
Analyzing the Communication Clusters in Datacenters∗

Klaus-Tycho Foerster Thibault Marette Stefan Neumann
klaus-tycho.foerster@tu- marette@kth.se neum@kth.se

dortmund.de KTH KTH
TU Dortmund Stockholm, Sweden Stockholm, Sweden

Dortmund, Germany

Claudia Plant Ylli Sadikaj Stefan Schmid
claudia.plant@univie.ac.at ylli.sadikaj@univie.ac.at stefan.schmid@tu-berlin.de

Faculty of Computer Science and Faculty of Computer Science and TU Berlin
ds:Univie, University of Vienna UniVie Doctoral School Computer Berlin, Germany

Vienna, Austria Science, University of Vienna
Vienna, Austria

Yllka Velaj
yllka.velaj@univie.ac.at

Faculty of Computer Science,
University of Vienna

Vienna, Austria

ABSTRACT
Datacenter networks have become a critical infrastructure of our
digital society and over the last years, great eforts have been made
to better understand the communication patterns inside datacen-
ters. In particular, existing empirical studies showed that datacenter
trafc typically features much temporal and spatial structure, and
that at any given time, some communication pairs interact much
more frequently than others. This paper generalizes this study to
communication groups and analyzes how clustered the datacenter
trafc is, and how stable these clusters are over time. To this end,
we propose a methodology which revolves around a biclustering
approach, allowing us to identify groups of racks and servers which
communicate frequently over the network. In particular, we con-
sider communication patterns occurring in three diferent Facebook
datacenters: a Web cluster consisting of web servers serving web
trafc, a Database cluster which mainly consists of MySQL servers,
and a Hadoop cluster. Interestingly, we fnd that in all three clusters,
small groups of racks and servers can produce a large fraction of
the network trafc, and we can determine these groups even when
considering short snapshots of network trafc. We also show empir-
ically that these clusters are fairly stable across time. Our insights
on the size and stability of communication clusters hence uncover
an interesting potential for resource optimizations in datacenter
infrastructures.

∗Authors ordered alphabetically.

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583410

CCS CONCEPTS
• Networks → Data center networks; Network dynamics; •
Computing methodologies → Cluster analysis.

KEYWORDS
Data Center, Clustering, Network Trafc.

ACM Reference Format:
Klaus-Tycho Foerster, Thibault Marette, Stefan Neumann, Claudia Plant, Ylli
Sadikaj, Stefan Schmid, and Yllka Velaj. 2023. Analyzing the Communication
Clusters in Datacenters. In Proceedings of the ACM Web Conference 2023
(WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3543507.3583410

1 INTRODUCTION
With the popularity of data-centric and distributed applications, for
example in the context of artifcial intelligence, datacenter networks
have become a critical infrastructure of our digital society. Indeed,
these applications led to an explosive growth of communication
trafc over the last years, especially inside datacenters, pushing
datacenter networks to their capacity limits [32, 33].

Interestingly, however, datacenter trafc is not only growing
quickly, but also features much structure. Studying packet traces
collected from networking applications, researchers have found
that datacenter trafc matrices are often sparse and skewed [1, 6],
and exhibit locality [9], also over time [38, 39]. In other words,
packet traces from real world applications are generally far from
arbitrary or random, but are of fairly low entropy [2, 16, 20, 32].

The existence of such structure in communication trafc is attrac-
tive, and may be exploited for network provisioning and infrastruc-
ture optimizations [23]. Indeed, the networking community is cur-
rently putting great efort into designing protocols and algorithms
to optimize diferent layers of the networking stack to leverage the
trafc structure. These eforts include, e.g., learning-based trafc
engineering [35] and video streaming [26], self-adjusting optical

3022

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3543507.3583410
https://doi.org/10.1145/3543507.3583410
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583410&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Foerster et al.

networks [5, 15], or self-driving networks [21]. For instance, many
network optimizations exploit the presence of elephant fows [3].

This paper aims at an understanding of the clustered nature of the
communication trafc, going beyond the typically considered pair-
wise interactions [7, 16, 22, 32] and looking into communications
among groups. In particular, we wonder whether the communica-
tion trafc matrices typically observed in empirical studies feature
clusters of dense communication. We ask:

• How can communication clusters be efciently found algo-
rithmically?

• How large are communication clusters in datacenters, and
how is their size distributed?

• How stable are these communication clusters over time?

The answers to these questions have important implications on
the optimizability of resource allocations in datacenters [19]: dense
communication clusters may be allocated locally in the datacenter
(e.g., in the same rack or pod), which can signifcantly reduce com-
munication overheads and improve throughput. Furthermore, stable
clusters over time are attractive as frequent reoptimizations (i.e.,
reconfgurations such as, migrations or topological adaptions [17])
can be avoided.

The communication clusters we identify consist of groups of
senders and receivers that transmit a lot of data between each
other. As the groups of senders and receivers may be diferent, this
introduces an asymmetry in the clustering that we will have to take
into account in our methods. Additionally, it is highly likely that
some nodes appear in multiple clusters, e.g., some nodes may be
included in multiple receiver clusters because they require more
information than other nodes in the network.

We propose a methodology based on a biclustering approach,
allowing us to fnd the communication clusters described above
and allowing us to efciently identify groups of racks and servers
which communicate frequently over the datacenter network. Our
approach is optimized toward the standard precision and recall
metrics, whose defnitions we adapt to ft the network application
scenario, allowing us to study the cluster similarity over time.

A merit of our approach is that it only requires very little data:
we only require access to the Top �% of endpoint pairs that create
the most trafc. In particular, we do not require the exact amount
of trafc sent between these endpoints, which is difcult to ob-
tain in practice [10]. Additionally, our method does not require
any additional knowledge about the application running in the
datacenter.

We evaluate our method in an extensive case study. Since it is
known that the amount of structure available in a communication
trafc depends on the application [4, 32], we consider three diferent
trafc traces: one from a Web cluster, one from a Database cluster,
and one from a Hadoop cluster. The Web cluster consists of web
servers serving web trafc, the Database cluster mainly consists of
MySQL servers, and the Hadoop cluster is used for batch processing.
These traces have been made available to the research community
by Facebook [37], and are currently the largest datacenter data sets
available to the research community. We believe that our insights
generalize to many other datacenters as well, since the applications
we consider are widely deployed in practice.

We fnd that our approach can indeed efciently identify high-
quality trafc clusters, and we make several interesting observa-
tions. In particular, we fnd that small groups of racks and servers
often produce large fractions of the network trafc, and our ap-
proach can determine these groups even when considering short
snapshots of network trafc. We also show empirically that these
clusters are very stable across many time steps.

In summary, our contributions are:
• We present a systematic and efcient approach to identify possi-
ble dense clusters in communication trafc.

• We propose a methodology for employing precision and recall
metrics in the context of network trafc clustering. To the best
of our knowledge, this is the frst study of these metrics in this
context.

• We report on an extensive evaluation based on actual datacenter
packet traces (Web, Database, and Hadoop), showing that our
approach is efcient and can fnd high-quality clusters.

• We uncover that small clusters are responsible for a signifcant
amount of network trafc, and that these clusters are stable over
time. This suggests that an optimized allocation of communica-
tion endpoints in datacenters may have a signifcant impact on
the overall communication cost.

• Our methodology only requires a list of endpoint pairs which
cause a lot of trafc. We show empirically that this gives good
clusterings even when taking into account the absolute amounts
of trafc.

• As a contribution to the research community, and to ensure repro-
ducibility and facilitate follow-up work, our implementations are
available as open-source software.1 Our experimental datasets
and artifacts are available upon request.

2 FINDING HI-QUALITY TRAFFIC CLUSTERS
Now we describe our methodology. We start with a high-level
overview and then present the full details and parameter settings.

2.1 High-Level Overview
We start by giving an overview of our methodology and present
an illustration of our approach in Figure 1. The details and formal
defnitions follow in Section 2.2.

We assume that our input is a trafc trace, i.e., we obtain a
sequence of tuples (�, �,�,�) indicating that node � sent � bytes
to receiver � at a timepoint � .

Based on the trafc trace, we create a sequence of contiguous
and disjoint time steps [�� ,��+1). For each time step, we generate a
real-valued trafc matrix, where each entry (�, �) corresponds to
the total amount of trafc that was sent from node � to � in the
entire timeframe [�� ,��+1).

For each real-valued trafc matrix, we create a binary matrix by
thresholding, i.e., we set the Top �% largest entries in the trafc
matrix to 1 and we set all other entries to 0. Note that this cor-
responds to having a list of sender–receiver pairs that cause the
highest amounts of trafc during the time step.

Next, for each time step we apply a biclustering algorithm on the
time step’s binary matrix to obtain a biclustering. Informally (see
below for a formal defnition), the biclusterings reveal the groups
1https://github.com/tmarette/datacenterClusterAnalysis

3023

https://github.com/tmarette/datacenterClusterAnalysis

Analyzing the Communication Clusters in Datacenters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

traffic trace containing

all communications

<sender, receiver, #bytes, time>

<rack1, rack2, 50, >

<rack3, rack21, 3, >

<rack31, rack22, 201, >

<rack7, rack91, 109, >

<rack1, rack3, 73, >

<rack15, rack3, 393, >

T1
T2

T3
T4

T4
T4

Step 1:

Partition

timesteps

real-valued

traffic matrices

Step 2:

Thresholding

Step 3:

Bicluster

detection

Boolean

matrices

clustered

Boolean

matrices

Step 4:

Cluster

analysis

quality and

similarity of

commmunication

clusters over time

Figure 1: An overview of our approach. Given a trafc trace, we partition it into contiguous time steps for which we create
real-valued trafc matrices, where entries (�, �) correspond to the amount of trafc sent from node � to � . For each trafc
matrix, we create a binary matrix indicating the Top �% of sender–receiver pairs that created the most trafc. We apply our
biclustering algorithms on each of these binary matrices. We subsequently evaluate the resulting clusterings over time, also
taking into account the true amount of trafc that was sent.

of senders and receivers that communicate a lot during the time
step and they correspond to the communication clusters that we
are looking for. See Section 2.2 for a description of the biclustering
algorithms that we used.

Clearly, the above approach has merits, as well as drawbacks.
The main drawback is that we obtain our communication clusters
based on the binary matrices and not on the original trafc matrices;
indeed it is not clear whether the binary (rounded) trafc reveals
anything about weighted trafc. Hence, in our evaluation we need
to ensure that this approach allows us to draw conclusions about
the patterns in the weighted trafc. However, if we can show that
this is the case, this is also a merit of our method: in practice, it of-
ten creates signifcant overhead to store the entire trafc trace and
therefore people only subsample it [10, 32]. Our approach, on the
other hand, can be used even when we only obtain the binary matri-
ces as input. In other words, for our approach it sufces to know the
Top �% communication partners which can be obtained more ef-
ciently, for instance, using heavy hitters data structures [12, 29, 36].
This might make our methodology more applicable in settings in
which one aims to understand communication clusters without
creating too much overhead for the network.

We introduce three diferent measures to study the quality of
our clusters. First, we defne versions of precision and recall to
understand how well our communication clusters capture the in-
formation in the binary matrices. Second, we study the trafc inside
the biclustering to understand how well our biclusters, that were
derived on the binary matrices, represent the actual trafc from
the real-valued trafc matrices. This measure compares the trafc
sent between sender–receiver pairs from the biclusters with the
total trafc. Our experiments show that we typically obtain high
values for all three measures, indicating that we fnd high-quality
clusters for the binary matrices which also capture the real-valued
trafc information.

Furthermore, we introduce a similarity measure to study the
similarity of diferent biclusterings. This allows us to compare the
communication clusters that we obtain at diferent time steps. Our
experiments will show that these communication clusters are typi-
cally highly stable over time.

2.2 Detailed Approach
Next, we describe the implementation of our approach in full de-
tail. It will be convenient for us to consider unweighted/weighted
graphs rather than binary/real-valued matrices, as this allows us to
streamline our exposition. This is equivalent to using matrices by
identifying graphs with their adjacency matrices.

From trafc traces to weighted graphs. We assume we are
given a packet trace, or more specifcally, a sequence of packet
headers containing a timestamp and the amount of trafc that
server/rack � sent to server/rack � at a certain time. To study how
the trafc patterns develop over time, we partition the trafc into
time intervals of a certain duration, and we will refer to each of
these time intervals as time steps. For the following discussion we
assume that the duration � of a time step is fxed. This simplifes
our notation.

We represent the trafc during each time step � as a weighted
bipartite communication graph �� = (� ∪ � , �� ,��). Here, � is the
set of all racks/servers that send data over the network during the
entire time duration; similarly, � is the set of all racks/servers that
receive data during the entire time. We stress that if a rack/server
sends and receives data, it has two nodes in the graph: one in � ,
and one in � . Furthermore, �� is the set of edges at time step � . The
weight function �� : � ×� → R+ assigns to each pair (�, �) the total
amount of trafc that rack/server � sent to rack/server � during
time step � . We chose to represent the trafc as a bipartite graph as
fnding clusters in bipartite graphs is a well-studied problem [14, 28]
and it allows us to fnd non-trivial patterns of datacenter trafc.

3024

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Foerster et al.

From weighted graphs to unweighted graphs. As some of
our algorithms expect unweighted graphs, we also consider the
following thresholded unweighted graphs �� = (� ∪ � , ��

�). Here, �
� ∈ R is a threshold such that �� only contains edges of weight at
least � , i.e., �� = {(�, �) ∈ �� : � (�, �) ≥ � }. This can be interpreted �
as keeping all edges (�, �) for which � sent “a lot” of trafc to � .

Typically, we set the threshold � such that a desired fraction of
edges from �� remain. For example, if we set � to the 70%-percentile
of the non-zero edge weights in �� , then �� contains the largest �
30% of non-zero weight edges from �� . When setting � to one of
these percentiles, we write �� to denote the �-percentile for non-
zero weight edges in �� for � ∈ (0, 1). Note that if we pick large
values for � (e.g., � = 70%), this results in sparser graphs �

�� , and �
smaller values for � (e.g., � = 30%) result in denser graphs �

�� . For�
� = 0%, we keep all non-zero weight edges in �

�� .�
We discuss the choices for � that we use in our case study in

Section 2.3.
Clustering bipartite graphs. To fnd trafc patterns inside

our unweighted graphs, we propose a biclustering approach. More
concretely, given an unweighted bipartite graph � = (� ∪ � , �),
our algorithms compute a biclustering of � , i.e., they return sets
of biclusters (�1,�1), . . . , (�� ,��) such that �� ⊆ � and �� ⊆ � for
all � = 1, . . . , � .

Our algorithms (more details follow) pick the biclusters in such
a way that the induced subgraphs � [�� ,��] are dense; this corre-
sponds to sets of senders and receivers that communicate a lot of
data in the network. In other words, the nodes in a cluster �� receive
“a lot” of trafc from vertices in �� .

In our experiments, we compute a biclustering for each time
step � . More concretely, we apply our biclustering algorithms on
each graph �� for � = 1, . . . ,� , where � is the total number of time �
steps. This yields biclusterings (�1

� ,�1
�), . . . , (� � ,� �) for each time

� �
step � = 1, . . . ,� .

See Section 2.3 for the concrete algorithms that we use.
Measuring the quality of trafc clusters. Next, we introduce

the measures that we use to obtain insights into our data and to
assess the quality of the clusterings that we obtain.

Comparing graph snapshots. To compare two (unweighted) graph
snapshots �� and �

�
�
+1, we consider three diferent measures: �

(1) common= |�� ∩ �� +1 |/|�� ∪ �� +1 | · 100,
(2) appear= |�� +1 \ �� |/|�� ∪ �� +1 | · 100,
(3) disappear= |�� \ ��+1 |/|�� ∪ ��+1 | · 100.

These measures represent the percentage of edges that appear in
two consecutive graph snapshots, the percentage of edges that are
new, and the percentage of edges that disappear, resp.

Evaluating the quality of biclusterings. To evaluate the quality
of our biclusterings, we consider three diferent measures which,
taken together, give us a diferentiated picture on the quality of the
trafc clusters. While biclustering approaches have been applied
successfully in many applications in computer science, evaluating
these approaches typically requires an external validation which
is not available in our problem setting. An interesting measure for
the validity of a biclustering under variations of the input data set
is the stability index by Lee et al. [24], which is relevant for fnding
biclusters in data with numerical attributes. With the following
defnitions of trafc inside the biclustering, recall and precision, we

introduce a methodology to measure the quality of trafc clusters
that originate from thresholded communication graphs.

First, for a biclustering (�1,�1), . . . , (�� ,��) we say that its in-
duced bicliques are given by the set Ø�

bicl((�1,�1), . . . , (�� ,��)) = (�� × ��), (1)
�=1

i.e., bicl((�1,�1), . . . , (�� ,��)) ⊆ � × � contains all edges (�, �)
with � ∈ �� and � ∈ �� for some � . Intuitively, the induced bicliques
are “idealized” versions of the the original biclusters, in which all
missing edges were added.

The trafc inside the biclustering (�1,�1), . . . , (�� ,��) is the frac-
tion of trafc sent between vertices that are contained in one of the
biclusters (�� ,��). More formally, it is given by ∑ 1

�� (�, �),
� (�,�) ∈bicl((�1,�1),...,(�� ,��))

where � =
Í
(�,�) ∈�� �� (�, �) is the total sum of edge weights

(corresponding to the total amount of network trafc at time step �).
Note that here we are summing over the weights from the original
weighted graph. Hence, if the trafc inside the biclustering is large,
this indicates that the biclustering captures the trafc inside � well.

However, the trafc inside a biclustering has some limitations.
For example, consider a biclustering (�1,�1) with �1 = � and
�1 = � . Then the trafc inside this biclustering is equal to the total
sum of weights but the biclustering is not very informative, as it
considers the whole graph as a single bicluster. Therefore, we also
consider recall and precision, which are defned for unweighted
graphs ��

� = (� ∪ � , ��
�).

The recall measures the fraction of edges (�, �) of �� that are
“covered” by the induced bicliques of the biclustering (�1,�1), . . . ,
(�� ,��). More formally, the recall is given by

recall = |��� ∩ bicl((�1,�1), . . . , (�� ,��)) |/|��� |.

On the other hand, the precision measures the fraction of edges in
the induced bicliques which also have corresponding edges in �� .
More formally, the precision is given by

|�� ∩ bicl((�1,�1), . . . , (�� ,��)) | precision = �
. |bicl((�1,�1), . . . , (�� ,��)) |

Intuitively, the precision is high if the biclusters are “not too
large” and the recall is high if the biclusters “cover” the edges
well. Hence, if we fnd biclusters that simultaneously have high
recall, high precision and a lot of trafc inside the biclusters, this
indicates that the biclusters capture the trafc structure inside our
communication graph well.

Comparing biclusterings across time steps. Next, recall that the
biclusterings we computed depended on the time step � . As we are
interested in comparing biclusterings from diferent time steps, we
need to measure their similarity.

For two time steps �1 and �2 with biclusterings (�1
�1 ,�1

�1), . . . ,
(� �1 ,� �1) and (�1

�2 ,�1
�2), . . . , (� �2 ,� �2), we say that their similar-

�1 �1 �2 �2
ity sim(�1, �2) is given by the fraction of edges which are contained
in both induced bicliques. More formally, let bicl1 = bicl((�1

�1 ,�1
�1),

. . . , (� �1 ,� �1)) and bicl2 = bicl((�1
�2 ,�1

�2), . . . , (� �2 ,� �2)). Then
�1 �1 �2 �2

3025

Analyzing the Communication Clusters in Datacenters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

their similarity is given by

|bicl1 ∩ bicl2 |sim(�1, �2) = . |bicl1 ∪ bicl2 |
Intuitively, two biclusterings are similar if their idealized bi-

cliques are similar. While this defnition might look a bit artifcial at
frst glance, it is quite handy because it allows us to deal with over-
lapping biclusters and also with biclusterings that have diferent
numbers of biclusters.

To compare � > 2 diferent biclusterings, we turn to simi-
larity matrices (see, e.g., Fig. 3(d)). Given multiple biclusterings
(�1

� ,�1
�), . . . , (� � ,� �) for � = 1, . . . ,� , the similarity matrix � ∈

� �
[0, 1]� ×� has entries ��1,�2 = sim(�1, �2). Thus, ��1,�2 measures how
similar the biclusterings �1 and �2 are. As � is symmetric, we only
report the entries for �2 ≥ �1.

Visualization. Sometimes we visualize the biclustering we ob-
tain. Given a bipartite graph � = (� ∪ � , �) with biadjacency
matrix � ∈ {0, 1}|� |× |� | and a biclustering (�1,�1), . . . , (�� ,��),
we reorder the rows and columns of � using the ADVISER algo-
rithm [11]. In our plots (see, e.g., Fig. 2), yellow dots correspond
to 1-entries in � and purple dots correspond to 0-entries in �. We
follow the convention that vertices from � correspond to rows of �
and vertices from � correspond to columns of �; in other words,
the rows of � correspond to nodes that send data and the columns
of � correspond to nodes that receive data.

2.3 Choice of Parameters and Algorithms
We conclude this section by justifying our choices for the parame-
ter � and the biclustering algorithms we use in the case study.

Choice of parameter � . Recall that �� determines the sparsity
of the graph ��� , where larger (smaller) values for � correspond to
sparser (denser) graphs. Furthermore, when running biclustering
algorithms on sparser graphs, this typically results in smaller bi-
clusters (i.e., the biclusters contain fewer vertices and the induced
bicliques are smaller). Intuitively, if we pick � too small (correspond-
ing to dense graphs and large biclusters), our biclusterings have
high recall and high trafc inside the biclusters but small precision.
Similarly, when � is too large (the biclusters are too small), we have
high precision but small recall and small trafc inside the matrices.

As we argued before, we are interested in fnding biclusterings
which simultaneously have high recall, high precision and high
trafc inside the biclustering. Therefore, in our experiments we
pick the value of � ∈ {0%, 30%, 50%, 70%} such that all of these
three objectives are satisfed (if possible). If multiple values in
{0%, 30%, 50%, 70%} satisfy all three criteria, we report the largest
possible value for � , since this corresponds to biclusters with fewer
vertices which might be easier to optimize in application settings.

In preliminary experiments we also used other options with � ∉
{0%, 30%, 50%, 70%} but they did not reveal any new insights beyond
what we report. Hence, we focus on � ∈ {0%, 30%, 50%, 70%}.

Biclustering algorithm. The frst biclustering algorithm we
use is the pcv algorithm [30]. This algorithm takes as input an
unweighted bipartite graph � and a parameter � , and returns a
biclustering (�1,�1), . . . , (�� ,��). The biclustering is such that the
clusters �1, . . . ,�� partition � , but the clusters �1, . . . ,�� might
overlap and their union does not have to equal � . In a nutshell, the
algorithm computes the biadjacency matrix � of � and denoises �

via a truncated rank �-SVD and then applies �-Means on the rows of
the low-rank matrix to obtain the clusters �1, . . . ,�� . Then it fnds
the clusters �� by looking at the submatrices � [�� , :] and setting ��
to the set of columns in � [�� , :] with “many” non-zero entries.

We used pcv because it processes graphs with tens of thou-
sands of nodes highly efciently and, even though it is a ran-
domized algorithm, its outputs are very consistent over diferent
runs (see App. A.2). Furthermore, it allows overlapping column-
clusters which is necessary given the structure of our dataset. How-
ever, other methods that fnd overlapping clusters could have been
used as well, for instance, algorithms for Boolean Matrix Factoriza-
tion [27, 28]. In our experiments, we set � = 7 for pcv.

In addition to pcv, we also use GraphScope [34]. Unlike pcv
which only considers a single time step, GraphScope is an adaptive
mining scheme on time-evolving graphs, i.e., it takes as input all un-
weighted graphs ��

1 , . . . ,�
� . GraphScope requires no user-defned
�

parameters, and it operates completely automatically, based on the
MDL (Minimum Description Language) principle [31]. It simulta-
neously fnds the communities and determines change-points when
the cluster structure changes. In particular, given a bipartite graph,
where one group of nodes represent the source nodes and the other
the destination nodes, GraphScope treats source and destination
nodes separately, and discovers separate source and destination
partitions, i.e., it determines a partition of the sources into � groups
and a partition of the destinations into � groups, where � and �
can have diferent values. GraphScope starts by identifying the
communities on the initial graph snapshot, and then compares the
current structure to consecutive snapshots. If this structure does
not change much over time, consecutive snapshots of the evolving
graphs are grouped together into a time-segment. If a new graph
snapshot cannot ft well into the old segment, GraphScope intro-
duces a change-point, and starts a new segment at that time-stamp.
Those change-points often detect drastic discontinuities in time.
The advantage of applying GraphScope is that it requires no pa-
rameters, i.e., it determines the number of row and column groups
automatically. However, it is less scalable than pcv; in particular,
it is too inefcient to process rack–server or server–server com-
munications in our case study, and does not allow for overlapping
column clusters �� .

We apply these two diferent algorithms on all unweighted
graphs �� for rack–rack communication. We empirically show �
that they fnd similar clusters, indicating that the clusters we fnd
are true positives.

3 A CASE STUDY
As a case study, we consider the traces obtained from three diferent
clusters in the Altoona datacenter, which were shared with the
research community by Facebook [32, 37]. The clusters correspond
to a Web cluster, a Database cluster and a Hadoop cluster. We
consider the trafc over a 150 minutes (2.5 hours) time frame, plus
some additional time period in the beginning to avoid possible
artifacts from the “warm-up phase“ and to focus on the steady-state
behavior. To understand how the trafc patterns develop over time,
we partition the 150 minutes of trafc into disjoint time intervals
of 1, 5, and 15 minutes, the time steps; there are hence 150, 30, and
15 time steps, resp.

3026

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Foerster et al.

3.1 Web Cluster
This cluster contains Web servers serving Web trafc.

Properties of datasets. To analyze how similar two consecutive
graphs �� and �� +1 are, we compute the percentages of edges that
appear, disappear, and do not change between �� and �� +1 in the
rack–rack communication over a 15 minutes interval for �0, �0.3, �0.5,
and �0.7. The graphs exhibit a strong similarity over time, and the
percentage of edges that �� and ��+1 share is very high, i.e., greater
than 70%. The results for the 5 and 1 minutes interval are similar.

For the rack–server communication, we notice that the results
are similar to those for the rack–rack communication. The only
exception is represented by the sparsest graphs, i.e., � = 70%, for
the 15 minutes time interval where the percentage of common
edges is lower than the percentage of appearing and disappearing
edges. For the server–rack communication the similarity over time
is analogous to that of the rack–rack communication for 15 and 5
minutes time interval, i.e., the percentage of common edges is higher
than the percentage of appearing and disappearing edges, except
for � = 70% in the 5 minute time interval. For the 1 minute time
interval with �0.5 and �0.7, instead, the similarity changes and we
notice that 40% of the edges are appearing or disappearing and only
a small number of edges remain in two consecutive graph snapshots.
(We present additional Figures in the appendix.)

Discussion of results. We start by discussing our results that
we obtained using pcv. In Fig. 2 we present the visualization of the
rack–rack communication over a typical 1 minute interval. We used
�0.7, i.e., we kept the 30% largest non-zero weight edges in ��� . The
plot clearly allows us to identify the cache servers, the Web servers
and the multifeed servers.

Next, we need to ensure that the nice visual clusters from Fig. 2
indeed correspond to actual trafc patterns. We analyze this in Fig. 3.
First, we need to ensure that the biclusterings returned by pcv have
high recall, precision, and trafc inside the biclusters. Fig.s 3(a)–3(c)
show that indeed all of these measures are very high, for time steps
of lengths 15, 5, and 1 minutes, resp. For each time step, the clusters
contained more than 80% of the total trafc, while having recall
and precision values of at least 90%. Hence, the biclusters seem to
correspond to real trafc patterns. Second, we try to understand
how stable the biclustering results are over time. Fig.s 3(d)–3(f)
provide the similarity matrices for time steps of lengths 15, 5, and
1 minutes, resp. The plot shows that the clusterings of the diferent
time steps have very high similarity and thus the obtained cluster
structures are very stable over time, with similarity values over 85%.

Table 1: Our fndings for the Web cluster and Database using
GraphScope for rack-rack traces. (S - segments, s - #clusters
for sources, d - #clusters for destinations)

Clusters Web cluster Database

15′ 5′ 1′ 15′ 5′ 1′
S, s, d S, s, d S, s, d S, s, d S, s, d S, s, d

p=0%
p=30%
p=50%
p=70%

1, 7, 7
3, 7, 12
4, 10, 9
1, 7, 13

1, 8, 9
1, 7, 7
1, 6, 7
1, 7, 7

1, 7, 6
1, 6, 5
1, 5, 6

12, 12, 16

1, 8, 8
2, 10, 9
3, 8, 7
2, 9, 6

2, 8, 8
3, 12, 9
7, 8, 8
9, 8, 8

43, 11, 11
46, 1, 9
45, 8, 8
40, 8, 10

Figure 2: Visualization of our approach for rack–rack com-
munication over a 1 minute interval from the Web cluster for
� = 70%. On the left, we present the unordered binary matrix.
On the right, we present the binary matrix after reordering
based on the bicluster structure. The cluster structure reveals
the cache servers (vertical block), the Web servers (horizontal
block) and the multifeed servers (small square).

Figure 3: Web cluster and rack–rack communication results,
with � = 70% and time step lengths varying from 15 minutes
to 1 minute. Fig.s 3(a)–3(c) present recall, precision and trafc
inside the clusters, and Fig.s 3(d)–3(f) present the correspond-
ing similarity matrices.

In Table 1 we report the results of GraphScope for the Web
cluster. In the Web cluster the graphs are more similar and few
change-points are identifed by GraphScope, i.e., the number of
segments is equal to 1 in most of the cases, for all the time intervals.
The results of GraphScope, for some aspects, are in line with our
analysis of the graph similarity in terms of common, appearing,
and disappearing edges. The Web cluster is characterized by a well
defned structure that remains persistent over time.

It is important to underline that the results obtained with Graph-
Scope difer from those obtained with the pcv in terms of number
of clusters and segments detected. This diference is due to the
diferent solutions provided by the algorithm: GraphScope does
not identify overlapping communities and, unlike pcv, the nodes
are partitioned and belong to only one cluster.

Next, we consider rack–server communication over 5 minute
time frames and � = 0%. In Fig. 9(a) we visualize a typical bicluster-
ing. We see that the resulting biclusters are extremely dense, which
is why our biclusterings have a precision of almost 100%. The recall
is around 85% and the trafc inside the biclustering is about 90%.

3027

Analyzing the Communication Clusters in Datacenters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

This suggests that we found high-quality trafc biclusters. Further-
more, the biclusterings are very stable over time and all entries
in the similarity matrix are over 94%. For shorter time frames of
length 1 minute, the data becomes sparser and pcv does not fnd the
full clusters anymore, which is why the trafc inside the clusters
drops to around 60% in this case. For server–rack communication
the situation is almost identical.

For the server–server communication, we consider 15 minute
time frames and � = 0%. These are the densest graphs that we
obtain among all clusters, containing around 10% of all possible
edges; for shorter time frames or larger values for � , the graphs
become much sparser (e.g., for 5 minute intervals and � = 0.5%, they
contain less than 2.1% of all possible edges). The typical biclustering
we fnd clearly reveal the structure of the cache and the Web servers
(see Fig. 6 in the appendix). The similarities of our biclusterings are
very high (typically above 99%); their recall is constantly above 95%,
and their precision and trafc inside the clusters is around 50%. We
explain the low fraction of trafc by the fact that pcv seems to miss
some servers in the clustering (see also Fig. 6).

3.2 Database Cluster
The Database cluster mainly consists of MySQL servers which store
user data and serve SQL queries.

Properties of datasets. We evaluate the similarity of graphs in
the Database cluster and we notice that for the rack–rack commu-
nication, and the rack–server communication, the percentage of
common edges is high, i.e., greater than 70% for the 15 and 5 min-
utes interval, for any � . The sparser graphs with � = 70% exhibit
a less strong similarity over time and the percentage of common
edges decreases to 50% for the 1 minute interval. In the server–rack
communication, the graphs characterized by a lower similarity are
those obtained with �0.7 for the 15 and 5 minutes time interval.
While for the 1 minute time interval the results are similar to those
in the other communication cases with an exception for the sparsest
graphs with � = 70% where the number of common edges, about
20%, is lower that that of the new edges, about 40%. (We present
additional fgures in the appendix.)

Discussion of results. We present our fndings that we obtained
from pcv and 1-minute time intervals in Fig. 4. We present a typical
plot for the rack–rack communication over a 1-minute interval
with � = 0% in Fig. 4(a). In Fig. 4(b), we present recall, precision
and trafc inside the biclusters. Recall and precision are very high
(almost 100%) but the precision is lower (around 80%). Indeed, when
increasing � to 30% and 50%, the precision drops quite signifcantly
to 70% and 60%, resp., but for both the recall and the trafc inside
the clusters stay above 90%. However, when setting � = 70%, the
trafc inside the clusters drops quite signifcantly to around 70%
and precision and recall drop to 50% and 80%, resp. In Fig. 4(c) we
see that the clusterings have very high similarities of at least 85%.

We note that when considering longer time steps, consisting of
5 or 15 minutes, the precision for larger values of � increases. For
example, when considering 15 minute intervals, the precision for
� = 30% is above 80% and for � = 50% it is above 75%.

Applying GraphScope to the Database cluster we notice that the
similarity of the graphs decreases, and the algorithm detects more
change-points and segments, in particular for the 1 minute time
interval, as shown in Table 1.

Figure 4: Our results for the Database cluster and rack–rack
communication over 1-minute time steps and � = 0%. Fig. 4(a)
shows the graph after reordering according to the bicluster-
ing. Fig. 4(b) presents recall, precision and trafc inside the
biclusters. Fig. 4(c) shows the similarity matrix.

0 10 20
Snapshot

20

40

60

Ed
ge

s % common
appear
disappear

0 10 20
Snapshot

32.5
35.0
37.5

Ed
ge

s % common
appear
disappear

0 10 20
Snapshot

20

30

40

Ed
ge

s % common
appear
disappear

(a) measures: 5 min, (b) measures: 5 min, (c) measures: 5 min,
� = 30%, Hadoop � = 50%, Hadoop clus- � = 70%, Hadoop
cluster rack–rack com. ter rack–rack com. cluster rack–rack com.

Figure 5: Similarity of consecutive graph snapshots for the
Hadoop clusters. Notice that lines may overlap.

As the Web cluster, also the Database cluster is characterized
by a well-defned structure that remains persistent over time. The
reason for the high number of change-points in the 1 minute time
interval in Table 1 is related to the size of the graphs, these are the
smallest in terms of number of edges compared to the other graphs.

Next, we consider rack–server and the server–rack communi-
cations over 15 minute time frames and for � = 0%. We visualize
typical communication patterns in Fig.s 9(b) and 9(c), resp. We con-
sidered the 10,000 servers that received/sent the most data over the
whole 150 minutes. In both cases, there exists one bicluster that
is relatively dense, even though sparser than what we have seen
for the Web cluster; the rest of the graph is extremely sparse. For
both, rack–server and server–rack communication, the precision
and recall are around 50% across all time steps; we explain this by
the sparsity of the obtained biclusters and the long “unclusterable”
tail of servers that do not receive/send a lot of data. The bicluster
similarity is very high (over 80%) in both cases. Intriguingly, for
rack–server communication the biclusters contain 85% of the trafc,
while for server–rack it contains just 15% of the trafc.

For server–server communication, we considered the 10,000
servers which sent and received the most data. We did not fnd any
meaningful biclusters; even for 15 minute time frames and � = 0%,
the graphs are extremely sparse and have less than 0.12% of all
possible edges.

3.3 Hadoop Cluster
This cluster is for batch processing and runs Hadoop applications.

3028

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Foerster et al.

Properties of datasets. In the Hadoop cluster, we notice a dif-
ferent structure compared to the previous two clusters. In particular
for the rack–rack communication, in the 15 and 5 minutes time
interval for �0.7, the percentage of common edges is low while there
is a high number of edges that appear and disappear. We show the
percentages in Fig. 5(a), Fig. 5(b), and 5(c), The same happens for
the rack–server communication for �0.7 and 5 minutes time interval.
This low similarity over time is exhibited also for the 1 minute time
interval with �0.5, �0.7 in the rack–rack communication, and for the
5 minute time interval with �0.7 in the rack–server communica-
tion. In the server–rack communication, the percentage of common
edges is low while there is a high number of edges that appear and
disappear, the only graphs exhibiting a strong similarity over time
are those obtained with �0 for the 15 minutes time interval.

Discussion of results. We again start by discussing our results
from pcv. We present the biclustering from rack–rack communica-
tion over 5-minute intervals and � = 30% in Fig. 8 in the appendix.
Fig. 8(a) shows a typical plot of a graph �

�� ; we see that this graph �
is very dense, containing almost 70% of all possible edges. As the
biclustering essentially forms one single large cluster for the graph,
the precision is also around 70%, and the recall and trafc inside the
cluster are very high (Fig. 8(b)). Not surprisingly, the similarities
across diferent time steps are extremely high (Fig. 8(c)).

In Table 2 in the appendix we report the results obtained with
GraphScope for the Hadoop cluster. Comparing the results for the
Hadoop cluster with the other clusters, it is easy to see that in
this Hadoop cluster the similarity of the graphs decreases, and
the algorithm detects many more change-points and segments, in
particular for the 1 minute time interval. The Hadoop Cluster is
the one with the lowest percentage of common edges and highest
percentage of edges that appear and disappear for the 1 minute
time interval and, as shown in Table 2, GraphScope detects a high
number of change-points. Moreover, it is the cluster with the highest
average number of edges.

Next, we consider rack–server communication over 15 minute
time intervals and � = 30%. We visualize a typical biclustering in
Fig. 9(d), where we considered the 10,000 servers that received the
most data over the whole 150 minutes. When considering � = 0%,
the only change in the plots is that the dense areas become even
more dense. Fig. 9(d) shows that the racks send a lot of data to a
very large fraction of the servers. Our biclusterings had recall and
trafc inside the biclusters almost 100%; the precision is around
50%, due to the sparsity of the graph. The smallest entry in our
similarity matrices is over 85%, suggesting that the set of active
servers is very stable over the entire time frame. For server–rack
communication results are essentially identical.

For the server–server communication of the 10,000 most active
sending and receiving servers, the matrices are relatively sparse
(even over 15 minutes and for � = 0%, they typically contain less
than 5% of all possible edges). It seems like the data does not contain
clear bicluster structures, as the recall and the trafc inside the
biclusterings are almost 0%.

4 ADDITIONAL RELATED WORK
The study of communication trafc and its patterns is a topic of
high relevance in the networking community, and has received

much attention in the literature, at least from the 1990s when it was
observed that enterprise and Internet trafc can signifcantly difer
from other communication trafc, such as phone calls [25]. There
also already exist several important studies on the trafc in datacen-
ter networks specifcally. Empirical studies found that much data-
center trafc is rack-local [6, 13], that there is typically only a small
fraction of large fows [2], and that demand is generally bursty [6–
8, 13] and of low entropy [4] and features ON/OFF behavior [6].
Some of these properties have recently been revisited in the context
of a large empirical study in Facebook’s datacenters [32], which
showed that the specifc properties also depend on the datacenter
type. However, these works do not go in-depth for our research
question on communication clustering, even though many further
aspects are considered: e.g., the seminal work by Benson et al. [6]
studies trafc from the viewpoints of application type, fow- and
packet-arrival times, link utilization, and extra-rack vs. intra-rack
trafc, but not the communication cluster structure itself. Similarly,
Roy et al. [32] consider, e.g., rack locality, demand-distribution,
and communication between co-located server clusters–but do not
study clustering in the observed trafc. Lastly, while Ghobadi et
al. [16] showed that small groups of servers can be talkative, they
also did not further investigate communication clusters.

Hence, to the best of our knowledge, our work is the frst to pro-
pose a systematic approach to determine communication clusters
in datacenter trafc, based on biclustering, showing that a signif-
icant amount of trafc lies in small and stable clusters. Despite
the practical relevance of biclustering in many applications, e.g.,
in text mining and bioinformatics, only few publications focus on
the evaluation of biclustering results. Existing approaches based
on external validation [18] require information on an ideal biclus-
tering solution and are not applicable to our problem setting. Lee
et al. [24] introduced a stability index to measure the validity of a
biclustering under variations of the input data set. This measure
focuses on fnding biclusters in data with numerical attributes, as
it is the case for gene expression.

5 FUTURE RESEARCH
We understand our work as a frst step, and believe that it opens sev-
eral interesting avenues for future research. In particular, it would
be interesting to improve the scalability of our algorithms further,
in order to be able to conduct even more fne-grained analyses.
Another interesting direction is to fnd patterns of fow patterns
(involving a sequence of senders and receivers), rather than pat-
terns of sender–receiver that we considered. Next, the dataset we
considered provides trafc information over a single day (24 hours)
and is widely studied by the research community. As a consequence,
we are limited in the trafc window, and hence studied a 150 min-
utes sample. Future studies could consider larger datasets to study
shorter and larger time frames: seconds, days, weeks and months.
More generally, while our work shows that small, dense, and stable
clusters exist in the communication trafc, it remains to investigate
the resulting possible opportunities for improving the resource
efciency in datacenters. In particular, it would be interesting to
study under which circumstances a collocation of such clusters
can be meaningful, possibly even dynamically over time, using
cost-efcient migrations or reconfgurations.

3029

Analyzing the Communication Clusters in Datacenters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
Research supported by the European Research Council (ERC), grant
agreement No. 864228 (AdjustNet), Horizon 2020, 2020-2025. Stefan
Neumann and Thibault Marette are supported by the ERC Advanced
Grant REBOUND (834862), and the EC H2020 RIA project SoBig-
Data++ (871042). Some of the computations were enabled by the
National Academic Infrastructure for Supercomputing in Sweden
(NAISS) and Swedish National Infrastructure for Computing (SNIC)
partially funded by the Swedish Research Council through grant
agreements no. 2022-06725 and 2018-05973.

REFERENCES
[1] 2016. ProjecToR Dataset. www.microsoft.com/en-us/research/project/projector-

agile-reconfgurable-data-center-interconnect.
[2] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In SIGCOMM. ACM, 63–74.

[3] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: minimal near-optimal data-
center transport. In SIGCOMM. ACM, 435–446.

[4] Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the
Complexity of Trafc Traces and Implications. Proc. ACM Meas. Anal. Comput.
Syst. 4, 1 (2020), 20:1–20:29.

[5] Chen Avin and Stefan Schmid. 2018. Toward demand-aware networking: a theory
for self-adjusting networks. Comput. Commun. Rev. 48, 5 (2018), 31–40.

[6] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network trafc
characteristics of data centers in the wild. In Internet Measurement Conference.
ACM, 267–280.

[7] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2010. Under-
standing data center trafc characteristics. Comput. Commun. Rev. 40, 1 (2010),
92–99.

[8] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: fne grained trafc engineering for data centers. In CoNEXT. ACM, 8.

[9] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping
Zhang, Xitao Wen, and Yan Chen. 2014. OSA: An Optical Switching Architecture
for Data Center Networks With Unprecedented Flexibility. IEEE/ACM Trans.
Netw. 22, 2 (2014), 498–511.

[10] Kimberly C. Clafy, George C. Polyzos, and Hans-Werner Braun. 1993. Application
of Sampling Methodologies to Network Trafc Characterization. In SIGCOMM.
194–203.

[11] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and Nino Vincenzo
Verde. 2012. Visual Role Mining: A Picture Is Worth a Thousand Roles. IEEE
Trans. Knowl. Data Eng. 24, 6 (2012), 1120–1133.

[12] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: the count-min sketch and its applications. J. Algorithms 55, 1 (2005),
58–75.

[13] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos Kozyrakis. 2012.
ECHO: Recreating network trafc maps for datacenters with tens of thousands
of servers. In IISWC. IEEE, 14–24.

[14] Inderjit S. Dhillon. 2001. Co-clustering documents and words using bipartite
spectral graph partitioning. In SIGKDD. 269–274.

[15] Klaus-Tycho Foerster and Stefan Schmid. 2019. Survey of Reconfgurable Data
Center Networks: Enablers, Algorithms, Complexity. SIGACT News 50, 2 (2019),
62–79.

[16] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil R. Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel C. Kilper. 2016. ProjecToR: Agile Reconfgurable
Data Center Interconnect. In SIGCOMM. ACM, 216–229.

[17] Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid,
and Chen Avin. 2021. Cerberus: The Power of Choices in Datacenter Topology

Design - A Throughput Perspective. Proc. ACM Meas. Anal. Comput. Syst. 5, 3
(2021), 38:1–38:33.

[18] Blaise Hanczar and Mohamed Nadif. 2013. Precision-recall space to correct
external indices for biclustering. In ICML (2) (JMLR Workshop and Conference
Proceedings, Vol. 28). JMLR.org, 136–144.

[19] Monika Henzinger, Stefan Neumann, and Stefan Schmid. 2019. Efcient dis-
tributed workload (re-) embedding. Proceedings of the ACM on Measurement and
Analysis of Computing Systems 3, 1 (2019), 1–38.

[20] Glenn Judd. 2015. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. In NSDI. USENIX Association, 145–157.

[21] Patrick Kalmbach, Johannes Zerwas, Péter Babarczi, Andreas Blenk, Wolfgang
Kellerer, and Stefan Schmid. 2018. Empowering Self-Driving Networks. In
SelfDN@SIGCOMM. ACM, 8–14.

[22] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center trafc: measurements & analysis. In Proc.
9th ACM SIGCOMM Conference on Internet Measurement (IMC). ACM, 202–208.

[23] Wolfgang Kellerer, Patrick Kalmbach, Andreas Blenk, Arsany Basta, Martin
Reisslein, and Stefan Schmid. 2019. Adaptable and data-driven softwarized
networks: Review, opportunities, and challenges. Proc. IEEE 107, 4 (2019), 711–
731.

[24] Youngrok Lee, Jeonghwa Lee, and Chi-Hyuck Jun. 2011. Stability-based validation
of bicluster solutions. Pattern Recognit. 44, 2 (2011), 252–264.

[25] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson. 1994. On
the self-similar nature of Ethernet trafc (extended version). IEEE/ACM Trans.
Netw. 2, 1 (1994), 1–15.

[26] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In SIGCOMM. ACM, 197–210.

[27] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki
Mannila. 2008. The Discrete Basis Problem. IEEE Trans. Knowl. Data Eng. 20, 10
(2008), 1348–1362.

[28] Pauli Miettinen and Stefan Neumann. 2020. Recent Developments in Boolean
Matrix Factorization. In IJCAI, Christian Bessiere (Ed.). 4922–4928.

[29] Jayadev Misra and David Gries. 1982. Finding Repeated Elements. Sci. Comput.
Program. 2, 2 (1982), 143–152.

[30] Stefan Neumann. 2018. Bipartite Stochastic Block Models with Tiny Clusters. In
NeurIPS. 3871–3881.

[31] Jorma Rissanen. 1978. Modeling by shortest data description. Autom. 14, 5 (1978),
465–471.

[32] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In SIGCOMM. ACM,
123–137.

[33] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jef Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter rising: a decade of
clos topologies and centralized control in Google’s datacenter network. Commun.
ACM 59, 9 (2016), 88–97.

[34] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu. 2007.
GraphScope: parameter-free mining of large time-evolving graphs. In KDD. ACM,
687–696.

[35] Asaf Valadarsky, Michael Schapira, Dafna Shahaf, and Aviv Tamar. 2017. Learning
to Route. In HotNets. ACM, 185–191.

[36] David P. Woodruf. 2016. New Algorithms for Heavy Hitters in Data Streams
(Invited Talk). In ICDT (LIPIcs, Vol. 48). 4:1–4:12.

[37] James Hongyi Zeng. 2017. Data Sharing on trafc pattern inside Facebook’s data
center network. https://research.facebook.com/blog/2017/01/data-sharing-on-
trafc-pattern-inside-facebooks-datacenter-network/. Accessed: 2022-05-10.

[38] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Internet Measurement
Conference. ACM, 78–85.

[39] Shihong Zou, Xitao Wen, Kai Chen, Shan Huang, Yan Chen, Yongqiang Liu, Yong
Xia, and Chengchen Hu. 2014. VirtualKnotter: Online virtual machine shufing
for congestion resolving in virtualized datacenter. Comput. Networks 67 (2014),
141–153.

3030

www.microsoft.com/en-us/research/project/projector-agile-reconfigurable-data-center-interconnect
www.microsoft.com/en-us/research/project/projector-agile-reconfigurable-data-center-interconnect
https://research.facebook.com/blog/2017/01/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://research.facebook.com/blog/2017/01/data-sharing-on-traffic-pattern-inside-facebooks-datacenter-network/
https://JMLR.org

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Foerster et al.

A APPENDIX

A.1 Additional Plots and Tables
In this section, we present additional plots of Fig.s 6, 8 and 9, as
well as Table 2.

A.2 Stability of pcv Solutions
Since pcv is a randomized algorithm and requires the number of
clusters � as input, we also study how stable its biclustering solu-
tions are over diferent runs and across diferent choices of � .

More concretely, given an unweighted bipartite graph � , we
created fve initial biclusterings of � for � = 7 (as in our experi-
ments above). Then we vary � = 5, . . . , 10 and each time we create
another fve biclusterings of � . For each new biclustering and and
each initial biclustering, we compute the normalized mutual infor-
mation (NMI) of their induced bicliques (see Eq. (1)); we report the
averages and standard deviations of these NMIs. Note that we use
the induced bicliques for computing the NMI because they relate to
the edges “covered” by the biclustering and they are independent
of � and can handle overlapping clusters (as produced by pcv).

We report our results in Fig. 7. The NMI values we obtain are
always above 75% and the standard deviations are low. Indeed, here
we report some of the “worse” results; on many other datasets
the NMIs are well above 90% and have extremely small standard
deviations.

A.3 Graph Similarity over Time
To analyze how similar two consecutive graphs �� and �� +1 are,
we compute the percentages of edges that appear, disappear, and
do not change between �� and �� +1. We present additional plots
for the Web cluster in Fig.s 10 and 11, and the Database cluster in
Fig.s 12 and 13.

A.4 Graph Statistics
In this section we report the size of the clusters in Table 3.

Figure 6: Visualization of the biclustering of server–server
communication over a 15 minute interval from the Web clus-
ter for � = 0%. We considered the 10,000 servers that sent and
the 10,000 server that received the most data. pcv detects the
two blocks on the left and at the top as biclusters, but does
not include the slightly more dense areas towards the bottom
and towards the right.

Table 2: Our fndings for the Hadoop cluster using Graph-
Scope for rack-rack traces (S - segments, s - #clusters for
sources, d - #clusters for destinations).

15’ 5’ 1’
S, s, d S, s, d S, s, d

p=0% 3, 5, 6 14, 9, 10 93, 9, 9
p=30% 7, 9, 8 21, 8, 10 81, 8, 10
p=50% 6, 9, 8 17, 8, 10 73, 8, 9
p=70% 7, 9, 9 14, 7, 9 68, 8, 8

(a) 5 min, � = 70%, Web clus- (b) 1 min, � = 0%, Database
ter rack–rack com. cluster rack–rack com.

Figure 7: Stability of the pcv biclusterings for rack–rack com-
munication of the Web cluster (left) and the Database cluster
(right). We plot average NMI values against the parameter �;
errorbars correspond to standard deviations.

Figure 8: Our results for the Hadoop cluster and rack–rack
communication over 5-minute time steps and � = 30%.
Fig. 8(a) shows the graph after reordering according to the
biclustering. Fig. 8(b) presents recall, precision and trafc
inside the biclusters. Fig. 8(c) shows the similarity matrix.

Table 3: Densities of the thresholded graphs ��
� = (�� , ���)

for rack–rack communication. Here, the densities are the
averages over all values |�� |/(|� | · |� |), where we average
over � . We present the results for diferent values for � and
diferent time step lengths.

Clusters Web cluster Database Hadoop

t 15’ 5’ 1’ 15’ 5’ 1’ 15’ 5’ 1’

p=0% 0.83 0.74 0.48 0.47 0.46 0.4 0.98 0.96 0.7
p=30% 0.58 0.52 0.34 0.33 0.32 0.28 0.69 0.68 0.49
p=50% 0.42 0.37 0.24 0.23 0.22 0.2 0.49 0.48 0.35
p=70% 0.25 0.22 0.14 0.14 0.14 0.12 0.29 0.29 0.21

3031

Analyzing the Communication Clusters in Datacenters WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(a) ordered plot: Web cluster, rack–server, 5 min, � = 0%

(b) ordered plot: Database cluster, rack–server, 15 min, � = 0%

(c) ordered plot: Database cluster, server–rack, 15 min, � = 0%

(d) ordered plot: Hadoop cluster, rack–server, 15 min, � = 0.3%

Figure 9: Visualizations of the communications between racks and servers. In all plots, the sending racks are in the rows and the
columns correspond to receiving servers, except for Fig. 9(c) where the rows are receiving racks and the columns are sending
servers. For Fig.s 9(b) and 9(c) we have removed some sparse parts on the right side of the plot for better readability.

0 10 20
Snapshot

20

30

40

50

60

Ed
ge

s % common
appear
disappear

0 2 4 6 8
Snapshot

20
30
40
50
60
70

Ed
ge

s % common
appear
disappear

(a) measures: 5 min, � = 30%, (b) measures: 15 min, � = 30%,
Web cluster rack–rack com. Web cluster rack–rack com.

Figure 10: Similarity of consecutive graph snapshots for the
Web cluster, rack-rack communication. Notice that the per-
centage of edges that appear, disappear, or are in common
may be the same and two diferent lines may overlap.

0 2 4 6 8
Snapshot

32

33

34

Ed
ge

s % common
appear
disappear

0 10 20
Snapshot

25

30

35

Ed
ge

s % common
appear
disappear

(a) measures: 15 min, � = 70%, (b) measures: 5 min, � = 70%,
Web cluster rack–server com. Web cluster server–rack com.

Figure 11: Similarity of consecutive graph snapshots for the
Web cluster. Notice that the percentage of edges that appear,
disappear, or are in common may be the same and two dif-
ferent lines may overlap.

0 10 20
Snapshot

0

20

40

60

80

Ed
ge

s % common
appear
disappear

(a) measures: 5 min, � =
30%, Database cluster rack–
rack com.

0 10 20
Snapshot

20

40

60

80

Ed
ge

s % common
appear
disappear

(b) measures: 5 min, � = 30%,
Database cluster rack–server
com.

Figure 12: Similarity of consecutive graph snapshots for the
Database cluster. Notice that the percentage of edges that
appear, disappear, or are in common may be the same and
two diferent lines may overlap.

0 2 4 6 8
Snapshot

30

40

50

Ed
ge

s % common
appear
disappear

(a) measures: 15 min, � = 70%,
Database cluster server–rack
com.

0 50 100 150
Snapshot

25

30

35

Ed
ge

s % common
appear
disappear

(b) measures: 1 min, � = 70%,
Database cluster server–rack
com.

Figure 13: Similarity of consecutive graph snapshots for the
Database cluster, server–rack communication. Notice that the
percentage of edges that appear, disappear, or are in common
may be the same and two diferent lines may overlap.

3032

	Abstract
	1 Introduction
	2 Finding Hi-quality Traffic Clusters
	2.1 High-Level Overview
	2.2 Detailed Approach
	2.3 Choice of Parameters and Algorithms

	3 A Case Study
	3.1 Web Cluster
	3.2 Database Cluster
	3.3 Hadoop Cluster

	4 Additional Related Work
	5 Future Research
	Acknowledgments
	References
	A Appendix
	A.1 Additional Plots and Tables
	A.2 Stability of pcv Solutions
	A.3 Graph Similarity over Time
	A.4 Graph Statistics

