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ABSTRACT

Entity alignment (EA) is a fundamental data integration task that iden-

tifies equivalent entities between different knowledge graphs (KGs).

Temporal Knowledge graphs (TKGs) extend traditional knowledge

graphs by introducing timestamps, which have received increasing

attention. State-of-the-art time-aware EA studies have suggested that

the temporal information of TKGs facilitates the performance of EA.

However, existing studies have not thoroughly exploited the advan-

tages of temporal information in TKGs. Also, they perform EA by

pre-aligning entity pairs, which can be labor-intensive and thus in-

efficient. In this paper, we present DualMatch that effectively fuses

the relational and temporal information for EA. DualMatch transfers

EA on TKGs into a weighted graph matching problem. More specif-

ically, DualMatch is equipped with an unsupervised method, which

achieves EA without necessitating the seed alignment. DualMatch

has two steps: (i) encoding temporal and relational information into

embeddings separately using a novel label-free encoder, Dual-Encoder;

and (ii) fusing both information and transforming it into alignment us-

ing a novel graph-matching-based decoder, GM-Decoder.DualMatch

is able to perform EA on TKGs with or without supervision, due to

its capability of effectively capturing temporal information. Extensive

experiments on three real-world TKG datasets offer the insight that

DualMatch significantly outperforms the state-of-the-art methods.
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1 INTRODUCTION

Knowledge graphs (KGs) represent structured knowledge related to

real-world objects, which plays a crucial role in many real-world ap-

plications, such as semantic search [52], entity [18, 19, 58, 59] and
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Figure 1: An example of limitations of existing methods with-

out considering temporal information

relation extraction [14–16, 28]. However, existing KGs are generally

highly incomplete [44]. Since different KGs are constructed from var-

ious data sources, they contain unique information but have over-

lapped entities. This scenario provides us an opportunity to integrate

different KGs with the overlapped entities.

A typical strategy for integration of KGs is Entity Alignment

(EA) [44], which aligns entities from different KGs that refer to the

same real-world objects. Given two KGs and a small set of pre-aligned

entities (also known as seed alignment), EA identifies all possible align-

ments between them. Existing embedding-based studies [23, 31, 34, 40,

43] have proven highly effective to perform EA, which is mainly ben-

efited by the use of Graph Neural Networks (GNNs) [12, 20, 46]. They

assume that the neighbors of two equivalent entities in separated KGs

are also equivalent [29]. Based on this assumption, they align entities

by applying representation learning to KGs. We summarize the pro-

cess of Embedding-based EA as the following two steps: (i) encoding

entities of two KGs into embedding vectors by training an EA model

with some seed alignments; and (ii) decoding the embedding vectors

of the entities into an alignment matrix, based on a specific similarity

measurement (e.g., cosine similarity) of their embeddings.

Most of the existing EA studies need to pre-align training sets be-

fore an embedding model can be trained, which is labor-intensive and

degrades their usability in real-world applications [44]. These prob-

lems can be tackled by name-based [8–10, 29, 32, 48, 57] or image-

based [27] models via incorporating side information, where few or

no label is required for performing EA. However, such models still

suffer from problems. First, the performance of the name-based mod-

els is overestimated due to name-bias [3, 27, 29, 39]. In this case, the

ground truths (inter graph/language links) are generally generated

with the entity name, and thus results in test data leakage when they

are served as features. Second, the images are not inherent parts of

KGs and are thus hard to be collected. As a result, incorporating side

information may not be able to enhance EA. Moreover, most of the

existing EA methods [2–4, 23, 27, 29–34] do not consider temporal

information. This results in incorrect predictions on entities, which

http://arxiv.org/abs/2302.00796v2
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Figure 2: A corner case of possible misalignment for previous

time-aware GNN studies

have similar neighborhood structures in relational triples but corre-

spond to different time intervals, as shown in Figure 1.

Temporal information are often utilized to enhance the performance

of various applications [24, 25]. Temporal KnowledgeGraphs (TKGs) [38,

47], a type of KGs, have been proposed that associates relational facts

with temporal information. As the formats of storing temporal infor-

mation in TKGs are almost identical, the alignment information can

be obtained easily, which naturally enhances the EA performance.

Nevertheless, recent studies [53, 54] that applies TKGs to EA still suf-

fer from the following two problems.

• “Redundantly” pre-aligned seeds. They [53, 54] follow studies

that applies KGs to EA, which cannot perform EA until the pre-

aligned seeds are obtained. However, unlike KGs, temporal infor-

mation in relational triples of TKGs is naturally aligned since they

represent real-world time points or time periods [53, 54]. This char-

acter of TKGs provides the opportunity of developing time-aware

EA methods in an unsupervised fashion by treating temporal infor-

mation as seed alignment.

• Insufficient temporal informationdiscovery.They [53, 54] sim-

ply create embeddings for each timestamp, and treat the time inter-

vals as relation types to enhance the graph learning process. These

processes highly rely on the seed alignment, where the temporal

information has not been fully exploited, and thus the accuracy of

EA is limited. We use an example to illustrate it.

Example 1.1. Assume that we have trained an accurate time-aware

GNN on these graphs that could maximally propagate all the align-

ment information, as depicted in Figure 2. In this case, the entity

“Japan” is likely to be misaligned due to two reasons: (1) “Japan” and

the seeds are in different connected components, where the GNNs is

unlikely to propagate the alignment information to the embedding of

“Japan”; and (2) “Japan” does not share common timestamps and rela-

tion types with the seeds, and thus, the information of seeds is unable

to reach “Japan” via shared temporal or relational embeddings. This

misalignment of Japan renders it is excluded from the objective of the

learned model. However, as shown in Figure 2, each entity has at least

one outgoing edgewith a unique timestamp. As a result, following the

1-to-1 mapping assumption [4], “Japan” can be aligned correctly, by

simply hashing the entities using the timestamps of their outgoing

edge.

We present an EA method for TKGs, DualMatch, that is able to

address the above two problems. To tackle the first problem, instead

of treating time intervals simply as relations [53, 54], we model the

temporal information using a learning-free encoder. Specifically, we

derive pseudo seeds from the encoder to train GNN-based EAmodels.

The models can encode relational information without any require-

ment for training data. To solve the second problem, we develop a

decoder that is independent of seed alignment. This is to fuse the tem-

poral and relational information after they are encoded into feature

vectors. We transform EA into weighted graph matching, in order to

wisely balance the temporal and relational information. Our contri-

butions are summarized as follows:

• Framework. We design DualMatch 1 , an EA framework for TKGs,

which effectively explores both temporal and relational informa-

tion. It contains two steps: (i) encoding the information from TKGs,

and (ii) decoding the embedded data into an alignment matrix. By

employing an encoderDual-Encoderand a decoderGM-Decoder,

DualMatch can perform EA on TKGs with or without training data.

• Encoder. We develop a novel Dual-Encoder that encodes the tem-

poral and relational information separately. Dual-Encoder has two

components: (i) Temporal-Encoder that retains the temporal infor-

mation in TKGs; and (ii) Relational-Encoder that learns the rela-

tional information using the graph structure.

• Decoder. We design a novel GM-Decoder that balances the graph

structure information and temporal informationwisely, by building

a bridge between the EA task and the weighted graph matching

task.

• Experiments.We conduct comprehensive experiments on three real-

world datasets, which suggest that DualMatch is able to outper-

form existing TKG models [53, 54] in terms of accuracy in both

supervised and unsupervised settings.

2 RELATED WORK

EntityAlignmentEncoders.Most existing EA encoders are designed

to learn the graph structures of KGs. They can be divided into two cat-

egories: KGE-based Encoder [4, 42, 45, 60] and GNN-based Encoder [2,

23, 31, 33, 40, 43, 49]. The former uses the KG embedding models

(e.g., TransE [1]) to learn entity embeddings, while the latter uses

GNNs [20]. Recently, GNN-based models have demonstrated their

outstanding performance [31]. This is contributed by the strong mod-

eling capability of GNNs to capture graph structure with anisotropic

attentionmechanism [46]. However, they are not capable of modeling

temporal information in TKGs.

Temporal EA Encoders. TEA-GNN [53] and TREA [54] incorpo-

rate temporal information into the GNN architecture with timestamp.

However, these methods have not fully explored the underlying effi-

cacy of temporal information in GNN encoder embeddings and re-

quire seed alignment for EA. On the contrary, the proposed Dual-

Encoder processes the temporal and relational information separately

to improve the performance and is able to performwithout seed align-

ment.

EntityAlignmentDecoders.Most existing EAdecoders are designed

to find equivalent entities based on the learned embeddings. Themost

commonly used decoder is greedy search [44]. It essentially finds the

top-1-nearest neighbor using the similarity between embeddings of

entities [4, 42, 44, 60]. To enhance the performance of EA, CSLS [21]

proposes to normalize the similaritymatrix. However, the performance

of CSLS’ greedy top-1-nearest neighbor search is limited because it

can only partly normalize the similarity matrix using local nearest

neighbors. CEA [57] adopts theDeferred-acceptance algorithm (DAA) [36]

to find the stable matching between entities of two KGs, which pro-

duces higher-quality results than CSLS. Nonetheless, DAA is hard to

be parallelized on GPU as it performs iterations to match and un-

match entity pairs. SEU [32] transforms EA into the assignment prob-

lemby employing Hungarian algorithm [13] or Sinkhorn algorithm [5]

1The codes are available at https://github.com/ZJU-DAILY/DualMatch/



Unsupervised Entity Alignment for Temporal Knowledge Graphs WWW ’23, May 1–5, 2023, Austin, TX, USA

to normalize the similarity matrix. DATTI [30] decodes embeddings

using Third-order Tensor Isomorphism. Recent studies [6, 9, 26, 51,

56] also present several decoders that exploit sampling to process

large-scale EA. Different from previous decoders, our proposed GM-

Decoder is designed for decoding features of TKGs. It needs two sets

of input features, and effectively fuses them to generate high-quality

alignment.

Unsupervised EA. All existing proposals of unsupervised EA em-

ploy side information of KGs, including literal information of entity

names [8, 32] and visual information [27]. Such proposals are able to

perform EA without seed alignment [44]. However, models that in-

corporate machine translation or pre-aligned word embeddings may

be overestimated due to the name bias issue [3, 27, 29, 39]. In addition,

it is difficult to extract visual information from KGs. On the contrary,

our presented DualMatch only requires the information that is easily

obtained from the TKGs in this paper and does not suffer from the

name bias issue.

3 PRELIMINARIES

We proceed to introduce preliminary definitions. Based on these, we

formalize the problem of time-aware entity alignment.

3.1 Assignment Problem

Assignment problem is a well-established combinatorial optimization

problem. It aims to find the optimal assignment V that transfers from

a source distribution to a target distribution, while maximizing the

overall profit. Finding optimal V can be viewed as a special case of the

optimal transport problem [35]. In this paper, we adopt the Sinkhorn

algorithm [5] to solve the assignment problem, which iterates : steps

for scaling the similarity/cost matrix.

An extension of the assignment problem is the quadratic assign-

ment problem, which extends the assignment problem by defining

the profit function in terms of quadratic inequalities. It is also com-

monly known as the weighted graph matching problem [11]. Given

two adjacency matrices Q^ ∈ R#×# and Q_ ∈ R#×# , the weighted

graph matching problem aims to find an optimal V ∈ P# such that

‖Q^ V − VQ_ ‖22 is minimized.

3.2 Graph Kernel

A graph kernel is a kernel function widely used in structure mining,

which computes an inner product on graphs. Graph kernels can be

used to compute how similar two graphs are. Thus, we useWeisfeiler-

Lehman (WL) Subtree Kernel [37], one of the most commonly-used

graph kernels, to detect the similarity between two adjacency matri-

ces. It calculates the similarity of graphs by running the WL Isomor-

phism Test [50]. Specifically, given a set S� of graphs, we compute

the WL kernel matrix  
(ℎ)
,!
∈ R |S� |× |S� | . For each pair of graphs

(�8 ,� 9 ) ∈ S� × S� , we have

:
(ℎ)
,!
(�8 ,� 9 ) =

ℎ∑
:=0

〈
q
(
�
(:)
8

)
, q

(
�
(:)
9

)〉
(1)

where ℎ is the number of WL iterations,
{
� (0) , . . . ,� (ℎ)

}
are the WL

sequences of one graph� , andq (�) indicates the featuremapping ob-

tained from The WL Isomorphism Test. A traditional strategy to nor-

malize the kernel matrix is to divide it by its diagonal, inwhich each el-

ement represents the similarity of a graphwith itself, i.e., :̂,! (�8 ,� 9 ) =
:,! (�8 ,� 9 )√

3806 (Q,! ) ⊗3806 (Q,!)
.

3.3 Problem Definitions

Definition 1. A temporal knowledge graph (TKG) can be de-

noted as � = (�, ',) ,&), where � is the set of entities, ' is the set of

relations,) is the set of time intervals, and& = {(ℎ, A, C, g) | ℎ, C ∈ �, A ∈
', g ∈ ) } is the set of quadruples, each of which represents that the sub-

ject entity ℎ has the relation A with the object entity C during the time

interval g . g is represented as [C1 , C4 ], with the beginning timestamp C1
and the ending timestamp C4 . Some of the event-style quadruples, e.g.,

quadruples with the relation type “born-in”, may have C1 = C4 .

Definition 2. Time-aware Entity alignment (TEA) [53] aims to

find a 1-to-1mapping of entitiesq from a source TKG�B = (�B , 'B ,) ∗,&B )
to a target TKG�C = (�C , 'C ,) ∗, &C ), where) ∗ is a set of time intervals

overlapped between �B and �C . q = {(4B, 4C ) ∈ �B × �C | 4B ≡ 4C } ,
where 4B ∈ �B , 4C ∈ �C , and ≡ is an equivalence relation between two

entities.

In supervised settings, a small set of equivalent entities q ′ ⊂ q is

known beforehand, and is used as seed alignment. In unsupervised

settings, the seed alignment q ′ is unknown.

4 METHODOLOGY

We present our framework DualMatch for TKGs. We start by giving

the overview of DualMatch and then detail each component of it.

4.1 Overview

Figure 3 shows DualMatch framework. The input (left side of Fig-

ure 3) includes two TKGs �B ,�C , and an optional slot for seed align-

ment. In order to transfer the temporal and relational information

of TKGs into a better alignment result, DualMatch employs a Dual-

Encoder (cf Step 1 of Figure 3). It has two components to encode the

input TKGs: (i) Temporal-Encoder that aims at retaining the temporal

information in TKGs; and (ii) Relational-Encoder that aims at learn-

ing the relational information using the graph structure. With Dual-

Encoder, the temporal and relational information are encoded into

separate entity features. Next, DualMatch develops GM-Decoder (cf

Step 1 of Figure 3), which effectively fuses the temporal features with

relational features by transforming the EA task into the weighted

graph matching task. After the transformation, the GM-Decoder can

produce a near-optimal fused alignment matrix (right side of Figure 3).

Algorithm 1 depicts the pseudo-code of the DualMatch framework.

4.2 Encoding Temporal Information

Since the two TKGs to be aligned share the same set of time inter-

vals that are recorded in quadruples, it is reasonable to make the fol-

lowing assumption: if two entities 4B ∈ �B and 4C ∈ �C have many

overlapped time intervals between their connected quadruples,4B and

4C are very likely to represent the same real-world object. Based on

this assumption, we propose a simple yet effective Temporal-Encoder.

Temporal-Encoder builds temporal features for entities in TKGs us-

ing their overlapped time intervals. For a TKG, we extract a bipartite

graph �C between � and ) . For each 0C4C ∈ �C , we have

0C4C =
exp( |&4C |)∑

g ∈) exp( |&4g |)
, (2)

where |&4C | is the number of quadruples that contain both entity 4

and time interval C . Here, we separately calculate and concatenate the

temporal adjacency matrices for head entities and tail entities. Thus,

the result dimension of �C is |� | × |2) |. We call this bipartite graph

the temporal feature matrix of �.

With the temporal feature matrices, GC
B of �B and G

C
C of �C , an

alignment matrix can be easily derived by calculating the pairwise
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similarity: V = G
C
B (GC

C )) . However, some entities may not contain

sufficient temporal information, which leads to poor alignment re-

sults. To solve this problem, we impute the temporal feature from

their neighborhoods, which may have a link to sufficient temporal

facts, by aggregating information from neighbors; thus follow [32]

to perform a !-layers graph-convolution-like forward pass to obtain

an aggregated feature matrix: N C
=

[
G
t | |GGt | |G2

G
t | |...| |G!

G
t
]
(cf.

Lines 3-4 of Algorithm 1), where ! is a hyper-parameter indicating

number of layers of the graph-convolution-like forward pass, [- | |. ]
indicates tensor concatenate operations between - and . along the

last dimension, and G
;
=

∏
8 ∈1,...,; G is the ;-hop adjacency matrix

of � . Here, to leverage the impact of different relation types on the

knowledge graph, we follow [30–34] to build the relational feature

matrix. Specifically, for each a8 9 ∈ G ,

a8 9 =

∑
A 9 ∈'8,9 ln

(
|& |/

��&A 9

��)
∑
:∈N8

∑
A: ∈'8,: ln

(
|& |/

��&A:

��) , (3)

where N8 represents the neighboring set of entity 48 , '8, 9 is the rela-

tion set between 48 and 4 9 , and |& | and |&A | denote the total number of

all quadruples and the quadruples containing relation A , respectively.

4.3 Encoding Relational Information

State-of-the-art methods for encoding relational information typically

use GNNs [20] to propagate the information provided by the seed

alignment q ′. Studies [53, 54] suggest that integrating temporal infor-

mation can improve the performance of EA. They encode entities’ re-

lational features together with temporal features using a GNN. Specif-

ically, they train the entity’s embedding by propagating the neighbor-

hood information [20, 34, 46]. The embedding of an entity E ∈ � in

the ;Cℎ layer of GNN ℎ
(; )
E is computed by aggregating localized infor-

mation:

0
(; )
E = AGGREGATE(; )

({(
ℎ
(;−1)
D , rDE, tDE

)
| D ∈ N (E)

})
ℎ
(; )
E = UPDATE(; )

(
0
(; )
E , ℎ

(;−1)
E

)
,

(4)

where ℎ0E ∈ R� is a learnable embedding vector initialized using Glo-

rot initialization, rDE ∈ ', tDE ∈ ) represents the relation types

and time intervals between entity D and E , and N(E) is the set of

neighboring entities around E . The model’s final output is denoted

as N A ∈ R |�B∪�C |×� , where � is the dimension of embeddings.

Relational-Encoder adopts the state-of-the-art EA method [31] to

build a !-layer GNN model for learning the representation of the

knowledge graph structure (cf. Line 9 of Algorithm 1). To be more

specific, the dual-aspect embedding in [31] concatenates both entity

embeddings and relation embeddings. We extend it with additional

time embeddings to form an overall triple-aspect embedding. For each

h48 ∈ N A :

h48 =


h
>DC
48 ‖

©­­
«

1��NA
48

��
∑

A 9 ∈NA
48

hA 9 +
1��NC
48

��
∑

C 9 ∈NC
48

hC 9

ª®®¬

, (5)

where h>DC48 = [ℎ (0)48 | |ℎ
(1)
48 | |...| |ℎ

(!)
48 ],hA 9 , and hC 9 denote the vector of

corresponding entity, relation, and time interval respectively, andNA
48

and NC
48 represent the set of the relations and time intervals around

entity 48 . Note that recent works generally concatenate all the out-

put features in each GNN layer [31, 33, 34], in order to achieve better

performance. Previous studies use negative sampling [4, 29, 33] to

form the loss function and to train the encoder model. We adopt this

strategy for fast convergence [31, 54]. The training loss is defined

as L = LSE(_I (4B , 4C )) + LSE(_I (4C , 4B )) , where 4B ∈ �B , 4C ∈ �C ,
(4B, 4C ) ∈ q ′, LSE(- ) = ;>6(∑G ∈- 4

G ) is an operator to smoothly

generates hard negative samples, _ is the smooth factor of LSE, and

I ∈ R |�C | is the normalized triple loss. More specifically, I is de-

fined as I (4B , 4C ) = z-score({W + sim(4B , 4C ) − sim(4B , 4 ′C ) |4 ′C ∈ �C }),
in which z-score(- ) = -−` (- )

f (- ) is the standard score normalization,

and sim(4B , 4C ) = h
A
4B ·h

A
4C is the similarity of two entities obtained by

the dot product.

4.4 Fusing Information and Decoding

Naive Strategy. Previous studies have developed several techniques

to improve EA performance by decoding embeddings into an align-

ment matrix. However, in GM-Decoder, the temporal and relational

information is separately encoded into N
C and N

A . A naive strategy

is to directly concatenate two features by N̂ =

[
N

A | |N C
]
. and then

we can obtain the alignment matrix according to the concatenated

features: V = N̂B (N̂C )) .

Our Strategy. The naive decoding strategy has two problems. First,

N
A is a dense matrix while N C is sparse in practice. Due to the com-

monly used format of storing sparsematrices, it is memory-consuming

to concatenate one sparse matrix with a dense matrix. Second, N A is

obtained fromRelational-EncoderwhileN C is obtained fromTemporal-

Encoder. Thus they are not required to be considered equally. To ad-

dress the aforementioned two problems, we introduce a weight U :

V = U ·N C
B (N C

C )) +N A
B (N A

C )) , where U is the weight to balance the im-

pact of the two features on the alignment result. Then, to normalize

the alignment matrix, we adopt recent work [30, 32] that reformu-

lated EA as an assignment problem and solved it via the Sinkhorn

algorithm [6, 8, 30, 32]: V̂ = Sinkhorn (V ) (cf. Line 13 of Algorithm 1).

Note that, |�B | ≠ |�C | in many real-world scenarios. In this case, the

EA problem is transformed into an unbalanced assignment problem,

which can then be straightforwardly reformulated as a balanced as-

signment problem [32].
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Algorithm 1: The proposed DualMatch process

Input: TKGs�B , �C , optional seed alignment q′, and range 'U
Output: Alignment matrix V̂

1 /* Step 1: encode temporal and relational information

into vectors with Dual-Encoder */

2 GB ,G
C
B ,← �B , GC ,G

C
C ← �C /* Extract feature matrices */

3 N
C
B ← Temporal-Encoder(GB ,G

C
B)

4 N
C
C ← Temporal-Encoder(GC ,G

C
C )

5 if q′ is =>C 68E4= then /* Compute pseudo-seeds */

6 V
�B�C ← Sinkhorn(N C

B (N C
C )) )

7 V
�C�B ← Sinkhorn(N C

C (N C
B )) )

8 q′ ← {(8, 9 ) | argmax9′ V
�B�C
8 9′ = 9 ∧ argmax8′ V

�C�B
98′ = 8 }

9 N
A
B ,N

A
C ← Relational-Encoder(�B ,�C , q

′)
10 /* Step 2: decode feature vectors with GM-Decoder */

11 V̂ ,J ← I4A>B ( |�B |, |�C |),+∞
12 for U ∈ 'U do

13 V̂U ← Sinkhorn(U ·N C
B (N C

C )) + NA
B (NA

C )) )
14 J

U
�B�C

= :A


GB V̂U − V̂UGC



2
2
+ :C



GC
B − V̂UGC

C



2
2

15 if JU
�B�C

< J then

16 J, V̂ ← J
U
�B�C

, V̂U/* Update alignment matrix */

17 return V̂ .

However, the optimalU is hard to be determined because the ground

truth is unknown. To solve this problem, we study the isomorphic na-

ture of the two TKGs to be aligned and propose to set the weight by

minimizing the objective of weighted graph matching [11] with given

V̂ . More specifically, we map the source adjacency matrices into tar-

get ones. Next, by calculating the distance of the mapped matrix with

the target matrix, we derive the correctness of the alignment matrix

V̂ (cf. Line 14 of Algorithm 1).

J�B�C
= :A



GB V̂ − V̂GC



2
2 + :

C


GC

B − V̂G
C
C



2
2 , (6)

where :A = :̂,! (Gs ,Gt ) and :C = :̂,! (Gt
s ,G

t

t
) are the weights

based on the isomorphism of the adjacency matrices.

Let 3A =



GB V̂ − V̂GC



2
2 and 3C =



GC
B − V̂GC

C



2
2 be the distances

of the two TKGs measured by the relational and temporal feature

matrices. Since the two TKGs may be non-isomorphic, and the re-

lational adjacency matrices and temporal adjacency matrices are con-

structed independently, 3A and 3C may scale differently. Hence, it is

reasonable to assign different weights to them. We denote B8< (·) as
the similarity between two adjacency matrices. Intuitively, if we have

B8< (Gs,Gt ) > B8< (Gt
s,G

t

t
),3A can beweighted more. This motivates

us to set the weights using the similarity of graphs measured by the

WL Graph Kernels [37].

We search U = argminU J�B�C
in the range of 'U , in order to

obtain the optimal V̂ (cf. Lines 11-16 of Algorithm 1). Whenmatching

two graphs using a mapping matrix, we do not need to map more

than one entity from the source graph into the target graph. Here

I4A>B (() indicates a Tensor of shape ( filled with 0. However, there

are multiple nonzero values in each row of V̂ . This results in that, for

one entity in the source TKG, several possible alignments exist in the

target TKG with weighted scores. To this end, we decide to sparsify

V̂ by only retaining the top-1 correspondence. To keep the matrix

doubly scholastic, we set the value to 1 for the top-1 correspondence:

V̂8 9 =

{
1, 9 = argmax 9′ (V̂8 9′)
0, otherwise

(7)

4.5 Unsupervised Learning

Since the Relational-Encoder needs seed alignment, in order to per-

form unsupervised EA, we follow the Bi-directional Strategy [33] to

generate pseudo-seeds fromTemporal-Encoder. Considering the asym-

metric nature of alignment directions [6, 9], we first derive the bi-

directional alignment matrices V
�B�C = Sinkhorn(N C

B (N C
C )) ) and

V
�C�B = Sinkhorn(N C

C (N C
B )) ) from the temporal feature by applying

Temporal-Encoder on both directions (cf. Lines 6-7 of Algorithm 1).

This process can be performed without supervision. Then, we ex-

tract pseudo-seeds from the two matrices. Specifically, we consider

(48 , 4 9 ) where 48 ∈ �B , 4 9 ∈ �C as a valid seed pair iff argmax 9′ V
�B�C

8 9′ =

9 and argmax8′ V
�C�B

98′ = 8 (cf. Line 8 of Algorithm 1). Finally, with the

generated pseudo-seed alignment, we train Relational-Encoder (cf.

Line 9 of Algorithm 1) and obtain the unsupervised alignment result

V̂ via the GM-Decoder (cf. Lines 11-17 of Algorithm 1).

Discussion. Many previous studies have tried to generate pseudo-

seeds frommachine translation systems or pre-trained embeddings [27,

31, 33, 34, 41] to gain better EA performance. Unlike them, we gen-

erate the pseudo-seed with the information that is an inherent part

of TKGs. This means that DualMatch can fully exploit the inherent

information of datasets to perform EA rather than relying on infor-

mation that is hard to be obtained.

5 EXPERIMENTS

We report on extensive experiments aiming at evaluating the perfor-

mance of DualMatch.

5.1 Experimental Setup

Datasets. We use three real-world TKG datasets provided by [53,

54]. They are extracted from ICEWS05-15 [7], YAGO [38], and Wiki-

data [47], denoted as DICEWS, WY50K andWY20K, respectively. The

detailed statistics of all datasets are presented in Appendix B.

Baselines. We use 12 state-of-the-art EA methods as baselines. We

follow the settings in [6, 27, 29, 31, 34, 53, 54], which exclude side

information other than the temporal and relational information in

TKGs. This is to guarantee a fair comparison. We divide the baselines

into two categories below.

• Time-Unaware baselines that do not exploit the temporal infor-

mation to perform EA, including (1)MTransE [4], which is the first

embedding-based EAmodel; (2) JAPE [41], which employs attribute

correlations for entity alignment; (3) AlignE [42], which trains KG

embedding in an alignment-oriented fashion; (4) GCN-Align [49],

which aligns entities via graph convolutional networks; (5)MuGNN

[2], which learns alignment-oriented embeddings by amulti-channel

graph neural network; (6) MRAEA [33], which learns cross-graph

entity embeddings with the entity’s neighbors and its connected

relations’ meta semantics; (7) HyperKA [40], which learns the hy-

perbolic embeddings for EA; (8) RREA [34], which leverages rela-

tional reflection transformation to obtain relation-specific embed-

dings for EA; (9)KE-GCN [55],which learns a knowledge-embedding

based graph convolutional network; and (10) Dual-AMN [31], the

state-of-the-art EA model, only uses the relational information of

knowledge graph structure.

• Time-Aware baselines that consider both relational and temporal

information, including (1) TEA-GNN [53], which models temporal

information as embeddings; and (2) TREA [54], which is the state-

of-the-art time-aware EAmodel using a temporal relation attention

mechanism.
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Table 1: Overall EA results on DICEWS and WY50K

Methods
DICEWS-1K DICEWS-200 WY50K-5K WY50K-1K

H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR

Time-Unaware

MTransE 10.1 24.1 0.150 6.7 17.5 0.104 24.2 47.7 0.322 1.2 6.7 0.033

JAPE 14.4 29.8 0.198 9.8 21.0 0.138 27.1 48.8 0.345 10.1 26.2 0.157

AlignE 50.8 75.1 0.593 22.2 45.7 0.303 75.6 88.3 0.800 56.5 71.4 0.618

GCN-Align 20.4 46.6 0.291 16.5 36.3 0.231 51.2 71.1 0.581 21.7 39.8 0.279

MuGNN 52.5 79.4 0.617 36.7 58.3 0.412 76.2 89.0 0.808 58.9 73.3 0.632

MRAEA 67.5 87.0 0.745 47.6 73.3 0.564 80.6 91.3 0.848 62.3 80.1 0.685

HyperKA 58.8 84.2 0.669 38.3 65.3 0.474 78.4 90.0 0.829 61.0 77.5 0.665

RREA 72.2 88.3 0.780 65.9 82.4 0.719 82.8 93.8 0.868 69.6 85.9 0.753

KE-GCN 54.9 82.7 0.650 37.3 62.5 0.451 78.0 91.0 0.831 60.0 76.1 0.654

Dual-AMN 71.6 89.3 0.779 66.8 85.4 0.733 89.7 96.4 0.922 75.5 89.0 0.834

Time-Aware

TEA-GNN 88.7 94.7 0.911 87.6 94.1 0.902 87.9 96.1 0.909 72.3 87.1 0.775

TREA 91.4 96.6 0.933 91.0 96.0 0.927 94.0 98.9 0.958 84.0 93.7 0.885

DualMatch 95.3 97.3 0.961 95.3 97.4 0.961 98.1 99.6 0.986 94.7 98.4 0.961

Unsupervised DualMatch (unsup) 94.6 97.1 0.956 - - - 96.4 99.1 0.975 - - -

EvaluationMetrics.Thewidely-adoptedHits@# (H@# ) (# = 1, 10)
andMean Reciprocal Rank (MRR) are used as the evaluation metrics [4,

30, 31, 42]. Hits@# (in percentage) denotes the proportion of cor-

rectly aligned entities in the top-# ranks in the alignment matrix V̂ .

MRR is the average of the reciprocal ranks of the correctly aligned

entities, where reciprocal rank reports the mean rank of the correct

alignment derived from V̂ . Note that, higher H@# and MRR indicate

higher EA accuracy.

Experimental Settings. In order to avoid the labor-intensive seed

alignment, we expect to use as less training data as possible. Tradi-

tional EA methods typically use 20%-30% of the total number of pairs

to train the EA model [44]. The temporal information can be treated

as an alternative for seed alignment of TKGs, and thus, fewer train-

ing pairs need to be used. We use three settings of train pair ratio to

evaluate the EA performance, including two supervised settings that

follow previous studies [53, 54], and an unsupervised setting that uses

no seeds.

• Normal setting uses roughly 10% seeds for DICEWS and WY50K,

which contain 1000 pairs and 5000 pairs, respectively, denoted as

DICEWS-1K and WY50K-5K. The rest of the pairs are utilized to

verify the EA performance.

• Less seed settinguses 200 and 1000 seeds forDICEWSandWY50K,

respectively, denoted as DICEWS-200 and WY50K-1K. The rest of

the pairs are used to evaluate the EA performance.

• Unsupervised setting2 does not contain seed alignment, and all

the entity pairs are used for evaluation. As the previous methods

require labeled seed alignments, we only provide the unsupervised

EA results of DualMatch, denoted as DualMatch (unsup).

We implement baselines by following their original settings. Specifi-

cally,Bold digits in Tables 2–5 indicate the highest performance of su-

pervised and unsupervised settings. InDualMatch, for Dual-Encoder,

we follow previous studies [31, 32] to set the hyper-parameters for ag-

gregating temporal features and training the GNN-based EA model;

for GM-Decoder, we search the best U minimizing J�B�C
in 'U = {0,

0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}.We set the number of WL iteration

ℎ = 8, and the step of Sinkhorn : = 10 following [32]. All algo-

rithms are implemented in Python, and the experiments are run on

a computer with an Intel Core i9-10900K CPU, an NVIDIA GeForce

RTX3090GPUand 128GBmemory. The artifact is available at https://doi.org/10.5281/zenodo.7149372.

2The unsupervised setting uses all the alignment pairs to evaluate. For a fair comparison,
we compare it with the normal settings of baseline models.

5.2 Comparison

Supervised Performance. Table 1 summarizes the EA performance

in supervised settings onDICEWSandWY50K. First,DualMatch achieves

the best performance in terms of all metrics on both datasets. Dual-

Match improves H@1 by 3.9% − 10.7% compared with two state-of-

the-art time-aware baselines, i.e., TEA-GNN [53] and TREA [54]. This

validates the superiority of the way we incorporate temporal infor-

mation. Specifically, TEA-GNN [53] and TREA [54] simply model the

temporal information as learnable weight matrices, whileDualMatch

captures the temporal information in TKGs, which enables EA to use

a separated Temporal-Encoder. Second, all time-aware methods per-

form better than the time-unaware methods in terms of H@1. It con-

firms the superiority of incorporating temporal information in EA.

Third, DualMatch improves H@1 by 8.4% − 28.5% compared to the

time-unaware methods, which demonstrates the accuracy of Dual-

Match. Finally, among all the time-unaware baselines, Dual-AMN [31]

achieves the best alignment performance. The reason is that the de-

sign of its GNNmodel best captures the relational information hidden

in the graph structure of TKGs. This implies the proposed Relational-

Encoder, which is extended from it, can learn the relational informa-

tion accurately.

Unsupervised Performance. By employing a bi-directional strat-

egy, Temporal-Encoder generates 8168, 35403, and 9778 pseudo seed

pairs for DICEWS, WY50K and WY20K, respectively. Next, we train

Relational-Encoder based on the pseudo seeds and report the perfor-

mance of the final alignment matrix in unsupervised settings in Ta-

ble 1. It can be observed that DualMatch outperforms TREA, which

is the best baseline, by 2.4% − 3.2% in terms of H@1. Moreover, Dual-

Match improves H@1 by 3.6% − 12.4% compared with TREA [54],

which achieves the best performance among all baselines in fewer

seed settings. Overall, DualMatch is able to achieve better EA in both

supervised and unsupervised settings than SOTAs.

5.3 Ablation Study

We remove each component of DualMatch, and report H@1, H@10,

and MRR in Table 2. First, after removing the Temporal-Encoder com-

ponent (DualMatch - TE), the accuracy drops. This suggests that the

Temporal-Encoder indeed captures more temporal information. Sec-

ond, after removing the Relational-Encoder component (DualMatch -

RE), H@1 of DualMatch decreases. This confirms the effectiveness of

Relational-Encoder in encoding the relational information. Note that
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Table 2: The result of ablation study

Method
DICEWS-200 WY50K-1K

H@1 H@10 MRR H@1 H@10 MRR

DualMatch 95.3 97.4 0.961 94.7 98.4 0.961

DualMatch - TE 90.3 95.2 0.922 88.4 96.2 0.913

DualMatch - RE 92.8 97.0 0.944 67.8 79.7 0.720

DualMatch - TAL 91.9 95.8 0.934 91.9 96.6 0.936

DualMatch - TA 94.1 96.5 0.951 94.2 98.1 0.957

DualMatch - U 95.3 97.4 0.962 93.9 98.2 0.955

DualMatch - GM-D 91.3 94.8 0.927 80.4 92.2 0.845

Table 3: The result of sensitive analysis

Method
Highly Time-Sensitive Lowly Time-Sensitive

H@1 H@10 MRR H@1 H@10 MRR

DualMatch 99.1 100.0 0.994 35.9 49.7 0.407

DualMatch (unsup) 99.8 100.0 0.999 43.1 52.4 0.467

TREA 87.5 96.1 0.909 31.9 47.0 0.370

TEA-GNN 85.3 95.0 0.888 31.9 44.9 0.364

removing Temporal-Encoder has a similar impact on accuracy with

removing Relational-Encoder on DICEWS; while on WY50K, remov-

ing Relational-Encoder incurs a significant drop in accuracy. This is

because the importance of temporal and relational information varies

from different datasets. Specifically, the relational information ismore

important for achieving better performance onWY50K. Third, by sim-

ply setting U = 1 (DualMatch - U), the accuracy of all methods on

DICEWS remains almost the same but drops on WY50K. This also

shows that, in DICEWS, temporal information is relatively as impor-

tant as relational information, but inWY50K, relational information is

much more important than temporal information. More details about

it will be covered in Section 5.5. Fourth, by removing the graph-convolutional-

like aggregation in Temporal-Encoder (DualMatch - TA), the accu-

racy drops. This implies that the aggregation process enables the prop-

agation of temporal information to improve total performance. Next,

by replacing the triple-aspect-learning with the original dual-aspect-

learning (DualMatch - TAL), the accuracy drops. This suggests that

incorporating temporal information into the learning process is the

key to improving the effectiveness of EA. Finally, by replacing GM-

Decoder with the Naive Strategy described in Section 5.5 (DualMatch

- GM-D), the accuracy of DualMatch drops significantly. This vali-

dates the effectiveness of GM-Decoder.

5.4 Sensitivity Study

In real-world applications, certain entities are not affected by tempo-

ral information. Thus, we perform a study of the alignment result’s

sensitivity to the temporal information, using the temporal-hybrid

datasetWY20K that contains certain non-temporal facts. Following [53,

54], we divide entity pairs into highly time-sensitive entity pairs and

lowly time-sensitive entity pairs according to the ratio of the number

of entities’ connected temporal facts over the amount of all facts con-

nected. 400 pairs are used as seeds for training the supervised mod-

els, 6,898 are highly time-sensitive pairs, and the rest is lowly time-

sensitive pairs.

We compare the EA performance of DualMatch with the time-

aware baselines, and the result is reported in Table 3. We also re-

port the result of DualMatch by performing unsupervised EA on

the dataset, where the 400 seeds are discarded. First, we observe that

DualMatch outperforms previous methods significantly in terms of

aligning both highly sensitive pairs and lowly sensitive pairs. This

M3-tree
 Normal setting    Less seed setting    Unsupervised setting   
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(a) DICEWS
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Figure 4: The result of GM-Decoder analysis

shows the overall effectiveness of DualMatch on real-world applica-

tions where the temporal information is insufficient. Moreover, H@1

of DualMatch is almost 100% for the highly time-sensitive pairs. This

confirms that DualMatch can capture the temporal information max-

imally with the separated Temporal-Encoder. Second, on the lowly

sensitive pairs, H@1 of DualMatch for two settings is higher than

baselines, which validates that our overall design is more effective

even for the entities with less temporal information. Third, the unsu-

pervised variant of DualMatch dramatically outperforms the super-

vised one on the lowly sensitive pairs. This is because we utilize the

temporal-based pseudo seeds that could transfer temporal informa-

tion into relational information. Finally, although TREA [54] outper-

forms TEA-GNN [53] on both DICEWS and WY50K dataset, the per-

formance of TREA is almost the same as TEA-GNN, especially on the

lowly sensitive pairs. The reason is that the effect of temporal informa-

tion is limited by the poor time embedding design on temporal-hybrid

datasets [53, 54]. In contrast, DualMatch employs the temporal and

relational information in a better way and hence outperforms all the

baselines.

5.5 GM-Decoder Evaluation

GM-Decoder formulates an objective J�B�C
to optimize the EA per-

formance by transforming the EA problem into the graph matching

problem. Ideally, the accuracy should be inversely proportional to

J�B�C
, meaning that the lower J�B�C

, the better the EA performance.

This aligns with the objective of minimizing the distance. To check

whether it is the real situation, we proceed to evaluate the effective-

ness of the GM-Decoder on finding optimal U , by plotting the relation

between the J�B�C
and the alignment performance. We vary U from

0 to 2 (cf. Section 5.1) in all three settings and record H@1 and J�B�C

of each step, as shown in Figure 4. First, we observe that H@1 is nega-

tively correlated with J�B�C
for three settings, which validates the ef-

fectiveness of GM-Decoder in terms of finding the optimal U . We also

prove this in Table 4, where we report the worst and best H@1 when

varying U . Table 4 shows that GM-Decoder finds the bestU in all cases.

Second, the performance becomes better when U drops in the Unsu-

pervised setting. This is because the pseudo-seed used in Relational-

Encoder is generated with Temporal-Encoder, indicating that the tem-

poral information is already learned by the Relational-Encoder. Third,

the Normal setting generally outperforms the Less seed setting. This

confirms that with more seed alignment, the Relational-Encoder can
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Table 4: The worst and best H@1 when varying U

Settings
DICEWS WY50K

Worst Best DualMatch Worst Best DualMatch

Normal 93.7 95.3 95.3 95.9 98.1 98.1

Less seed 90.3 95.3 95.3 88.4 94.7 94.7

Unsupervised 94.5 94.6 94.6 91.0 96.4 96.4

 Temporal-Encoder     Relational-Encoder     GM-Decoder
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Figure 5: Scalability analysis vs. settings

capture more relational information. Finally, we observe that the opti-

mal U for DICEWS is around 1 while it is around 0.5 for WY50K. This

implies that the importance of temporal and relational information

in DICEWS are almost the same, but that in WY50K are biased. This

may be caused by the algorithm generating DICEWS [53], which du-

plicates the ICEWS05-15 dataset into two TKGs with almost identical

distributions. Based on the comparison results, WY50K is fitter for

real-world applications, where the amount of temporal and relational

information is usually biased.

5.6 Scalability Study

To verify the scalability of DualMatch, we plot the running time of

each component on DICEWS and WY50K in Figure 5, where Normal,

Less, and Unsup denote the Normal setting, Less seed setting, and Un-

supervised setting, respectively. Specifically, the components are (1)

Relational-Encoder that trains a GNNmodel to encode relational infor-

mation; (2) Temporal-Encoder that takes the TKG inputs and encode

the temporal information; and (3) GM-Decoder that fuses the two en-

coded information to produce the alignment matrix. We observe that

the running time taken by each component does not exceed 103 sec-

onds on both DICEWS and WY50K, which confirms the scalability of

DualMatch on a large dataset. We also observe that the training time

in the Unsupervised setting is significantly higher than that of other

settings. This is because more training iterations are required for the

unsupervised setting, where the amount of pseudo seeds is 7.0 − 8.2
times larger than those in the normal setting. To further study the

scalability of DualMatch, we also provide a scalability study based

on sampling sub-graphs in Appendix E.

6 CONCLUSIONS

In this study, we reinterpret the EA problem for TKGs as a weighted-

graph-matching problem and investigate the potential for creating

unsupervised methods for EA amongst TKGs by utilizing solitary re-

lation triples with timestamps. We introduce DualMatch, which un-

supervisedly aligns items by fusing relational and temporal data. The

proposed DualMatch consists of two steps: (i) encode relational and

temporal information independently into embeddings; and (ii) inte-

grate both types of information and transform them into alignment

using a novel graph-matching-based decoder. EA on TKGs can be

performed using our technique with or without supervision. Further-

more, it does not require additional auxiliary information like entity

names or pre-trained word embeddings necessary for earlier unsuper-

vised EA techniques. Extensive experimental results on several real-

world TKG datasets demonstrate that, even in the absence of training

data, our technique significantly outperforms the state-of-the-art su-

pervised methods. In the future, it is of interest to explore dangling

settings [39] of EA on temporal datasets.
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Table 5: The ID allocation of Example TKG �★

B and�★

C

ID Name Type

0 Federal Judge (Argentina)

Entities

1 Nordic Council

2 France

3 Javier Solana

4 Japan

5 Head of Government (Ukraine)

0 Reject judicial cooperation

Relations

1 Make an appeal or request

2 Sign formal agreement

3 Host a visit

4 Make a visit

0 2010-04-24

Timestamps

1 2007-09-29

2 2005-04-16

3 2007-05-10

4 2005-07-20

A EXAMPLE OF CALCULATION

We provide a step-by-step example to clarify the calculation process

depicted in Figure 2. We denote the two TKGs in Figure 2 as �★

B and

�★

C . First, we assign unique IDs to entities, relations, and timestamps,

as shown in Table 5. Next, we count the outgoing edges by Equation 2

as well as the incoming edges and concatenate matrices. For simplic-

ity, we omit the calculation of incoming edges and only demonstrate

the process for outgoing edges as follows.

G
C
=



.40 .15 .15 .15 .15

.15 .15 .40 .15 .15

.15 .40 .15 .15 .15

.20 .20 .20 .20 .20

.15 .15 .15 .15 .40

.15 .15 .15 .40 .15


, (8)

where G
C is the constructed G

C using �★

B . We proceed to build the

relational adjacency matrix by Equation 3:

G =



0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


(9)

The adjacency matrix G only contains 0s and 1s because each re-

lation in Figure 2 only occurs once. As a result, they do not affect the

numerical value of the adjacency matrix. By setting ! = 1, we obtain

the temporal feature N
C which is the concatenation of GC and GG

C

(i.e., N C
=

[
G
C | |GGC

]
):

N
C
=



.40 .15 .15 .15 .15 .15 .40 .15 .15 .15

.15 .15 .40 .15 .15 .15 .40 .15 .15 .15

.15 .40 .15 .15 .15 .20 .20 .20 .20 .20

.20 .20 .20 .20 .20 .00 .00 .00 .00 .00

.15 .15 .15 .15 .40 .15 .15 .15 .40 .15

.15 .15 .15 .40 .15 .15 .15 .15 .15 .40


(10)

Then, we set GB = GC = G and G
C
B = G

C
C = G

C because�★

B and �★

C in

Figure 2 are identical. This results in normalized WL weights :A = 1

and :C = 1. Since Relational-Encoder involves training of GNNs, we

randomly initialize an embedding of |� | × 10 for simplicity:

N
A
B = N

A
C =



.30 .44 .33 .40 .61 .35 .70 .85 .32 .56

.81 .61 .97 .84 .53 .00 .76 .44 .19 .45

.44 .51 .70 .72 .59 .21 .38 .88 .90 .67

.13 .21 .77 .25 .44 .71 .66 .37 .35 .61

.33 .33 .70 .29 .79 .51 .78 .60 .24 .59

.65 .94 .77 1.00 .50 .56 .50 .38 .54 .34


(11)

By setting theweight of Relational-Encoder to 0, the alignment matrix

V) is solely determined by the temporal feature:

V) = N
C (N C )) =



.50 .44 .39 .20 .37 .37

.44 .50 .39 .20 .37 .37

.39 .39 .45 .20 .39 .39

.20 .20 .20 .20 .20 .20

.37 .37 .39 .20 .50 .37

.37 .37 .39 .20 .37 .50


(12)

With V) , we obtain J�★

B �
★

C
= 4.61 by Equation 6. Note that, we don’t

consider Sinkhorn iteration and other processes except dot product

for simplicity.

Similarly, by setting the weights of both Temporal-Encoder and

Relational-Encoder to 1, V , the alignment matrix obtained by balanc-

ing temporal and relational features, is calculated as follows:

V = N
C (N C )) +N A

B (N A
C )) =



2.70 2.72 3.00 2.24 2.72 2.81

2.72 3.97 3.41 2.42 2.98 3.75

3.00 3.41 4.03 2.59 3.02 3.67

2.24 2.42 2.59 2.49 2.61 2.60

2.72 2.98 3.02 2.61 3.04 2.97

2.81 3.75 3.67 2.60 2.97 4.26


(13)

This leads to J�★

B �
★

C
= 667.57, which is significantly larger than

4.61. This suggests that a lowerweight should be assigned to Relational-

Encoder. In this case, as the relational feature was randomly gener-

ated, it would be more appropriate to give greater consideration to

the temporal feature. Using only Temporal-Encoder would result in a

H@1 of 100%, whereas using both Temporal-Encoder and Relational-

Encoder with weights of 1 would decrease H@1 to 66.7%. This is con-

sistent with the observed distance value.

B DATASET STATISTICS

The comprehensive information of all datasets , including DICEWS,

WY50K, and WY20K is shown in Table 6.

• DICEWS is generated from ICEWS05-15 [7], which is a subset of

facts from the larger ICEWS [22] covering the time period from

2005 to 2015. ICEWS05-15 [7] is widely utilized as a benchmark for

TKG comparisons in the community [17]. The data generation is

followed the method in [60]. The dataset contains 8,566 entity pairs

and all of its facts include temporal information. The overlap ratio

of shared quadruples between two TKGs &B and &C in DICEWS is

approximately 50%, i.e. 2 ∗ |&B∩&C |
|&B |+ |&C | ≈ 0.5.

• WY50K is extracted from Wikidata [47] and YAGO [38]. WY50K

contains 49,172 entity pairs and all of its facts have temporal infor-

mation.

• WY20K is also extracted fromWikidata [47] and YAGO [38]. How-

ever, different fromWY50K,WY20K is a hybrid dataset with 19,462

entity pairs, where 17.5% of YAGO’s facts and 36.6% of Wikidata’s

facts do not have temporal information.
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Table 6: Statistics of DICEWS, WY50K, and WY20K

Dataset #Entities #Rels #Time #Quadruples

DICEWS 9,517-9,537 247-246 4,017 307,552-307,553

WY50K 49,629-49,222 11-30 245 221,050-317,814

WY20K 19,493-19,929 32-130 405 83,583-142,568

Table 7: The result of scalability analysis

DICEWS WY50K

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

R 1.1 1.5 3.1 4.6 7.0 6.0 20.9 48.5 92.1 171.1

T 0.7 1.9 3.3 5.1 7.9 2.4 10.3 26.0 52.5 90.2

D 1.2 3.1 5.1 7.9 13.8 25.2 80.7 158.6 250.6 385.2

Table 8: The result of open-world entity alignment

Method
Unobserved Entity Pairs Observed Entity Pairs

H@1 H@10 MRR H@1 H@10 MRR

DualMatch 77.4 89.5 0.829 94.2 96.6 0.952

TREA 34.2 74.8 0.479 54.9 82.5 0.643

TEA-GNN 15.5 59.0 0.324 39.2 74.8 0.513

RREA 7.5 48.3 0.253 36.1 58.0 0.407

C SCALABILITY STUDY ON SAMPLED
DATASETS

To further study the scalability of DualMatch, we follow [9] to sample

sub-graphs from DICEWS and WY50K. We vary the number of enti-

ties from 20% to 100% and record the running time (seconds) in Table 7,

where R, T, and D represent Relational-Encoder, Temporal-Encoder

and GM-Decoder, respectively. The results indicate that DualMatch

is highly scalable. In particular, the running time increases at a qua-

dratic rate as the number of entities increases, which is expected due

to the quadratic time complexity of Sinkhorn algorithm. Despite this,

even when 100% of the entities are used, the running time remains rel-

atively short, taking 7 seconds for the Relational-Encoder, 7.9 seconds

for the Temporal-Encoder, and 13.8 seconds for the GM-Decoder on

DICEWS and taking 171.1 seconds for the Relational-Encoder, 90.2

seconds for the Temporal-Encoder, and 385.2 seconds for the GM-

Decoder onWY50K. Note that the running time for the different com-

ponents of DualMatch vary, with the GM-Decoder having the high-

est running time. This highlights the potential for optimization in the

decoding process to further enhance the scalability of the entireDual-

Match.

Overall, the scalability study demonstrates thatDualMatch is capa-

ble of processing large datasets, as it exhibits a relatively low running

time even when handling large-scale data. This makes DualMatch

well-suited for real-world applications that require efficient and ef-

fective data processing.

D OPEN-WORLD ENTITY ALIGNMENT

Most KGs in the real-world are dynamic, with new entities and times-

tamps emerging over time [54].This makes open-world entity align-

ment a critical task. However, most existing EAmethods adopt a closed-

world assumption and are unable to align newly emerging entities[6,

8, 29, 31, 34]. TREA [54] learns the embeddings of timestamps so that

they may satisfy a specific mapping function from actual timestamps,

thereby enabling EA on new entities. However, it can only roughly

estimate future timestamp embeddings, which may result in errors

for subsequent predictions. On the other hand, DualMatch is primar-

ily unsupervised and can be readily adapted to open-world entity

alignment by directly applying the unsupervised component online.

As new entities and timestamps become available, Temporal-Encoder

and GM-Decoder can then be re-executed to deliver themost accurate

results.

To evaluate the open-world effectiveness of EA, we re-arrange the

quadruples ofDICEWSaccording to the open-world setting in TREA [54].

The two training sets,� ′B and�
′
C , contain quadruples from�B and�C

in DICEWS covering data prior to Jan. 1, 2014. We train Relational-

Encoder with 1,000 randomly sampled pairs from � ′B and � ′C follow-
ing [54]. The embeddings of unseen entities and relations are initial-

ized randomly.

We compare DualMatch with three state-of-the-arts: TREA [54],

TEA-GNN [53], and RREA [34]. The results are shown in Table 8.

DualMatch outperforms the baselines significantly in open-world EA

with a 43.2% increase in H@1 for unobserved entity pairs and a 34.9%

increase inH@1 for observed entity pairs. This is because bothTemporal-

Encoder and GM-Decoder of DualMatch are unsupervised and can be

readily deployed online without training.

E CASE STUDY

We perform a case study of TKG alignment using DualMatch, Dual-

Match-wt, and DualMatch-wr on DICEWS (denoted as �♥B and �♥C ),
whereDualMatch-wt denotesDualMatchwithout Temporal encoder

and DualMatch-wt denotes DualMatch without Relational encoder.

Given the ground truth {(Abderrahim,Abderrahim), (Looter, Looter)},
the results delivered byDualMatch are exactly the same as the ground

truths. The results generated by DualMatch-wt and DualMatch-wr

are detailed as follows.

For entity “Abderrahim” in �♥B , DualMatch correctly aligns it to

“Abderrahim” in�♥C , whileDualMatch-wr produces an incorrect align-

ment result “Chief”. The related quadruple of “Abderrahim” in �♥B is

(Abderrahim, Sign formal agreement, Foreign, 2007-09-28) and the re-

lated quadruple of “Chief” in �♥C is (Chief, Express intent to meet or

negotiate, Angola, 2007-09-28). The above case demonstrates that the

distinction between the two entities cannot be identified based solely

on the timestamp 2007-09-28.

For entity “Looter” in�♥B , DualMatch correctly align it to “Looter”

in �♥C , while DualMatch-wt produces an incorrect alignment result

“Rioter”. The related quadruple of “Looter” in �♥B is (Looter, Use un-

conventional violence, France, 2005-11-09) and the related quadruple

of “Rioter” �♥C is (Rioter, Use unconventional violence, Police, 2005-

03-14). Although�♥B and�♥C have different triples, Relational-Encoder

fails to distinguish them. This is because we only use 10% of the entity

pairs for training the relational model, which can sometimes result in

inaccuracies.

In conclusion, DualMatch-wt and DualMatch-wr differ from the

ground truths significantly. This implies the necessity of developing

and incorporating temporal and relational encoders.
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