
Node-wise Difusion for Scalable Graph Learning
Keke Huang Jing Tang Juncheng Liu

kkhuang@nus.edu.sg jingtang@ust.hk juncheng.liu@u.nus.edu
National University of Singapore The Hong Kong University of Science National University of Singapore

and Technology (Guangzhou)
The Hong Kong Uni. of Sci. and Tech.

Renchi Yang Xiaokui Xiao
renchi@hkbu.edu.hk xkxiao@nus.edu.sg

Hong Kong Baptist University National University of Singapore
CNRS@CREATE, Singapore

ABSTRACT
Graph Neural Networks (GNNs) have shown superior performance
for semi-supervised learning of numerous web applications, such
as classifcation on web services and pages, analysis of online social
networks, and recommendation in e-commerce. The state of the
art derives representations for all nodes in graphs following the
same difusion (message passing) model without discriminating
their uniqueness. However, (i) labeled nodes involved in model
training usually account for a small portion of graphs in the semi-

supervised setting, and (ii) diferent nodes locate at diferent graph
local contexts and it inevitably degrades the representation qualities
if treating them undistinguishedly in difusion.

To address the above issues, we develop NDM, a universal node-
wise difusion model, to capture the unique characteristics of each
node in difusion, by which NDM is able to yield high-quality node
representations. In what follows, we customize NDM for semi-

supervised learning and design the NIGCN model. In particular,
NIGCN advances the efciency signifcantly since it (i) produces
representations for labeled nodes only and (ii) adopts well-designed
neighbor sampling techniques tailored for node representation
generation. Extensive experimental results on various types of web
datasets, including citation, social and co-purchasing graphs, not
only verify the state-of-the-art efectiveness of NIGCN but also
strongly support the remarkable scalability of NIGCN. In particular,
NIGCN completes representation generation and training within
10 seconds on the dataset with hundreds of millions of nodes and
billions of edges, up to orders of magnitude speedups over the
baselines, while achieving the highest F1-scores on classifcation.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning;
Neural networks.

This work is licensed under a Creative Commons Attribution International
4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583408

KEYWORDS
graph neural networks, scalability, semi-supervised classifcation

ACM Reference Format:
Keke Huang, Jing Tang, Juncheng Liu, Renchi Yang, and Xiaokui Xiao. 2023.
Node-wise Difusion for Scalable Graph Learning. In Proceedings of the ACM
Web Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583408

1 INTRODUCTION
In recent years, Graph Neural Networks (GNNs) have gained in-
creasing attention in both academia and industry due to their su-
perior performance on numerous web applications, such as clas-
sifcation on web services and pages [15, 45], image search [1],
web spam detection [2], e-commerce recommendations [13, 39, 42],
and social analysis [24, 30, 31]. Various GNN models have been
developed [3, 4, 8, 14, 22, 23, 35, 41, 46, 47] accordingly. Among
them, semi-supervised classifcation is one of the most extensively
studied problems due to the scarce labeled data in real-world appli-
cations [12, 20, 34].

Graph Convolutional Network (GCN) [21] is the seminal GNN
model proposed for semi-supervised classifcation. GCN conducts
feature propagation and transformation recursively on graphs and is
trained in a full-batch manner, thus sufering from severe scalability
issues [4, 5, 16, 36, 38, 44, 47]. Since then, there has been a large
body of research on improving the efciency. One line of work
focuses on utilizing sampling and preprocessing techniques. Specif-
ically, GraphSAGE [16] and FastGCN [4] sample a fxed number of
neighbors for each layer. GraphSAINT [44] and ShaDow-GCN [43]
randomly extract subgraphs with limited sizes as training graphs.
Cluster-GCN [7] partitions graphs into diferent clusters and then
randomly chooses a certain number of clusters as training graphs.
Another line of research decouples feature propagation and trans-
formation to ease feature aggregations. In particular, SGC [38] pro-
poses to remove non-linearity in transformation and multiplies the
feature matrix to the �-th power of the normalized adjacency ma-

trix for feature aggregation. Subsequently, a plethora of decoupled
models are developed to optimize the efciency of feature aggrega-
tion by leveraging various graph techniques, including APPNP [22],
GBP [6], AGP [36], and GRAND+ [14].

Despite the efciency advances, current models either calculate
node presentations for enormous unlabeled nodes or ignore the

1723

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543507.3583408
https://doi.org/10.1145/3543507.3583408
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583408&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Huang et al.

unique topological structure of each labeled node during represen-
tation generation. Therefore, there is still room for improvement in
efciency and efectiveness. To explain, labeled nodes involved in
model training in semi-supervised learning usually take up a small
portion of graphs, especially on massive graphs, and computing
representations for all nodes in graphs is unnecessarily inefcient.
Meanwhile, diferent nodes reside in diferent graph locations with
distinctive neighborhood contexts. Generating node representa-
tions without considering their topological uniqueness inevitably
degrades the representation qualities.

To remedy the above defciencies, we frst develop a node-wise
difusion model NDM. Specifcally, NDM calculates an individual
difusion length for each node by taking advantage of the unique
topological characteristic for high-quality node representations. In
the meantime, NDM employs a universal difusion function GHD
adaptive to various graphs. In particular, GHD is a general heat
difusion function that is capable of capturing diferent difusion
patterns on graphs with various densities. By taking NDM as the
difusion model for feature propagations, we design NIGCN (Node-

wIse GCN), a GCN model with superb scalability. In particular,
NIGCN only computes representations for the labeled nodes for
model training without calculating (hidden) representations for
any other nodes. In addition, NIGCN adopts customized neigh-
bor sampling techniques during difusion. By eliminating those
unimportant neighbors with noise features, our neighbor sampling
techniques not only improve the performance of NIGCN for semi-

supervised classifcation but also boost the efciency signifcantly.
We evaluate NIGCN on 7 real-world datasets and compare with

13 baselines for transductive learning and 7 competitors for induc-
tive learning. Experimental results not only verify the superior
performance of NIGCN for semi-supervised classifcation but also
prove the remarkable scalability of NIGCN. In particular, NIGCN
completes feature aggregations and training within 10 seconds
on the dataset with hundreds of millions of nodes and billions of
edges, up to orders of magnitude speedups over the baselines, while
achieving the highest F1-scores on classifcation.

In a nutshell, our contributions are summarized as follows.

• We propose a node-wise difusion model NDM. NDM cus-
tomizes each node with a unique difusion scheme by utilizing
the topological characteristics and provides a general heat
difusion function capable of capturing diferent difusion pat-
terns on graphs with various densities.

• We design a scalable GNN model NIGCN upon NDM. NIGCN
calculates node representation for a small portion of labeled
nodes without producing intermediate (hidden) representa-
tions for any other nodes. Meanwhile, neighbor sampling
techniques adopted by NIGCN further boost its scalability
signifcantly.

• We conduct comprehensive experiments to verify the state-of-
the-art performance of NIGCN for semi-supervised classifca-
tion and the remarkable scalability of NIGCN.

2 RELATED WORK
Kipf and Welling [21] propose the seminal Graph Convolutional
Network (GCN) for semi-supervised classifcation. However, GCN
sufers from severe scalability issues since it executes the feature

propagation and transformation recursively and is trained in a full-
batch manner. To alleviate the pain, two directions, i.e., decoupled
models and sampling-based models, have been explored.

Decoupled Models. SGC proposed by Wu et al. [38] adopts the
decoupling scheme by removing non-linearity in feature transfor-
mation and propagates features of neighbors within � hops directly,
where � is an input parameter. Following SGC, a plethora of de-
coupled models have been developed. To consider node proximity,
APPNP [22] utilizes personalized PageRank (PPR) [29, 32] as the
difusion model and takes PPR values of neighbors as aggregation
weights. To improve the scalability, PPRGo [3] reduces the number
of neighbors in aggregation by selecting neighbors with top-� PPR
values after sorting them. Graph difusion convolution (GDC) [23]
considers various difusion models, including both PPR and heat ker-
nel PageRank (HKPR) to capture diverse node relationships. Later,
Chen et al. [6] apply generalized PageRank model [25] and propose
GBP that combines reverse push and random walk techniques to ap-
proximate feature propagation. Wang et al. [36] point out that GBP
consumes a large amount of memory to store intermediate random
walk matrices and propose AGP that devises a unifed graph prop-
agation model and employs forward push and random sampling
to select subsets of unimportant neighborhoods so as to accelerate
feature propagation. Zhang et al. [46] consider the number of neigh-
bor hops before the aggregated feature gets smoothing. To this end,
they design NDLS and calculate an individual local-smoothing it-
eration for each node on feature aggregation. Recently, Feng et al.
[14] investigate the graph random neural network (GRAND) model.
To improve the scalability, they devise GRAND+ by leveraging
a generalized forward push to compute the propagation matrix
for feature aggregation. In addition, GRAND+ only incorporates
neighbors with top-K values for further scalability improvement.

Sampling-based Models. To avoid the recursive neighborhood
over expansion, GraphSAGE [16] simply samples a fxed number
of neighbors uniformly for each layer. Instead of uniform sampling,
FastGCN [4] proposes importance sampling on neighbor selections
to reduce sampling variance. Subsequently, AS-GCN [18] consid-
ers the correlations of sampled neighbors from upper layers and
develops an adaptive layer-wise sampling method for explicit vari-
ance reduction. To guarantee the algorithm convergence, VR-GCN
proposed by Chen et al. [5] exploits historical hidden representa-
tions as control variates and then reduces sampling variance via
the control variate technique. Similar to AS-GCN, LADIES [47] also
takes into account the layer constraint and devises a layer-wise,
neighbor-dependent, and importance sampling manner, where two
graph sampling methods are proposed as a consequence. Cluster-
GCN [7] frst applies graph cluster algorithms to partition graphs
into multiple clusters, and then randomly takes several clusters as
training graphs. Similarly, GraphSAINT [44] samples subgraphs
as new training graphs, aiming to improve the training efciency.
Huang et al. [19] adopt the graph coarsening method developed
by Loukas [27] to reshape the original graph into a smaller graph,
aiming to boost the scalability of graph machine learning. Lately,
Zeng et al. [43] propose to extract localized subgraphs with bounded
scopes and then run a GNN of arbitrary depth on it. This principle
of decoupling GNN scope and depth, named as ShaDow, can be
applied to existing GNN models.

1724

Node-wise Difusion for Scalable Graph Learning

However, all the aforementioned methods either (i) generate
node representations for all nodes in the graphs even though la-
beled nodes in training are scarce or (ii) overlook the topological
uniqueness of each node during feature propagation. Ergo, there is
still room for improvement in both efciency and efcacy.

3 NODE-WISE DIFFUSION MODEL
In this section, we reveal the weakness in existing difusion models
and then design NDM, consisting of two core components, i.e., (i)
the difusion matrix and the difusion length for each node, and (ii)
the universal difusion function generalized to various graphs.

3.1 Notations
For the convenience of expression, we frst defne the frequently
used notations. We use calligraphic fonts, bold uppercase letters,
and bold lowercase letters to represent sets (e.g., N), matrices (e.g.,
A), and vectors (e.g., x), respectively. The �-th row (resp. column)

of matrix A is represented by A[�, ·] (resp. A[·, �]).
Let G = (V, E, X) be an undirected graph where V is the node

set with |V| = �, E is the edge set with |E | = �, and X ∈ R�×�

is the feature matrix. Each node � ∈ V is associated with a � -
dimensional feature vector x� ∈ X. For ease of exposition, node
� ∈ V also indicates its index. Let N� be the direct neighbor set and
�� = |N� | be the degree of node �. Let A ∈ R�×�

be the adjacency
matrix of G, i.e., A[�, �] = 1 if ⟨�, �⟩ ∈ E; otherwise A[�, �] = 0,
and D ∈ R�×�

be the diagonal degree matrix of G, i.e., D[�,�] = �� .

Following the convention [6, 36], we assume that G is a self-looped
and connected graph.

3.2 Difusion Matrix and Length

Difusion Matrix. Numerous variants of Laplacian matrix are
widely adopted as difusion matrix in existing GNN models [6, 21,
22, 26, 38, 46]. Among them, the transition matrix P = D−1A is
intuitive and easy-explained. Let 1 = �1 ≥ �2 ≥ . . . ≥ �� > −1
be the eigenvalues of P. During an infnite difusion, any initial
state �0 ∈ R�

of node set V converges to the stable state � , i.e.,
�� � = limℓ→∞ �0Pℓ where � (�) =
2� .

Difusion Length. As stated, diferent nodes reside at diferent
local contexts in the graphs, and the corresponding receptive felds
for information aggregation difer. Therefore, it is rational that each
node � owns a unique length ℓ� of difusion steps. As desired, node
� aggregates informative signals from neighbors within the range
of ℓ� hops while obtaining limited marginal information out of the
range due to over-smoothing issues. To better quantify the efective
vicinity, we frst defne �-distance as follows.

Defnition 3.1 (�-Distance). Given a positive constant � and a
graph G = (V, E) with difusion matrix P, a length ℓ is called
�-distance of node � ∈ V if it satisfes that for every � ∈ V ,
|Pℓ [�,�]−� (�) | ≤ � .

� (�)

According to Defnition 3.1, ℓ� being �-distance of � ensures
that informative signals from neighbors are aggregated. On the
other hand, to avoid over-smoothing, ℓ� should not be too large. In
the following, we provide an appropriate setting of ℓ� ftting both
criteria.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Theorem 3.2. Given a positive constant � and a graph G = (V, E)l √ m
� �min�� with difusion matrix P, ℓ� := log� is �-distance of node

2�
�, where � = max{�2, −�� } and �min = min{�� : � ∈ V}.

Proof of Theorem 3.2. Let e� ∈ R1×�
be a one-hot vector hav-

ing 1 in coordinate � ∈ V and 1� ∈ R1×�
be the 1-vector of size �.

Then, Pℓ [�, �] = e� Pℓ e⊤
� . Let P̃ = D1/2PD−1/2 = D−1/2AD−1/2

and

⊤u be the corresponding eigenvector of its �-th eigenvalue (sorted
�

in descending order) of P̃ . For e� and e� , we decompose∑� ∑�
e� D−1/2 =

�=1
�� u� , and e� D1/2 =

�=1
�� u� .

Note that {u⊤
1 , . . . , u�

⊤} form the orthonormal basis and u1 = 1√� D1/2
.

2�
⊤ √1 ⊤ √�� Thus, we have �1 = e� D−1/2u = and �1 = e� D1/2u = .
1 1

2� 2�
Since P̃ is the similar matrix of P, they share the same eigenvalues.
Therefore, we have �� ���� �� �� �� �� �� ℓ 1/2� −1/2 ⊤
Pℓ ˜

�
[𝜋 𝑣𝑢, 𝑣 𝜋 𝑣 �� ��e Pℓe⊤] − () − 𝜋 (𝑣)�� ��e𝑢D P D e − ()

𝑢 𝑣 ��
𝑣

= =
𝜋 (𝑣) 𝜋 (𝑣) 𝜋 (𝑣)��∑ �� �� �� ∑�� 𝑛 𝛽 ℓ ∑
𝛼 _ 𝜋 𝑣 �� � 𝑛 𝛽 _ℓ− () � 𝛼 �� 𝑛 |𝑖 𝑖

=
𝑖=1 𝑖 𝑖 𝑖 =2 𝑖

=
𝑖 ℓ 𝑖 2

|𝛼𝑖𝛽= 𝑖≤ _ ·
𝜋 (𝑣) 𝜋 (𝑣) 𝜋 (𝑣)

1 2 1 2∥ℓ e𝑢D− / ∥∥e𝑣D / ℓ∥ 2𝑚_≤ _ · = √ ,
𝑑𝑣/2𝑚 𝑑𝑣𝑑𝑢

where the second inequality is by Cauchy–Schwarz inequality. √ Fi-l m
nally, setting � �min�ℓ := log �

� oof.
2� completes the pr □

For the ℓ� defned in Theorem 3.2, it is �-distance of node � and
in the meantime involves the topological uniqueness of node �.
Moreover, the performance can be further improved by tuning the
hyperparameter � .

3.3 Universal Difusion Function
As we know, the difusion model defned by the symmetrically
normalized Laplacian matrix L = I − D−1/2AD−1/2

is derived from
Graph Heat Equation [9, 37], i.e.,

dH�
= −LH� , and H0 = X, (1)

d�

where H� is the node status of graph G at time � . By solving the
above diferential function, we have

∞∑
H� = e−�L = e−� (I−Ã

) = e−�
� ℓ Ã ℓ

, (2)

ℓ !
ℓ=0

where Ã = D−1/2AD−1/2. In this regard, the underlying difusion
follows the Heat Kernel PageRank (HKPR) function as

� (�, ℓ) = e−� �
ℓ

(3)

ℓ !
,

where � ∈ Z+
is the parameter. However, � (�, ℓ) is neither expres-

sive nor general enough to act as the universal difusion function
for real-world graphs, hinted by the following graph property.

Property 3.1 ([9]). For graph G with average degree �G, we have
1 − Δ� = � (√1) where Δ� is the spectral gap of G.

�G

1725

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

� = 1.1, � = 0.05 � = 0.5, � = 0 � = 5.0, � = 1.0
0.1 0.6 0.2

0.4
0.1

0.2

0 0 0

0 5 10 15 20 0 1 2 3 4 5 6 7 8 9 10 0 3 6 9 12 15
ℓ ℓ ℓ

(a) Smooth (b) PPR (c) HKPR

Figure 1: Three exemplary expansion tendency of GHD.

For the difusion matrix P defned on G, we have � = 1 − Δ� .
Meanwhile, according to the analysis of Theorem 3.2, we know that
Pℓ [�, �] − � (�) =

Í�
�=2 �� �� ��

ℓ
, representing the convergence, is

(usually) dominated by �ℓ . As a result, difusion on graphs with dif-
ferent densities, i.e., �G, converges at diferent paces. In particular,
sparse graphs with small �G incurring large � tend to incorporate
neighbors in a long range while dense graphs with large �G in-

curring small � are prone to aggregate neighbors not far away. In
addition, it has been widely reported in the literature [14, 23] that
diferent graphs ask for diferent difusion functions, which is also
verifed by our experiments in Section 5.2.

To serve the universal purpose, a qualifed difusion function
should be able to (i) expand smoothly in long ranges, (ii) decrease
sharply in short intervals, and (iii) peak at specifed hops, as re-
quired by various graphs accordingly. Clearly, the HKPR function
in (3) fulflls the latter two requirements but fails the frst one since
it decreases exponentially when ℓ ≥ � . One may propose to con-
sider Personalized PageRank (PPR). However, the PPR function is
monotonically decreasing and thus cannot reach condition (iii).

Inspired by the above analysis, we try to ameliorate � (�, ℓ) to a
universal difusion function with a controllable change tendency for
general purposes. To this end, we extend the graph heat difusion
Equation (3) by introducing an extra power parameter � ∈ R+

and

devise our General Heat Difusion (GHD) function as

�ℓ
� (�, �, ℓ) = (ℓ !)� (4) · �

for the difusion weight at the ℓ-th hop, where � ∈ R+
is the new

heat parameter and � =
Í∞

(ℓ
�
!
ℓ

)� is the normalization factor.ℓ=0
As desired, GHD can be regarded as a general extension of the

graph heat difusion model, and parameters � and � together de-
termine the expansion tendency. In particular, it is trivial to verify
that GHD is degraded into HKPR when � = 1, and GHD becomes
PPR when � = 0. As illustrated in Figure 1, by setting diferent �
and � combinations, GHD is able to exhibit smooth, exponential
(i.e., PPR), or peak expansion (i.e., HKPR) tendency.

3.4 Difusion Model Design
Upon �-distance and difusion function UDF, our node-wise difu-
sion model (NDM) can be concreted. Specifcally, given a target set
T ⊆ V , the representation ZT under NDM is calculated as

∑�

ZT = UΓPℓ X, (5)
ℓ=0

Huang et al.

Algorithm 1: Node-wise Difusion Model

Input: Graph G, feature matrix X, target set T ,
and hyperparameters � , � , �

Output: Representation ZT
1 �max ← max� ∈T {�� };l √ m

� �min�max2 � ← log� ;
2�

3 � is calculated according to (4);

Γ ← I[T , ·], ZT ← 0 | T |×� ;4

5 for ℓ ← 0 to � do
6 U ← Diag{� (�, �, ℓ) : ∀� ∈ T };
7 ZT ← ZT + UΓ;
8 Γ ← ΓP, ℓ ← ℓ + 1;

9 ZT ← ZT X;
10 return ZT ;

where � = max{ℓ� : ∀� ∈ T }, U = Diag{� (�, �, ℓ) : ∀� ∈ T } ∈
R | T |× |T | is a diagonal matrix, and Γ = I[T , ·] ∈ R | T |×�

is the indi-
cator matrix, i.e., Γ [�, �] = 1 if T [�] = � and Γ [�, �] = 0 otherwise.

The pseudo-code of NDM is presented in Algorithm 1. NDM
frst fnds the largest degree �max for nodes T , and computes the
corresponding �-distance as �. Then, NDM accumulates the weights
of neighbors within � ranges for each node � ∈ T , recorded as
ZT . Note that U[�,�] = 0 if ℓ > �. Finally, representation ZT is

calculated by multiplying the feature matrix X.

Time Complexity. It takes � (�) time to calculate � using the
iterative methods [11], and hence computing � take � (� + |T |)
time. Matrix multiplications UΓ and ΓP dominate the running time,

which takes time complexities of � (� |T |) and � (� |T |), respec-
tively. Therefore, as it takes � (� |T |) time to compute � T X, the
total time complexity of NDM is � ((� + �)� |T | + � |T |).

4 OPTIMIZATION IN NODE
REPRESENTATION LEARNING

Algorithm 1 in Section 3 presents a general node-wise difusion
model. However, it is yet optimal to be applied to reality. In this
section, we aim to instantiate NDM in a practical manner and
optimize the procedure of feature propagations.

4.1 Instantiation of NDM

Practical Implementation of �-Distance. Calculating the �-
distance of each node is one of the critical steps in NDM, which
requires the second largest eigenvalue � of the difusion matrix.
However, it is computationally expensive to compute � for large
graphs. To circumvent the scenario, we employ property 3.1 to
substitute � without damaging the efcacy of NDM.

As we analyze in Section 3.3, according to Property 3.1, we
borrow a correction factor �G specifc for graph G to ensure � =
1 − Δ� = √�

�
G

G
. Meanwhile, for the sake of practicality, we could

′
merge hyperparameter � and �G into one tunable parameter � to
control the bound of �-distance ℓ� such that√ 2� 2�

ln − ln � ln� �min��
√ √

�min���min�� ′ ℓ� = log� = √ := � √ . (6)

2�
ln �G − ln�G ln �G

1726

Node-wise Difusion for Scalable Graph Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

W
ei
gh

t

10
−1

10
−3

10
−5

10 100 200 300

Number of neighbors

Figure 2: Weight Distribution of Neighbors.

Important Neighbor Identifcation and Selection. NDM in
Algorithm 1 aggregates all neighbors during difusion for each node,
which, however, is neither efective nor efcient. The rationale is
twofold.

First, it is trivial to see that the sum of weights in the ℓ-th hopÍ
is � ∈V � (�, �, ℓ) (D−1A)ℓ [�, �] = � (�, �, ℓ). If � nodes are vis-

ited, the average weight is Θ(� (�,�,ℓ)), i.e., the majority of nodes�
contribute negligibly to feature aggregations and only a small por-
tion of neighbors with large weights matters. Second, as found
in [28, 40], input data contain not only the low-frequency ground
truth but also noises that can originate from falsely labeled data or
features. Consequently, incorporating features of those neighbors
could potentially incur harmful noises. Therefore, it is a necessity
to select important neighbors and flter out insignifcant neighbors.

Based on the above analysis, we aim to identify important neigh-
bors for target node �. For ease of exposition, we frst defne the
weight function � (ℓ,�, �) = � (�, �, ℓ)Pℓ [�, �] to quantify the im-

portance of neighbor node � to target node �, and then formalize
the concept of �-importance neighbor as follows.

Defnition 4.1 (�-Importance Neighbor). Given a target node �
and threshold � ∈ (0, 1), node � is called �-importance neighbor of
� if ∃ℓ ∈ {0, 1, . . . , ℓ� }, we have � (ℓ,�, �) ≥ �.

Thanks to the good characteristic of NDM, a sufcient number
of random walks (RWs) are able to identify all such �-importance

neighbors with high probability, as proved in the following lemma.

Lemma 4.2. Given a target node �, threshold � ∈ (0, 1), and
failure probability � ∈ (0, 1), assume � (ℓ,�, �) ≥ �. Suppose

2�2 (ℓ)
� = ⌈ log(1)⌉ RWs are generated from � and visit � for � times�

� (�,�,ℓ)�
� ��

� at the ℓ-th step. For the weight estimation �ˆ(ℓ,�, �) =
(ℓ)
,

�
we have � � ��� Ü Ü � � (ℓ,�, �)

Pr �ˆ(ℓ,�, �) ≤ ≤ �,
�

0≤ℓ ≤ℓ� {� : � (ℓ,�,�)≥� }

where � > 1 controls the approximation.

Lemma 4.2 afrms that sufcient RWs could capture �-
importance neighbors with high probability. However, there still
contains defciencies. In particular, along with those �-important
neighbors, many insignifcant neighbors will be inevitably selected.
For illustration, we randomly choose one target node on dataset
Amazon and select its neighbors using RWs. We observe that 10.6%
neighbors contribute to 99% weights, and the rest 89.4% neighbors
share the left 1% weights, as shown in Figure 2. The amount of those

Algorithm 2: NIGCN

Input: Graph G, feature matrix X, target set T ,
′

parameters � and � , hyperparameters � , � , � , �
Output: Representation ZT

2�2
1 �G ← 2�

, � ← ⌈ log(1)⌉, ZT ← 0 | T |×� ;� � ��
2 for � ∈ T do& '

2�
ln √
′ �

min
��

3 ℓ� ← � √ ;
ln ΔG

4 for � ← 1 to � do
5 Generate a random walk from node � with length ℓ� ;

6 if � is visited at the ℓ-th step then
� (�,�,ℓ)

7 �� ← �� +
� ;

8 S ← S ∪ {� };
19 if |S| ≥ then break;
�2

10 for � ∈ S do z� ← z� + �� · x� ;
11 return ZT ;

insignifcant neighbors could unavoidably impair the representa-
tion quality. To alleviate the defciency, we propose to preserve the

1 1
frst-� neighbors with � =

�2
.

To explain, in the ℓ-th hop, each �-important neighbor will be
�

selected with probability at least
� (�,�,ℓ) , and there are at most

� (�,�,ℓ)
important neighbors. Thus �-important neighbors from�

the ℓ-th hop will be picked after at most � 2 (�,�,ℓ)
random selections

�2

in expectation. By summing up all ℓ� hops, we have∑ℓ� � 2 (�,�,ℓ) ∑ℓ� � (�,�,ℓ) 1≤ =
ℓ=0 �2 ℓ=0 �2 �2 .

Notice that neither RWs selection nor frst-� selection is suitable
to solely function as stop conditions. As stated, RW inevitably incurs
substantial unimportant neighbors, while frst-� selection alone is
not bound to terminate when no sufcient neighbors exist. Hence,
they compensate each other for better performance. As evaluated
in Section 5.4, frst-� selection further boosts the efectiveness
notably.

4.2 Optimized Algorithm NIGCN
We propose NIGCN in Algorithm 2, the GCN model by instan-
tiating NDM. We frst initialize the number � of RWs according
to Lemma 4.2. Next, we generate length-ℓ� RWs for each � ∈ T .
If neighbor � is visited at the ℓ-th step, we increase its weight ��
by � (�,�,ℓ)

and store it into set S. This procedure terminates if
�

either the number of RWs reaches � or the condition |S| ≥ is
�2

met. Afterward, we update on z� (Line 10). Eventually, the fnal
representation ZT is returned once all |T | target nodes have been
processed.

Accordingly, for a target node � in T , NIGCN is formulated as Í Íℓ� � (�,�,ℓ)��(ℓ)z� = ·x�, (7)� ∈{ |RW(N (0) ∪N (1) ∪···∪N (ℓ�)) |≤� } ℓ=0 � � � �

1
One may propose to adopt top-� neighbors. However, top-� selection would incur
enormous computation overheads since it requires sorting all neighbors by weights.

1

1727

�
� �

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: Time complexity (� is the batch size, � is the sample
size in one hop, � is the propagation length, and � ′ is the
number of model layers).

GNN Method Preprocessing Training

GraphSAGE - � |T |�� � 2
� � ���� GraphSAINT - � + ��� 2

� � �
FastGCN - � � |T |� � + � |T |� 2

�
ShaDow-GCN - � |T |�� + � ′ �� 2

�
APPNP - � ��� + � ′ �� 2

�
√

GBP �
� ��� � | T | log(��)�/� �

�
�
� ′ |T |� 2

�
� � �2�� � �

AGP � � � ′ |T |� 2
� � � � �

NDLS � ��� � � ′ |T |� 2
� �

�� � �
GRAND+ � � ��� + � ′ ��� 2

�
� � �

NIGCN �
� � | T | �

log 1 � � ′ |T |� 2
�

� ��

where RW(N (0) ∪N (1) ∪· · ·∪N (ℓ�)) is the neighbor set identifed� � �
by RWs within ℓ� hops, | · |≤� indicates the frst-� neighbors,Íℓ� � (�,�,ℓ)� (ℓ)�
and is the total estimated weights for selected

ℓ=0 �
neighbor � .

Time Complexity. For each node �, at most � RWs of length ℓ� are

generated at the cost of � (�ℓ�), and the total number of neighbors
is bounded by � (�ℓ�), which limits the cost on the feature update
to � (�ℓ� �). The total cost is � ((� + 1)�ℓ�) for each target node.
Let � = max{ℓ� : ∀� ∈ T }. By replacing � = � (1

log(1)), the� ��
� | T | �

resulting time complexity of NIGCN is � (log 1).� ��

4.3 Time Complexity Comparison
�-importance neighbors play a crucial role in feature aggrega-
tions. We assume that qualifed representations incorporate all
�-importance neighbors with high probability. When capturing
such �-importance neighbors, we analyze and compare the sam-

pling complexities of 9 representative models
2
with NIGCN, as

summarized in Table 1.
GRAND+ [14] estimates the propagation matrix Π during prepro-

cessing with error bounded by �max at the cost of � ((|U ′ |+| T |)�)�max

where U ′ is a sample set of unlabeled node set U = V \ T . To
yield accurate estimations for �-importance neighbors, �max is

set �max = Θ(�) and the resulting time complexity of prepos-
sessing is � (��). According to [14], its training complexity is �
� (��� + � ′ ��� 2).

′ AGP [36] provides an accurate estimation for node � if � (�) > �
for each dimension of feature matrix X, denoted as x = X[·, �] for � ∈
{0, . . . , � −1} where ∥x∥1 ≤ 1, � =

Í�
ℓ=0 � (ℓ) (D−� AD−�)ℓ x, and � ′

is an input threshold. As proved in [36], the time cost of AGP on one

feature dimension is � (�2 Í�
ℓ=0 ∥(

Í
�
∞
=ℓ � (�)) (D−�AD−�)ℓ x∥1).� ′

We consider a simple case that � = 0 and � = 1. Suppose that
1∥x∥1 = for some constant � ≥ 1, and
𝐶

thus we have (∑︁ ∞) ∑︁ 𝑖 ∞ ∑︁
1 ℓ

1
1
∞

𝑤 () −() AD x = − ℓ𝑤 (𝑖) x = 𝑤 ((AD 𝑖)) . 1 𝐶
𝑖=ℓ 1 𝑖=ℓ 𝑖=ℓ

2
We assume the models without explicit sampling process with sampling rate 100%.

Huang et al.

Í� Í∞
Since �=ℓ � (�) ≥ 1, the time complexity of AGP is at leastℓ=0

Θ(
��
�2
′). To ensure nodes aggregating at least one �-importance

neighbor � are estimated accurately, �x(�) = Ω(� ′) is required.
1

Since ∥x∥1 = for some constant � and there are � nodes, it is
�

reasonably to assume that x(�) = � (1). Therefore, � ′ = � (�). In� �
this regard, the time cost of AGP to capture �-importance neighbors

�2��
for all � dimensions is � ().�

GBP [6] derives representations for the �-th dimension as � =Í�
ℓ=0 � (ℓ) D� (D−1A)ℓ D−� ·x, where x = X[·, �] for � ∈ {0, . . . , � −1}

and X is the feature matrix with � dimensions. GBP ensures that
the estimation �̂ (�) of � (�) for any � ∈ T is within an error

� � � ′
of �� � , i.e., |� (�) − �̂ (�) | ≤ �� �

′
, where the factor �� is due to

the term D�
and does not impact sampling errors. The fnal time√

� | T | log(��)�/�
complexity of GBP is

��
′ . As discussed above, we �

′
have �x(�) = Ω(� ′) and x(�) = � (1), which indicates that � =�
� (�). Consequently, the time cost of GBP to capture �-importance � √� ��� � | T | log(��)�/� �
neighbors is � .�

For the rest models in Table 1, we borrow the time complexity
from their ofcial analyses since they either provide no sampling
approximation guarantee or consider all neighbors without explicit
sampling. As analyzed, time complexities of state of the art are
linear in the size of the graph, while that of NIGCN is linear in
the size of the target set T . In semi-supervised classifcation with
limited labels, we have |T | ≪ �, which confrms the theoretical
efciency superiority of NIGCN.

Parallelism. NIGCN derives the representation of every target
node independently and does not rely on any intermediate repre-
sentations of other nodes. This design makes NIGCN inherently
parallelizable so as to be a promising solution to derive node rep-
resentations for massive graphs since they can process all nodes
simultaneously. Further, this enables NIGCN scalable for supervised
learning as well.

5 EXPERIMENT
In this section, we evaluate the performance of NIGCN for semi-

supervised classifcation in terms of efectiveness (micro F1-scores)
and efciency (running times).

5.1 Experimental Setting
Datasets. We use seven publicly available datasets across various
sizes in our experiments. Specifcally, we conduct transductive learn-
ing on the four citation networks, including three small citation
networks [33] Cora, Citeseer, and Pubmed, and a web-scale cita-
tion network Papers100M [17]. We run inductive learning on three
large datasets, i.e., citation network Ogbn-arxiv [17], social network
Reddit [44], and co-purchasing network Amazon [44]. Table 6 in
Appendix A.2 summarizes the statistics of those datasets. Among
them, Papers100M is the largest dataset ever tested in the literature.

For semi-supervised classifcation with limited labels, we ran-
domly sample 20 nodes per class for training, 500 nodes for vali-
dation, and 1000 nodes for testing. For each dataset, we randomly
generate 10 instances and report the average performance of each
tested method.

Baselines. For transductive learning, we evaluate NIGCN against
13 baselines. We categorize them into three types, i.e., (i) 2 coupled

1728

Node-wise Difusion for Scalable Graph Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: F1-score (%) of transductive learning.

Methods Cora Citeseer Pubmed Papers100M

D
e
c
o
u
p
l
e
d

S
a
m
p
l
i
n
g

 C
o
u
p
*

GCN 78.91 ± 1.87 69.11 ± 1.46 78.05 ± 1.64 OOM
GAT 80.22 ± 1.48 69.35 ± 0.93 78.82 ± 1.90 OOM

GraphSAGE 76.67 ± 2.21 67.41 ± 1.77 76.92 ± 2.84 OOM
GraphSAINT 74.76 ± 2.86 67.51 ± 4.76 78.65 ± 4.17 OOM
ShaDow-GCN 73.83 ± 2.46 63.54 ± 1.11 71.79 ± 2.92 OOM

SGC 76.79 ± 1.82 70.49 ± 1.29 74.11 ± 2.55 48.59 ± 1.77
APPNP 81.16 ± 0.77 69.83 ± 1.27 80.21 ± 1.79 OOM
PPRGo 79.01 ± 1.88 68.92 ± 1.72 78.20 ± 1.96 OOM
GDC 80.69 ± 1.99 69.69 ± 1.42 77.67 ± 1.65 OOM
GBP 81.17 ± 1.60 70.18 ± 1.90 80.09 ± 1.51 44.91 ± 1.23
AGP 77.70 ± 2.04 67.15 ± 2.04 78.97 ± 1.33 46.71 ± 1.99
NDLS 81.39 ± 1.55 69.63 ± 1.69 80.38 ± 1.41 OOM
GRAND+ 83.48 ± 1.18 71.42 ± 1.89 79.18 ± 1.93 OOM
NIGCN 82.13 ± 1.08 71.35 ± 0.82 80.90 ± 2.02 49.81 ± 1.10

GNN methods GCN [21] and GAT [35], (ii) 3 sampling-based meth-

ods GraphSAGE [16], GraphSAINT [44], and ShaDow-GCN [43],
and (iii) 8 decoupled GNN methods SGC [38], APPNP [22], and its
improvement PPRGo [3], GDC [23], GBP [6], AGP [36], and two
recently proposed NDLS [46], and GRAND+ [14].

For inductive learning, we compare NIGCN with 7 baselines.
Among the 13 methods tested in transductive learning, 7 of them
are not suitable for semi-supervised inductive learning and thus
are omitted, as explained in Section A.2. In addition, we include an
extra method FastGCN [4] designed for inductive learning. Details
for the implementations are provided in Appendix A.2.

Parameter Settings. For NIGCN, we fx � = 2, � = 0.01 and tune
′

the four hyperparameters � , � , � , and �. Appendix A.2 provides
the principal on how they are tuned and values selected for all
datasets. As with baselines, we either adopt their suggested param-

eter settings or tune the parameters following the same principle
as NIGCN to reach their best possible performance.

All methods are evaluated in terms of micro F1-scores on node
classifcation and running times including preprocessing times (if
applicable) and training times. One method is omitted on certain
datasets if it (i) is not suitable for inductive semi-supervised learning
or (ii) runs out of memory (OOM), either GPU memory or RAM.

5.2 Performance Results
Table 2 and Table 3 present the averaged F1-scores associated with
the standard deviations in transductive learning on Cora, Citeseer,
Pubmed, and Papers100M and inductive learning on Ogbn-arxiv,
Reddit, and Amazon respectively. For ease of demonstration, we
highlight the largest score in bold and underline the second largest
score for each dataset.

Table 2 shows that NIGCN achieves the highest F1-scores on
datasets Pubmed and Papers100M and the second highest scores on
Cora and Citeseer. Meanwhile, NIGCN obtains the largest F1-scores
on the three datasets Ogbn-arxiv, Reddit, and Amazon, as displayed
in Table 3. In particular, the improvement margins over the second
best on the three datasets are 0.93%, 0.78%, and 2.67% respectively.
These observations indicate that NIGCN performs better on rela-
tively large graphs. Intuitively, nodes in large graphs are prone to
reside in various structure contexts and contain neighbors of mixed

Table 3: F1-score (%) of inductive learning.

Methods Ogbn-arxiv Reddit Amazon

GraphSAGE 51.79 ± 2.16 89.16 ± 1.16 47.71 ± 1.07
FastGCN 56.45 ± 1.69 92.43 ± 1.00 OOM
SGC 56.03 ± 1.96 92.64 ± 1.02 41.32 ± 1.10
PPRGo 52.12 ± 3.22 78.21 ± 3.07 60.10 ± 1.17
GBP 54.01 ± 2.55 76.09 ± 1.75 60.78 ± 1.04
AGP 55.89 ± 1.47 92.18 ± 0.88 55.72 ± 1.68
NDLS 54.23 ± 2.49 85.25 ± 1.24 50.10 ± 2.09
NIGCN 57.38 ± 1.31 93.42 ± 0.48 63.45 ± 0.70

quality, and the NDM difusion model and the sampling techniques
(important neighbor identifcation and selection) utilized by NIGCN
are able to take advantage of such node-wise characteristics.

The most competitive method, GRAND+ achieves the best on
datasets Cora and Citeseer. Nonetheless, as shown in Figure 6 (
Section A.3), GRAND+ runs signifcantly slower than NIGCN does.
For the three sampling-based methods, i.e., GraphSAGE, Graph-
SAINT, and ShaDow-GCN, they acquire noticeably lower F1-scores
than NIGCN does. This is due to that they sample neighbors and
nodes randomly without customizing the sampling strategy to-
wards target nodes, as introduced in Section 2. Meanwhile, the
clear performance improvement of NIGCN over GBP and AGP
clearly supports the superiority of our general heat difusion func-
tion GHD over the difusion models used in GBP and AGP (i.e., PPR
and HKPR), as well as the efcacy of our difusion model NDM.

Overall, it is crucial to consider the unique structure characteris-
tic of each individual node in the design of both the difusion model
and neighbor sampling techniques for node classifcations.

5.3 Scalability Evaluation on Large Graphs
In this section, we evaluate the scalability of tested methods by
comparing their running times on the four large datasets, Ogbn-
arxiv, Reddit, Amazon, and Papers100M. In particular, the running
times include preprocessing times (if applicable) and training times.
For a comprehensive evaluation, we also report the correspond-
ing running times on the three small datasets Cora, Citeseer, and
Pubmed in Appendix A.3.

As shown in Figure 3, NIGCN ranks third with negligible lags
on dataset Ogbn-arxiv and dominates other methods noticeably
on datasets Reddit, Amazon, and Papers100M. Meanwhile, its ef-
fciency advantage expands larger as datasets grow. Specifcally,
on dataset Ogbn-arxiv, NIGCN, SGC, and AGP all can fnish run-
ning within 1 second. The speedups of NIGCN against the second
best on datasets Reddit, Amazon, and Papers100M are up to 4.12×,
8.90×, and 441.61× respectively. In particular, on the largest dataset
Papers100M, NIGCN is able to complete preprocessing and model
training within 10 seconds. The remarkable scalability of NIGCN
lies in that (i) NIGCN only generates node representations for a
small portion of labeled nodes involved in model training, and (ii)
neighbor sampling techniques in NIGCN signifcantly reduce the
number of neighbors for each labeled node in feature aggregation,
as detailed analyzed in Section 4.1. This observation strongly sup-
ports the outstanding scalability of NIGCN and its capability to
handle web-scale graphs.

1729

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Huang et al.

FastGCN SGC PPRGo GBP AGP NDLS NIGCNGraphSAGE

running time (sec) running time (sec) running time (sec) running time (sec)

(a) Ogbn-arxiv (b) Reddit (c) Amazon (d) Papers100M

Figure 3: Running times on large graphs (best viewed in color).

Table 4: Performance of NIGCN variants.

Variants NIGCNHKPR NIGCNUDL NIGCNNFK NIGCN

F1-score (%) 61.60 ± 0.82 61.32 ± 1.32 52.76 ± 1.14 63.45 ± 0.70
Disparity (%) -1.85 -2.13 -10.69 0

Table 5: F1-score (%) vs. label percentages.

Methods 4‰ 8‰ 1% 2% 5%

PPRGo 63.68 ± 1.13 66.02 ± 0.89 66.62 ± 0.86 67.54 ± 0.67 OOM
GBP 64.57 ± 0.66 68.31 ± 0.86 69.22 ± 0.71 71.56 ± 0.54 73.57 ± 0.45
NIGCN 67.24 ± 0.60 70.93 ± 0.75 71.49 ± 0.91 73.19 ± 0.52 74.02 ± 0.31

5.4 Ablation Study

Variants of NIGCN. To validate the efects of difusion model
NDM and the sampling techniques in NIGCN, we design three
variants of NIGCN, i.e., NIGCNHKPR, NIGCNUDL, and NIGCNNFK.
Specifcally, (i) NIGCNHKPR adopts heat kernel PageRank (HKPR)
instead of general heat difusion GHD in NDM as the difusion
function, (ii) NIGCNUDL unifes the difusion length for all labeled
nodes in contrast with the node-wise difusion length in NDM,
and (iii) NIGCNNFK removes the frst-� limitation on the number
of neighbors. We test all variants on Amazon and Table 4 reports
the corresponding F1-scores. For clarifcation, we also present the
F1-score disparity from that of NIGCN.

First of all, we observe that the F1-score of NIGCNHKPR is 1.04%
smaller than that of NIGCN. This verifes that HKPR is not capable
of capturing the structure characteristics of Amazon and NDM
ofers better generality. Second, NIGCNUDL acquires 1.32% less F1-
scores compared with NIGCN. This suggests that difusion with cus-
tomized length leverages the individual structure property of each
target node, which benefts the node classifcation. Last, NIGCNNFK
achieves 9.88% smaller F1-score than NIGCN does, which reveals
the potential noise signals from neighbors and recognizes the im-

portance and necessity of important neighbor selection.

Label Percentages Varying. To evaluate the robustness of NIGCN
towards the portion of labeled nodes, we test NIGCN by varying
the label percentages in {4‰, 8‰, 1%, 2%, 5%} on Amazon

3
and com-

pare it with two competitive baselines PPRGo and GBP. Results
in Table 5 and Figure 4 report the F1-scores and running times
respectively.

As displayed in table 5, NIGCN achieves the highest F1-score
with average 1.93% advantages over the second highest scores
across tested percentage ranges. Moreover, Figure 4 shows that

3
Papers100M contains only 1.4% labeled nodes which is insufcient for testing.

running time (sec)
10

4

10
2

10
0

PPRGo GBP

NIGCN

4‰ 8‰ 1% 2% 5%

Figure 4: Running time.

F1-scores (%)

70

65

60

55

NIGCN (�)

NIGCN (�)

0.25 0.5 1 2 4

Figure 5: Performance.
We evaluate NIGCN by varying
two parameters so as to test its
sensitivity towards the change of
the two parameters. The results
present that NIGCN is more

sensitive to aggregation length
than the signifcance metric.]

NIGCN notably dominates the other two competitors in efciency.
In particular, NIGCN completes execution within 3 seconds and
runs up to 5× to 20× faster than GBP and PPRGo in all settings re-
spectively. These fndings validate the robustness and outstanding
performance of NIGCN for semi-supervised classifcation.

Parameter Analysis. The performance gap between NIGCNHKPR
and NIGCN has shown that inappropriate combination of � and �
degrades the performance signifcantly. Here we test the efects of
hyperparameters � and � in control of the difusion length ℓ� and
the number of neighbors, respectively.

On Amazon, we select � = 1.5, denoted as �� and � = 0.05,
denoted as �� . We then test � ∈ {0.25�� , 0.5�� , 2�� , 4�� } and � ∈
{0.25�� , 0.5�� , 2�� , 4�� } and plot the results in Figure 5. As shown,
F1-score improves along with the increase of � until � = �� and then
decreases slightly as expected. Similar patterns are also observed in
the case of �. Specifcally, NIGCN exhibits more sensitivity towards
the change of � than that of �. This is because NIGCN is able to
capture the most important neighbors within the right �-distance
with high probability when changing the threshold of �-importance
neighbors, which, however, is not guaranteed when altering the
bound of �-distance.

6 CONCLUSION
In this paper, we propose NIGCN, a scalable graph neural network
built upon the node-wise difusion model NDM, which achieves
orders of magnitude speedups over representative baselines on
massive graphs and ofers the highest F1-score on semi-supervised
classifcation. In particular, NDM (i) utilizes the individual topolog-
ical characteristic and yields a unique difusion scheme for each

1730

Node-wise Difusion for Scalable Graph Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

target node and (ii) adopts a general heat difusion function GHD
that adapts well to various graphs. Meanwhile, to optimize the ef-

ciency of feature aggregations, NIGCN computes representations
for target nodes only and leverages advanced neighbor sampling
techniques to identify and select important neighbors, which not
only improves the performance but also boosts the efciency signif-
cantly. Extensive experimental results strongly support the state-of-
the-art performance of NIGCN for semi-supervised classifcation
and the remarkable scalability of NIGCN.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This research is part of the programme DesCartes and is supported
by the National Research Foundation, Prime Minister’s Ofce, Sin-
gapore under its Campus for Research Excellence and Technological
Enterprise (CREATE) programme. This work is also supported by
the National Natural Science Foundation of China (NSFC) under
Grant No. U22B2060 and by HKUST(GZ) under a Startup Grant.

REFERENCES
[1] 2020. https://europe.naverlabs.com/blog/web-image-search-gets-better-with-

graph-neural-networks/.
[2] Anas Belahcen, Monica Bianchini, and Franco Scarselli. 2015. Web Spam De-

tection Using Transductive(Inductive Graph Neural Networks. In Advances in
Neural Networks: Computational and Theoretical Issues. Vol. 37. 83–91.

[3] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate PageRank. In SIGKDD. 2464–
2473.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In ICLR.

[5] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction. In ICML, Vol. 80. PMLR, 941–949.

[6] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and Ji-
Rong Wen. 2020. Scalable Graph Neural Networks via Bidirectional Propagation.
In NeurIPS.

[7] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An Efcient Algorithm for Training Deep and Large Graph
Convolutional Networks. In SIGKDD. 257–266.

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In ICLR.

[9] Fan RK Chung and Fan Chung Graham. 1997. Spectral graph theory. Number 92.
American Mathematical Soc.

[10] Fan R. K. Chung and Lincoln Lu. 2006. Survey: Concentration Inequalities and
Martingale Inequalities: A Survey. Internet Math. 3, 1 (2006), 79–127.

[11] James Demmel. 1997. Applied Numerical Linear Algebra. SIAM.
[12] Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu.

2020. Graph Prototypical Networks for Few-shot Learning on Attributed Net-
works. In CIKM. 295–304.

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and
Dawei Yin. 2019. Graph Neural Networks for Social Recommendation. In WWW.
417–426.

[14] Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny Khar-
lamov, and Jie Tang. 2022. GRAND+: Scalable Graph Random Neural Networks.
In WWW. 3248–3258.

[15] Tao Guo and Baojiang Cui. 2021. Web Page Classifcation Based on Graph Neural
Network. In IMIS, Vol. 279. Springer, 188–198.

[16] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Neurips. 1024–1034.

[17] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. arXiv:2005.00687 (2020).

[18] Wen-bing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
Sampling Towards Fast Graph Representation Learning. In NeurIPS. 4563–4572.

[19] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.
Scaling Up Graph Neural Networks Via Graph Coarsening. In SIGKDD. 675–684.

[20] Lukasz Kaiser, Ofr Nachum, Aurko Roy, and Samy Bengio. 2017. Learning to
Remember Rare Events. In ICLR.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classifcation with
Graph Convolutional Networks. In ICLR.

[22] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[23] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Difu-
sion Improves Graph Learning. In NeurIPS. 13333–13345.

[24] Chang Li and Dan Goldwasser. 2019. Encoding Social Information with Graph
Convolutional Networks forPolitical Perspective Detection in News Media. In
ACL, Anna Korhonen, David R. Traum, and Lluís Màrquez (Eds.). 2594–2604.

[25] Pan Li, I (Eli) Chien, and Olgica Milenkovic. 2019. Optimizing Generalized
PageRank Methods for Seed-Expansion Community Detection. In NeurIPS. 11705–
11716.

[26] Zemin Liu, Yuan Fang, Chenghao Liu, and Steven C. H. Hoi. 2021. Node-wise
Localization of Graph Neural Networks. In IJCAI. 1520–1526.

[27] Andreas Loukas. 2019. Graph Reduction with Spectral and Cut Guarantees. J.
Mach. Learn. Res. 20 (2019), 116:1–116:42.

[28] Hoang Nt and Takanori Maehara. 2019. Revisiting graph neural networks: All
we have is low-pass flters. arXiv:1905.09550 (2019).

[29] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[30] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang.
2018. DeepInf: Social Infuence Prediction with Deep Learning. In SIGKDD.
2110–2119.

[31] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph Neural Networks
for Friend Ranking in Large-scale Social Platforms. In WWW. 2535–2546.

[32] Franco Scarselli, Ah Chung Tsoi, and Markus Hagenbuchner. 2004. Computing
personalized pageranks. In WWW. 382–383.

[33] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classifcation in network data. AI magazine 29,
3 (2008), 93–93.

[34] Manasi Vartak, Arvind Thiagarajan, Conrado Miranda, Jeshua Bratman, and Hugo
Larochelle. 2017. A Meta-Learning Perspective on Cold-Start Recommendations
for Items. In NeurIPS. 6904–6914.

[35] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[36] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and
Ji-Rong Wen. 2021. Approximate Graph Propagation. In SIGKDD. 1686–1696.

[37] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting
the difusion process in linear graph convolutional networks. (2021).

[38] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML,
Vol. 97. 6861–6871.

[39] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Peng He, Paul Weng, Han Gao, and
Guihai Chen. 2019. Dual Graph Attention Networks for Deep Latent Repre-
sentation of Multifaceted Social Efects in Recommender Systems. In WWW.
2091–2102.

[40] Yiqing Xie, Sha Li, Carl Yang, Raymond Chi-Wing Wong, and Jiawei Han. 2020.
When Do GNNs Work: Understanding and Improving Neighborhood Aggregation.
In IJCAI. 1303–1309.

[41] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML, Vol. 80. PMLR, 5449–5458.

[42] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. In SIGKDD. 974–983.

[43] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich,
Rajgopal Kannan, Viktor K. Prasanna, Long Jin, and Ren Chen. 2021. Decoupling
the Depth and Scope of Graph Neural Networks. In NeurIPS. 19665–19679.

[44] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-
tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning
Method. In ICLR.

[45] Lulu Zhang, Buqing Cao, Mi Peng, Yueying Qing, Guosheng Kang, Jianxun Liu,
and Kenneth K Fletcher. 2021. Bilinear Graph Neural Network-Enhanced Web
Services Classifcation. In HPCC. 189–196.

[46] Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao,
Zhi Yang, and Bin Cui. 2021. Node Dependent Local Smoothing for Scalable
Graph Learning. In NeurIPS. 20321–20332.

[47] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. In NeurIPS. 11247–11256.

1731

https://europe.naverlabs.com/blog/web-image-search-gets-better-with-graph-neural-networks/
https://europe.naverlabs.com/blog/web-image-search-gets-better-with-graph-neural-networks/

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

A APPENDIX

A.1 Proofs
Proof of Lemma 4.2. Before the proof, we frst introduce Cher-

nof Bound [10] as follows. □

Lemma A.1 (Chernoff Bound [10]). Let �� be an independent
variable such that for each 1 ≤ � ≤ � , �� ∈ [0, 1]. Let � = 1 Í� �� .� �
Given � ∈ (0, 1), we have

Pr[E[�] − � ≥ �] ≤ e−��
2/2E[�] . (8)

Let � be an �-importance neighbor of � in the ℓ-th hop. Suppose
(ℓ) 2�2

� has been visited � times after � = log(��) WRWs are � � ��
� (�,�,ℓ)��

generated. Let �ˆ(ℓ,�, �) =
(ℓ)

be the weight estimation of Θ
� (ℓ,�, �). As Chernof indicates, we have h i� (ℓ,�, �)

Pr � (ℓ,�, �) − �ˆ(ℓ,�, �) ≥
�

− �� (ℓ,�,�) 2
− �� /(2� (ℓ,�,�))

�2 2�2≤ e ≤ e

2�2
� − log(��) · ��

� �� 2�2≤ e = .
��

� (ℓ,�,�)
Thus �ˆ(ℓ,�, �) ≥ holds with probability at least 1 − �� .� ��
Within � hops, the total weight is ∑� � ∑ ∑

� (ℓ) (D−1A)ℓ [�, �] = � (ℓ) = �� .
ℓ=0 �∈V ℓ=0

Thus, the total number of �-importance neighbors of � is bounded
by �� . By union bound, the total failure probability within � hops�
is no more than �� �� = � , which completes the proof. □

�� �

A.2 Experimental Settings
Dataset Statistics. Table 6 presents the detailed statistics of the 7
tested datasets.

Running Environment. All experiments are conducted on a Linux
machine with an NVIDIA RTX2080 GPU (10.76GB memory), Intel
Xeon(R) CPU (2.60GHz), and 377GB RAM.

Implementation Details. By following the state of the art [6, 14,
36], we implement and NIGCN in PyTorch and C++. The implemen-

tations of GCN and APPNP are obtained from Pytorch Geometric
4
,

and the other fve baselines are obtained from their ofcial releases.

Parameter Settings. We mainly tune � , � , � , and � for NIGCN.
Table 7 reports the parameter settings adopted for each dataset.
According to our analysis in Section 3.2, we tune � in [0.9, 1.5] and
� in [0.01, 0.1] for sparse datasets, i.e., Cora, Citeseer, and Pubmed
to capture long-range dependency by a smooth expansion tendency;
we tune � in [1, 10] and � in [0.5, 1.5] to provide refned HKPR-alike
properties, i.e., reaching peak at certain hop. For extremely dense
dataset Amazon, we tune � in [0.8, 1.2] and � in [1, 1.5] to realize
optimized PPR-alike properties, i.e., exponentially decrease in short
distance. For � and �, we search � in [0.5, 2] to fnd the best scaling
factor for each dataset and tune � in the range of [0.005, 0.05]. As
stated, we fx � = 2 and � = 0.01.

4
https://github.com/pyg-team/pytorch_geometric

Huang et al.

Table 6: Dataset details.

Dataset #Nodes (�) #Edges (�) #Features (�) #Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3
Ogbn-arxiv 169,343 1,166,243 128 40
Reddit 232,965 114,615,892 602 41
Amazon 1,569,960 132,169,734 200 107
Papers100M 111,059,956 1,615,685,872 128 172

Table 7: Hyper-parameters of NIGCN.

Dataset � � � � � �

Cora 1.15 0.06 1.7 0.02 2 0.01
Citeseer 1.1 0.04 1.2 0.03 2 0.01
Pubmed 1.15 0.1 1.9 0.01 2 0.01
Ogbn-arxiv 9.0 0.85 1.5 0.008 2 0.01
Reddit 4.0 1.1 0.8 0.008 2 0.01
Amazon 0.9 1.15 1.5 0.05 2 0.01
Papers100M 7.4 1.3 0.6 0.01 2 0.01

Baselines for Inductive Learning. As stated, several baselines
tested in transductive learning are not suitable for semi-supervised
inductive learning. For example, GraphSAINT samples a random
subgraph as the training graph and demands each node in the sub-
graph owns a label [44]. Nonetheless, the percentages of labeled
nodes are small due to semi-supervised setting on large graphs
(Ogbn-arxiv, Reddit, and Amazon), which degrades the performance
of GraphSAINT notably. GRAND+ needs to sample a subset test
nodes for loss calculation during training, which, however, is con-
fict with the setting of inductive learning.

A.3 Additional Experiments
Figure 6 presents the running times of the 13 tested methods in
transductive learning. As shown, the efciency of the tested meth-

ods on the three small datasets varies and there is no clear winners.
In particular, AGP (resp. GCN) outperforms other methods on Cora
and pubmed (resp. Citeseer). However, the F1-scores of AGP and
GCN fall behind those of other models with a clear performance
gap, as shown in Table 2. Recall that GRAND+ achieves the highest
F1-scores on Cora and Citeseer, and our model NIGCN performs
best on Pubmed. Nonetheless, GRAND+ runs up to 10× ∼ 20×
slower than NIGCN does.

1732

https://github.com/pyg-team/pytorch_geometric

Node-wise Difusion for Scalable Graph Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA

GCN

PPRGo

GAT

GDC

GraphSAGE

GBP

GraphSAINT

AGP NDLS

ShaDow-GCN SGC

GRAND+

APPNP

NIGCN

running time (sec) running time (sec) running time (sec)

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

(a) Cora (b) Citeseer (c) Pubmed

Figure 6: Running times on small graphs (best viewed in color).
Fully described in Appendix A.3.]

1733

	Abstract
	1 Introduction
	2 Related Work
	3 Node-Wise Diffusion Model
	3.1 Notations
	3.2 Diffusion Matrix and Length
	3.3 Universal Diffusion Function
	3.4 Diffusion Model Design

	4 Optimization in Node Representation Learning
	4.1 Instantiation of NDM
	4.2 Optimized Algorithm NIGCN
	4.3 Time Complexity Comparison

	5 Experiment
	5.1 Experimental Setting
	5.2 Performance Results
	5.3 Scalability Evaluation on Large Graphs
	5.4 Ablation Study

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Proofs
	A.2 Experimental Settings
	A.3 Additional Experiments

