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ABSTRACT 
Graph Neural Networks (GNNs) have shown superior performance 
for semi-supervised learning of numerous web applications, such 
as classifcation on web services and pages, analysis of online social 
networks, and recommendation in e-commerce. The state of the 
art derives representations for all nodes in graphs following the 
same difusion (message passing) model without discriminating 
their uniqueness. However, (i) labeled nodes involved in model 
training usually account for a small portion of graphs in the semi-

supervised setting, and (ii) diferent nodes locate at diferent graph 
local contexts and it inevitably degrades the representation qualities 
if treating them undistinguishedly in difusion. 

To address the above issues, we develop NDM, a universal node-
wise difusion model, to capture the unique characteristics of each 
node in difusion, by which NDM is able to yield high-quality node 
representations. In what follows, we customize NDM for semi-

supervised learning and design the NIGCN model. In particular, 
NIGCN advances the efciency signifcantly since it (i) produces 
representations for labeled nodes only and (ii) adopts well-designed 
neighbor sampling techniques tailored for node representation 
generation. Extensive experimental results on various types of web 
datasets, including citation, social and co-purchasing graphs, not 
only verify the state-of-the-art efectiveness of NIGCN but also 
strongly support the remarkable scalability of NIGCN. In particular, 
NIGCN completes representation generation and training within 
10 seconds on the dataset with hundreds of millions of nodes and 
billions of edges, up to orders of magnitude speedups over the 
baselines, while achieving the highest F1-scores on classifcation. 
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1 INTRODUCTION 
In recent years, Graph Neural Networks (GNNs) have gained in-
creasing attention in both academia and industry due to their su-
perior performance on numerous web applications, such as clas-
sifcation on web services and pages [15, 45], image search [1], 
web spam detection [2], e-commerce recommendations [13, 39, 42], 
and social analysis [24, 30, 31]. Various GNN models have been 
developed [3, 4, 8, 14, 22, 23, 35, 41, 46, 47] accordingly. Among 
them, semi-supervised classifcation is one of the most extensively 
studied problems due to the scarce labeled data in real-world appli-
cations [12, 20, 34]. 

Graph Convolutional Network (GCN) [21] is the seminal GNN 
model proposed for semi-supervised classifcation. GCN conducts 
feature propagation and transformation recursively on graphs and is 
trained in a full-batch manner, thus sufering from severe scalability 
issues [4, 5, 16, 36, 38, 44, 47]. Since then, there has been a large 
body of research on improving the efciency. One line of work 
focuses on utilizing sampling and preprocessing techniques. Specif-
ically, GraphSAGE [16] and FastGCN [4] sample a fxed number of 
neighbors for each layer. GraphSAINT [44] and ShaDow-GCN [43] 
randomly extract subgraphs with limited sizes as training graphs. 
Cluster-GCN [7] partitions graphs into diferent clusters and then 
randomly chooses a certain number of clusters as training graphs. 
Another line of research decouples feature propagation and trans-
formation to ease feature aggregations. In particular, SGC [38] pro-
poses to remove non-linearity in transformation and multiplies the 
feature matrix to the �-th power of the normalized adjacency ma-

trix for feature aggregation. Subsequently, a plethora of decoupled 
models are developed to optimize the efciency of feature aggrega-
tion by leveraging various graph techniques, including APPNP [22], 
GBP [6], AGP [36], and GRAND+ [14]. 

Despite the efciency advances, current models either calculate 
node presentations for enormous unlabeled nodes or ignore the 
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unique topological structure of each labeled node during represen-
tation generation. Therefore, there is still room for improvement in 
efciency and efectiveness. To explain, labeled nodes involved in 
model training in semi-supervised learning usually take up a small 
portion of graphs, especially on massive graphs, and computing 
representations for all nodes in graphs is unnecessarily inefcient. 
Meanwhile, diferent nodes reside in diferent graph locations with 
distinctive neighborhood contexts. Generating node representa-
tions without considering their topological uniqueness inevitably 
degrades the representation qualities. 

To remedy the above defciencies, we frst develop a node-wise 
difusion model NDM. Specifcally, NDM calculates an individual 
difusion length for each node by taking advantage of the unique 
topological characteristic for high-quality node representations. In 
the meantime, NDM employs a universal difusion function GHD 
adaptive to various graphs. In particular, GHD is a general heat 
difusion function that is capable of capturing diferent difusion 
patterns on graphs with various densities. By taking NDM as the 
difusion model for feature propagations, we design NIGCN (Node-

wIse GCN), a GCN model with superb scalability. In particular, 
NIGCN only computes representations for the labeled nodes for 
model training without calculating (hidden) representations for 
any other nodes. In addition, NIGCN adopts customized neigh-
bor sampling techniques during difusion. By eliminating those 
unimportant neighbors with noise features, our neighbor sampling 
techniques not only improve the performance of NIGCN for semi-

supervised classifcation but also boost the efciency signifcantly. 
We evaluate NIGCN on 7 real-world datasets and compare with 

13 baselines for transductive learning and 7 competitors for induc-
tive learning. Experimental results not only verify the superior 
performance of NIGCN for semi-supervised classifcation but also 
prove the remarkable scalability of NIGCN. In particular, NIGCN 
completes feature aggregations and training within 10 seconds 
on the dataset with hundreds of millions of nodes and billions of 
edges, up to orders of magnitude speedups over the baselines, while 
achieving the highest F1-scores on classifcation. 

In a nutshell, our contributions are summarized as follows. 

• We propose a node-wise difusion model NDM. NDM cus-
tomizes each node with a unique difusion scheme by utilizing 
the topological characteristics and provides a general heat 
difusion function capable of capturing diferent difusion pat-
terns on graphs with various densities. 

• We design a scalable GNN model NIGCN upon NDM. NIGCN 
calculates node representation for a small portion of labeled 
nodes without producing intermediate (hidden) representa-
tions for any other nodes. Meanwhile, neighbor sampling 
techniques adopted by NIGCN further boost its scalability 
signifcantly. 

• We conduct comprehensive experiments to verify the state-of-
the-art performance of NIGCN for semi-supervised classifca-
tion and the remarkable scalability of NIGCN. 

2 RELATED WORK 
Kipf and Welling [21] propose the seminal Graph Convolutional 
Network (GCN) for semi-supervised classifcation. However, GCN 
sufers from severe scalability issues since it executes the feature 

propagation and transformation recursively and is trained in a full-
batch manner. To alleviate the pain, two directions, i.e., decoupled 
models and sampling-based models, have been explored. 

Decoupled Models. SGC proposed by Wu et al. [38] adopts the 
decoupling scheme by removing non-linearity in feature transfor-
mation and propagates features of neighbors within � hops directly, 
where � is an input parameter. Following SGC, a plethora of de-
coupled models have been developed. To consider node proximity, 
APPNP [22] utilizes personalized PageRank (PPR) [29, 32] as the 
difusion model and takes PPR values of neighbors as aggregation 
weights. To improve the scalability, PPRGo [3] reduces the number 
of neighbors in aggregation by selecting neighbors with top-� PPR 
values after sorting them. Graph difusion convolution (GDC) [23] 
considers various difusion models, including both PPR and heat ker-
nel PageRank (HKPR) to capture diverse node relationships. Later, 
Chen et al. [6] apply generalized PageRank model [25] and propose 
GBP that combines reverse push and random walk techniques to ap-
proximate feature propagation. Wang et al. [36] point out that GBP 
consumes a large amount of memory to store intermediate random 
walk matrices and propose AGP that devises a unifed graph prop-
agation model and employs forward push and random sampling 
to select subsets of unimportant neighborhoods so as to accelerate 
feature propagation. Zhang et al. [46] consider the number of neigh-
bor hops before the aggregated feature gets smoothing. To this end, 
they design NDLS and calculate an individual local-smoothing it-
eration for each node on feature aggregation. Recently, Feng et al. 
[14] investigate the graph random neural network (GRAND) model. 
To improve the scalability, they devise GRAND+ by leveraging 
a generalized forward push to compute the propagation matrix 
for feature aggregation. In addition, GRAND+ only incorporates 
neighbors with top-K values for further scalability improvement. 

Sampling-based Models. To avoid the recursive neighborhood 
over expansion, GraphSAGE [16] simply samples a fxed number 
of neighbors uniformly for each layer. Instead of uniform sampling, 
FastGCN [4] proposes importance sampling on neighbor selections 
to reduce sampling variance. Subsequently, AS-GCN [18] consid-
ers the correlations of sampled neighbors from upper layers and 
develops an adaptive layer-wise sampling method for explicit vari-
ance reduction. To guarantee the algorithm convergence, VR-GCN 
proposed by Chen et al. [5] exploits historical hidden representa-
tions as control variates and then reduces sampling variance via 
the control variate technique. Similar to AS-GCN, LADIES [47] also 
takes into account the layer constraint and devises a layer-wise, 
neighbor-dependent, and importance sampling manner, where two 
graph sampling methods are proposed as a consequence. Cluster-
GCN [7] frst applies graph cluster algorithms to partition graphs 
into multiple clusters, and then randomly takes several clusters as 
training graphs. Similarly, GraphSAINT [44] samples subgraphs 
as new training graphs, aiming to improve the training efciency. 
Huang et al. [19] adopt the graph coarsening method developed 
by Loukas [27] to reshape the original graph into a smaller graph, 
aiming to boost the scalability of graph machine learning. Lately, 
Zeng et al. [43] propose to extract localized subgraphs with bounded 
scopes and then run a GNN of arbitrary depth on it. This principle 
of decoupling GNN scope and depth, named as ShaDow, can be 
applied to existing GNN models. 
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However, all the aforementioned methods either (i) generate 
node representations for all nodes in the graphs even though la-
beled nodes in training are scarce or (ii) overlook the topological 
uniqueness of each node during feature propagation. Ergo, there is 
still room for improvement in both efciency and efcacy. 

3 NODE-WISE DIFFUSION MODEL 
In this section, we reveal the weakness in existing difusion models 
and then design NDM, consisting of two core components, i.e., (i) 
the difusion matrix and the difusion length for each node, and (ii) 
the universal difusion function generalized to various graphs. 

3.1 Notations 
For the convenience of expression, we frst defne the frequently 
used notations. We use calligraphic fonts, bold uppercase letters, 
and bold lowercase letters to represent sets (e.g., N ), matrices (e.g., 
A), and vectors (e.g., x), respectively. The �-th row (resp. column)

of matrix A is represented by A[�, ·] (resp. A[·, �]).
Let G = (V, E, X) be an undirected graph where V is the node

set with |V| = �, E is the edge set with |E | = �, and X ∈ R�×�

is the feature matrix. Each node � ∈ V is associated with a � -
dimensional feature vector x� ∈ X. For ease of exposition, node
� ∈ V also indicates its index. Let N� be the direct neighbor set and
�� = |N� | be the degree of node �. Let A ∈ R�×� 

be the adjacency
matrix of G, i.e., A[�, �] = 1 if ⟨�, �⟩ ∈ E; otherwise A[�, �] = 0,
and D ∈ R�×� 

be the diagonal degree matrix of G, i.e., D[�,�] = �� .

Following the convention [6, 36], we assume that G is a self-looped
and connected graph. 

3.2 Difusion Matrix and Length 

Difusion Matrix. Numerous variants of Laplacian matrix are
widely adopted as difusion matrix in existing GNN models [6, 21, 
22, 26, 38, 46]. Among them, the transition matrix P = D−1A is
intuitive and easy-explained. Let 1 = �1 ≥ �2 ≥ . . . ≥ �� > −1
be the eigenvalues of P. During an infnite difusion, any initial
state �0 ∈ R� 

of node set V converges to the stable state � , i.e.,
�� � = limℓ→∞ �0Pℓ where � (�) = 
2� .

Difusion Length. As stated, diferent nodes reside at diferent
local contexts in the graphs, and the corresponding receptive felds 
for information aggregation difer. Therefore, it is rational that each 
node � owns a unique length ℓ� of difusion steps. As desired, node
� aggregates informative signals from neighbors within the range 
of ℓ� hops while obtaining limited marginal information out of the
range due to over-smoothing issues. To better quantify the efective 
vicinity, we frst defne �-distance as follows. 

Defnition 3.1 (�-Distance). Given a positive constant � and a
graph G = (V, E) with difusion matrix P, a length ℓ is called
�-distance of node � ∈ V if it satisfes that for every � ∈ V , 
|Pℓ [�,� ]−� (� ) | ≤ � .

� (� ) 

According to Defnition 3.1, ℓ� being �-distance of � ensures
that informative signals from neighbors are aggregated. On the 
other hand, to avoid over-smoothing, ℓ� should not be too large. In
the following, we provide an appropriate setting of ℓ� ftting both
criteria. 
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Theorem 3.2. Given a positive constant � and a graph G = (V, E)l √ m 
� �min�� with difusion matrix P, ℓ� := log� is �-distance of node 

2� 
�, where � = max{�2, −�� } and �min = min{�� : � ∈ V}.

Proof of Theorem 3.2. Let e� ∈ R1×� 
be a one-hot vector hav-

ing 1 in coordinate � ∈ V and 1� ∈ R1×� 
be the 1-vector of size �.

Then, Pℓ [�, �] = e� Pℓ e⊤ 
� . Let P̃ = D1/2PD−1/2 = D−1/2AD−1/2 

and

⊤u be the corresponding eigenvector of its �-th eigenvalue (sorted
� 

in descending order) of P̃ . For e� and e� , we decompose∑� ∑� 
e� D−1/2 =

�=1 
�� u� , and e� D1/2 =

�=1 
�� u� .

Note that {u⊤ 
1 , . . . , u� 

⊤} form the orthonormal basis and u1 = 1√� D1/2
.

2� 
⊤ √1 ⊤ √�� Thus, we have �1 = e� D−1/2u = and �1 = e� D1/2u = .
1 1

2� 2� 
Since P̃ is the similar matrix of P, they share the same eigenvalues.
Therefore, we have �� ���� �� �� �� �� �� ℓ 1/2� −1/2 ⊤
Pℓ ˜

�
[ 𝜋 𝑣𝑢, 𝑣 𝜋 𝑣 �� ��e Pℓe⊤] − ( ) − 𝜋 (𝑣)�� ��e𝑢D P D e − ( )

𝑢 𝑣 ��
𝑣

= =
𝜋 (𝑣) 𝜋 (𝑣) 𝜋 (𝑣)��∑ �� �� �� ∑�� 𝑛 𝛽 ℓ ∑
𝛼 𝜆 𝜋 𝑣 �� � 𝑛 𝛽 𝜆ℓ− ( ) � 𝛼 �� 𝑛 |𝑖 𝑖

=
𝑖=1 𝑖 𝑖 𝑖 =2 𝑖

=
𝑖 ℓ 𝑖 2

|𝛼𝑖𝛽= 𝑖≤ 𝜆 ·
𝜋 (𝑣) 𝜋 (𝑣) 𝜋 (𝑣)

1 2 1 2∥ℓ e𝑢D− / ∥∥e𝑣D / ℓ∥ 2𝑚𝜆≤ 𝜆 · = √ ,
𝑑𝑣/2𝑚 𝑑𝑣𝑑𝑢

where the second inequality is by Cauchy–Schwarz inequality. √ Fi-l  m 
nally, setting � �min�ℓ := log �

� oof. 
2� completes the pr □

For the ℓ� defned in Theorem 3.2, it is �-distance of node � and
in the meantime involves the topological uniqueness of node �. 
Moreover, the performance can be further improved by tuning the 
hyperparameter � . 

3.3 Universal Difusion Function 
As we know, the difusion model defned by the symmetrically 
normalized Laplacian matrix L = I − D−1/2AD−1/2 

is derived from
Graph Heat Equation [9, 37], i.e.,

dH� 
= −LH� , and H0 = X, (1)

d� 

where H� is the node status of graph G at time � . By solving the
above diferential function, we have 

∞∑ 
H� = e−�L = e−� (I−Ã

 ) = e−�
� ℓ Ã ℓ

, (2)

ℓ ! 
ℓ=0 

where Ã = D−1/2AD−1/2. In this regard, the underlying difusion
follows the Heat Kernel PageRank (HKPR) function as

� (�, ℓ) = e−� �
ℓ 

(3)

ℓ ! 
,

where � ∈ Z+ 
is the parameter. However, � (�, ℓ) is neither expres-

sive nor general enough to act as the universal difusion function 
for real-world graphs, hinted by the following graph property. 

Property 3.1 ([9]). For graph G with average degree �G, we have
1 − Δ� = � ( √1 ) where Δ� is the spectral gap of G.

�G 

1725



WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

� = 1.1, � = 0.05 � = 0.5, � = 0 � = 5.0, � = 1.0 
0.1 0.6 0.2 

0.4 
0.1 

0.2 

0 0 0

0 5 10 15 20 0 1 2 3 4 5 6 7 8 9 10 0 3 6 9 12 15 
ℓ ℓ ℓ 

(a) Smooth (b) PPR (c) HKPR

Figure 1: Three exemplary expansion tendency of GHD. 

For the difusion matrix P defned on G, we have � = 1 − Δ� .
Meanwhile, according to the analysis of Theorem 3.2, we know that 
Pℓ [�, �] − � (�) = 

Í�
�=2 �� �� ��

ℓ 
, representing the convergence, is

(usually) dominated by �ℓ . As a result, difusion on graphs with dif-
ferent densities, i.e., �G, converges at diferent paces. In particular,
sparse graphs with small �G incurring large � tend to incorporate
neighbors in a long range while dense graphs with large �G in-

curring small � are prone to aggregate neighbors not far away. In 
addition, it has been widely reported in the literature [14, 23] that 
diferent graphs ask for diferent difusion functions, which is also 
verifed by our experiments in Section 5.2. 

To serve the universal purpose, a qualifed difusion function 
should be able to (i) expand smoothly in long ranges, (ii) decrease 
sharply in short intervals, and (iii) peak at specifed hops, as re-
quired by various graphs accordingly. Clearly, the HKPR function 
in (3) fulflls the latter two requirements but fails the frst one since 
it decreases exponentially when ℓ ≥ � . One may propose to con-
sider Personalized PageRank (PPR). However, the PPR function is
monotonically decreasing and thus cannot reach condition (iii). 

Inspired by the above analysis, we try to ameliorate � (�, ℓ) to a 
universal difusion function with a controllable change tendency for 
general purposes. To this end, we extend the graph heat difusion 
Equation (3) by introducing an extra power parameter � ∈ R+ 

and

devise our General Heat Difusion (GHD) function as

�ℓ 
� (�, �, ℓ) = (ℓ !)� (4) · �

for the difusion weight at the ℓ-th hop, where � ∈ R+ 
is the new

heat parameter and � = 
Í∞

(ℓ
� 
! 
ℓ 

)� is the normalization factor.ℓ=0 
As desired, GHD can be regarded as a general extension of the 

graph heat difusion model, and parameters � and � together de-
termine the expansion tendency. In particular, it is trivial to verify 
that GHD is degraded into HKPR when � = 1, and GHD becomes 
PPR when � = 0. As illustrated in Figure 1, by setting diferent � 
and � combinations, GHD is able to exhibit smooth, exponential 
(i.e., PPR), or peak expansion (i.e., HKPR) tendency. 

3.4 Difusion Model Design 
Upon �-distance and difusion function UDF, our node-wise difu-
sion model (NDM) can be concreted. Specifcally, given a target set 
T ⊆ V , the representation ZT under NDM is calculated as

∑� 

ZT = UΓPℓ X, (5) 
ℓ=0 

Huang et al. 

Algorithm 1: Node-wise Difusion Model

Input: Graph G, feature matrix X, target set T ,
and hyperparameters � , � , � 

Output: Representation ZT
1 �max ← max� ∈T {�� };l √ m 

� �min�max2 � ← log� ;
2� 

3 � is calculated according to (4); 

Γ ← I[T , ·], ZT ← 0 | T |×� ;4 

5 for ℓ ← 0 to � do
6 U ← Diag{� (�, �, ℓ) : ∀� ∈ T };
7 ZT ← ZT + UΓ;
8 Γ ← ΓP, ℓ ← ℓ + 1;

9 ZT ← ZT X;
10 return ZT ;

where � = max{ℓ� : ∀� ∈ T }, U = Diag{� (�, �, ℓ) : ∀� ∈ T } ∈
R | T |× |T | is a diagonal matrix, and Γ = I[T , ·] ∈ R | T |×� 

is the indi-
cator matrix, i.e., Γ [�, �] = 1 if T [�] = � and Γ [�, �] = 0 otherwise. 

The pseudo-code of NDM is presented in Algorithm 1. NDM 
frst fnds the largest degree �max for nodes T , and computes the
corresponding �-distance as �. Then, NDM accumulates the weights 
of neighbors within � ranges for each node � ∈ T , recorded as 
ZT . Note that U[�,�] = 0 if ℓ > �. Finally, representation ZT is

calculated by multiplying the feature matrix X.

Time Complexity. It takes � (�) time to calculate � using the
iterative methods [11], and hence computing � take � (� + |T |) 
time. Matrix multiplications UΓ and ΓP dominate the running time,

which takes time complexities of � (� |T |) and � (� |T |), respec-
tively. Therefore, as it takes � (� |T |) time to compute � T X, the
total time complexity of NDM is � ((� + �)� |T | + � |T |). 

4 OPTIMIZATION IN NODE 
REPRESENTATION LEARNING 

Algorithm 1 in Section 3 presents a general node-wise difusion 
model. However, it is yet optimal to be applied to reality. In this 
section, we aim to instantiate NDM in a practical manner and 
optimize the procedure of feature propagations. 

4.1 Instantiation of NDM 

Practical Implementation of �-Distance. Calculating the �-
distance of each node is one of the critical steps in NDM, which 
requires the second largest eigenvalue � of the difusion matrix. 
However, it is computationally expensive to compute � for large 
graphs. To circumvent the scenario, we employ property 3.1 to 
substitute � without damaging the efcacy of NDM. 

As we analyze in Section 3.3, according to Property 3.1, we 
borrow a correction factor �G specifc for graph G to ensure � =
1 − Δ� = √�

� 
G

G 
. Meanwhile, for the sake of practicality, we could

′
merge hyperparameter � and �G into one tunable parameter � to
control the bound of �-distance ℓ� such that√ 2� 2� 

ln − ln � ln� �min�� 
√ √ 

�min���min�� ′ ℓ� = log� = √ := � √ . (6)

2�
ln �G − ln�G ln �G 
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Figure 2: Weight Distribution of Neighbors. 

Important Neighbor Identifcation and Selection. NDM in
Algorithm 1 aggregates all neighbors during difusion for each node, 
which, however, is neither efective nor efcient. The rationale is 
twofold. 

First, it is trivial to see that the sum of weights in the ℓ-th hopÍ
is � ∈V � (�, �, ℓ) (D−1A)ℓ [�, �] = � (�, �, ℓ). If � nodes are vis-

ited, the average weight is Θ( � (�,�,ℓ ) ), i.e., the majority of nodes� 
contribute negligibly to feature aggregations and only a small por-
tion of neighbors with large weights matters. Second, as found 
in [28, 40], input data contain not only the low-frequency ground 
truth but also noises that can originate from falsely labeled data or 
features. Consequently, incorporating features of those neighbors 
could potentially incur harmful noises. Therefore, it is a necessity 
to select important neighbors and flter out insignifcant neighbors. 

Based on the above analysis, we aim to identify important neigh-
bors for target node �. For ease of exposition, we frst defne the 
weight function � (ℓ,�, �) = � (�, �, ℓ)Pℓ [�, �] to quantify the im-

portance of neighbor node � to target node �, and then formalize 
the concept of �-importance neighbor as follows.

Defnition 4.1 (�-Importance Neighbor). Given a target node �
and threshold � ∈ (0, 1), node � is called �-importance neighbor of 
� if ∃ℓ ∈ {0, 1, . . . , ℓ� }, we have � (ℓ,�, �) ≥ �.

Thanks to the good characteristic of NDM, a sufcient number 
of random walks (RWs) are able to identify all such �-importance

neighbors with high probability, as proved in the following lemma. 

Lemma 4.2. Given a target node �, threshold � ∈ (0, 1), and
failure probability � ∈ (0, 1), assume � (ℓ,�, �) ≥ �. Suppose

2�2 (ℓ )
� = ⌈ log( 1 )⌉ RWs are generated from � and visit � for � times� 

� (�,�,ℓ )�
� �� 

� at the ℓ-th step. For the weight estimation �ˆ(ℓ,�, �) = 
(ℓ ) 
,

� 
we have � � ��� Ü Ü � � (ℓ,�, �)

Pr �ˆ(ℓ,�, �) ≤ ≤ �, 
� 

0≤ℓ ≤ℓ� {� : � (ℓ,�,�)≥� } 

where � > 1 controls the approximation.

Lemma 4.2 afrms that sufcient RWs could capture �-
importance neighbors with high probability. However, there still 
contains defciencies. In particular, along with those �-important 
neighbors, many insignifcant neighbors will be inevitably selected. 
For illustration, we randomly choose one target node on dataset 
Amazon and select its neighbors using RWs. We observe that 10.6% 
neighbors contribute to 99% weights, and the rest 89.4% neighbors 
share the left 1% weights, as shown in Figure 2. The amount of those 

Algorithm 2: NIGCN 

Input: Graph G, feature matrix X, target set T ,
′

parameters � and � , hyperparameters � , � , � , � 
Output: Representation ZT

2�2 
1 �G ← 2� 

, � ← ⌈ log( 1 )⌉, ZT ← 0 | T |×� ;� � �� 
2 for � ∈ T do& ' 

2� 
ln √ 
′ �

min
�� 

3 ℓ� ← � √ ;
ln ΔG 

4 for � ← 1 to � do
5 Generate a random walk from node � with length ℓ� ;

6 if � is visited at the ℓ-th step then 
� (�,�,ℓ )

7 �� ← �� + 
� ; 

8 S ← S ∪ {� }; 
19 if |S| ≥ then break;
�2 

10 for � ∈ S do z� ← z� + �� · x� ;
11 return ZT ;

insignifcant neighbors could unavoidably impair the representa-
tion quality. To alleviate the defciency, we propose to preserve the

1 1
frst-� neighbors with � = 

�2
. 

To explain, in the ℓ-th hop, each �-important neighbor will be 
� 

selected with probability at least 
� (�,�,ℓ ) , and there are at most 

� (�,�,ℓ ) 
important neighbors. Thus �-important neighbors from� 

the ℓ-th hop will be picked after at most � 2 (�,�,ℓ ) 
random selections

�2 

in expectation. By summing up all ℓ� hops, we have∑ℓ� � 2 (�,�,ℓ ) ∑ℓ� � (�,�,ℓ ) 1≤ = 
ℓ=0 �2 ℓ=0 �2 �2 .

Notice that neither RWs selection nor frst-� selection is suitable 
to solely function as stop conditions. As stated, RW inevitably incurs 
substantial unimportant neighbors, while frst-� selection alone is 
not bound to terminate when no sufcient neighbors exist. Hence, 
they compensate each other for better performance. As evaluated 
in Section 5.4, frst-� selection further boosts the efectiveness 
notably. 

4.2 Optimized Algorithm NIGCN 
We propose NIGCN in Algorithm 2, the GCN model by instan-
tiating NDM. We frst initialize the number � of RWs according 
to Lemma 4.2. Next, we generate length-ℓ� RWs for each � ∈ T .
If neighbor � is visited at the ℓ-th step, we increase its weight ��
by � (�,�,ℓ ) 

and store it into set S. This procedure terminates if
� 

either the number of RWs reaches � or the condition |S| ≥ is
�2 

met. Afterward, we update on z� (Line 10). Eventually, the fnal
representation ZT is returned once all |T | target nodes have been
processed. 

Accordingly, for a target node � in T , NIGCN is formulated as Í Íℓ� � (�,�,ℓ )��(ℓ )z� = ·x�, (7)� ∈{ |RW(N (0) ∪N (1) ∪···∪N (ℓ� ) ) |≤� } ℓ=0 � � � � 

1
One may propose to adopt top-� neighbors. However, top-� selection would incur 
enormous computation overheads since it requires sorting all neighbors by weights. 

1 
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Table 1: Time complexity (� is the batch size, � is the sample 
size in one hop, � is the propagation length, and � ′ is the 
number of model layers). 

GNN Method Preprocessing Training

GraphSAGE - � |T |�� � 2
� � ���� GraphSAINT - � + ��� 2

� � � 
FastGCN - � � |T |� � + � |T |� 2

� 
ShaDow-GCN - � |T |�� + � ′ �� 2

� 
APPNP - � ��� + � ′ �� 2

� 
√

GBP � 
� ��� � | T | log(��)�/� � 

� 
� 
� ′ |T |� 2

� 
� � �2�� � � 

AGP � � � ′ |T |� 2
� � � � � 

NDLS � ��� � � ′ |T |� 2
� � 

�� � � 
GRAND+ � � ��� + � ′ ��� 2

� 
� � � 

NIGCN � 
� � | T | � 

log 1 � � ′ |T |� 2
� 

� �� 

where RW(N (0) ∪N (1) ∪· · ·∪N (ℓ� ) ) is the neighbor set identifed� � � 
by RWs within ℓ� hops, | · |≤� indicates the frst-� neighbors,Íℓ� � (�,�,ℓ )� (ℓ )� 
and is the total estimated weights for selected 

ℓ=0 � 
neighbor � . 

Time Complexity. For each node �, at most � RWs of length ℓ� are

generated at the cost of � (�ℓ� ), and the total number of neighbors
is bounded by � (�ℓ� ), which limits the cost on the feature update
to � (�ℓ� � ). The total cost is � ((� + 1)�ℓ� ) for each target node.
Let � = max{ℓ� : ∀� ∈ T }. By replacing � = � ( 1 

log( 1 )), the� �� 
� | T | � 

resulting time complexity of NIGCN is � ( log 1 ).� �� 

4.3 Time Complexity Comparison 
�-importance neighbors play a crucial role in feature aggrega-
tions. We assume that qualifed representations incorporate all 
�-importance neighbors with high probability. When capturing 
such �-importance neighbors, we analyze and compare the sam-

pling complexities of 9 representative models
2 
with NIGCN, as

summarized in Table 1. 
GRAND+ [14] estimates the propagation matrix Π during prepro-

cessing with error bounded by �max at the cost of � ( ( |U ′ |+| T | )� )�max

where U ′ is a sample set of unlabeled node set U = V \ T . To
yield accurate estimations for �-importance neighbors, �max is

set �max = Θ(�) and the resulting time complexity of prepos-
sessing is � ( �� ). According to [14], its training complexity is � 
� (��� + � ′ ��� 2).

′ AGP [36] provides an accurate estimation for node � if � (�) > � 
for each dimension of feature matrix X, denoted as x = X[·, �] for � ∈
{0, . . . , � −1} where ∥x∥1 ≤ 1, � =

Í�
ℓ=0 � (ℓ ) (D−� AD−� )ℓ x, and � ′ 

is an input threshold. As proved in [36], the time cost of AGP on one 

feature dimension is � ( �2 Í�
ℓ=0 ∥( 

Í 
� 
∞ 
=ℓ � (� ) ) (D−�AD−� )ℓ x∥1).� ′ 

We consider a simple case that � = 0 and � = 1. Suppose that 
1∥x∥1 = for some constant � ≥ 1, and  
𝐶

thus we have

 



 
(∑︁ 


 ∞ ) ∑︁ 

 𝑖 
 ∞ 
 ∑︁
1
 ℓ 
 
 


1
1
∞

𝑤 ( ) −( ) 

 

AD x

 = − ℓ𝑤 (𝑖 ) x = 𝑤 ((AD 𝑖 )) .

 

 1 𝐶
𝑖=ℓ 1 𝑖=ℓ 𝑖=ℓ

2
We assume the models without explicit sampling process with sampling rate 100%.

Huang et al. 

Í� Í∞
Since �=ℓ � (� ) ≥ 1, the time complexity of AGP is at leastℓ=0 

Θ( 
�� 
�2
′ ). To ensure nodes aggregating at least one �-importance 

neighbor � are estimated accurately, �x(�) = Ω(� ′) is required.
1

Since ∥x∥1 = for some constant � and there are � nodes, it is
� 

reasonably to assume that x(�) = � ( 1 ). Therefore, � ′ = � ( � ). In� � 
this regard, the time cost of AGP to capture �-importance neighbors 

�2�� 
for all � dimensions is � ( ).� 

GBP [6] derives representations for the �-th dimension as � =Í�
ℓ=0 � (ℓ ) D� (D−1A)ℓ D−� ·x, where x = X[·, �] for � ∈ {0, . . . , � −1}

and X is the feature matrix with � dimensions. GBP ensures that
the estimation �̂ (�) of � (�) for any � ∈ T is within an error 

� � � ′
of �� � , i.e., |� (�) − �̂ (�) | ≤ �� � 

′ 
, where the factor �� is due to

the term D� 
and does not impact sampling errors. The fnal time√ 

� | T | log(��)�/� 
complexity of GBP is 

�� 
′ . As discussed above, we � 

′
have �x(�) = Ω(� ′) and x(�) = � ( 1 ), which indicates that � =� 
� ( � ). Consequently, the time cost of GBP to capture �-importance � √� ��� � | T | log(��)�/� �
neighbors is � .� 

For the rest models in Table 1, we borrow the time complexity 
from their ofcial analyses since they either provide no sampling 
approximation guarantee or consider all neighbors without explicit 
sampling. As analyzed, time complexities of state of the art are 
linear in the size of the graph, while that of NIGCN is linear in 
the size of the target set T . In semi-supervised classifcation with 
limited labels, we have |T | ≪ �, which confrms the theoretical 
efciency superiority of NIGCN. 

Parallelism. NIGCN derives the representation of every target
node independently and does not rely on any intermediate repre-
sentations of other nodes. This design makes NIGCN inherently 
parallelizable so as to be a promising solution to derive node rep-
resentations for massive graphs since they can process all nodes 
simultaneously. Further, this enables NIGCN scalable for supervised 
learning as well. 

5 EXPERIMENT 
In this section, we evaluate the performance of NIGCN for semi-

supervised classifcation in terms of efectiveness (micro F1-scores) 
and efciency (running times). 

5.1 Experimental Setting 
Datasets. We use seven publicly available datasets across various
sizes in our experiments. Specifcally, we conduct transductive learn-
ing on the four citation networks, including three small citation
networks [33] Cora, Citeseer, and Pubmed, and a web-scale cita-
tion network Papers100M [17]. We run inductive learning on three
large datasets, i.e., citation network Ogbn-arxiv [17], social network 
Reddit [44], and co-purchasing network Amazon [44]. Table 6 in 
Appendix A.2 summarizes the statistics of those datasets. Among 
them, Papers100M is the largest dataset ever tested in the literature. 

For semi-supervised classifcation with limited labels, we ran-
domly sample 20 nodes per class for training, 500 nodes for vali-
dation, and 1000 nodes for testing. For each dataset, we randomly 
generate 10 instances and report the average performance of each 
tested method. 

Baselines. For transductive learning, we evaluate NIGCN against
13 baselines. We categorize them into three types, i.e., (i) 2 coupled

1728



Node-wise Difusion for Scalable Graph Learning WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Table 2: F1-score (%) of transductive learning. 

Methods Cora Citeseer Pubmed Papers100M 

D
e
c
o
u
p
l
e
d

 
S
a
m
p
l
i
n
g

 C
o
u
p
*
 

GCN 78.91 ± 1.87 69.11 ± 1.46 78.05 ± 1.64 OOM 
GAT 80.22 ± 1.48 69.35 ± 0.93 78.82 ± 1.90 OOM 

GraphSAGE 76.67 ± 2.21 67.41 ± 1.77 76.92 ± 2.84 OOM 
GraphSAINT 74.76 ± 2.86 67.51 ± 4.76 78.65 ± 4.17 OOM 
ShaDow-GCN 73.83 ± 2.46 63.54 ± 1.11 71.79 ± 2.92 OOM 

SGC 76.79 ± 1.82 70.49 ± 1.29 74.11 ± 2.55 48.59 ± 1.77 
APPNP 81.16 ± 0.77 69.83 ± 1.27 80.21 ± 1.79 OOM 
PPRGo 79.01 ± 1.88 68.92 ± 1.72 78.20 ± 1.96 OOM 
GDC 80.69 ± 1.99 69.69 ± 1.42 77.67 ± 1.65 OOM 
GBP 81.17 ± 1.60 70.18 ± 1.90 80.09 ± 1.51 44.91 ± 1.23 
AGP 77.70 ± 2.04 67.15 ± 2.04 78.97 ± 1.33 46.71 ± 1.99 
NDLS 81.39 ± 1.55 69.63 ± 1.69 80.38 ± 1.41 OOM 
GRAND+ 83.48 ± 1.18 71.42 ± 1.89 79.18 ± 1.93 OOM 
NIGCN 82.13 ± 1.08 71.35 ± 0.82 80.90 ± 2.02 49.81 ± 1.10 

GNN methods GCN [21] and GAT [35], (ii) 3 sampling-based meth-

ods GraphSAGE [16], GraphSAINT [44], and ShaDow-GCN [43], 
and (iii) 8 decoupled GNN methods SGC [38], APPNP [22], and its 
improvement PPRGo [3], GDC [23], GBP [6], AGP [36], and two 
recently proposed NDLS [46], and GRAND+ [14]. 

For inductive learning, we compare NIGCN with 7 baselines. 
Among the 13 methods tested in transductive learning, 7 of them 
are not suitable for semi-supervised inductive learning and thus 
are omitted, as explained in Section A.2. In addition, we include an 
extra method FastGCN [4] designed for inductive learning. Details 
for the implementations are provided in Appendix A.2. 

Parameter Settings. For NIGCN, we fx � = 2, � = 0.01 and tune 
′

the four hyperparameters � , � , � , and �. Appendix A.2 provides 
the principal on how they are tuned and values selected for all 
datasets. As with baselines, we either adopt their suggested param-

eter settings or tune the parameters following the same principle 
as NIGCN to reach their best possible performance. 

All methods are evaluated in terms of micro F1-scores on node 
classifcation and running times including preprocessing times (if 
applicable) and training times. One method is omitted on certain 
datasets if it (i) is not suitable for inductive semi-supervised learning 
or (ii) runs out of memory (OOM), either GPU memory or RAM. 

5.2 Performance Results 
Table 2 and Table 3 present the averaged F1-scores associated with 
the standard deviations in transductive learning on Cora, Citeseer, 
Pubmed, and Papers100M and inductive learning on Ogbn-arxiv, 
Reddit, and Amazon respectively. For ease of demonstration, we 
highlight the largest score in bold and underline the second largest 
score for each dataset. 

Table 2 shows that NIGCN achieves the highest F1-scores on 
datasets Pubmed and Papers100M and the second highest scores on 
Cora and Citeseer. Meanwhile, NIGCN obtains the largest F1-scores 
on the three datasets Ogbn-arxiv, Reddit, and Amazon, as displayed 
in Table 3. In particular, the improvement margins over the second 
best on the three datasets are 0.93%, 0.78%, and 2.67% respectively. 
These observations indicate that NIGCN performs better on rela-
tively large graphs. Intuitively, nodes in large graphs are prone to 
reside in various structure contexts and contain neighbors of mixed 

Table 3: F1-score (%) of inductive learning. 

Methods Ogbn-arxiv Reddit Amazon 

GraphSAGE 51.79 ± 2.16 89.16 ± 1.16 47.71 ± 1.07 
FastGCN 56.45 ± 1.69 92.43 ± 1.00 OOM 
SGC 56.03 ± 1.96 92.64 ± 1.02 41.32 ± 1.10 
PPRGo 52.12 ± 3.22 78.21 ± 3.07 60.10 ± 1.17 
GBP 54.01 ± 2.55 76.09 ± 1.75 60.78 ± 1.04 
AGP 55.89 ± 1.47 92.18 ± 0.88 55.72 ± 1.68 
NDLS 54.23 ± 2.49 85.25 ± 1.24 50.10 ± 2.09 
NIGCN 57.38 ± 1.31 93.42 ± 0.48 63.45 ± 0.70 

quality, and the NDM difusion model and the sampling techniques 
(important neighbor identifcation and selection) utilized by NIGCN 
are able to take advantage of such node-wise characteristics. 

The most competitive method, GRAND+ achieves the best on 
datasets Cora and Citeseer. Nonetheless, as shown in Figure 6 ( 
Section A.3), GRAND+ runs signifcantly slower than NIGCN does. 
For the three sampling-based methods, i.e., GraphSAGE, Graph-
SAINT, and ShaDow-GCN, they acquire noticeably lower F1-scores 
than NIGCN does. This is due to that they sample neighbors and 
nodes randomly without customizing the sampling strategy to-
wards target nodes, as introduced in Section 2. Meanwhile, the 
clear performance improvement of NIGCN over GBP and AGP 
clearly supports the superiority of our general heat difusion func-
tion GHD over the difusion models used in GBP and AGP (i.e., PPR 
and HKPR), as well as the efcacy of our difusion model NDM. 

Overall, it is crucial to consider the unique structure characteris-
tic of each individual node in the design of both the difusion model 
and neighbor sampling techniques for node classifcations. 

5.3 Scalability Evaluation on Large Graphs 
In this section, we evaluate the scalability of tested methods by 
comparing their running times on the four large datasets, Ogbn-
arxiv, Reddit, Amazon, and Papers100M. In particular, the running 
times include preprocessing times (if applicable) and training times. 
For a comprehensive evaluation, we also report the correspond-
ing running times on the three small datasets Cora, Citeseer, and 
Pubmed in Appendix A.3. 

As shown in Figure 3, NIGCN ranks third with negligible lags 
on dataset Ogbn-arxiv and dominates other methods noticeably 
on datasets Reddit, Amazon, and Papers100M. Meanwhile, its ef-
fciency advantage expands larger as datasets grow. Specifcally, 
on dataset Ogbn-arxiv, NIGCN, SGC, and AGP all can fnish run-
ning within 1 second. The speedups of NIGCN against the second 
best on datasets Reddit, Amazon, and Papers100M are up to 4.12×, 
8.90×, and 441.61× respectively. In particular, on the largest dataset 
Papers100M, NIGCN is able to complete preprocessing and model 
training within 10 seconds. The remarkable scalability of NIGCN 
lies in that (i) NIGCN only generates node representations for a 
small portion of labeled nodes involved in model training, and (ii) 
neighbor sampling techniques in NIGCN signifcantly reduce the 
number of neighbors for each labeled node in feature aggregation, 
as detailed analyzed in Section 4.1. This observation strongly sup-
ports the outstanding scalability of NIGCN and its capability to 
handle web-scale graphs. 
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FastGCN SGC PPRGo GBP AGP NDLS NIGCNGraphSAGE 

running time (sec) running time (sec) running time (sec) running time (sec) 

(a) Ogbn-arxiv (b) Reddit (c) Amazon (d) Papers100M 

Figure 3: Running times on large graphs (best viewed in color). 

Table 4: Performance of NIGCN variants. 

Variants NIGCNHKPR NIGCNUDL NIGCNNFK NIGCN 

F1-score (%) 61.60 ± 0.82 61.32 ± 1.32 52.76 ± 1.14 63.45 ± 0.70 
Disparity (%) -1.85 -2.13 -10.69 0 

Table 5: F1-score (%) vs. label percentages. 

Methods 4‰ 8‰ 1% 2% 5% 

PPRGo 63.68 ± 1.13 66.02 ± 0.89 66.62 ± 0.86 67.54 ± 0.67 OOM 
GBP 64.57 ± 0.66 68.31 ± 0.86 69.22 ± 0.71 71.56 ± 0.54 73.57 ± 0.45 
NIGCN 67.24 ± 0.60 70.93 ± 0.75 71.49 ± 0.91 73.19 ± 0.52 74.02 ± 0.31 

5.4 Ablation Study 

Variants of NIGCN. To validate the efects of difusion model 
NDM and the sampling techniques in NIGCN, we design three 
variants of NIGCN, i.e., NIGCNHKPR, NIGCNUDL, and NIGCNNFK. 
Specifcally, (i) NIGCNHKPR adopts heat kernel PageRank (HKPR) 
instead of general heat difusion GHD in NDM as the difusion 
function, (ii) NIGCNUDL unifes the difusion length for all labeled 
nodes in contrast with the node-wise difusion length in NDM, 
and (iii) NIGCNNFK removes the frst-� limitation on the number 
of neighbors. We test all variants on Amazon and Table 4 reports 
the corresponding F1-scores. For clarifcation, we also present the 
F1-score disparity from that of NIGCN. 

First of all, we observe that the F1-score of NIGCNHKPR is 1.04% 
smaller than that of NIGCN. This verifes that HKPR is not capable 
of capturing the structure characteristics of Amazon and NDM 
ofers better generality. Second, NIGCNUDL acquires 1.32% less F1-
scores compared with NIGCN. This suggests that difusion with cus-
tomized length leverages the individual structure property of each 
target node, which benefts the node classifcation. Last, NIGCNNFK 
achieves 9.88% smaller F1-score than NIGCN does, which reveals 
the potential noise signals from neighbors and recognizes the im-

portance and necessity of important neighbor selection. 

Label Percentages Varying. To evaluate the robustness of NIGCN 
towards the portion of labeled nodes, we test NIGCN by varying 
the label percentages in {4‰, 8‰, 1%, 2%, 5%} on Amazon

3 
and com-

pare it with two competitive baselines PPRGo and GBP. Results 
in Table 5 and Figure 4 report the F1-scores and running times 
respectively. 

As displayed in table 5, NIGCN achieves the highest F1-score 
with average 1.93% advantages over the second highest scores 
across tested percentage ranges. Moreover, Figure 4 shows that 

3
Papers100M contains only 1.4% labeled nodes which is insufcient for testing. 

running time (sec) 
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Figure 4: Running time. 
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Figure 5: Performance. 
We evaluate NIGCN by varying 
two parameters so as to test its 
sensitivity towards the change of 
the two parameters. The results 
present that NIGCN is more 

sensitive to aggregation length 
than the signifcance metric.] 

NIGCN notably dominates the other two competitors in efciency. 
In particular, NIGCN completes execution within 3 seconds and 
runs up to 5× to 20× faster than GBP and PPRGo in all settings re-
spectively. These fndings validate the robustness and outstanding 
performance of NIGCN for semi-supervised classifcation. 

Parameter Analysis. The performance gap between NIGCNHKPR 
and NIGCN has shown that inappropriate combination of � and � 
degrades the performance signifcantly. Here we test the efects of 
hyperparameters � and � in control of the difusion length ℓ� and 
the number of neighbors, respectively. 

On Amazon, we select � = 1.5, denoted as �� and � = 0.05, 
denoted as �� . We then test � ∈ {0.25�� , 0.5�� , 2�� , 4�� } and � ∈ 
{0.25�� , 0.5�� , 2�� , 4�� } and plot the results in Figure 5. As shown, 
F1-score improves along with the increase of � until � = �� and then 
decreases slightly as expected. Similar patterns are also observed in 
the case of �. Specifcally, NIGCN exhibits more sensitivity towards 
the change of � than that of �. This is because NIGCN is able to 
capture the most important neighbors within the right �-distance 
with high probability when changing the threshold of �-importance 
neighbors, which, however, is not guaranteed when altering the 
bound of �-distance. 

6 CONCLUSION 
In this paper, we propose NIGCN, a scalable graph neural network 
built upon the node-wise difusion model NDM, which achieves 
orders of magnitude speedups over representative baselines on 
massive graphs and ofers the highest F1-score on semi-supervised 
classifcation. In particular, NDM (i) utilizes the individual topolog-
ical characteristic and yields a unique difusion scheme for each 
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target node and (ii) adopts a general heat difusion function GHD 
that adapts well to various graphs. Meanwhile, to optimize the ef-

ciency of feature aggregations, NIGCN computes representations 
for target nodes only and leverages advanced neighbor sampling 
techniques to identify and select important neighbors, which not 
only improves the performance but also boosts the efciency signif-
cantly. Extensive experimental results strongly support the state-of-
the-art performance of NIGCN for semi-supervised classifcation 
and the remarkable scalability of NIGCN. 
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A APPENDIX 

A.1 Proofs 
Proof of Lemma 4.2. Before the proof, we frst introduce Cher-

nof Bound [10] as follows. □ 

Lemma A.1 (Chernoff Bound [10]). Let �� be an independent 
variable such that for each 1 ≤ � ≤ � , �� ∈ [0, 1]. Let � = 1 Í� �� .� � 
Given � ∈ (0, 1), we have 

Pr[E[� ] − � ≥ � ] ≤ e−�� 
2/2E[� ] . (8) 

Let � be an �-importance neighbor of � in the ℓ-th hop. Suppose 
(ℓ ) 2�2 

� has been visited � times after � = log(�� ) WRWs are � � �� 
� (�,�,ℓ )�� 

generated. Let �ˆ(ℓ,�, �) = 
(ℓ ) 

be the weight estimation of Θ 
� (ℓ,�, �). As Chernof indicates, we have h i� (ℓ,�, �)

Pr � (ℓ,�, �) − �ˆ(ℓ,�, �) ≥ 
� 

− �� (ℓ,�,�) 2 
− �� /(2� (ℓ,�,�) ) 

�2 2�2≤ e ≤ e 

2�2 
� − log( �� ) · �� 

� �� 2�2≤ e = . 
�� 

� (ℓ,�,� )
Thus �ˆ(ℓ,�, �) ≥ holds with probability at least 1 − �� .� �� 
Within � hops, the total weight is ∑� � ∑ ∑ 

� (ℓ ) (D−1A)ℓ [�, �] = � (ℓ ) = �� . 
ℓ=0 �∈V ℓ=0 

Thus, the total number of �-importance neighbors of � is bounded 
by �� . By union bound, the total failure probability within � hops� 
is no more than �� �� = � , which completes the proof. □

�� � 

A.2 Experimental Settings 
Dataset Statistics. Table 6 presents the detailed statistics of the 7 
tested datasets. 

Running Environment. All experiments are conducted on a Linux 
machine with an NVIDIA RTX2080 GPU (10.76GB memory), Intel 
Xeon(R) CPU (2.60GHz), and 377GB RAM. 

Implementation Details. By following the state of the art [6, 14, 
36], we implement and NIGCN in PyTorch and C++. The implemen-

tations of GCN and APPNP are obtained from Pytorch Geometric
4
, 

and the other fve baselines are obtained from their ofcial releases. 

Parameter Settings. We mainly tune � , � , � , and � for NIGCN. 
Table 7 reports the parameter settings adopted for each dataset. 
According to our analysis in Section 3.2, we tune � in [0.9, 1.5] and 
� in [0.01, 0.1] for sparse datasets, i.e., Cora, Citeseer, and Pubmed 
to capture long-range dependency by a smooth expansion tendency; 
we tune � in [1, 10] and � in [0.5, 1.5] to provide refned HKPR-alike 
properties, i.e., reaching peak at certain hop. For extremely dense 
dataset Amazon, we tune � in [0.8, 1.2] and � in [1, 1.5] to realize 
optimized PPR-alike properties, i.e., exponentially decrease in short 
distance. For � and �, we search � in [0.5, 2] to fnd the best scaling 
factor for each dataset and tune � in the range of [0.005, 0.05]. As 
stated, we fx � = 2 and � = 0.01. 

4
https://github.com/pyg-team/pytorch_geometric 

Huang et al. 

Table 6: Dataset details. 

Dataset #Nodes (�) #Edges (�) #Features (� ) #Classes 

Cora 2,708 5,429 1,433 7 
Citeseer 3,327 4,732 3,703 6 
Pubmed 19,717 44,338 500 3 
Ogbn-arxiv 169,343 1,166,243 128 40 
Reddit 232,965 114,615,892 602 41 
Amazon 1,569,960 132,169,734 200 107 
Papers100M 111,059,956 1,615,685,872 128 172 

Table 7: Hyper-parameters of NIGCN. 

Dataset � � � � � � 

Cora 1.15 0.06 1.7 0.02 2 0.01 
Citeseer 1.1 0.04 1.2 0.03 2 0.01 
Pubmed 1.15 0.1 1.9 0.01 2 0.01 
Ogbn-arxiv 9.0 0.85 1.5 0.008 2 0.01 
Reddit 4.0 1.1 0.8 0.008 2 0.01 
Amazon 0.9 1.15 1.5 0.05 2 0.01 
Papers100M 7.4 1.3 0.6 0.01 2 0.01 

Baselines for Inductive Learning. As stated, several baselines 
tested in transductive learning are not suitable for semi-supervised 
inductive learning. For example, GraphSAINT samples a random 
subgraph as the training graph and demands each node in the sub-
graph owns a label [44]. Nonetheless, the percentages of labeled 
nodes are small due to semi-supervised setting on large graphs 
(Ogbn-arxiv, Reddit, and Amazon), which degrades the performance 
of GraphSAINT notably. GRAND+ needs to sample a subset test 
nodes for loss calculation during training, which, however, is con-
fict with the setting of inductive learning. 

A.3 Additional Experiments 
Figure 6 presents the running times of the 13 tested methods in 
transductive learning. As shown, the efciency of the tested meth-

ods on the three small datasets varies and there is no clear winners. 
In particular, AGP (resp. GCN) outperforms other methods on Cora 
and pubmed (resp. Citeseer). However, the F1-scores of AGP and 
GCN fall behind those of other models with a clear performance 
gap, as shown in Table 2. Recall that GRAND+ achieves the highest 
F1-scores on Cora and Citeseer, and our model NIGCN performs 
best on Pubmed. Nonetheless, GRAND+ runs up to 10× ∼ 20× 
slower than NIGCN does. 
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Figure 6: Running times on small graphs (best viewed in color). 
Fully described in Appendix A.3.] 
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