝑖 |x𝑖 ,G)

+ E(𝑡𝑖𝑦𝑖 (1)
𝑡𝑖 − 𝑝

𝑝 (1 − 𝑝) + (1 − 𝑡𝑖 )𝑦𝑖 (0)
𝑡𝑖 − 𝑝

𝑝 (1 − 𝑝) |x𝑖 ,G, 𝑡
0
𝑖 ) ∗ 𝑝 (𝑡

0
𝑖 |x𝑖 ,G)

= E(𝑦𝑖 (1)
𝑝
|x𝑖 ,G) ∗ 𝑝 (𝑡𝑖 = 1|x𝑖 ,G) − E(

𝑦𝑖 (0)
1 − 𝑝 |x𝑖 ,G) ∗ 𝑝 (𝑡𝑖 = 0|x𝑖 ,G)

= E(𝑦𝑖 (1) |x𝑖 ,G)
𝑝 (𝑡𝑖 = 1|x𝑖 ,G)

𝑝
− E(𝑦𝑖 (0) |x𝑖 ,G)

𝑝 (𝑡𝑖 = 0|x𝑖 ,G)
1 − 𝑝

= E(𝑦𝑖 (1) |x𝑖 ,G) − E(𝑦𝑖 (0) |x𝑖 ,G)
= 𝜏𝑖

A.2 Pseudo Code and Complexity Analysis
The pseudo-code of GNUM-CT is given in Algorithm 1 and GNUM-
PL in Algorithm 2. Our proposed method can be trained by an
end-to-end back-propagation, and thus we can use gradient descent
to optimize the model.

For each sample, it will go through the GNUM layer first and
then perform the uplift prediction. The complexity of the whole
process is 𝑂

(
𝑀

∑𝐿
𝑖=0 𝑓𝑙 + 𝑁

∑𝐿
𝑖=1 𝑓𝑖−1 𝑓𝑖

)
where 𝑁 denotes the total

number of users, including the users in the treatment and control
group, 𝑀 = |E | is the number of relationships, 𝐿 is number of hidden
layers and 𝑓𝑙 is the dimensionality of the 𝑙𝑡ℎ hidden layer. In practice,
𝐿 and 𝑓𝑙 are often bounded within a small constant. The proposed
method is linear to the number of users and number of relationships
in the dataset respectively. Therefore, the overall model is scalable.

𝑂 (𝑁𝑑2𝑚𝑎𝑥𝑆𝑚𝑎𝑥 ), where 𝑁 denotes the total number of users, in-
cluding the users in the treatment and control group, 𝑑𝑚𝑎𝑥 denotes
the maximum number of dimensionality among different layers and
𝑆𝑚𝑎𝑥 denotes in the social graph the maximum degree among all
the users. In practice, 𝑆𝑚𝑎𝑥 is often bounded within a constant. For
example, in social networks like Facebook, the number of friends a
user can have has an upper bound.

3Due to the limit of space, 𝑡 𝑗
𝑖

represents 𝑡𝑖 = 𝑗 here.

Algorithm 1 Graph Neural Network for Uplift Modeling (GNUM)
using Class-Transformed Target

Require: Set of user features, treatment assignment and observed
outcome {(x𝑖 , 𝑡𝑖 , 𝑦𝑖 )}𝑁𝑖=1, social graph G = (V , E) and number
of layers 𝐿,

Ensure: Prediction of user uplift and GNUM parameters Θ.
1: Initialize all parameters Θ and using X as H(0)

2: while L does not converge do
3: for i← 1 to L do
4: Calculate graph-based representation H(𝑙 ) .
5: end for
6: Calculate 𝑦

𝑝𝑙1
𝑖

and 𝑦
𝑝𝑙2
𝑖

from learned representations H(𝐿)

using Eq. (9).
7: Calculate the class-transformed target 𝑧𝑖 using Eq. (6).
8: Calculate the loss L𝐶𝑇 using Eq. (7).
9: Update Θ using back-propagation.

10: end while
11: Using the trained model parameters to estimate the user uplift

as: 𝜏𝑖 = E(𝑧𝑖 |x𝑖 ,G).

Algorithm 2 Graph Neural Network for Uplift Modeling (GNUM)
using Partial Label Learning

Require: Set of user features, treatment assignment and observed
outcome {(x𝑖 , 𝑡𝑖 , 𝑦𝑖 )}𝑁𝑖=1, social graph G = (V , E) and number
of layers 𝐿,

Ensure: Prediction of user uplift and GNUM parameters Θ.
1: Initialize all parameters Θ and using X as H(0)

2: while L does not converge do
3: for i← 1 to L do
4: Calculate graph-based representation H(𝑙 ) .
5: end for
6: Calculate 𝑦

𝑝𝑙1
𝑖

and 𝑦
𝑝𝑙2
𝑖

from learned representations H(𝐿)

using Eq. (9).
7: Construct the sample’s partial labels based on 𝑦𝑖 and 𝑡𝑖 .
8: Calculate the loss L using Eq. (10).
9: Update Θ using back-propagation.

10: end while
11: Using the trained model parameters to estimate the user uplift

as: 𝜏𝑖 = 1 − 𝑃 (𝑆𝑖 = [1, 0, 0] |x𝑖 ,G) − 𝑃 (𝑆𝑖 = [0, 0, 1] |x𝑖 ,G)

A.3 More Experimental Details
A.3.1 More Details about Dataset. Blogcatalog is a social blog
directory that manages bloggers and their blogs. The dateset con-
tains the features of bloggers and the social relationships between
bloggers listed on the BlogCatalog website. The features are bag-
of-words representations of keywords in bloggers’ descriptions. We
follow the assumptions and procedures of synthesizing the outcomes
and treatments assignments in [14], in which the outcomes represent
the opinions of readers on each blogger and the treatments represent
whether contents created by a blogger receive more views on mobile
devices or desktops. In the treatment group, the blogger’s blogs are
read more on mobile devices. In the control group, the blogger’s
blogs are read more on desktops. We assume that the social relation-
ships of bloggers can causally affect their treatment assignments and
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readers’ opinions of them. We trained the LDA topic model to get
the device preference of the readers of the i-th blogger’s content as:

Pr(𝑡 = 1 | x𝑖 , A) =
exp

(
𝑝𝑖1

)
exp

(
𝑝𝑖1

)
+ exp

(
𝑝𝑖0

) ;
𝑝𝑖1 = 𝜅1𝑟 (x𝑖 )𝑇 𝑟𝑐1 + 𝜅2

∑︁
𝑗∈N(𝑖 )

𝑟
(
x𝑗

)𝑇
𝑟𝑐1

= 𝜅1𝑟 (x𝑖 )𝑇 𝑟𝑐1 + 𝜅2
(
A𝑟

(
x𝑗

) )𝑇
𝑟𝑐1 ;

𝑝𝑖0 = 𝜅1𝑟 (x𝑖 )𝑇 𝑟𝑐0 + 𝜅2
∑︁

𝑗∈N(𝑖 )
𝑟
(
x𝑗

)𝑇
𝑟𝑐0

= 𝜅1𝑟 (x𝑖 )𝑇 𝑟𝑐0 + 𝜅2
(
A𝑟

(
x𝑗

) )𝑇
𝑟𝑐0 ,

where 𝜅1, 𝜅2 ≥ 0 signifies the magnitude of the confounding
bias resulting from a blogger’s topics and her neighbors’ topics,
respectively. 𝜅1 = 0, 𝜅2 = 0 means the treatment assignment is
random and there is no selection bias, and greater 𝜅1, 𝜅2 means
larger selection bias. The factual outcome and the counterfactual
outcome of the i-th blogger are simulated as:

𝑦𝐹 (x𝑖 ) = 𝑦𝑖 = 𝐶

(
𝑝𝑖0 + 𝑡𝑖𝑝

𝑖
1

)
+ 𝜖

𝑦𝐶𝐹 (x𝑖 ) = 𝐶
[
𝑝𝑖0 + (1 − 𝑡𝑖 ) 𝑝

𝑖
1
]
+ 𝜖,

where 𝐶 is a scaling factor and the noise is sampled as 𝜖 ∼ N(0, 1).
In this work, we set 𝐶 = 5, 𝜅1 = 10, 𝜅2 ∈ {0.5, 2}.

A.3.2 Details about the comparing methods. The detail de-
scriptions of the comparing methods can be found here.
• Two-Model: This method infers the labels in the treatment

group and the control group respectively.
• CTM: The Class-Transformation model (CTM) creates the

new target variable to estimate the uplift.
• Uplift-RF: This model modifies existing random forest algo-

rithms to directly infer the uplift.
• DML: Double Machine Learning (DML) method uses the

Neyman orthogonal score and cross-fitting to construct the
uplift estimator.
• DRL: Doubly Robust Learning (DRL) method combines the

error imputation and the inverse propensity score estimator
to address the bias problem.
• NetDeconf: It uses the graph to minimize confounding bias

in the task of estimating treatment effects.
• GNUM-GCN/GAT: To show the effectiveness of partial label

learning, we replace the graph representation learning method
with GCN and GAT respectively for comparison.

A.3.3 Parameter Settings. We adopt the deep neural networks
[55] with two 64-unit hidden layers as the building block for the
Two-Model and CTM methods. For uplift random forest, we set
the number of estimators as 50 and the depth of the tree as 5. For
NetDeconf and our proposed method, we use two layers of GNN
with units of 128 − 64. All the weight matrices are initialized using
Xavier initialization [56]. We train the model for 5 epochs with
a learning rate of 0.0001 and batch size of 256. Note that we use
grid search to get the best hyper-parameters. For each dataset, we
randomly sampled 70% of the users as the training set, 10% as the
validation set, and 20% as the test set. The models are trained on
a cluster of 10 Dual-CPU servers with AGL [57] framework. For

the largest dataset, containing 573.8K nodes and 2.6M edges, the
proposed method took about 17 minutes to train on a cluster of 10
Dual-CPU servers. We run each algorithm 5 times and report the
average result.
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