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ABSTRACT 
Datacenter networks have become a critical infrastructure of our 
digital society and over the last years, great eforts have been made 
to better understand the communication patterns inside datacen-
ters. In particular, existing empirical studies showed that datacenter 
trafc typically features much temporal and spatial structure, and 
that at any given time, some communication pairs interact much 
more frequently than others. This paper generalizes this study to 
communication groups and analyzes how clustered the datacenter 
trafc is, and how stable these clusters are over time. To this end, 
we propose a methodology which revolves around a biclustering 
approach, allowing us to identify groups of racks and servers which 
communicate frequently over the network. In particular, we con-
sider communication patterns occurring in three diferent Facebook 
datacenters: a Web cluster consisting of web servers serving web 
trafc, a Database cluster which mainly consists of MySQL servers, 
and a Hadoop cluster. Interestingly, we fnd that in all three clusters, 
small groups of racks and servers can produce a large fraction of 
the network trafc, and we can determine these groups even when 
considering short snapshots of network trafc. We also show empir-
ically that these clusters are fairly stable across time. Our insights 
on the size and stability of communication clusters hence uncover 
an interesting potential for resource optimizations in datacenter 
infrastructures. 
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1 INTRODUCTION 
With the popularity of data-centric and distributed applications, for 
example in the context of artifcial intelligence, datacenter networks 
have become a critical infrastructure of our digital society. Indeed, 
these applications led to an explosive growth of communication 
trafc over the last years, especially inside datacenters, pushing 
datacenter networks to their capacity limits [32, 33]. 

Interestingly, however, datacenter trafc is not only growing 
quickly, but also features much structure. Studying packet traces 
collected from networking applications, researchers have found 
that datacenter trafc matrices are often sparse and skewed [1, 6], 
and exhibit locality [9], also over time [38, 39]. In other words, 
packet traces from real world applications are generally far from 
arbitrary or random, but are of fairly low entropy [2, 16, 20, 32]. 

The existence of such structure in communication trafc is attrac-
tive, and may be exploited for network provisioning and infrastruc-
ture optimizations [23]. Indeed, the networking community is cur-
rently putting great efort into designing protocols and algorithms 
to optimize diferent layers of the networking stack to leverage the 
trafc structure. These eforts include, e.g., learning-based trafc 
engineering [35] and video streaming [26], self-adjusting optical 
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networks [5, 15], or self-driving networks [21]. For instance, many 
network optimizations exploit the presence of elephant fows [3]. 

This paper aims at an understanding of the clustered nature of the 
communication trafc, going beyond the typically considered pair-
wise interactions [7, 16, 22, 32] and looking into communications 
among groups. In particular, we wonder whether the communica-
tion trafc matrices typically observed in empirical studies feature 
clusters of dense communication. We ask: 

• How can communication clusters be efciently found algo-
rithmically? 

• How large are communication clusters in datacenters, and 
how is their size distributed? 

• How stable are these communication clusters over time? 

The answers to these questions have important implications on 
the optimizability of resource allocations in datacenters [19]: dense 
communication clusters may be allocated locally in the datacenter 
(e.g., in the same rack or pod), which can signifcantly reduce com-
munication overheads and improve throughput. Furthermore, stable 
clusters over time are attractive as frequent reoptimizations (i.e., 
reconfgurations such as, migrations or topological adaptions [17]) 
can be avoided. 

The communication clusters we identify consist of groups of 
senders and receivers that transmit a lot of data between each 
other. As the groups of senders and receivers may be diferent, this 
introduces an asymmetry in the clustering that we will have to take 
into account in our methods. Additionally, it is highly likely that 
some nodes appear in multiple clusters, e.g., some nodes may be 
included in multiple receiver clusters because they require more 
information than other nodes in the network. 

We propose a methodology based on a biclustering approach, 
allowing us to fnd the communication clusters described above 
and allowing us to efciently identify groups of racks and servers 
which communicate frequently over the datacenter network. Our 
approach is optimized toward the standard precision and recall 
metrics, whose defnitions we adapt to ft the network application 
scenario, allowing us to study the cluster similarity over time. 

A merit of our approach is that it only requires very little data: 
we only require access to the Top �% of endpoint pairs that create 
the most trafc. In particular, we do not require the exact amount 
of trafc sent between these endpoints, which is difcult to ob-
tain in practice [10]. Additionally, our method does not require 
any additional knowledge about the application running in the 
datacenter. 

We evaluate our method in an extensive case study. Since it is 
known that the amount of structure available in a communication 
trafc depends on the application [4, 32], we consider three diferent 
trafc traces: one from a Web cluster, one from a Database cluster, 
and one from a Hadoop cluster. The Web cluster consists of web 
servers serving web trafc, the Database cluster mainly consists of 
MySQL servers, and the Hadoop cluster is used for batch processing. 
These traces have been made available to the research community 
by Facebook [37], and are currently the largest datacenter data sets 
available to the research community. We believe that our insights 
generalize to many other datacenters as well, since the applications 
we consider are widely deployed in practice. 

We fnd that our approach can indeed efciently identify high-
quality trafc clusters, and we make several interesting observa-
tions. In particular, we fnd that small groups of racks and servers 
often produce large fractions of the network trafc, and our ap-
proach can determine these groups even when considering short 
snapshots of network trafc. We also show empirically that these 
clusters are very stable across many time steps. 

In summary, our contributions are: 
• We present a systematic and efcient approach to identify possi-
ble dense clusters in communication trafc. 

• We propose a methodology for employing precision and recall 
metrics in the context of network trafc clustering. To the best 
of our knowledge, this is the frst study of these metrics in this 
context. 

• We report on an extensive evaluation based on actual datacenter 
packet traces (Web, Database, and Hadoop), showing that our 
approach is efcient and can fnd high-quality clusters. 

• We uncover that small clusters are responsible for a signifcant 
amount of network trafc, and that these clusters are stable over 
time. This suggests that an optimized allocation of communica-
tion endpoints in datacenters may have a signifcant impact on 
the overall communication cost. 

• Our methodology only requires a list of endpoint pairs which 
cause a lot of trafc. We show empirically that this gives good 
clusterings even when taking into account the absolute amounts 
of trafc. 

• As a contribution to the research community, and to ensure repro-
ducibility and facilitate follow-up work, our implementations are 
available as open-source software.1 Our experimental datasets 
and artifacts are available upon request. 

2 FINDING HI-QUALITY TRAFFIC CLUSTERS 
Now we describe our methodology. We start with a high-level 
overview and then present the full details and parameter settings. 

2.1 High-Level Overview 
We start by giving an overview of our methodology and present 
an illustration of our approach in Figure 1. The details and formal 
defnitions follow in Section 2.2. 

We assume that our input is a trafc trace, i.e., we obtain a 
sequence of tuples (�, �,�,� ) indicating that node � sent � bytes 
to receiver � at a timepoint � . 

Based on the trafc trace, we create a sequence of contiguous 
and disjoint time steps [�� ,��+1). For each time step, we generate a 
real-valued trafc matrix, where each entry (�, �) corresponds to 
the total amount of trafc that was sent from node � to � in the 
entire timeframe [�� ,��+1). 

For each real-valued trafc matrix, we create a binary matrix by 
thresholding, i.e., we set the Top �% largest entries in the trafc 
matrix to 1 and we set all other entries to 0. Note that this cor-
responds to having a list of sender–receiver pairs that cause the 
highest amounts of trafc during the time step. 

Next, for each time step we apply a biclustering algorithm on the 
time step’s binary matrix to obtain a biclustering. Informally (see 
below for a formal defnition), the biclusterings reveal the groups 
1https://github.com/tmarette/datacenterClusterAnalysis 
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Figure 1: An overview of our approach. Given a trafc trace, we partition it into contiguous time steps for which we create 
real-valued trafc matrices, where entries (�, �) correspond to the amount of trafc sent from node � to � . For each trafc 
matrix, we create a binary matrix indicating the Top �% of sender–receiver pairs that created the most trafc. We apply our 
biclustering algorithms on each of these binary matrices. We subsequently evaluate the resulting clusterings over time, also 
taking into account the true amount of trafc that was sent. 

of senders and receivers that communicate a lot during the time 
step and they correspond to the communication clusters that we 
are looking for. See Section 2.2 for a description of the biclustering 
algorithms that we used. 

Clearly, the above approach has merits, as well as drawbacks. 
The main drawback is that we obtain our communication clusters 
based on the binary matrices and not on the original trafc matrices; 
indeed it is not clear whether the binary (rounded) trafc reveals 
anything about weighted trafc. Hence, in our evaluation we need 
to ensure that this approach allows us to draw conclusions about 
the patterns in the weighted trafc. However, if we can show that 
this is the case, this is also a merit of our method: in practice, it of-
ten creates signifcant overhead to store the entire trafc trace and 
therefore people only subsample it [10, 32]. Our approach, on the 
other hand, can be used even when we only obtain the binary matri-
ces as input. In other words, for our approach it sufces to know the 
Top �% communication partners which can be obtained more ef-
ciently, for instance, using heavy hitters data structures [12, 29, 36]. 
This might make our methodology more applicable in settings in 
which one aims to understand communication clusters without 
creating too much overhead for the network. 

We introduce three diferent measures to study the quality of 
our clusters. First, we defne versions of precision and recall to 
understand how well our communication clusters capture the in-
formation in the binary matrices. Second, we study the trafc inside 
the biclustering to understand how well our biclusters, that were 
derived on the binary matrices, represent the actual trafc from 
the real-valued trafc matrices. This measure compares the trafc 
sent between sender–receiver pairs from the biclusters with the 
total trafc. Our experiments show that we typically obtain high 
values for all three measures, indicating that we fnd high-quality 
clusters for the binary matrices which also capture the real-valued 
trafc information. 

Furthermore, we introduce a similarity measure to study the 
similarity of diferent biclusterings. This allows us to compare the 
communication clusters that we obtain at diferent time steps. Our 
experiments will show that these communication clusters are typi-
cally highly stable over time. 

2.2 Detailed Approach 
Next, we describe the implementation of our approach in full de-
tail. It will be convenient for us to consider unweighted/weighted 
graphs rather than binary/real-valued matrices, as this allows us to 
streamline our exposition. This is equivalent to using matrices by 
identifying graphs with their adjacency matrices. 

From trafc traces to weighted graphs. We assume we are 
given a packet trace, or more specifcally, a sequence of packet 
headers containing a timestamp and the amount of trafc that 
server/rack � sent to server/rack � at a certain time. To study how 
the trafc patterns develop over time, we partition the trafc into 
time intervals of a certain duration, and we will refer to each of 
these time intervals as time steps. For the following discussion we 
assume that the duration � of a time step is fxed. This simplifes 
our notation. 

We represent the trafc during each time step � as a weighted 
bipartite communication graph �� = (� ∪ � , �� ,�� ). Here, � is the 
set of all racks/servers that send data over the network during the 
entire time duration; similarly, � is the set of all racks/servers that 
receive data during the entire time. We stress that if a rack/server 
sends and receives data, it has two nodes in the graph: one in � , 
and one in � . Furthermore, �� is the set of edges at time step � . The 
weight function �� : � ×� → R+ assigns to each pair (�, �) the total 
amount of trafc that rack/server � sent to rack/server � during 
time step � . We chose to represent the trafc as a bipartite graph as 
fnding clusters in bipartite graphs is a well-studied problem [14, 28] 
and it allows us to fnd non-trivial patterns of datacenter trafc. 
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From weighted graphs to unweighted graphs. As some of 
our algorithms expect unweighted graphs, we also consider the 
following thresholded unweighted graphs �� = (� ∪ � , ��

� ). Here, � 
� ∈ R is a threshold such that �� only contains edges of weight at 
least � , i.e., �� = {(�, �) ∈ �� : � (�, �) ≥ � }. This can be interpreted � 
as keeping all edges (�, �) for which � sent “a lot” of trafc to � . 

Typically, we set the threshold � such that a desired fraction of 
edges from �� remain. For example, if we set � to the 70%-percentile 
of the non-zero edge weights in �� , then �� contains the largest � 
30% of non-zero weight edges from �� . When setting � to one of 
these percentiles, we write �� to denote the �-percentile for non-
zero weight edges in �� for � ∈ (0, 1). Note that if we pick large 
values for � (e.g., � = 70%), this results in sparser graphs � 

�� , and � 
smaller values for � (e.g., � = 30%) result in denser graphs � 

�� . For� 
� = 0%, we keep all non-zero weight edges in � 

�� .� 
We discuss the choices for � that we use in our case study in 

Section 2.3. 
Clustering bipartite graphs. To fnd trafc patterns inside 

our unweighted graphs, we propose a biclustering approach. More 
concretely, given an unweighted bipartite graph � = (� ∪ � , �), 
our algorithms compute a biclustering of � , i.e., they return sets 
of biclusters (�1,�1), . . . , (�� ,�� ) such that �� ⊆ � and �� ⊆ � for 
all � = 1, . . . , � . 

Our algorithms (more details follow) pick the biclusters in such 
a way that the induced subgraphs � [�� ,�� ] are dense; this corre-
sponds to sets of senders and receivers that communicate a lot of 
data in the network. In other words, the nodes in a cluster �� receive 
“a lot” of trafc from vertices in �� . 

In our experiments, we compute a biclustering for each time 
step � . More concretely, we apply our biclustering algorithms on 
each graph �� for � = 1, . . . ,� , where � is the total number of time � 
steps. This yields biclusterings (�1 

� ,�1 
� ), . . . , (� � ,� � ) for each time 

� � 
step � = 1, . . . ,� . 

See Section 2.3 for the concrete algorithms that we use. 
Measuring the quality of trafc clusters. Next, we introduce 

the measures that we use to obtain insights into our data and to 
assess the quality of the clusterings that we obtain. 

Comparing graph snapshots. To compare two (unweighted) graph 
snapshots �� and �

�
� 
+1, we consider three diferent measures: � 

(1) common= |�� ∩ �� +1 |/|�� ∪ �� +1 | · 100, 
(2) appear= |�� +1 \ �� |/|�� ∪ �� +1 | · 100, 
(3) disappear= |�� \ ��+1 |/|�� ∪ ��+1 | · 100. 

These measures represent the percentage of edges that appear in 
two consecutive graph snapshots, the percentage of edges that are 
new, and the percentage of edges that disappear, resp. 

Evaluating the quality of biclusterings. To evaluate the quality 
of our biclusterings, we consider three diferent measures which, 
taken together, give us a diferentiated picture on the quality of the 
trafc clusters. While biclustering approaches have been applied 
successfully in many applications in computer science, evaluating 
these approaches typically requires an external validation which 
is not available in our problem setting. An interesting measure for 
the validity of a biclustering under variations of the input data set 
is the stability index by Lee et al. [24], which is relevant for fnding 
biclusters in data with numerical attributes. With the following 
defnitions of trafc inside the biclustering, recall and precision, we 

introduce a methodology to measure the quality of trafc clusters 
that originate from thresholded communication graphs. 

First, for a biclustering (�1,�1), . . . , (�� ,�� ) we say that its in-
duced bicliques are given by the set Ø� 

bicl((�1,�1), . . . , (�� ,�� )) = (�� × �� ), (1) 
�=1 

i.e., bicl((�1,�1), . . . , (�� ,�� )) ⊆ � × � contains all edges (�, �)
with � ∈ �� and � ∈ �� for some � . Intuitively, the induced bicliques 
are “idealized” versions of the the original biclusters, in which all 
missing edges were added. 

The trafc inside the biclustering (�1,�1), . . . , (�� ,�� ) is the frac-
tion of trafc sent between vertices that are contained in one of the 
biclusters (�� ,�� ). More formally, it is given by ∑ 1 

�� (�, �),
� (�,�) ∈bicl( (�1,�1 ),...,(�� ,�� ) ) 

where � = 
Í 
(�,�) ∈�� �� (�, �) is the total sum of edge weights 

(corresponding to the total amount of network trafc at time step � ). 
Note that here we are summing over the weights from the original 
weighted graph. Hence, if the trafc inside the biclustering is large, 
this indicates that the biclustering captures the trafc inside � well. 

However, the trafc inside a biclustering has some limitations. 
For example, consider a biclustering (�1,�1) with �1 = � and 
�1 = � . Then the trafc inside this biclustering is equal to the total 
sum of weights but the biclustering is not very informative, as it 
considers the whole graph as a single bicluster. Therefore, we also 
consider recall and precision, which are defned for unweighted 
graphs ��

� = (� ∪ � , ��
� ). 

The recall measures the fraction of edges (�, �) of �� that are 
“covered” by the induced bicliques of the biclustering (�1,�1), . . . , 
(�� ,�� ). More formally, the recall is given by 

recall = |��� ∩ bicl((�1,�1), . . . , (�� ,�� )) |/|��� |. 

On the other hand, the precision measures the fraction of edges in 
the induced bicliques which also have corresponding edges in �� . 
More formally, the precision is given by 

|�� ∩ bicl((�1,�1), . . . , (�� ,�� )) | precision = � 
. |bicl((�1,�1), . . . , (�� ,�� )) | 

Intuitively, the precision is high if the biclusters are “not too 
large” and the recall is high if the biclusters “cover” the edges 
well. Hence, if we fnd biclusters that simultaneously have high 
recall, high precision and a lot of trafc inside the biclusters, this 
indicates that the biclusters capture the trafc structure inside our 
communication graph well. 

Comparing biclusterings across time steps. Next, recall that the 
biclusterings we computed depended on the time step � . As we are 
interested in comparing biclusterings from diferent time steps, we 
need to measure their similarity. 

For two time steps �1 and �2 with biclusterings (�1 
�1 ,�1 

�1 ), . . . , 
(� �1 ,� �1 ) and (�1 

�2 ,�1 
�2 ), . . . , (� �2 ,� �2 ), we say that their similar-

�1 �1 �2 �2 
ity sim(�1, �2) is given by the fraction of edges which are contained 
in both induced bicliques. More formally, let bicl1 = bicl((�1 

�1 ,�1 
�1 ), 

. . . , (� �1 ,� �1 )) and bicl2 = bicl((�1 
�2 ,�1 

�2 ), . . . , (� �2 ,� �2 )). Then
�1 �1 �2 �2 
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their similarity is given by 

|bicl1 ∩ bicl2 |sim(�1, �2) = . |bicl1 ∪ bicl2 |
Intuitively, two biclusterings are similar if their idealized bi-

cliques are similar. While this defnition might look a bit artifcial at 
frst glance, it is quite handy because it allows us to deal with over-
lapping biclusters and also with biclusterings that have diferent 
numbers of biclusters. 

To compare � > 2 diferent biclusterings, we turn to simi-
larity matrices (see, e.g., Fig. 3(d)). Given multiple biclusterings 
(�1 

� ,�1 
� ), . . . , (� � ,� � ) for � = 1, . . . ,� , the similarity matrix � ∈

� � 
[0, 1]� ×� has entries ��1,�2 = sim(�1, �2). Thus, ��1,�2 measures how 
similar the biclusterings �1 and �2 are. As � is symmetric, we only 
report the entries for �2 ≥ �1. 

Visualization. Sometimes we visualize the biclustering we ob-
tain. Given a bipartite graph � = (� ∪ � , �) with biadjacency 
matrix � ∈ {0, 1}|� |× |� | and a biclustering (�1,�1), . . . , (�� ,�� ), 
we reorder the rows and columns of � using the ADVISER algo-
rithm [11]. In our plots (see, e.g., Fig. 2), yellow dots correspond 
to 1-entries in � and purple dots correspond to 0-entries in �. We 
follow the convention that vertices from � correspond to rows of � 
and vertices from � correspond to columns of �; in other words, 
the rows of � correspond to nodes that send data and the columns 
of � correspond to nodes that receive data. 

2.3 Choice of Parameters and Algorithms 
We conclude this section by justifying our choices for the parame-
ter � and the biclustering algorithms we use in the case study. 

Choice of parameter � . Recall that �� determines the sparsity 
of the graph ��� , where larger (smaller) values for � correspond to 
sparser (denser) graphs. Furthermore, when running biclustering 
algorithms on sparser graphs, this typically results in smaller bi-
clusters (i.e., the biclusters contain fewer vertices and the induced 
bicliques are smaller). Intuitively, if we pick � too small (correspond-
ing to dense graphs and large biclusters), our biclusterings have 
high recall and high trafc inside the biclusters but small precision. 
Similarly, when � is too large (the biclusters are too small), we have 
high precision but small recall and small trafc inside the matrices. 

As we argued before, we are interested in fnding biclusterings 
which simultaneously have high recall, high precision and high 
trafc inside the biclustering. Therefore, in our experiments we 
pick the value of � ∈ {0%, 30%, 50%, 70%} such that all of these 
three objectives are satisfed (if possible). If multiple values in 
{0%, 30%, 50%, 70%} satisfy all three criteria, we report the largest 
possible value for � , since this corresponds to biclusters with fewer 
vertices which might be easier to optimize in application settings. 

In preliminary experiments we also used other options with � ∉ 
{0%, 30%, 50%, 70%} but they did not reveal any new insights beyond 
what we report. Hence, we focus on � ∈ {0%, 30%, 50%, 70%}. 

Biclustering algorithm. The frst biclustering algorithm we 
use is the pcv algorithm [30]. This algorithm takes as input an 
unweighted bipartite graph � and a parameter � , and returns a 
biclustering (�1,�1), . . . , (�� ,�� ). The biclustering is such that the 
clusters �1, . . . ,�� partition � , but the clusters �1, . . . ,�� might 
overlap and their union does not have to equal � . In a nutshell, the 
algorithm computes the biadjacency matrix � of � and denoises � 

via a truncated rank �-SVD and then applies �-Means on the rows of 
the low-rank matrix to obtain the clusters �1, . . . ,�� . Then it fnds 
the clusters �� by looking at the submatrices � [�� , :] and setting �� 
to the set of columns in � [�� , :] with “many” non-zero entries. 

We used pcv because it processes graphs with tens of thou-
sands of nodes highly efciently and, even though it is a ran-
domized algorithm, its outputs are very consistent over diferent 
runs (see App. A.2). Furthermore, it allows overlapping column-
clusters which is necessary given the structure of our dataset. How-
ever, other methods that fnd overlapping clusters could have been 
used as well, for instance, algorithms for Boolean Matrix Factoriza-
tion [27, 28]. In our experiments, we set � = 7 for pcv. 

In addition to pcv, we also use GraphScope [34]. Unlike pcv 
which only considers a single time step, GraphScope is an adaptive 
mining scheme on time-evolving graphs, i.e., it takes as input all un-
weighted graphs �� 

1 , . . . ,�
� . GraphScope requires no user-defned 
�

parameters, and it operates completely automatically, based on the 
MDL (Minimum Description Language) principle [31]. It simulta-
neously fnds the communities and determines change-points when 
the cluster structure changes. In particular, given a bipartite graph, 
where one group of nodes represent the source nodes and the other 
the destination nodes, GraphScope treats source and destination 
nodes separately, and discovers separate source and destination 
partitions, i.e., it determines a partition of the sources into � groups 
and a partition of the destinations into � groups, where � and � 
can have diferent values. GraphScope starts by identifying the 
communities on the initial graph snapshot, and then compares the 
current structure to consecutive snapshots. If this structure does 
not change much over time, consecutive snapshots of the evolving 
graphs are grouped together into a time-segment. If a new graph 
snapshot cannot ft well into the old segment, GraphScope intro-
duces a change-point, and starts a new segment at that time-stamp. 
Those change-points often detect drastic discontinuities in time. 
The advantage of applying GraphScope is that it requires no pa-
rameters, i.e., it determines the number of row and column groups 
automatically. However, it is less scalable than pcv; in particular, 
it is too inefcient to process rack–server or server–server com-
munications in our case study, and does not allow for overlapping 
column clusters �� . 

We apply these two diferent algorithms on all unweighted 
graphs �� for rack–rack communication. We empirically show � 
that they fnd similar clusters, indicating that the clusters we fnd 
are true positives. 

3 A CASE STUDY 
As a case study, we consider the traces obtained from three diferent 
clusters in the Altoona datacenter, which were shared with the 
research community by Facebook [32, 37]. The clusters correspond 
to a Web cluster, a Database cluster and a Hadoop cluster. We 
consider the trafc over a 150 minutes (2.5 hours) time frame, plus 
some additional time period in the beginning to avoid possible 
artifacts from the “warm-up phase“ and to focus on the steady-state 
behavior. To understand how the trafc patterns develop over time, 
we partition the 150 minutes of trafc into disjoint time intervals 
of 1, 5, and 15 minutes, the time steps; there are hence 150, 30, and 
15 time steps, resp. 
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3.1 Web Cluster 
This cluster contains Web servers serving Web trafc. 

Properties of datasets. To analyze how similar two consecutive 
graphs �� and �� +1 are, we compute the percentages of edges that 
appear, disappear, and do not change between �� and �� +1 in the 
rack–rack communication over a 15 minutes interval for �0, �0.3, �0.5, 
and �0.7. The graphs exhibit a strong similarity over time, and the 
percentage of edges that �� and ��+1 share is very high, i.e., greater 
than 70%. The results for the 5 and 1 minutes interval are similar. 

For the rack–server communication, we notice that the results 
are similar to those for the rack–rack communication. The only 
exception is represented by the sparsest graphs, i.e., � = 70%, for 
the 15 minutes time interval where the percentage of common 
edges is lower than the percentage of appearing and disappearing 
edges. For the server–rack communication the similarity over time 
is analogous to that of the rack–rack communication for 15 and 5 
minutes time interval, i.e., the percentage of common edges is higher 
than the percentage of appearing and disappearing edges, except 
for � = 70% in the 5 minute time interval. For the 1 minute time 
interval with �0.5 and �0.7, instead, the similarity changes and we 
notice that 40% of the edges are appearing or disappearing and only 
a small number of edges remain in two consecutive graph snapshots. 
(We present additional Figures in the appendix.) 

Discussion of results. We start by discussing our results that 
we obtained using pcv. In Fig. 2 we present the visualization of the 
rack–rack communication over a typical 1 minute interval. We used 
�0.7, i.e., we kept the 30% largest non-zero weight edges in ��� . The 
plot clearly allows us to identify the cache servers, the Web servers 
and the multifeed servers. 

Next, we need to ensure that the nice visual clusters from Fig. 2 
indeed correspond to actual trafc patterns. We analyze this in Fig. 3. 
First, we need to ensure that the biclusterings returned by pcv have 
high recall, precision, and trafc inside the biclusters. Fig.s 3(a)–3(c) 
show that indeed all of these measures are very high, for time steps 
of lengths 15, 5, and 1 minutes, resp. For each time step, the clusters 
contained more than 80% of the total trafc, while having recall 
and precision values of at least 90%. Hence, the biclusters seem to 
correspond to real trafc patterns. Second, we try to understand 
how stable the biclustering results are over time. Fig.s 3(d)–3(f) 
provide the similarity matrices for time steps of lengths 15, 5, and 
1 minutes, resp. The plot shows that the clusterings of the diferent 
time steps have very high similarity and thus the obtained cluster 
structures are very stable over time, with similarity values over 85%. 

Table 1: Our fndings for the Web cluster and Database using 
GraphScope for rack-rack traces. (S - segments, s - #clusters 
for sources, d - #clusters for destinations) 

Clusters Web cluster Database 

15′ 5′ 1′ 15′ 5′ 1′ 
S, s, d S, s, d S, s, d S, s, d S, s, d S, s, d 

p=0% 
p=30% 
p=50% 
p=70% 

1, 7, 7 
3, 7, 12 
4, 10, 9 
1, 7, 13 

1, 8, 9 
1, 7, 7 
1, 6, 7 
1, 7, 7 

1, 7, 6 
1, 6, 5 
1, 5, 6 

12, 12, 16 

1, 8, 8 
2, 10, 9 
3, 8, 7 
2, 9, 6 

2, 8, 8 
3, 12, 9 
7, 8, 8 
9, 8, 8 

43, 11, 11 
46, 1, 9 
45, 8, 8 
40, 8, 10 

Figure 2: Visualization of our approach for rack–rack com-
munication over a 1 minute interval from the Web cluster for 
� = 70%. On the left, we present the unordered binary matrix. 
On the right, we present the binary matrix after reordering 
based on the bicluster structure. The cluster structure reveals 
the cache servers (vertical block), the Web servers (horizontal 
block) and the multifeed servers (small square). 

Figure 3: Web cluster and rack–rack communication results, 
with � = 70% and time step lengths varying from 15 minutes 
to 1 minute. Fig.s 3(a)–3(c) present recall, precision and trafc 
inside the clusters, and Fig.s 3(d)–3(f) present the correspond-
ing similarity matrices. 

In Table 1 we report the results of GraphScope for the Web 
cluster. In the Web cluster the graphs are more similar and few 
change-points are identifed by GraphScope, i.e., the number of 
segments is equal to 1 in most of the cases, for all the time intervals. 
The results of GraphScope, for some aspects, are in line with our 
analysis of the graph similarity in terms of common, appearing, 
and disappearing edges. The Web cluster is characterized by a well 
defned structure that remains persistent over time. 

It is important to underline that the results obtained with Graph-
Scope difer from those obtained with the pcv in terms of number 
of clusters and segments detected. This diference is due to the 
diferent solutions provided by the algorithm: GraphScope does 
not identify overlapping communities and, unlike pcv, the nodes 
are partitioned and belong to only one cluster. 

Next, we consider rack–server communication over 5 minute 
time frames and � = 0%. In Fig. 9(a) we visualize a typical bicluster-
ing. We see that the resulting biclusters are extremely dense, which 
is why our biclusterings have a precision of almost 100%. The recall 
is around 85% and the trafc inside the biclustering is about 90%. 
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This suggests that we found high-quality trafc biclusters. Further-
more, the biclusterings are very stable over time and all entries 
in the similarity matrix are over 94%. For shorter time frames of 
length 1 minute, the data becomes sparser and pcv does not fnd the 
full clusters anymore, which is why the trafc inside the clusters 
drops to around 60% in this case. For server–rack communication 
the situation is almost identical. 

For the server–server communication, we consider 15 minute 
time frames and � = 0%. These are the densest graphs that we 
obtain among all clusters, containing around 10% of all possible 
edges; for shorter time frames or larger values for � , the graphs 
become much sparser (e.g., for 5 minute intervals and � = 0.5%, they 
contain less than 2.1% of all possible edges). The typical biclustering 
we fnd clearly reveal the structure of the cache and the Web servers 
(see Fig. 6 in the appendix). The similarities of our biclusterings are 
very high (typically above 99%); their recall is constantly above 95%, 
and their precision and trafc inside the clusters is around 50%. We 
explain the low fraction of trafc by the fact that pcv seems to miss 
some servers in the clustering (see also Fig. 6). 

3.2 Database Cluster 
The Database cluster mainly consists of MySQL servers which store 
user data and serve SQL queries. 

Properties of datasets. We evaluate the similarity of graphs in 
the Database cluster and we notice that for the rack–rack commu-
nication, and the rack–server communication, the percentage of 
common edges is high, i.e., greater than 70% for the 15 and 5 min-
utes interval, for any � . The sparser graphs with � = 70% exhibit 
a less strong similarity over time and the percentage of common 
edges decreases to 50% for the 1 minute interval. In the server–rack 
communication, the graphs characterized by a lower similarity are 
those obtained with �0.7 for the 15 and 5 minutes time interval. 
While for the 1 minute time interval the results are similar to those 
in the other communication cases with an exception for the sparsest 
graphs with � = 70% where the number of common edges, about 
20%, is lower that that of the new edges, about 40%. (We present 
additional fgures in the appendix.) 

Discussion of results. We present our fndings that we obtained 
from pcv and 1-minute time intervals in Fig. 4. We present a typical 
plot for the rack–rack communication over a 1-minute interval 
with � = 0% in Fig. 4(a). In Fig. 4(b), we present recall, precision 
and trafc inside the biclusters. Recall and precision are very high 
(almost 100%) but the precision is lower (around 80%). Indeed, when 
increasing � to 30% and 50%, the precision drops quite signifcantly 
to 70% and 60%, resp., but for both the recall and the trafc inside 
the clusters stay above 90%. However, when setting � = 70%, the 
trafc inside the clusters drops quite signifcantly to around 70% 
and precision and recall drop to 50% and 80%, resp. In Fig. 4(c) we 
see that the clusterings have very high similarities of at least 85%. 

We note that when considering longer time steps, consisting of 
5 or 15 minutes, the precision for larger values of � increases. For 
example, when considering 15 minute intervals, the precision for 
� = 30% is above 80% and for � = 50% it is above 75%. 

Applying GraphScope to the Database cluster we notice that the 
similarity of the graphs decreases, and the algorithm detects more 
change-points and segments, in particular for the 1 minute time 
interval, as shown in Table 1. 

Figure 4: Our results for the Database cluster and rack–rack 
communication over 1-minute time steps and � = 0%. Fig. 4(a) 
shows the graph after reordering according to the bicluster-
ing. Fig. 4(b) presents recall, precision and trafc inside the 
biclusters. Fig. 4(c) shows the similarity matrix. 
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cluster rack–rack com. ter rack–rack com. cluster rack–rack com. 

Figure 5: Similarity of consecutive graph snapshots for the 
Hadoop clusters. Notice that lines may overlap. 

As the Web cluster, also the Database cluster is characterized 
by a well-defned structure that remains persistent over time. The 
reason for the high number of change-points in the 1 minute time 
interval in Table 1 is related to the size of the graphs, these are the 
smallest in terms of number of edges compared to the other graphs. 

Next, we consider rack–server and the server–rack communi-
cations over 15 minute time frames and for � = 0%. We visualize 
typical communication patterns in Fig.s 9(b) and 9(c), resp. We con-
sidered the 10,000 servers that received/sent the most data over the 
whole 150 minutes. In both cases, there exists one bicluster that 
is relatively dense, even though sparser than what we have seen 
for the Web cluster; the rest of the graph is extremely sparse. For 
both, rack–server and server–rack communication, the precision 
and recall are around 50% across all time steps; we explain this by 
the sparsity of the obtained biclusters and the long “unclusterable” 
tail of servers that do not receive/send a lot of data. The bicluster 
similarity is very high (over 80%) in both cases. Intriguingly, for 
rack–server communication the biclusters contain 85% of the trafc, 
while for server–rack it contains just 15% of the trafc. 

For server–server communication, we considered the 10,000 
servers which sent and received the most data. We did not fnd any 
meaningful biclusters; even for 15 minute time frames and � = 0%, 
the graphs are extremely sparse and have less than 0.12% of all 
possible edges. 

3.3 Hadoop Cluster 
This cluster is for batch processing and runs Hadoop applications. 

3028



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Foerster et al. 

Properties of datasets. In the Hadoop cluster, we notice a dif-
ferent structure compared to the previous two clusters. In particular 
for the rack–rack communication, in the 15 and 5 minutes time 
interval for �0.7, the percentage of common edges is low while there 
is a high number of edges that appear and disappear. We show the 
percentages in Fig. 5(a), Fig. 5(b), and 5(c), The same happens for 
the rack–server communication for �0.7 and 5 minutes time interval. 
This low similarity over time is exhibited also for the 1 minute time 
interval with �0.5, �0.7 in the rack–rack communication, and for the 
5 minute time interval with �0.7 in the rack–server communica-
tion. In the server–rack communication, the percentage of common 
edges is low while there is a high number of edges that appear and 
disappear, the only graphs exhibiting a strong similarity over time 
are those obtained with �0 for the 15 minutes time interval. 

Discussion of results. We again start by discussing our results 
from pcv. We present the biclustering from rack–rack communica-
tion over 5-minute intervals and � = 30% in Fig. 8 in the appendix. 
Fig. 8(a) shows a typical plot of a graph � 

�� ; we see that this graph � 
is very dense, containing almost 70% of all possible edges. As the 
biclustering essentially forms one single large cluster for the graph, 
the precision is also around 70%, and the recall and trafc inside the 
cluster are very high (Fig. 8(b)). Not surprisingly, the similarities 
across diferent time steps are extremely high (Fig. 8(c)). 

In Table 2 in the appendix we report the results obtained with 
GraphScope for the Hadoop cluster. Comparing the results for the 
Hadoop cluster with the other clusters, it is easy to see that in 
this Hadoop cluster the similarity of the graphs decreases, and 
the algorithm detects many more change-points and segments, in 
particular for the 1 minute time interval. The Hadoop Cluster is 
the one with the lowest percentage of common edges and highest 
percentage of edges that appear and disappear for the 1 minute 
time interval and, as shown in Table 2, GraphScope detects a high 
number of change-points. Moreover, it is the cluster with the highest 
average number of edges. 

Next, we consider rack–server communication over 15 minute 
time intervals and � = 30%. We visualize a typical biclustering in 
Fig. 9(d), where we considered the 10,000 servers that received the 
most data over the whole 150 minutes. When considering � = 0%, 
the only change in the plots is that the dense areas become even 
more dense. Fig. 9(d) shows that the racks send a lot of data to a 
very large fraction of the servers. Our biclusterings had recall and 
trafc inside the biclusters almost 100%; the precision is around 
50%, due to the sparsity of the graph. The smallest entry in our 
similarity matrices is over 85%, suggesting that the set of active 
servers is very stable over the entire time frame. For server–rack 
communication results are essentially identical. 

For the server–server communication of the 10,000 most active 
sending and receiving servers, the matrices are relatively sparse 
(even over 15 minutes and for � = 0%, they typically contain less 
than 5% of all possible edges). It seems like the data does not contain 
clear bicluster structures, as the recall and the trafc inside the 
biclusterings are almost 0%. 

4 ADDITIONAL RELATED WORK 
The study of communication trafc and its patterns is a topic of 
high relevance in the networking community, and has received 

much attention in the literature, at least from the 1990s when it was 
observed that enterprise and Internet trafc can signifcantly difer 
from other communication trafc, such as phone calls [25]. There 
also already exist several important studies on the trafc in datacen-
ter networks specifcally. Empirical studies found that much data-
center trafc is rack-local [6, 13], that there is typically only a small 
fraction of large fows [2], and that demand is generally bursty [6– 
8, 13] and of low entropy [4] and features ON/OFF behavior [6]. 
Some of these properties have recently been revisited in the context 
of a large empirical study in Facebook’s datacenters [32], which 
showed that the specifc properties also depend on the datacenter 
type. However, these works do not go in-depth for our research 
question on communication clustering, even though many further 
aspects are considered: e.g., the seminal work by Benson et al. [6] 
studies trafc from the viewpoints of application type, fow- and 
packet-arrival times, link utilization, and extra-rack vs. intra-rack 
trafc, but not the communication cluster structure itself. Similarly, 
Roy et al. [32] consider, e.g., rack locality, demand-distribution, 
and communication between co-located server clusters–but do not 
study clustering in the observed trafc. Lastly, while Ghobadi et 
al. [16] showed that small groups of servers can be talkative, they 
also did not further investigate communication clusters. 

Hence, to the best of our knowledge, our work is the frst to pro-
pose a systematic approach to determine communication clusters 
in datacenter trafc, based on biclustering, showing that a signif-
icant amount of trafc lies in small and stable clusters. Despite 
the practical relevance of biclustering in many applications, e.g., 
in text mining and bioinformatics, only few publications focus on 
the evaluation of biclustering results. Existing approaches based 
on external validation [18] require information on an ideal biclus-
tering solution and are not applicable to our problem setting. Lee 
et al. [24] introduced a stability index to measure the validity of a 
biclustering under variations of the input data set. This measure 
focuses on fnding biclusters in data with numerical attributes, as 
it is the case for gene expression. 

5 FUTURE RESEARCH 
We understand our work as a frst step, and believe that it opens sev-
eral interesting avenues for future research. In particular, it would 
be interesting to improve the scalability of our algorithms further, 
in order to be able to conduct even more fne-grained analyses. 
Another interesting direction is to fnd patterns of fow patterns 
(involving a sequence of senders and receivers), rather than pat-
terns of sender–receiver that we considered. Next, the dataset we 
considered provides trafc information over a single day (24 hours) 
and is widely studied by the research community. As a consequence, 
we are limited in the trafc window, and hence studied a 150 min-
utes sample. Future studies could consider larger datasets to study 
shorter and larger time frames: seconds, days, weeks and months. 
More generally, while our work shows that small, dense, and stable 
clusters exist in the communication trafc, it remains to investigate 
the resulting possible opportunities for improving the resource 
efciency in datacenters. In particular, it would be interesting to 
study under which circumstances a collocation of such clusters 
can be meaningful, possibly even dynamically over time, using 
cost-efcient migrations or reconfgurations. 
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A APPENDIX 

A.1 Additional Plots and Tables 
In this section, we present additional plots of Fig.s 6, 8 and 9, as 
well as Table 2. 

A.2 Stability of pcv Solutions 
Since pcv is a randomized algorithm and requires the number of 
clusters � as input, we also study how stable its biclustering solu-
tions are over diferent runs and across diferent choices of � . 

More concretely, given an unweighted bipartite graph � , we 
created fve initial biclusterings of � for � = 7 (as in our experi-
ments above). Then we vary � = 5, . . . , 10 and each time we create 
another fve biclusterings of � . For each new biclustering and and 
each initial biclustering, we compute the normalized mutual infor-
mation (NMI) of their induced bicliques (see Eq. (1)); we report the 
averages and standard deviations of these NMIs. Note that we use 
the induced bicliques for computing the NMI because they relate to 
the edges “covered” by the biclustering and they are independent 
of � and can handle overlapping clusters (as produced by pcv). 

We report our results in Fig. 7. The NMI values we obtain are 
always above 75% and the standard deviations are low. Indeed, here 
we report some of the “worse” results; on many other datasets 
the NMIs are well above 90% and have extremely small standard 
deviations. 

A.3 Graph Similarity over Time 
To analyze how similar two consecutive graphs �� and �� +1 are, 
we compute the percentages of edges that appear, disappear, and 
do not change between �� and �� +1. We present additional plots 
for the Web cluster in Fig.s 10 and 11, and the Database cluster in 
Fig.s 12 and 13. 

A.4 Graph Statistics 
In this section we report the size of the clusters in Table 3. 

Figure 6: Visualization of the biclustering of server–server 
communication over a 15 minute interval from the Web clus-
ter for � = 0%. We considered the 10,000 servers that sent and 
the 10,000 server that received the most data. pcv detects the 
two blocks on the left and at the top as biclusters, but does 
not include the slightly more dense areas towards the bottom 
and towards the right. 

Table 2: Our fndings for the Hadoop cluster using Graph-
Scope for rack-rack traces (S - segments, s - #clusters for 
sources, d - #clusters for destinations). 

15’ 5’ 1’ 
S, s, d S, s, d S, s, d 

p=0% 3, 5, 6 14, 9, 10 93, 9, 9 
p=30% 7, 9, 8 21, 8, 10 81, 8, 10 
p=50% 6, 9, 8 17, 8, 10 73, 8, 9 
p=70% 7, 9, 9 14, 7, 9 68, 8, 8 

(a) 5 min, � = 70%, Web clus- (b) 1 min, � = 0%, Database 
ter rack–rack com. cluster rack–rack com. 

Figure 7: Stability of the pcv biclusterings for rack–rack com-
munication of the Web cluster (left) and the Database cluster 
(right). We plot average NMI values against the parameter �; 
errorbars correspond to standard deviations. 

Figure 8: Our results for the Hadoop cluster and rack–rack 
communication over 5-minute time steps and � = 30%. 
Fig. 8(a) shows the graph after reordering according to the 
biclustering. Fig. 8(b) presents recall, precision and trafc 
inside the biclusters. Fig. 8(c) shows the similarity matrix. 

Table 3: Densities of the thresholded graphs ��
� = (�� , ��� )

for rack–rack communication. Here, the densities are the 
averages over all values |�� |/( |� | · |� |), where we average 
over � . We present the results for diferent values for � and 
diferent time step lengths. 

Clusters Web cluster Database Hadoop 

t 15’ 5’ 1’ 15’ 5’ 1’ 15’ 5’ 1’ 

p=0% 0.83 0.74 0.48 0.47 0.46 0.4 0.98 0.96 0.7 
p=30% 0.58 0.52 0.34 0.33 0.32 0.28 0.69 0.68 0.49 
p=50% 0.42 0.37 0.24 0.23 0.22 0.2 0.49 0.48 0.35 
p=70% 0.25 0.22 0.14 0.14 0.14 0.12 0.29 0.29 0.21 
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(a) ordered plot: Web cluster, rack–server, 5 min, � = 0% 

(b) ordered plot: Database cluster, rack–server, 15 min, � = 0% 

(c) ordered plot: Database cluster, server–rack, 15 min, � = 0% 

(d) ordered plot: Hadoop cluster, rack–server, 15 min, � = 0.3% 

Figure 9: Visualizations of the communications between racks and servers. In all plots, the sending racks are in the rows and the 
columns correspond to receiving servers, except for Fig. 9(c) where the rows are receiving racks and the columns are sending 
servers. For Fig.s 9(b) and 9(c) we have removed some sparse parts on the right side of the plot for better readability. 
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(a) measures: 5 min, � = 30%, (b) measures: 15 min, � = 30%, 
Web cluster rack–rack com. Web cluster rack–rack com. 

Figure 10: Similarity of consecutive graph snapshots for the 
Web cluster, rack-rack communication. Notice that the per-
centage of edges that appear, disappear, or are in common 
may be the same and two diferent lines may overlap. 
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(a) measures: 15 min, � = 70%, (b) measures: 5 min, � = 70%, 
Web cluster rack–server com. Web cluster server–rack com. 

Figure 11: Similarity of consecutive graph snapshots for the 
Web cluster. Notice that the percentage of edges that appear, 
disappear, or are in common may be the same and two dif-
ferent lines may overlap. 
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(b) measures: 5 min, � = 30%, 
Database cluster rack–server 
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Figure 12: Similarity of consecutive graph snapshots for the 
Database cluster. Notice that the percentage of edges that 
appear, disappear, or are in common may be the same and 
two diferent lines may overlap. 
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(a) measures: 15 min, � = 70%, 
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(b) measures: 1 min, � = 70%, 
Database cluster server–rack 
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Figure 13: Similarity of consecutive graph snapshots for the 
Database cluster, server–rack communication. Notice that the 
percentage of edges that appear, disappear, or are in common 
may be the same and two diferent lines may overlap. 
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