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ABSTRACT
Tabular data is one of the most common data storage formats be-
hind many real-world web applications such as retail, banking, and
e-commerce. The success of these web applications largely depends
on the ability of the employed machine learning model to accu-
rately distinguish influential features from all the predetermined
features in tabular data. Intuitively, in practical business scenarios,
different instances should correspond to different sets of influential
features, and the set of influential features of the same instance
may vary in different scenarios. However, most existing methods
focus on global feature selection assuming that all instances have
the same set of influential features, and few methods considering
instance-wise feature selection ignore the variability of influential
features in different scenarios. In this paper, we first introduce a
new perspective based on the influence function for instance-wise
feature selection, and give some corresponding theoretical insights,
the core of which is to use the influence function as an indicator
to measure the importance of an instance-wise feature. We then
propose a new solution for discovering instance-wise influential
features in tabular data (DIWIFT), where a self-attention network
is used as a feature selection model and the value of the correspond-
ing influence function is used as an optimization objective to guide
the model. Benefiting from the advantage of the influence function,
i.e., its computation does not depend on a specific architecture and
can also take into account the data distribution in different scenar-
ios, our DIWIFT has better flexibility and robustness. Finally, we
conduct extensive experiments on both synthetic and real-world
datasets to validate the effectiveness of our DIWIFT.
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1 INTRODUCTION
Tabular data is one of the most common data storage formats pre-
pared for modeling in many practical web applications, such as
e-commerce [34], fraud detection [5] and anomaly detection [21].
Typically, in tabular data, each row represents an instance and each
column represents a feature. The value in a table cell is the specific
value for that feature in a data instance [6]. Note that in addition to
the column of features, there may be a column of labels indicating
the category to which the corresponding instance belongs, e.g., in
a supervised task. Unlike homogeneous data such as image, text
or speech data, which often have strong spatial, semantic or tem-
poral correlations, tabular data tends to be heterogeneous, and the
correlation between different columns (or features) may be weak.
As an example, in Table 1, we present a slice of the UCI-bank1
dataset used in the experiments, where “age (n)” and “education
(c)” are two different columns and the correlation between them
is ambiguous. Obviously, this property makes it much harder to
customize a model to get good results from tabular data than from
homogeneous data.

To perform a more efficient learning process in tabular data and
be successful in some corresponding business applications, an im-
portant approach is select features in a targeted manner following
the optimization objective of the custom model [1], i.e., to identify
the most influential features from all the predetermined features. In-
tuitively, the necessity of feature selection for tabular data is mainly
reflected in the following aspects: 1) Efficiency. Tabular data usually
1https://archive.ics.uci.edu/ml/datasets/bank+marketing

ar
X

iv
:2

20
7.

02
77

3v
2 

 [
cs

.L
G

] 
 1

1 
Fe

b 
20

23

https://doi.org/10.1145/3543507.3583382
https://doi.org/10.1145/3543507.3583382


WWW ’23, May 1–5, 2023, Austin, TX, USA Liu, et al.

Table 1: An example of tabular data in the UCI-bank dataset.
The parenthesized letter in each column name indicates the
type of feature, where ‘n’ is a numerical dense feature and
‘c’ is a categorical sparse feature.

Age (n) Job (c) Marital (c) Education (c) Balance (n) Housing (c)

30 unemployed married primary 1787 no
33 services married secondary 4789 yes
35 management single tertiary 1350 yes
59 blue-collar married secondary 0 yes
35 management single tertiary 747 no

consists of many dense numerical features and high-dimensional
sparse features, which consume a lot of resources in the training
and inference stages of the model. Selecting only the most influen-
tial features and feeding them into the model can greatly reduce the
costs. 2) Accuracy. The correlation between features in tabular data
is ambiguous. Moreover, there are often many irrelevant or redun-
dant features, which are difficult to be distinguished in advance in
the feature pre-determining stage. Removing features that are not
influential (i.e., irrelevant or redundant) will benefit the learning of
a model. In particular, since each instance usually has a different set
of influential features that are beneficial to a particular task, it may
be more beneficial to keep different influential features in different
instances. 3) Interpretability. A good interpretability of the adopted
model is usually expected in practical business applications. For
example, in a credit card approval scenario with the use of an auxil-
iary model, we would expect the model to simultaneously provide
some key factors that influence the decision. Identifying the most
influential features helps to indicate the importance of each feature
and enhances the interpretability of the results.

However, although many research works on learning from tab-
ular data have been proposed, few of them focus on solving the
problem of feature selection in tabular data [2]. In particular, these
research works can be mainly divided into two categories according
to their problems and goals, including how to effectively model tab-
ular data [1, 11, 17, 27], especially leveraging neural networks, and
how to capture feature interactions for tabular data [3, 15, 16, 31].
In addition, some of the above works may have an implicit feature
selection step in the modeling process, but most of them may suffer
from the redundant features as they are not designed for the goal
of feature selection. On the other hand, in order to reduce the huge
workload of manually identifying the most influential features from
tabular data, existing works aiming at solving the problem of fea-
ture selection mostly focus on global feature selection [9], i.e., the
granularity of selection is an entire column in tabular data and all
instances have the same set of influential features. The limitation
of global feature selection is that in practice, the influential features
w.r.t. different instances or a same instance in different environ-
ments may be different. For this reason, we are motivated to design
a robust instance-wise feature selection method for tabular data.

To the best of our knowledge, there is still a lack of research on
instance-wise feature selection for tabular data comparedwith those
for homogeneous data [4, 20, 32]. In this paper, we first introduce a
new perspective based on the influence function for instance-wise
feature selection. Moreover, we give some theoretical insights, i.e.,

how to use the influence function as an indicator to measure the
importance of an instance-wise feature, so as to guide instance-wise
feature selection. We then propose a new solution for discovering
instance-wise influential features in tabular data (DIWIFT). Specifi-
cally, our DIWIFT mainly include a feature selection module with a
self-attention network and a calculator for computing the value of
the corresponding influence function, which will be used to guide
the selection of some instance-wise features. Our DIWIFT is of
better flexibility and robustness due to the merits of the influence
function, i.e., its computation does not depend on a specific archi-
tecture and it enables the model to trade off between training and
validation distributions. Finally, we conduct extensive experiments
on three synthetic and four real-world datasets, where the results
clearly the effectiveness and robustness of our DIWIFT.

2 RELATEDWORK
In this section, we briefly review some related works on three
research topics, including tabular data modeling, feature selection
and influence function.
Tabular DataModeling. Existing works on tabular data modeling
can be mainly divided into two categories. The first category fo-
cuses on how to model tabular data more effectively [1, 11, 17, 27],
especially using neural networks. For example, introducing more
complex network structures to learn fusion of different features
and increasing interpretability [1, 17], or modeling tabular data
through some new perspectives such as multi-view representa-
tion learning [27]. The second category aims to design some more
efficient ways to capture feature interactions in tabular data model-
ing [3, 15, 16, 31]. Unlike them, our DIWIFT focuses on addressing
instance-wise feature selection in tabular data, which is rarely stud-
ied in existingworks. Note that some relatedworksmay also include
feature selection as an incidental output, such as TabNet [1], but
since feature selection is not their main goal, they may still suffer
from feature redundancy. In addition, our DIWIFT can be used as a
pre-feature selection module to integrate with these tabular data
modeling methods to enhance their effectiveness and efficiency.
Feature Selection. Feature selection often refers to discovering a
subset of features based on their usefulness. Most existing methods
focus on global feature selection, where the importance of each
feature is assigned based on the entire training data [9]. To achieve
instance-wise feature selection, many previous studies on homoge-
neous data (instead of on tabular data) have been proposed, where
the number of influential features per instance is assumed to be
the same and different, respectively [4, 20, 32]. Note that feature
selection may still be beneficial in deep models in addition to tradi-
tional machine learning models [18, 19]. However, feature selection
is generally not a major optimization goal in existing works on tab-
ular data modeling, and there are very few works on instance-wise
feature selection in tabular data. Our DIWIFT aims to bridge the
gap in this research direction. In addition, our DIWIFT is also easy
to integrate with existing feature selection methods by using the
proposed influence function-based loss as their auxiliary loss to
improve the performance of feature selection.
Influence Function. Influence function (IF) is an important con-
cept in the scope of robust statistics and is defined by the Gateaux
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derivative [10]. It can be used to measure instance-wise influ-
ence [13, 23, 30, 33] and feature-wise influence [26] on a validation
loss. These obtained influences can be used to construct a sampling
strategy for the important instances [29, 30], or to reweight the
biased training instances in an optimization objective [23, 33], etc.
We find that most of the previous works on IF focus on the instance
level, and rarely involve the feature level as that in the studied prob-
lem of this paper. Furthermore, there is no general and systematic
analysis on how to guide the use of IF in feature selection. Our
DIWIFT is a novel IF-based instance-wise feature selection method
for tabular data.

3 PRELIMINARIES
In this paper, we focus on feature selection in supervised learning.
The training instances {𝑧𝑖 }𝑛𝑖=1 = {(𝒙𝑖 , 𝑦𝑖 )}𝑛𝑖=1 ∈ X × Y are drawn
from a training distribution 𝑃 (𝒙, 𝑦), where 𝑛 is the number of the
training instances, X = X1 × · · · × X𝑑 is the 𝑑-dimensional feature
space, andY is the discrete label space, which is {0, 1} in binary clas-
sification and {1, . . . , 𝑐} in multi-class classification. A prediction
model trained on a given training sample {𝑧𝑖 }𝑛𝑖=1 can be obtained by
minimizing the empirical risk, i.e., 𝜃 ≜ argmin𝜃 ∈Θ 1

𝑛

∑𝑛
𝑖=1 𝑙 (𝑧𝑖 , 𝜃 ).

Note that to simplify the notation, we omit the regularization term
in the loss. We put the main notations in Table 2 for ease of refer-
ence.

Table 2: The main notations and their explanations.

Symbol Meaning
𝑧𝑖 , 𝑧 𝑗 𝑖-th training and 𝑗-th validation instance.
𝑖 , 𝑗 , 𝑘 Index of training instance, validation instance, and

feature.
𝑛,𝑚, 𝑑 Size of training set, evaluation set, and feature dimen-

sion.
𝛿𝑖 , 𝛿𝑖𝑘 Perturbation on features of 𝑧𝑖 , 𝛿𝑖 ∈ R𝑑 , 𝛿𝑖𝑘 ∈ R .
𝑆 , 𝑆𝑖𝑘 Feature selection matrix and its element for training

set, 𝑆 ∈ R𝑛×𝑑 , 𝑆𝑖𝑘 ∈ R.
𝜃 , 𝜃 Parameter of base model.
𝜔̂ , 𝜔 Parameter of self-attention network.

𝜙 (𝑧𝑖 , 𝑧 𝑗 ) Influence function of 𝑧𝑖 on 𝑧 𝑗 , 𝜙 (𝑧𝑖 , 𝑧 𝑗 ) ∈ R1×𝑑 .
𝜙𝑖 , 𝜙𝑖𝑘 Influence function of 𝑧𝑖 on the whole validation set,

𝜙𝑖 ∈ R1×𝑑 , 𝜙𝑖𝑘 ∈ R.
𝑙 (·) Loss of base model, 𝑙 (·) ∈ R.

𝑃 (𝒙, 𝑦) Training distribution.
𝑄 (𝒙, 𝑦) Validation distribution.

3.1 Feature Selection Matrix in Training Data
Instead of global feature selection which selects a same subset of
features for all the instances, we consider a more complex case
where different instances depend on different subsets of features,
and then aim to improve the model performance through instance-
wise feature selection. We refer to 𝑆 ∈ {0, 1}𝑛×𝑑 as the feature
selection matrix for the training set. Note that the number 𝑛 of
instances in a tabular data is often much larger than the number
𝑑 of columns (or features). Each row and column in the feature

selection matrix 𝑆 corresponds to each instance and each feature
in the training set, respectively. Therefore, in the feature selection
matrix 𝑆 , it can be represented as 1 if a feature of an instance is
preserved, and 0 otherwise. To sum up, the meaning of 𝑆 is,

𝑆𝑖𝑘 =

{
1 if feature 𝑘 is selected in 𝑧𝑖 ,
0 if feature 𝑘 is not selected or is zero in 𝑧𝑖 .

(1)

3.2 Definition of Influence Function
How to measure the influence of a feature on model performance
is the key question in feature selection, for which we utilize the
influence function (IF). We first briefly introduce the definition
of the feature-level influence function. If a training instance 𝑧𝑖 is
perturbed to 𝑧′

𝑖
= (𝒙 𝒊 + 𝛿𝑖 , 𝑦𝑖 ), the influence of the perturbation on

the loss at a validation instance 𝑧 𝑗 has a closed-form expression [13]:

𝜙 (𝑧𝑖 , 𝑧 𝑗 ) ≜
𝑑𝑙 (𝑧 𝑗 , 𝜃𝛿𝑖 )

𝑑𝛿𝑖
|𝛿𝑖=0

= −∇𝜃 𝑙 (𝑧 𝑗 , 𝜃 )⊤𝐻−1
𝜃

∇𝒙∇𝜃 𝑙 (𝑧𝑖 , 𝜃 ),
(2)

where 𝜃𝛿𝑖 is the empirical risk minimizer after 𝑧𝑖 is perturbed to
𝑧′
𝑖
, 𝜙 (𝑧𝑖 , 𝑧 𝑗 ) ∈ R1×𝑑 is the feature-level IF of 𝑧𝑖 over 𝑧 𝑗 , 𝑧 𝑗 is a

validation instance draw from a validation distribution 𝑄 (𝒙, 𝑦),
and 𝐻

𝜃
≜ 1
𝑛

∑𝑛
𝑖=1 ∇2

𝜃
𝑙 (𝑧𝑖 , 𝜃 ) is a positive and definite Hessian ma-

trix. Note that previous studies targeting feature-level IF are few.
Different from the feature-level IF in Eq.(2), instance-level IF has
been exploited in many previous studies on instance sampling and
instance reweighting [23, 30, 33].

4 THE PROPOSED METHOD
In this section, we first introduce some theoretical insights on how
to use the influence function to discover some most influential
instance-wise influential features. We then propose a new method
for discovering instance-wise influential features in tabular data
and describe it in detail.

4.1 Theoretical Analysis
According to the definition of feature-level IF in Eq.(2), we can
approximate the loss change of 𝑧 𝑗 ∼ 𝑄 (𝒙, 𝑦) if 𝑧𝑖 ∼ 𝑃 (𝒙, 𝑦) is
perturbed by 𝛿𝑖 ∈ R𝑑 ,

𝑙 (𝑧 𝑗 , 𝜃𝛿𝑖 ) − 𝑙 (𝑧 𝑗 , 𝜃 ) ≈ 𝜙 (𝑧𝑖 , 𝑧 𝑗 )𝛿𝑖 . (3)

This process can be extended to the whole validation set as follows,
𝑚∑︁
𝑗=1

𝑙 (𝑧 𝑗 , 𝜃𝛿𝑖 ) −
𝑚∑︁
𝑗=1

𝑙 (𝑧 𝑗 , 𝜃 ) ≈ [
𝑚∑︁
𝑗=1

𝜙 (𝑧𝑖 , 𝑧 𝑗 )]𝛿𝑖 , (4)

where𝑚 is the size of the validation set. Obviously, the best pertur-
bation should minimize the validation loss

∑𝑚
𝑗=1 𝑙 (𝑧 𝑗 , 𝜃𝛿𝑖 ). We then

have the optimization problem about 𝛿𝑖 ,

𝛿∗𝑖 = argmin
𝛿𝑖

𝑚∑︁
𝑗=1

𝑙 (𝑧 𝑗 , 𝜃𝛿𝑖 ) = argmin
𝛿𝑖

𝜙𝑖𝛿𝑖 , (5)

where 𝜙𝑖 =
∑𝑚
𝑗=1 𝜙 (𝑧𝑖 , 𝑧 𝑗 ) ∈ R1×𝑑 indicates the influence of in-

stance 𝑧𝑖 over the whole validation set.
Let the 𝑘-th dimension of 𝜙𝑖 , 𝛿𝑖 and 𝒙𝑖 be denoted as 𝜙𝑖𝑘 , 𝛿𝑖𝑘

and 𝒙𝑖𝑘 , respectively. For the adversarial training problems where
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Pre-trained Model

Pre-training Module

Self-Attention Network

Selection Probability

Feature Selection Module

Selected Features

IF Calculator

IF-based loss for
instance-wise feature

selection

Back Propagation

Figure 1: The overall architecture of the proposed DIWIFT, where the core components are a feature selection model with a
self-attention network, and an IF calculator for calculating the value of the corresponding influence function.

the feature values are dense and continuous, such as image data,
the optimal 𝛿∗

𝑖
is in the direction of 𝜙𝑇

𝑖
[13]. However, for the

problem of feature selection in tabular data, the range of values
for 𝛿𝑖𝑘 is {0,−𝒙𝑖𝑘 }, where 𝛿𝑖𝑘 = 0 means 𝒙𝑖𝑘 remains unchanged,
and 𝛿𝑖𝑘 = −𝒙𝑖𝑘 means 𝒙𝑖𝑘 is removed. Moreover, in tabular data,
the one-hot encoded sparse feature value 𝒙𝑖𝑘 is in {0, 1}, and the
normalized dense feature value 𝒙𝑖𝑘 is in [0, 1]. Thus, 𝛿𝑖𝑘 ≤ 0 always
holds, and the solution of Eq.(5) is,

𝛿∗
𝑖𝑘

=

{
0 if 𝜙𝑖𝑘 < 0,
−𝒙𝑖𝑘 if 𝜙𝑖𝑘 ≥ 0.

(6)

The results in Eq.(6) is intuitive because𝜙𝑖𝑘 ≥ 0 means the presence
of 𝒙𝑖𝑘 will increase the validation loss, for which we should indeed
remove this feature. Recall the feature selection matrix 𝑆 defined in
Section 3, we can see that, if a feature 𝑘 in 𝑧𝑖 is selected, i.e., 𝑆𝑖𝑘 = 1,
then both conditions should be satisfied, i.e., 𝒙𝑖𝑘 > 0 and 𝛿𝑖𝑘 = 0.
We then get the theoretically optimal 𝑆∗

𝑖𝑘
,

𝑆∗
𝑖𝑘

= 1(𝜙𝑖𝑘𝒙𝑖𝑘 < 0), (7)

where 1(·) is a 0-1 indicator function.
This means that by minimizing the validation loss of the model

trained after instance-wise feature selection, we can obtain the
optimal instance-wise feature selection strategy in Eq.(7) with the
help of the influence function. Note that the influence function
allows the model to trade off between the training and validation
distributions [33], and the resulting instance-wise feature selection
method is expected to perform robustly in the scenarios where a
distribution shift exist. Next, we describe the proposed DIWIFT
method in detail, which is a new instance-wise feature selection
method based on the influence function, and verify its robustness
in the experiments. To the best of our knowledge, most existing
works on feature selection have not considered the variability of
influential features across different scenarios.

4.2 Discovering Instance-wise Influential
Features in Tabular Data

In this section, based on the theoretical insights in Section 4.1, we
propose a novel method for discovering instance-wise influential
features in tabular data, or DIWIFT for short.

4.2.1 Architecture. The overall framework of our DIWIFT is il-
lustrated in Figure 1. As shown in Figure 1, the core steps of our
DIWIFT include: 1) a pre-training module aims to train on a base
model𝑀0 based on the original tabular data, i.e., without feature
selection, in order to obtain a set of pre-trained model parameters
𝜃 . These model parameters are required in the subsequent steps
to calculate the value of the influence function as shown in Eq.(2).
Although 𝜃 is theoretically the parameter of the optimal empiri-
cal risk minimizer, we may not be able to obtain an accurate 𝜃 in
practice because the deep learning model is non-convex. To this
end, we will perform a sensitivity analysis about our DIWIFT with
some pre-trained models of varying performance in our experi-
ments; 2) a feature selection module with a self-attention network
𝑀1 receives the original tabular data and outputs the correspond-
ing instance-wise feature selection probabilities; 3) after feature
selection is performed on each instance according to the selection
probability, these new instances and the pre-trained model 𝜃 are
fed into the IF calculator to calculate the value of the correspond-
ing influence function; and 4) the calculated value of the influence
function is used to calculate the IF-based loss designed in Eq.(14)
for instance-wise feature selection, and then the feature selection
model𝑀1 is updated by means of back propagation.

Note that since the self-attention mechanism has shown its ef-
fectiveness and flexibility in previous related works [22, 25, 35], we
employ a self-attention network in the feature selection module as
an example, to capture the importance of instance-wise features
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driven by the influence function. However, the self-attention mech-
anism is not a necessary structure, and in fact, any neural network
layer that can generate a mask matrix of the same dimension as the
input can be used as a feature selection model. After obtaining the
feature selection model𝑀1, we need to refine the base model𝑀0
based on the original instance to obtain the final prediction model,
where the original instance will first undergo a feature selection
process through𝑀1. Similarly, in the prediction stage, each instance
will go through a process of instance-wise feature selection through
𝑀1, and then get the predicted label that is fed into the final pre-
diction model. Next, we will give a detailed introduction to the
important modules in our DIWIFT.

4.2.2 Feature selection module. As described in Section 4.2.1, we
use a self-attention network in the feature selection module to
effectivelymodel the selection probability, since a self-attention [28]
has been proven to be a useful module that can capture important
features in instances [22, 25, 35]. We first use a multi-head attention
on an instance to get its embedding representation. Specifically, we
have,

𝑄 = 𝐾 = 𝑉 = (e1; e2; . . . ; e𝑖 ; . . . ; e𝑑 ) , (8)
where e𝑖 denotes the embedding representation of the 𝑖-th feature,
𝑄 = 𝐾 = 𝑉 ∈ 𝑅𝑑×𝐾𝑑 and 𝐾𝑑 is the dimension of the output em-
bedding. Then, the computation of self-attention can be expressed
as,

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇√︁
𝐾𝑑

)𝑉 . (9)

Further, the multi-head self-attention can be calculated as follows,
𝐸 = 𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (𝑄,𝐾,𝑉 )

= 𝐶𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 ,
(10)

where ℎ denotes the number of self-attention networks, ℎ𝑒𝑎𝑑𝑖 =
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) and𝑊𝑂 ∈ 𝑅ℎ𝐾𝑑×𝐾𝑑 is a parameter matrix.
After obtaining the embedding representation 𝐸 of an instance, we
feed it into a multi-layer perceptron (MLP) with a 𝑅𝑒𝐿𝑈 activation
function to obtain the corresponding output for each instance,

𝑓 (𝑥, 𝜔) = 𝑀𝐿𝑃 (𝐸), (11)

where 𝑓 (𝒙, 𝜔) : R𝑑 → R𝑑 denotes the mapping from an input fea-
ture vector to a corresponding output, i.e., a feature selection model
based on a self-attention network, and 𝜔 denotes the parameters
of this model.

We design the probability of selecting each corresponding feature
as

𝑝 (𝒙, 𝜔) = 𝜎 (𝑓 (𝒙, 𝜔)/𝜏), (12)
where 𝑝 (𝒙, 𝜔) ∈ R𝑑 , 𝜎 (·) is the sigmoid function, 𝜏 ∈ R+ is the
alterable temperature parameter. We propose to relate the temper-
ature control coefficient to the number of training iterations, i.e.,
𝜏 = max(𝜏𝑚𝑖𝑛, 1 − (1 − 𝜏𝑚𝑖𝑛)𝑡/𝑡𝑚𝑎𝑥 ), where 𝜏𝑚𝑖𝑛 is a sufficiently
small minimum temperature parameter (e.g., 0.001 used in the ex-
periments), 𝑡 is the current number of iterations, and 𝑡𝑚𝑎𝑥 is the
maximum number of iterations. Obviously, as the number of train-
ing iterations increases, 𝜏 will gradually decrease to a small enough
value, and this will ensure that the selection probability of each
feature is close to 0 or 1 to obtain the discrete feature selection mask.

For ease of understanding, we present a structure of the feature
selection model in Figure 2.

Multi-Head Self-Attention

Multi-Layer Perceptron

Output Conversion with Temperature Parameter

Figure 2: The structure of a feature selection model with
a self-attention network, where the embedding representa-
tion of each instance is 𝐸 =

(
e′1, e

′
2, . . . , e

′
𝑑

)
.

4.2.3 IF calculator. In this subsection, we introduce the influence
function to guide the training of a feature selection model and
further improve the accuracy and robustness of instance-wise fea-
ture selection for tabular data. According to the definition of IF
in Eq.(2), we can find that the calculation of IF is usually compli-
cated. Therefore, we need to solve the problem of how to calculate
IF efficiently. Let 𝑝𝑖 and 𝑝 𝑗 be the selection probabilities of the
features in 𝑧𝑖 and 𝑧 𝑗 , respectively, where 𝑝𝑖 = [𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑑 ]
and 𝑝 𝑗 =

[
𝑝 𝑗1, 𝑝 𝑗2, . . . , 𝑝 𝑗𝑑

]
. After obtaining the pre-trained model

parameters 𝜃 and reweighting the features using 𝑝𝑖 and 𝑝 𝑗 , the
influence of 𝑧𝑖 on the entire validation set is,

𝜙𝑖 (𝑝 (𝒙, 𝜔)) = −[
𝑚∑︁
𝑗=1

∇𝜃 𝑙 (𝑝 𝑗 ⊙ 𝒙 𝑗 , 𝑦 𝑗 , 𝜃 )]⊤

𝐻
𝜃
(𝑝)−1∇𝒙∇𝜃 𝑙 (𝑝𝑖 ⊙ 𝒙𝑖 , 𝑦𝑖 , 𝜃 ),

(13)

where ⊙ is the element-wise product and𝐻
𝜃
(𝑝) = 1

𝑛

∑𝑛
𝑖=1 ∇2

𝜃
𝑙 (𝑝𝑖 ⊙

𝒙𝑖 , 𝑦𝑖 , 𝜃 ). The influence function 𝜙𝑖 (𝑝 (𝒙, 𝜔)) can be calculated in
three steps: 1) we compute the inverse Hessian-vector-product (HVP)
[∇𝜃

∑𝑚
𝑗=1 𝑙 (𝑝 𝑗 ⊙ 𝒙 𝑗 , 𝑦 𝑗 , 𝜃 )]⊤𝐻𝜃 (𝑝)

−1 and set the result as a con-
stant vector independent of the derivative of 𝒙 ; 2) for each training
instance, we multiply the constant vector with ∇𝜃 𝑙 (𝑝𝑖 ⊙ 𝒙𝑖 , 𝑦𝑖 , 𝜃 );
and 3) finally, we take the derivative with respect to 𝒙 . The most
difficult step is computing HVP, and we use a stochastic estima-
tion method from previous studies [13] to efficiently handle high-
dimensional and large-scale tabular data. In the stochastic estima-
tion method, let 𝐻−1

𝑢 =
∑𝑢
𝑣=0 (𝐼 − 𝐻 )𝑣 be the first 𝑢 terms in the

Taylor expansion of 𝐻−1, where 𝐻 is an arbitrary Hessian matrix
and 𝐼 is the identity matrix. We then have 𝐻−1

𝑢 = 𝐼 + (𝐼 − 𝐻 )𝐻−1
𝑢−1,

𝐻−1
𝑢 → 𝐻−1 when 𝑢 → ∞2. The key step is that in each iteration,

we can sample some instances to compute an unbiased estimator
of 𝐻 . Therefore, we can get the following calculation process for
HVP: 1) uniformly sample some instances from the training set
2To ensure the validity of the Taylor expansion, ∀𝑖, ∇2

𝜃
𝑙 (𝑧𝑖 , 𝜃 ) ≼ 𝐼 should be satisfied.

This is always true because we can shrink the loss without affecting the parameters
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and calculate the Hession matrix 𝐻̃ ; 2) define 𝐻−1
0 𝜇 = 𝜇, where

𝜇 = [∇𝜃
∑𝑚
𝑗=1 𝑙 (𝑝 𝑗 ⊙ 𝒙 𝑗 , 𝑦 𝑗 , 𝜃 )] in the feature selection; and 3) re-

cursively compute 𝐻−1
𝑢 𝜇 = 𝜇 + (𝐼 − 𝐻̃ )𝐻−1

𝑢−1𝜇. Note that the compu-
tational complexity of the original IF is𝑂 (𝑛𝑝2 + 𝑝3), where 𝑝 is the
dimension of model parameters, and the complexity of stochastic
estimation used is 𝑂 (𝑛𝑝 + 𝑟𝑡𝑝), where 𝑟 is the number of samples
sampled, and 𝑡 is the number of sampling executions. We can find
that DIWIFT is of good scalability by comparing these two com-
plexities. The complete process of calculating 𝜙𝑖 (𝑝 (𝒙, 𝜔)) is shown
in Algorithm 1 of Appendix A.

4.2.4 IF-based loss for instance-wise feature selection. The final
optimization objective of our DIWIFT is to minimize the sum of
𝜙𝑖𝑘 of the selected 𝒙𝑖𝑘 :

𝜔̂ = argmin
𝜔

𝑛∑︁
𝑖=1

𝜙𝑖 (𝑝 (𝒙, 𝜔)) [𝑝 (𝒙𝑖 , 𝜔) ⊙ 1(𝒙𝑖 )], (14)

where 1(𝒙𝑖 ) ∈ R𝑑 transfers the 𝑘-th dimension of 𝒙𝑖 to 1 if 𝒙𝑖𝑘 > 0,
and otherwise to 0. We can see that 𝑝 (𝒙𝑖 , 𝜔) ⊙ 1(𝒙𝑖 ) means feature
𝒙𝑖𝑘 has no probability to be selected if 𝒙𝑖𝑘 = 0. The complete train-
ing process of our DIWIFT is shown in Algorithm 2 of Appendix A.

5 EMPIRICAL EVALUATIONS
In this section, we conduct experiments with the aim of answering
the following five key questions.
• Q1: How does our DIWIFT perform compared to the baselines?
• Q2: How well does our DIWIFT identify the instance-wise influ-
ential features?

• Q3: How do different modules of our DIWIFT contribute to its
performance?

• Q4: How does our DIWIFT perform in presence of distribution
shift?

• Q5: How robust is our DIWIFT to fluctuations in a pre-trained
model?

5.1 Experimental Setup
5.1.1 Datasets. To comprehensively evaluate the performance of
our DIWIFT, we consider both some synthetic datasets and real-
world datasets in our experiments. We first generate three syn-
thetic datasets following the approach adopted in previous related
works [4, 32]. Specifically, the input features are generated from an
11-dimensional Gaussian distribution, where there is no correlation
between the features, i.e., 𝒙 ∼ N(0, I). The 𝑘-th feature is denoted
as 𝒙𝑘 . The label 𝑦 is generated from a Bernoulli random variable
with P(𝑦 = 1|𝒙) = 1

1+𝑙𝑜𝑔𝑖𝑡 (𝒙) , where 𝑙𝑜𝑔𝑖𝑡 (𝒙) can vary to create
three different synthetic datasets:

• Syn1: exp
(
𝒙1𝒙2

)
.

• Syn2: −10 × sin 2𝒙7 + 2
��𝒙8�� + 𝒙9 + exp(−𝒙10).

In the above two datasets, the generation of labels 𝑦 depends on
the same set of features for each instance. To compare the ability of
different methods to discover instance-wise influence features, by
setting 𝒙11 as a switch feature, we create a new synthetic dataset,
where different instances have different influence features.

• Syn3: If 𝒙11 < 0, 𝑙𝑜𝑔𝑖𝑡 (𝒙) follows Syn1; otherwise, 𝑙𝑜𝑔𝑖𝑡 (𝒙)
follows Syn2.

In addition, we employ four datasets, including Coat [24], Adult [14],
Bank, and Credit [5], that are widely adopted in previous works
focusing on modeling tabular data [12, 16]. The statistics of all the
datasets are summarized in Table 3. In subsequent experiments, we
divide all instances of each dataset into a training set, a validation
set and a test set, where each part corresponds to a ratio of 3 : 1 : 1.

Table 3: Statistics of three synthetic datasets and four real-
world datasets.

Datasets #Features #Instances
Syn1 11 30k
Syn2 11 30k
Syn3 11 30k
Coat 47 11k
Adult 137 49k
Bank 55 45k
Credit 30 284k

5.1.2 Baselines. We choose the most representative methods from
the two routes as the baselines, including two global feature selec-
tion methods, i.e., Lasso [7] and Tree [8], and four instance-wise
feature selection methods, i.e., L2X [4], CL2X [20], INVASE [32]
and TabNet [1].
• Lasso [7]: it is a widely used global feature selection method via
adding 𝐿1 regularization to the loss of a linear model.

• Tree [8]: it is a global feature selection method via an extremely
randomized trees classifier.

• L2X [4]: it is an instance-wise feature selection method that can
discover a fixed number of influential features for each instance
through mutual information. It is the first method to implement
instance-wise feature selection and interpretation.

• CL2X [20]: it is a causal extension of L2X that also discovers a
fixed number of influential features for each instance via condi-
tional mutual information.

• INVASE [32]: it is an instance-wise feature selection method that
can discover an adaptive number of influential features for each
instance by minimizing the Kullback-Leibler divergence between
the full conditional distribution and a conditional distribution
that includes only the selected set of features. It is an important
baseline because it best matches the problem we focus on solving
in this paper.

• TabNet [1]: it is an instance-based feature selection method that
uses sequential attention to select the features that need to be
inferred at each decision step. Furthermore, it proposes a novel
high-performance and interpretable deep learning architecture
for tabular data.

5.1.3 Evaluation Metrics. We apply the Area Under the ROC Curve
(AUC) as the evaluation metric, which is commonly adopted in
previous studies of tabular data [1, 31]. Specifically, the AUC in
binary classification task is calculated by,

𝐴𝑈𝐶 =

∑
𝑧𝑝 ∈𝑧+,𝑧𝑞 ∈𝑧− 1(𝑔(𝑧𝑝 ) > 𝑔(𝑧𝑞))

|𝑧+ | |𝑧− | ,

where 𝑧+ is the set of positive instances, 𝑧− is the set of negative
instances, |𝑧+ | and |𝑧− | are their sizes; 𝑧𝑝 is a positive instance, 𝑧𝑞
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is a negative instance; 𝑔(·) is a classifier. Note that if the predicted
scores of all positive samples are higher than the predicted scores of
negative samples, the model will reach AUC= 1 (perfect separation
of positive/negative samples), i.e., the upper bound of AUC is 1, and
the bigger the better.

5.1.4 Implementation Details. For all the methods, a three-layer
MLP is adopted as a base model. For the search range, 𝐿2 regu-
larization parameter is in [1𝑒−6, 1], learning rate is in [1𝑒−5, 1𝑒 −
1], hidden layer size is in {50, 100, 150, 200}, and batch size is in
{64, 128, 256, 512, 1024, 2048}. A special 𝐿1 parameter with LASSO
is in [1𝑒−5, 1𝑒−1], and Tree needs to set the number of trees from 3
to 30. For L2X and CL2X , we set the number of features selected in
each instance in the range of [2, 𝑑]. For our DIWIFT, temperature
parameter is in [1𝑒−3, 1]. Regarding the error analysis, we calculate
the standard deviation of the AUC metric on the test set through
10 random experiments. The standard deviation is calculated as
follows:

𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =

√√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑠𝑖 −
1
𝑁

𝑁∑︁
𝑗=1

𝑠 𝑗 )2, (15)

where 𝑁 denotes the number of random trials and 𝑠𝑖 means the
AUC score at the 𝑖-th experiment.

5.2 RQ1: Performance Comparison
To verify the effectiveness of our DIWIFT, we conduct the compar-
ative experiments with all the baselines. The detailed results are
shown in Table 4. The method named “No-selection” is a baseline
that uses all the features rather than some selected features. From
Table 4, we have the following observations: 1) the comparison re-
sults between the baselines for instance-wise feature selection and
global feature selection are inconsistent across different datasets.
TabNet is the best baseline overall. This may be because L2X and
CL2X can only discover a fixed number of influential features per
instance, and INVALSE is not specifically designed for tabular data.
However, TabNet does not have these limitations. 2) our DIWIFT
outperforms all the baselines in most cases, except slightly weaker
than TabNet on the Syn2 dataset. In particular, our DIWIFT sig-
nificantly outperforms TabNet on the syn3 dataset with varying
numbers of influential features per instance, as well as on all the
four real-world datasets.

5.3 RQ2: Visual Verification of DIWIFT
Does our DIWIFT effectively discover instance-wise influential fea-
tures? To answer this question, we randomly sample 10 instances
from the Syn3 dataset, of which 5 instances follow Syn1 and the
remaining instances follow Syn2, since the ground truth of the
instance-wise influential features is given in the Syn3 dataset. These
10 instances are then fed into the feature selection module of our
DIWIFT to get the feature selection result corresponding to each
instance. The results are shown in Figure 3, where each row rep-
resents an instance, each column represents a feature, the blue
squares represent the ground truth of influential features in each
instance, and the stars represent the feature selection results of our
DIWIFT. We can find that our DIWIFT can identify the most influ-
ential instance-wise features and removing the most non-influential
features. This again verifies the validity of our DIWIFT.

Figure 3: An example of the feature selection results our DI-
WIFT has on the syn3 dataset, where each row represents an
instance, each column represents a feature, the blue squares
represent the ground truth of the influential features in
each instance, and the stars represent the selected features
by our DIWIFT. Note that with 𝑥11 as a switch feature, the
first five instances follow Syn1, and the last five instances
follow Syn2.

5.4 RQ3: Ablation Study
As described in Section 4.2, the feature selection module and the
IF calculator are the core modules of our DIWIFT. To analyze their
respective roles, we conduct ablation studies on our DIWIFT using
the four real-world datasets. The results are shown in Figure 4,
where “w/o influence” means that only the IF calculator is removed
(i.e., a self-attention module trained using a traditional loss func-
tion is retained), and “No-selection” means that both the feature
selection module and the IF calculator are removed. We can see
that removing any module will hurt the performance. In addition,
“w/o influence” is weaker than our DIWIFT, but is still better than
“No-selection”, which also shows the importance of feature selection
for modeling tabular data.

Figure 4: Ablation studies on four real-world datasets.

5.5 RQ4&RQ5: In-Depth Analysis of DIWIFT
As described in Section 4.1, most existing works on feature selec-
tion has not considered the variability of influential features across
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Table 4: Results on all the datasets, where the best results are marked in bold and the second best results are underlined. AUC
is the evaluation metric.

Method Syn1 Syn2 Syn3 Coat Adult Bank Credit

No-selection 0.5934±0.0001 0.8268±0.0004 0.7001±0.0001 0.6598±0.0172 0.8908±0.0043 0.9175±0.0004 0.8857±0.0003
Lasso 0.6868±0.0012 0.8651±0.0006 0.7199±0.0002 0.6482±0.0009 0.8972±0.0045 0.8887±0.0004 0.9460±0.0005
Tree 0.6786±0.0002 0.8840±0.0003 0.7241±0.0001 0.6538±0.0176 0.8966±0.0041 0.8854±0.0006 0.9251±0.0221

L2X 0.6218±0.0083 0.8758±0.0206 0.6874±0.0018 0.6631±0.0093 0.8985±0.0035 0.9019±0.0026 0.9258±0.0090
CL2X 0.6262±0.0431 0.8278±0.0003 0.6941±0.0015 0.6627±0.0011 0.9046±0.0044 0.9160±0.0001 0.9122±0.0049
INVASE 0.6442±0.0011 0.8842±0.0002 0.7765±0.0009 0.6693±0.0115 0.8996±0.0036 0.9179±0.0835 0.9107±0.0370
TabNet 0.6732±0.0006 0.9068±0.0001 0.7819±0.0002 0.6694±0.0010 0.9074±0.0001 0.9182±0.0022 0.9308±0.0347

DIWIFT 0.6900±0.0019 0.9013±0.0055 0.7851±0.0014 0.6736±0.0034 0.9231±0.0031 0.9231±0.0055 0.9495±0.0019

different scenarios. Conversely, our DIWIFT can benefit from the
influence function to achieve a trade-off between training and vali-
dation distributions, i.e., it is relatively more robust. To evaluate the
robustness of all the methods under a distribution shift scenario,
we choose the Coat dataset in our experiments. The Coat dataset
contains the sets collected from two sources: one is a biased data
collected through the normal user interactions on an online web-
shop platform, and the other is an unbiased data collected through
a randomized experiment, in which all items that a user can see are
randomly assigned by the system. Clearly, there is a distribution
shift between these two sets. We re-partition Coat, where the set of
biased data is used as a training set, and the set of unbiased data is
randomly divided into a validation set and a test set with equal size.
We then re-execute and evaluate all the methods using the same
hyperparameter search range, and show the results in Figure 5.
Comparing with the Coat column in Table 4, we can find that all
the baselines have a significant drop in performance, which is even
weaker than “No-selection”. This shows that the existing feature
selection methods are susceptible to distribution shift. Conversely,
our DIWIFT is more robust and has a distinct advantage in different
scenarios.

Figure 5: Robustness analysis on Coat.

Finally, we perform a sensitivity analysis of our DIWIFT with
the pre-trained models of different performance. As described in
Section 4.2.1, the influence function calculator is an important mod-
ule of our DIWIFT, and its computation requires the parameters of
a pretrained model 𝜃 . Since the computed value of the influence
function will be used to guide the training of a feature selection

module, which is another core module of our DIWIFT, it is neces-
sary to analyze the sensitivity of our DIWIFT on pretrained models
with different performance. Next, we examine this sensitivity of our
DIWIFT by conducting a preliminary experiment on Coat. When
obtaining the results of our DIWIFT on Coat as shown in Table 4,
the optimal number of training iterations for the pre-trained model
is 18. Therefore, we choose the base model when the number of
training iterations is 8, 10, 12, 14, and 16 as the pre-trained model,
respectively. We then retrain our DIWIFT and evaluate its perfor-
mance. The results are shown in Figure 6. We can see that our
DIWIFT is relatively insensitive to the pre-trained model. This ob-
servation is important for deploying our DIWIFT in a real-world
scenario, as it shows that we can use the same pre-trained model
for a period of time, which will effectively save training time.

Figure 6: Sensitivity analysis of our DIWIFT with different
pre-trained models on Coat.

6 CONCLUSIONS
In this paper, we propose a new perspective based on the influ-
ence function for instance-wise feature selection and give some
corresponding theoretical insights. We then propose a new method
for discovering instance-wise influential features in tabular data
(DIWIFT), where a feature selection module with a self-attention
network is used to compute the selection probabilities of all features
from each instance, and an influence function calculator is used
to calculate the corresponding influence and guide the feature se-
lection module through a back propagation. We conduct extensive
experiments on some synthetic and real-world datasets, where the
results validate the effectiveness and robustness of our DIWIFT.
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A APPENDIX

Algorithm 1 Calculating the influence function 𝜙𝑖 (𝑝 (𝒙, 𝜔))
Require: The training set after feature reweighting {𝑝𝑖 ⊙𝒙𝑖 , 𝑦𝑖 }𝑛𝑖=1,

validation set {{𝑝 𝑗 ⊙ 𝒙 𝑗 , 𝑦 𝑗 }𝑚𝑗=1, pre-trained base network 𝜃 .
1: Calculate the gradient of the validation loss, i.e., 𝜇 =

[∇𝜃
∑𝑚
𝑗=1 𝑙 (𝑝 𝑗 ⊙ 𝒙 𝑗 , 𝑦 𝑗 , 𝜃 )].

2: Initialize 𝐻−1
0 𝜇 = 𝜇.

3: repeat to get HVP
4: Uniformly sample some instances from the training set to cal-

culate the estimated Hession matrix 𝐻̃ .
5: Calculate 𝐻−1

𝑢 𝜇 = 𝜇 + (𝐼 − 𝐻̃ )𝐻−1
𝑢−1𝜇.

6: until convergence
7: Refer to ℎ as the converged HVP, which is the estimation of
𝐻
𝜃
(𝑝)−1 [∇𝜃

∑𝑚
𝑗=1 𝑙 (𝑝 𝑗 ⊙ 𝒙 𝑗 , 𝑦 𝑗 , 𝜃 )].

8: Calculate ∇𝜃 𝑙 (𝑝𝑖 ⊙ 𝒙𝑖 , 𝑦𝑖 , 𝜃 ).
9: Calculate the gradient of ℎ𝑇∇𝜃 𝑙 (𝑝𝑖 ⊙ 𝒙𝑖 , 𝑦𝑖 , 𝜃 ) ∈ R over 𝒙 .
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Algorithm 2 Discovering Instance-wise Influential Features in
Tabular Data (DIWIFT)
Require: The training set {𝑧𝑖 }𝑛𝑖=1, validation set {𝑧 𝑗 }𝑚𝑗=1.
1: Train a base model to get 𝜃 .
2: Initialize all parameters of a feature selection model with a

self-attention network.
3: repeat
4: Fed instances into feature selection model to get probability 𝑝𝑖

and 𝑝 𝑗 using Eq.(12).
5: Calculate the influence function in Eq.(13) using the stochastic

estimation method.
6: Calculate the loss in Eq.(14).
7: Do back-propagation to update the parameters of the feature

selection model.
8: until convergence
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