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ABSTRACT
Knowledge Graph Embeddings (KGE) aim to map entities and re-
lations to low dimensional spaces and have become the de-facto
standard for knowledge graph completion. Most existing KGEmeth-
ods suffer from the sparsity challenge, where it is harder to predict
entities that appear less frequently in knowledge graphs. In this
work, we propose a novel framework KRACL1 to alleviate the wide-
spread sparsity in KGs with graph context and contrastive learning.
Firstly, we propose the Knowledge Relational Attention Network
(KRAT) to leverage the graph context by simultaneously projecting
neighboring triples to different latent spaces and jointly aggregat-
ing messages with the attention mechanism. KRAT is capable of
capturing the subtle semantic information and importance of dif-
ferent context triples as well as leveraging multi-hop information
in knowledge graphs. Secondly, we propose the knowledge con-
trastive loss by combining the contrastive loss with cross entropy
loss, which introduces more negative samples and thus enriches
the feedback to sparse entities. Our experiments demonstrate that
KRACL achieves superior results across various standard knowl-
edge graph benchmarks, especially on WN18RR and NELL-995
which have large numbers of low in-degree entities. Extensive ex-
periments also bear out KRACL’s effectiveness in handling sparse
knowledge graphs and robustness against noisy triples.

∗Corresponding author: Minnan Luo, School of Computer Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China.
1The code is available at https://github.com/TamSiuhin/KRACL.
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1 INTRODUCTION
Knowledge graphs (KGs) are collections of large-scale facts in the
form of structural triples (subject, relation, object), denoted as (𝑠, 𝑟, 𝑜),
e.g., (Christopher Nolan, Born-in, London). These KGs reveal the rela-
tions between entities and play an important role in many applica-
tions such as natural language processing [39, 51, 85, 89], computer
vision [19, 22], and recommender systems [9, 24, 67, 70, 75]. Al-
though KGs already contain millions of facts, they are still far from
complete, e.g., 71% of people in the Freebase knowledge graph have
no birthplace and 75% have no nationality [17], which leads to poor
performance on downstream applications. Therefore, knowledge
graph completion (KGC) is an important task to predict whether a
given triple is valid or not and further expands the existing KGs.

Most existing KGs are stored in symbolic formwhile downstream
applications always involve numerical computation in continuous
spaces. To address this issue, researchers proposed to map entities
and relations to low dimensional embeddings dubbed knowledge
graph embedding (KGE). These models usually leverage geometric
properties in latent space, such as translation and bilinear transfor-
mation in Euclidean space [7, 80], rotation in complex space [56],
and reflection in hypersphere space [11]. Convolutional networks
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Figure 1: The number and mean reciprocal rank (MRR)
of different frequency entities based on RotatE results on
FB15k-237, WN18RR, NELL-995, and YAGO3-10 benchmark
datasets. It reveals the common existence of sparse entities
and their poor prediction performance in KGs.

are also used in KGE to extract semantic information [14, 16]. Re-
cently, Graph Neural Networks (GNNs) are leveraged to encode
graph structure in KGE [63, 88] and propagate message in path-
based knowledge graph reasoning [86, 91].

Although much research progress has been made by recent KGE
models, predicting entities that rarely appear in knowledge graphs
remains challenging [49]. We investigate the in-degree (using entity
frequency) and link prediction performance (using MRR) on sev-
eral widely acknowledged knowledge graphs, including FB15k-237
[60], WN18RR [16], NELL-995 [78], and YAGO3-10 [55] (shown
in Figure 1). The yellow bars show that a large portion of enti-
ties rarely appear in knowledge graph triples, leading to limited
facts for knowledge graph completion. Moreover, it also reveals
the common existence of sparse entities across various datasets.
The blue bars show the link prediction performance for entities of
different in-degree with RotatE [56]. We observe that the prediction
performance is strongly relevant to the entity in-degree, and the
prediction performance of sparse entities is much worse than those
of frequent entities.

In this work, we proposeKRACL (KnowledgeRelationalAttention
Network with Contrastive Learning) to alleviate the sparsity issue
in KGs. First, we employKnowledgeRelationalATtention Network
(KRAT) to fully leverage the graph context in KG. Specifically, we
map context triples to different latent spaces and combine them in
message, then we calculate attention score for each context triple to
capture its importance and aggregate messages with the attention
scores to enrich the sparse entities’ embedding. Second, we project
subject entity embedding to object embedding with knowledge
projection head, e.g., ConvE, RotatE, DistMult, and TransE. Finally,
we optimize the model with proposed knowledge contrastive loss,

i.e., combining the contrastive loss and cross entropy loss. We em-
pirically find that contrastive loss can provide more feedback to
sparse entities and is more robust against sparsity when compared
to explicit negative sampling. Extensive experiments on various
standard benchmarks show the superiority of our proposed KRACL
model over competitive peer models, especially on WN18RR and
NELL-995 with many low in-degree nodes. Our key contributions
are summarized as follows:
• Wepropose theKnowledgeRelationalATtentionNetwork (KRAT)
to integrate knowledge graph context by mapping neighboring
triples to different representation space, combining different la-
tent spaces in message, and aggregating message with the atten-
tion mechanism. To the best of our knowledge, we are the first
to ensemble different KG operators in the GNN architecture.

• We propose a knowledge contrastive loss to alleviate the sparsity
of knowledge graphs. We incorporate contrastive loss with cross
entropy loss to introduce more negative samples, which can en-
rich the feedback to limited positive triples in knowledge graphs,
thus enhancing prediction performance for sparse entities.

• Experimental results demonstrate that our proposed KRACL
framework achieves superior performance on five standard bench-
marks, especially on WN18RR and NELL-995 with many low
in-degree entities.

2 RELATEDWORK
2.1 Knowledge Graph Embedding
Non-Neural Non-neural models embed entities and relations into
latent space with linear operations. Starting from TransE [7], the
pioneering and most representative translational model, a series of
models are proposed in this line, such as TransH [72], and TransR
[37]. RotatE [56] extends the translational model to complex space
and OTE [58] further extends RotatE to high dimensional space.
There is another line of work that takes tensor decomposition to
compute the plausibility of triples. For instance, RESCAL [45] and
DistMult [80] represent each relation with a full rank matrix and
diagonal matrix, respectively. ComplEx [61] generalizes DistMult
to complex space to enhance the expressiveness. To model the un-
certainty of learned representations, Gaussian distribution is also
used for KGE [30]. Beyond Euclidean space and Gaussian distribu-
tion, KGE can also be projected to manifold [76], Lie group [77],
hyperbolic space [3, 11], and mixture of different embedding spaces
[10]. These models are simple and intuitive, but due to their simple
operation and limited parameters, these non-neural models usually
produce low-quality embeddings.
Neural Network-based Neural network-based KGE models are
introduced for KGC due to their inherent strong learning ability.
Convolutional neural networks are employed to extract the se-
mantic features from KGE. Specifically, ConvE [16] utilizes 2D
convolution to learn deep features of entities and relations. Con-
vKB [14] adopts 1D convolution and feeds the whole triple into the
convolutional neural network. HypER [2] employs hypernetwork
to generate relation-special filters. Graph neural networks also
show strong potential in learning knowledge graphs embedding
by incorporating graph structure in KGs [5, 54, 73]. R-GCN [53] is
an extension of the graph convolution network [31] for relational
data. CompGCN [63] jointly embeds both entities and relations in
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Figure 2: Overview of our proposed KRACL framework to alleviate the sparsity problem in knowledge graphs.

KG through compositional operators. NBFNet [91] and RED-GNN
[86] leverage GNNs to progressively propagate query in knowledge
graph to conduct KG reasoning. In light of recent advance, capsule
networks [65], transformers [12, 43], language models [52, 83], and
commonsense [46] are also introduced to KGC.

2.2 Contrastive Learning
Contrastive learning has been a popular approach for self-supervised
learning by pulling semantically close neighbors together while
pushing apart non-neighbors away [26]. As is first introduced in
the computer vision domain, a large collection of works [13, 28, 59]
learn self-supervised image representations by minimizing the dis-
tance between two augmented views of the same image, while
pushing apart the two augmented views of the same images. Gunel
et al. [25] further extends contrastive learning to the supervised
setting by considering the representations from the same class as
positive samples. Contrastive learning also achieves great success in
different fields, including natural language processing [15, 23, 79],
graph representation learning [33, 47, 71, 74, 81, 84, 90], multi-modal
pre-training [50], and stance detection [34]. In the knowledge graph
area, contrastive learning has been applied for recommendation
[82], molecular representation learning [20], text-based KGC [69],
and efficient KGE [68]. We explore its potential to alleviate knowl-
edge graphs’ sparsity in this work.

3 METHODOLOGY
We consider a knowledge graph as a collection of factual triples
D = {(𝑠, 𝑟, 𝑜)} with E as entity set and R as relation set. Each triple
has a subject entity 𝑠 and object entity 𝑜 , where 𝑠, 𝑜 ∈ E. Relation
𝑟 ∈ R connects two entities with direction from subject to ob-
ject. Next, we introduce a novel framework–Knowledge Relational
Attention Network with Contrastive Learning (KRACL) for knowl-
edge graph completion. KRACL is two-fold, we first introduce the
Knowledge Relational ATtention Network (KRAT) that aggregates
the graph context information in KG, then we describe Knowledge
Contrastive Learning (KCL) to alleviate the sparsity problem.

3.1 Knowledge Relational Attention Network
To fully exploit the limited context information in sparse KGs,
we first use different operators to project the context triples into
different representation spaces and merge their inductive bias, then
combine them in the message. Then we aggregate all the context
triples with the attention mechanism. The entities’ KRAT update
equation can be defined as

𝒉(𝑙)𝑜 = 𝜎
©­«

∑︁
(𝑠,𝑟 ) ∈N𝑜

𝛼𝑠𝑟𝑜𝑾
(𝑙)
𝑎𝑔𝑔 𝑓 (𝒉𝑠 ,𝒉𝑟 ) +𝑾 (𝑙)

𝑟𝑒𝑠𝒉
(𝑙−1)
𝑜

ª®¬ , (1)

where 𝜎 denotes the Tanh activation function,𝑾 (𝑙)
𝑎𝑔𝑔 ∈ R𝑑𝑙×𝑛 ·𝑑𝑙−1

denotes the feed-forward aggregation matrix, 𝛼𝑠𝑟𝑜 denotes the
attention weights of context triple (𝑠, 𝑟, 𝑜). We also add a pre-
activation residual connection to prevent over-smoothing. The
aggregated message 𝑓 (𝒉𝑠 ,𝒉𝑟 ) that combines KG context aims to
map neighboring triples to different latent spaces with fusion oper-
ators and fully leverage their semantic information, which can be
written as

𝑓 (𝒉𝑠 ,𝒉𝑟 ) = 𝜎

( [
𝑾 (𝑙)

1 𝜙1 (𝒉𝑠 ,𝒉𝑟 )
����...����𝑾 (𝑙)

𝑛 𝜙𝑛 (𝒉𝑠 ,𝒉𝑟 )
] )

, (2)

where𝜎 denotes the LeakyReLU activation function,𝑾 (𝑙)
𝑖

∈ R𝑑𝑙×𝑑𝑙−1

denotes the weighted matrix corresponding to the 𝑖-th operator
in the 𝑙-th layer, 𝜙𝑖 (𝒉𝑠 ,𝒉𝑟 ) denotes the fusion operation between
subject 𝑠 and relation 𝑟 , Then we concatenate them and merge
their inductive bias to serve as the passing message in KRAT layer.
The composition operator 𝜙𝑖 (𝒉𝑠 ,𝒉𝑟 ) can be subtraction taken from
Bordes et al. [7], multiplication taken from Yang et al. [80], rota-
tion taken from Sun et al. [56], and circular-correlation taken from
Nickel et al. [44]2:
• Subtraction (Sub): 𝜙 (𝒉𝑠 ,𝒉𝒓 ) = 𝒉𝑠 − 𝒉𝑟
• Multiplication (Mult): 𝜙 (𝒉𝑠 ,𝒉𝒓 ) = 𝒉𝑠 · 𝒉𝑟
• Rotation (Rot): 𝜙 (𝒉𝑠 ,𝒉𝒓 ) = 𝒉𝑠 ◦ 𝒉𝑟
• Circular-correlation (Corr): 𝜙 (𝒉𝑠 ,𝒉𝒓 ) = 𝒉𝑠 ★ 𝒉𝑟

We then calculate the attention score for each context triple
𝛼𝑠𝑟𝑜 to distinguish their importance. Inspired by Nathani et al.
2See details of rotation and circular-correlation operations in Appendix.
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[42], Veličković et al. [64], the attention score 𝑤𝑠𝑟𝑜 for context
triple (𝑠, 𝑟, 𝑜) is defined as

𝑤𝑠𝑟𝑜 = 𝒂 (𝑙)𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(
𝑾 (𝑙)
𝑎𝑡𝑡

[
𝒉(𝑙−1)𝑠 | |𝒉(𝑙−1)𝑟 | |𝒉(𝑙−1)𝑜

] )
, (3)

where 𝒂 (𝑙) ∈ R1×𝑑𝑒 and𝑾 (𝑙)
𝑎𝑡𝑡 ∈ R𝑑𝑒×(2𝑑𝑒+𝑑𝑟 ) are learnable param-

eters specific for the 𝑙-th layer of KRAT, 𝒉𝑠 ,𝒉𝑟 ,𝒉𝑜 denote the hidden
representations of subject entity, relation, and object entity in the
𝑙 − 1 layer. Then the attention score of each triple is normalized
with softmax as

𝛼𝑠𝑟𝑜 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑠𝑟 (𝑤𝑠𝑟𝑜 )

=
𝑒𝑥𝑝 (𝑤𝑠𝑟𝑜 )∑

𝑛∈N𝑜

∑
𝑝∈R𝑛𝑜

𝑒𝑥𝑝 (𝑤𝑛𝑝𝑜 )
,

(4)

where N𝑜 denotes the neighbor entities of 𝑜 , R𝑛𝑜 denotes the rela-
tion that connects with 𝑛 and 𝑜 , 𝛼𝑠𝑟𝑜 is the normalized attention
weight for triple (𝑠, 𝑟, 𝑜).

After the entity embedding update defined in Eq 1, the relation
representations are also transformed as follows:

𝒉(𝑙)𝑟 =𝑾 (𝑙)
𝑟𝑒𝑙

· 𝒉(𝑙−1)𝑟 , (5)

where 𝑾 (𝑙)
𝑟𝑒𝑙

∈ R𝑑𝑟×𝑑𝑟 is a trainable weight matrix for relation
embeddings under the 𝑙-th layer.

3.2 Knowledge Contrastive Learning
After passing 𝑇 layers of KRAT, the entity representations are en-
riched with 𝑇 hops context. Taking the idea of supervised con-
trastive learning [25], we pulls embeddings from the same entities
close and pushes embeddings from different entity further away to
introduce more negative samples as well as the feedback to limited
positive triples in KG. The contrastive loss is calculated as

L𝐶𝐿 =
∑︁
𝑜∈T

−1
|T𝑜 |

∑︁
𝒛 (𝑠,𝑟 ) ∈T𝑜

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝒛 (𝑠,𝑟 ) · 𝒉𝑜/𝜏)∑
𝑘∉T𝑜

𝑒𝑥𝑝 (𝒛𝑘 · 𝒉𝑜/𝜏)
, (6)

where T denotes a batch of normalized entity embeddings, T𝑜 de-
notes the set of representations corresponding to entity 𝑜 , 𝜏 is an
adjustable temperature hyperparameter that controls the balance
between uniformity and tolerance [66]. The contrastive loss intro-
duces more negative samples, therefore enriching the feedback to
the limited positive triples. 𝑧 (𝑠,𝑟 ) is a knowledge projection head
which can be TransE, DistMult, RotatE, and ConvE to transform
embeddings from subject to object. Here we take ConvE as an
example,

𝒛 (𝑠,𝑟 ) = 𝜎 (𝑣𝑒𝑐 (𝜎 (
[
𝒉𝑠
����𝒉𝑟 ] ∗ 𝜔))𝑾𝑝 ), (7)

where 𝒉𝑠 ∈ R𝑑𝑤×𝑑ℎ and 𝒉𝑟 ∈ R𝑑𝑤×𝑑ℎ denote 2D reshaping of 𝒉𝑠 ∈
R

𝑑𝑤𝑑ℎ×1 and 𝒉𝑟 ∈ R𝑑𝑤𝑑ℎ×1 respectively, [·| |·] is concatenation
operation, ∗ denotes the convolution operation, 𝜎 denotes non-
linearity (PReLU [29] by default), 𝑣𝑒𝑐 denotes vectorization, and
𝑾𝑝 is a linear transformation matrix. The whole formula represents
the predicted object representation given the subject 𝑠 and relation
𝑟 . We then calculate the cross entropy loss as follows

L𝐶𝐸 = − 1
|T |

∑︁
(𝑠,𝑟 ) ∈T

∑︁
𝑜∈E

𝑦𝑜(𝑠,𝑟 ) · log𝑦
𝑜
(𝑠,𝑟 ) , (8)

where T denotes training triples in a batch, E denotes all entities
that exist in the KG, 𝑦𝑜(𝑠,𝑟 ) denotes the ground-truth labels, i.e.,

Table 1: Dataset statistics.

Dataset #Ent. #Rel. #Edge #In-degree

Train Valid Test Avg. Med.

FB15k-237 14,541 237 272,115 17,535 20,466 18.76 8
WN18RR 40,943 11 86,835 3,034 3,134 2.14 1
NELL-995 75,492 200 149,678 543 3,992 2.01 0
Kinship 104 25 8,544 1,068 1,074 82.15 82
UMLS 135 46 5,216 652 661 38.63 20

𝑦𝑜(𝑠,𝑟 ) = 1 if triple (𝑠, 𝑟, 𝑜) is valid and 𝑦𝑜(𝑠,𝑟 ) = 0 otherwise. 𝑧 (𝑠,𝑟 )
is 1-N scoring function taken from ConvE [16], which scores all
candidate entities with dot product. It is also used for scoring in
inference

𝑦𝑜(𝑠,𝑟 ) = 𝒛 (𝑠,𝑟 ) · 𝒉𝑇𝑜 , (9)

where 𝑦𝑜(𝑠,𝑟 ) denotes the predicted plausibility for triple (𝑠, 𝑟, 𝑜),
𝒉𝑜 ∈ R𝑑×|E | denotes the representations of all entities. Ultimately,
we demonstrate the final objective by incorporating the contrastive
loss and cross entropy loss through summation,

L = L𝐶𝐿 + L𝐶𝐸 . (10)

By jointly optimizing the two objectives, we capture the similarity
of the embeddings corresponding to the same entity and contrast
them with other entities, while boosting the performance for link
prediction.

4 EXPERIMENTS
We provide empirical results to demonstrate the effectiveness of our
proposed KRACL model. The experiments are designed to answer
the following research questions:
• RQ1: How does KRACL perform on sparse knowledge graphs,
compared to the state-of-the-art KGE models?

• RQ2:What is KRACL’s impact on the sparse entities in knowl-
edge graphs?

• RQ3: Is KRACL robust to the sparsity, noisy triples, and the
choice of knowledge projection head in knowledge graphs?

4.1 Experiment Settings
4.1.1 Datasets. To evaluate our KRACL, we consider five widely
acknowledged datasets: FB15k-237 [60], WN18RR [16], NELL-995
[78], Kinship [36], and UMLS [32], following the standard train/test
split. Statistics of these benchmarks are listed in Table 1, we further
investigate the average andmedium entity in-degree to demonstrate
their sparsity. It is shown that WN18RR and NELL-995 are much
sparser than FB15k-237, Kinship, and UMLS.

4.1.2 Evaluation Protocol. Following Bordes et al. [7], we use
the filtered setting for link prediction, i.e., while evaluating test
triples, all valid triples are filtered out from the candidate set. We
report mean reciprocal rank (MRR), mean rank (MR), and Hits@N.
MRR is the average inverse of obtained ranks of correct entities
among all candidate entities. MR means the average obtained ranks
of correct entities among all candidate entities. Hits@𝑁 measures
the proportion of correct entities ranked in the top 𝑁 among all
candidate entities. We take 𝑁=1,3,10 in this work.
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Table 2: Knowledge graph completion performance on sparse knowledge graphs, i.e., WN18RR and NELL-995. The best score
is in bold and the second best score is underlined, ‘-’ indicates the result is not reported in previous work.

Model WN18RR NELL-995
MRR ↑ MR ↓ H@10 ↑ H@3 ↑ H@1 ↑ MRR ↑ MR ↓ H@10 ↑ H@3 ↑ H@1 ↑

TransE [7] .243 2300 .532 .441 .043 .401 2100 .501 .472 .344
DistMult [80] .444 7000 .504 .470 .412 .485 4213 .610 .524 .401
ComplEx [61] .449 7882 .530 .469 .409 .482 4600 .606 .528 .399
RotatE [56] .494 4046 .571 .510 .455 .483 2582 .565 .514 .435
ConvE [16] .456 4464 .531 .470 .419 .491 3560 .613 .531 .403
HypER [2] .493 4687 .549 .503 .464 .540 1763 .657 .580 .471
TuckER [4] .470 - .526 .482 .443 .520 2330 .624 .561 .455
R-GCN [53] .123 6700 .207 .137 .08 .12 7600 .188 .126 .082
KBAT [42] .412 1921 .554 - - .319 3683 .474 .370 .233
CompGCN [63] .481 3113 .548 .492 .448 .534 1246 .644 .607 .466
HAKE [87] .497 - .582 .516 .452 .508 5836 .613 .557 .442
GC-OTE [58] .491 - .583 .511 .442 .538 837 .657 .576 .469
HittER [12] .503 - .584 .516 .462 - - - - -
DisenKGAT [73] .506 4135 .590 .522 .462 .547 882 .666 .598 .474
GIE [10] .491 - .575 .505 .452 .474 2218 .596 .504 .408
CAKE [46] - - - - - .543 433 .655 .583 .477
KRACL (Ours) .527 1388 .613 .547 .482 .563 716 .672 .602 .495

Table 3: Knowledge graph completion performance on denser knowledge graphs, i.e., FB15k-237 and Kinship. The best score
is in bold and the second best score is underlined. ‘-’ indicates the result is not reported in previous work.

Model FB15k-237 Kinship
MRR ↑ MR ↓ H@10 ↑ H@3 ↑ H@1 ↑ MRR ↑ MR ↓ H@10 ↑ H@3 ↑ H@1 ↑

TransE [7] .294 357 .465 - - .211 38.9 .470 .252 .093
DistMult [80] .241 254 .419 .263 .155 .48 7.9 .708 .491 .377
ComplEx [61] .247 339 .428 .275 .158 .823 2.48 .971 .899 .733
RotatE [56] .338 177 .533 .375 .241 .738 2.9 .954 .827 .617
ConvE [16] .325 244 .501 .356 .237 .772 3.0 .950 .858 .665
HypER [2] .341 250 .520 .376 .252 .868 1.96 .981 .935 .790
TuckER [4] .355 152 .541 .390 .262 .885 1.67 .986 .948 .816
R-GCN [53] .248 339 .428 .275 .158 .109 25.9 .239 .088 .030
KBAT [42] .156 392 .305 .167 .085 .637 3.41 .955 .757 .470
CompGCN [63] .355 197 .535 .390 .264 .810 2.26 .977 .892 .709
HAKE [87] .346 - .542 .381 .250 .802 2.38 .968 .881 .704
GC-OTE [58] .361 - .550 .396 .267 .832 2.05 .984 .917 .735
HittER [12] .373 - .558 .409 .279 - - - - -
DisenKGAT [73] .368 179 .553 .407 .275 .832 1.96 .986 .914 .737
GIE [10] .362 - .552 .401 .271 .664 3.43 .927 .770 .520
CAKE [46] .321 170 .515 .355 .226 - - - - -
KRACL (Ours) .360 150 .548 .395 .266 .895 1.48 .991 .970 .817

4.1.3 Baselines. We compare our KRACL with state-of-the-art
KGE models, including non-neural model TransE [7], DistMult [80],
ComplEx [61], RotatE [56], TuckER [4], OTE [58], HAKE [87], and
GIE [10]; neural network-based model ConvE [16], HypER [2], R-
GCN [53], KBAT [42], CompGCN [63], HittER [12], DisenKGAT
[73], and CAKE [46].

• TransE [7] is the most representative KGE model with the as-
sumption that the superposition of head and relation embedding
is close to tail embedding.

• DistMult [80] is a matrix factorization model that uses a bilinear
function for scoring.

• ComplEx [61] is a matrix factorization model that extends Dist-
Mult to the complex space.
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Figure 3: Link prediction performance on sparse knowledge
graph of KRACL and competitive peermodels on the FB15k-
237 datasets.

• RotatE [56] is a translational model that maps relations embed-
ding as rotation operation in complex space.

• ConvE [16] is a CNN-based model that adopts 2D convolution
network to extract semantic information between entities and
relations.

• HypER [2] is a CNN-based model that uses hypernetwork to
construct relational convolution kernels.

• TuckER [4] is a tensor decomposition model based on TuckER
decomposition of binary representation of KG triples.

• R-GCN [53] is a GNN-based model that extends GCN to rela-
tional data. Specifically, it aggregates messages from different
relations with different projection matrices.

• KBAT [42] is a GNN-based model that introduces the attention
mechanism to learn the importance of neighboring nodes and
takes advantage of multi-hop neighbors. Unfortunately, it was
found to have test data leakage problem [57].

• CompGCN [63] is a GNN-based model that jointly aggregates
entity and relation embeddings and score triples with a decoder
such as TransE, DistMult, and ConvE.

• HAKE [87] maps entities into the polar coordinate system. The
radial coordinate aims to model hierarchy and the angular coor-
dinate aims to distinguish entities within the same hierarchy.

• HittER [12] is a transformer-based KGE model that is organized
in a hierarchical fashion.

• DisenKGAT [73] is a GNN-based model that proposes to lever-
age micro-disentanglement and macro-disentanglement for rep-
resentative embeddings.

• GIE [10] is a translational model that better learns the spatial
structures interactively between Euclidean, hyperbolic, and hy-
perspherical spaces.

• CAKE [46] is a framework that extracts commonsense from
factual triples with entities concepts. It can augment negative
sampling and joint commonsense and fact-view link prediction.

Table 4: Link prediction performance categorized by differ-
ent entity in-degree on the FB15k-237 dataset. The best score
is in bold and the second best score is underlined.

In-degree RotatE ConvE CompGCN KRACL
MRR H@10 MRR H@10 MRR H@10 MRR H@10

[0, 10] .178 .309 .186 .338 .198 .348 .232 .394
[10, 20] .149 .294 .154 .299 .156 .296 .181 .335
[20, 30] .194 .381 .199 .386 .198 .370 .218 .405
[30, 40] .282 .497 .287 .485 .280 .476 .307 .501
[40, 50] .294 .547 .297 .516 .298 .520 .328 .552
[50, 100] .399 .681 .403 .675 .400 .663 .434 .702
[100,max] .691 .929 .714 .936 .674 .905 .716 .932

4.2 Main Results (RQ1)
Table 2 and 3 show the link prediction performance on the test set
on standard benchmarks including FB15k-237, WN18RR, NELL-995,
and Kinship3. From the experimental results, we observe that: 1)
on sparse knowledge graphs, i.e., WN18RR and NELL-995, KRACL
outperforms all other baseline models on most of the metrics. Partic-
ularly, MRR is improved from 0.481 and 0.534 in CompGCN to 0.527
and 0.563, about 9.6% and 5.4% relative performance improvement.
The MRR of our KRACL also improves upon that of DisenKGAT
by a margin of 4.2% and 2.9%, respectively. 2) on dense knowl-
edge graphs, i.e., FB15k-237 and Kinship, KRACL also achieves
competitive results compared to baseline models, with significant
improvement on the Kinship dataset. For the FB15k-237 dataset,
we speculate that its abundant N-N relations limit our KRACL’s
performance. Overall, these results show the effectiveness of the
proposed KRACL for the task of predicting missing links in knowl-
edge graphs and its superior performance on both sparse and dense
knowledge graphs.

4.3 Knowledge Sparsity Study (RQ1)
To verify KRACL’s sensitivity against sparsity, we randomly re-
move triples from the training set of FB15k-237 and evaluate the
models on the full test set. Figure 3 shows the MRR and Hits@10 of
7 competitive models including TransE, DistMult, ComplEx, RotatE,
ConvE, HypER, CompGCN, and our proposed KRACL. Performance
of all models universally decreases as the training set diminishes.
However, the results show that KRACL consistently outperforms all
baseline models, and as the corruption ratio increases, the improve-
ment of KRACL against baseline models increases as well. Overall,
these experiment results indicate our models’ superior robustness
against sparsity across a variety of baseline models.

4.4 Entity In-degree Analysis (RQ2)
Since the sparsity in KGs will lead to entities with low in-degree and
thus lack information to conduct link prediction, we follow Shang
et al. [54] and analyze link prediction performance on entities with
different in-degree. We choose FB15k-237 dataset as our object due
to its abundant relation types and dense graph structure. As shown
in Table 4, we present Hits@10 andMRRmetrics on 7 sets of entities
within different in-degree scopes and compare the performance
of KRACL with TransE, DistMult, ConvE, and CompGCN. Firstly,

3Please see main results on UMLS dataset in Appendix.
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Table 5: Knowledge graph completion performance by relation category on FB15k-237 dataset for TransE, DistMult, ConvE,
CompGCN, and proposed KRACL. FollowingWang et al. [72], the relations are categorized into one-to-one (1-1), one-to-many
(1-N), many-to-one (N-1), and many-to-many (N-N).

TransE DistMult ConvE CompGCN KRACL
MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

H
ea
d

1-1 .484 .593 .255 .307 .374 .505 .457 .604 .500 .609
1-N .080 .152 .038 .071 .091 .170 .112 .190 .118 .215
N-1 .329 .589 .322 .558 .444 .644 .471 .656 .485 .675
N-N .219 .436 .131 .255 .261 .459 .275 .474 .276 .481

Ta
il

1-1 .476 .588 .257 .312 .366 .510 .453 .589 .515 .635
1-N .536 .846 .575 .750 .762 .878 .779 .885 .796 .894
N-1 .060 .118 .032 .067 .069 .150 .076 .151 .093 .180
N-N .287 .553 .184 .376 .375 .603 .395 .616 .394 .620
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Figure 4: Knowledge graph completion performance on
noisy knowledge graph of KRACL and some baseline mod-
els on the FB15k-237 dataset.

for entities with low in-degree, GNN-based models such as KR-
ACL and CompGCN outperform ConvE and RotatE, because they
get extra information by aggregating neighboring entities. How-
ever, we find that simply aggregating neighbors equally through
a single operator is not enough. By projecting context triples to
different representation spaces, varying the importance of every
entity’s neighborhood, and introducing more feedback with KCL
loss, KRACL achieves significant improvement over all baselines for
entities with in-degree [0, 100]. For entities with higher in-degree,
i.e. [100,max], the performance of KRACL is close to ConvE and
RotatE, while the performance of CompGCN is the worst, because
entity embedding is substantially smoothed by too much neigh-
boring information [35]. To sum up, these results show the strong
capability of KRACL to predict sparse entities and it is also effective
for dense entities.

4.5 Performance by Relation Category (RQ2)
In this part, we follow Wang et al. [72] and further investigate the
performance of KRACL in different relation categories (shown in
Table 5). We report MRR and Hits@10 of KRACL and compare with

TransE, DistMult, ConvE, and CompGCN. We can see that KRACL
almost outperforms all baselines for all relation types. Furthermore,
it is demonstrated that KRACL achieves significant improvement
on 1-1, 1-N, and N-1 relations while the prediction performance on
N-N relations is close to CompGCN. We speculate that KRACL is
good at learning the relative simple relations and predicting the
N-N relation is still challenging to KRACL, which limits model’s
performance on FB15k-237 dataset. We leave the research of a more
expressive scheme to model complex N-N relations as future work.

4.6 Combination of Different GNN Encoder
and Projection Head (RQ3)

Borrowing from CompGCN, we evaluate the effect of different GNN
methods combined with different knowledge projection heads such
as TransE, DistMult, RotatE, and ConvE. The results are shown in
Table 6. We evaluate KRAT on four fusion operators taken from
Bordes et al. [7], Yang et al. [80], Sun et al. [56], Nickel et al. [44],
and with all operators simultaneously.

From experimental results in Table 6, we have the following
observations. First, by utilizing graph neural networks (GNNs), the
model can further incorporate graph structure and context infor-
mation in the knowledge graph and boost model’s performance.
The lack of fusing relation and entity embeddings leads to poor
performance of R-GCN and W-GCN, while CompGCN and KR-
ACL integrate relation and entity context and outperform other
baselines. Second, KRAT with all fusion operators outperform all
the simple counterparts, which highlights the importance of learn-
ing a more power message function in knowledge graphs. Third,
KRACL obtains an average of 4.5%, 2.8%, 13.7%, and 2.5% relative
improvement on MRR compared with CompGCN, which indicates
the strong robustness of KRACL across multi-categories knowl-
edge projection heads. We can also see that KRACL significantly
outperforms other baseline encoders when combined with RotatE.
It reveals the strong robustness and adaptation of the proposed
KRACL framework.

4.7 Robustness against Noisy Triples (RQ3)
Beyond sparsity, facts generated by knowledge extraction approaches
can also be unreliable, e.g., NELL facts have a precision ranging
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Table 6: Knowledge graph completion performance on FB15k-237 dataset. Following Vashishth et al. [63], X+M (Y) denotes that
M is the GNN backbone to obtain entity and relation embeddings and X is the scoring function or projection head in this work,
Y denotes the fusion operator between entity and relation embeddings. The best scores across all settings are highlighted by
· .

Dec./Proj. (=X)→ TransE DistMult RotatE ConvE

Methods ↓ MRR H@10 MRR H@10 MRR H@10 MRR H@10

X .279 .441 .241 .419 .338 .533 .325 .501
X+R-GCN .281 .469 .324 .499 .295 .457 .342 .525
X+W-GCN .264 .444 .324 .504 .272 .430 .244 .525
X+CompGCN (Sub) .335 .514 .336 .513 .290 .453 .352 .530
X+CompGCN (Mult) .337 .515 .338 .518 .296 .456 .353 .532
X+CompGCN (Rot) .271 .447 .289 .448 .296 .461 .325 .506
X+CompGCN (Corr) .336 .518 .335 .514 .294 .459 .355 .535
X+KRAT (Sub) .334 .519 .333 .512 .332 .512 .355 .541
X+KRAT (Mult) .332 .513 .331 .510 .334 .511 .356 .540
X+KRAT (Rot) .332 .512 .331 .508 .334 .513 .351 .538
X+KRAT (Corr) .333 .518 .334 .512 .332 .509 .353 .538
X+KRAT (All operators) .340 .524 .338 .517 .339 .522 .360 .548

Table 7: Results of ablation study of the proposedKRACL on
theWN18RR and NELL-995 dataset. 𝐵𝐶𝐸𝐿𝑜𝑠𝑠 denotes replac-
ing the KCL loss with binary cross entropy loss.

Model WN18RR NELL-995
MRR H@3 MRR H@3

w/o KRAT .509 .522 .543 .589
w/o attention .504 .521 .543 .583
w/o res. .518 .532 .551 .593
w/o L𝐶𝐿 .502 .514 .496 .541
w/o L𝐶𝐸 .495 .531 .542 .586
𝐵𝐶𝐸𝐿𝑜𝑠𝑠 .469 .478 .507 .547
KRACL .527 .547 .563 .602

from 0.75-0.85 for confident extractions and 0.35-0.45 across the
broader set of extractions [41]. In this section, we randomly add
unreliable triples in the sparse version of FB15k-237 to test the mod-
els’ robustness against noisy triples. Figure 4 shows how the MRR
and Hits@10 suffer as noises increase. We observe that KRACL con-
sistently outperforms all the baseline models, and its performance
shows a lower level of volatility, highlighting its strong robustness
against noisy triples.

4.8 Ablation Study
As KRACL outperforms various baselines across all selected bench-
mark datasets, we investigate the impact of each module in KRACL
to verify their effectiveness. More specifically, we perform abla-
tion studies on the proposed KRAT and its attention mechanism,
residual connection, and test the effectiveness of proposed KCL
and its two components on WN18RR and NELL-995 datasets, as
is shown in Table 7. First, it is illustrated that full KRACL model
outperforms 6 ablated models, which proves the effectiveness of
our design choice. Second, we observe a significant performance

drop when replacing the proposed KCL loss with binary cross en-
tropy loss, which is probably resulted from the poor generalization
performance of cross entropy loss when training with limited labels
[8, 38].

5 CONCLUSION
In this paper, we present KRACL model to alleviate the widespread
sparsity problem for knowledge graph completion. First, KRACL
maps context triples to different representation spaces to fully ex-
ploit their semantic information and aggregate the messages with
the attention mechanism to distinguish their importance. Second,
we propose a knowledge contrastive loss to introduce more neg-
ative samples, hence more feedback is provided to sparse entities.
Our KRACL effectively improves prediction performance on sparse
entities in KGs. Extensive experiments on standard benchmark
FB15k-237, WN18RR, NELL-995, Kinship, and UMLS show that
KRACL improves consistently over competitive baseline models,
especially on WN18RR and NELL-995 with large numbers of low
in-degree entities.
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ConvE KRACL

Figure 5: Visualization of object entity embeddings inConvE
and KRACL with T-SNE.

Table 8: Number of parameters in the KRACL model and
GPU hours for training on selected datasets.

Dataset Parameters GPU hours

FB15k-237 13.3M 9.5
WN18RR 18.6M 4.5
NELL-995 25.9M 10.5
Kinship 10.4M 0.7
UMLS 10.4M 0.5

A DATASET DETAILS
• FB15k-237 [60] is a subset of FB15k [7], which contains knowl-
edge base describing facts about the real world and is extracted
from FreeBase [6]. Different from FB15k, it removes all the re-
verse relations to prevent test data leakage.

• WN18RR [16] is a subset of theWordNet [40] containing lecxical
relation between words. Similar to FB15k-237, WN18RR also
removes the reverse relations to avoid test data leakage.

• NELL-995 [78] is a subset of the 995-th iteration of NELL sys-
tem. From Table 1 we can see that it is much sparser than other
datasets.

• Kinship [36] contains a set of triples that explains the kinship
relationships among members of the Alyawarra tribe from Cen-
tral Australia. It is an integral part of aboriginal across Australia
with regard to marriages between aboriginal people.

B RELATION CATEGORY DETAILS
Following Wang et al. [72], for each relation 𝑟 , we compute the
average number of tails per head and the average number of head
per tail, denoted as 𝑡𝑝ℎ𝑟 and ℎ𝑝𝑡𝑟 , respectively. If 𝑡𝑝ℎ𝑟 < 1.5 and
ℎ𝑝𝑡𝑟 < 1.5, 𝑟 is treated as one-to-one (1-1); if 𝑡𝑝ℎ𝑟 < 1.5 and
ℎ𝑝𝑡𝑟 ≥ 1.5, 𝑟 is treated as many-to-one (N-1); if 𝑡𝑝ℎ𝑟 ≥ 1.5 and
ℎ𝑝𝑡𝑟 < 1.5, 𝑟 is treated as one-to-many (1-N); if 𝑡𝑝ℎ𝑟 ≥ 1.5 and
ℎ𝑝𝑡𝑟 ≥ 1.5, 𝑟 is treated as a many-to-many (N-N).

C VISUALIZATION OF ENTITY
REPRESENTATIONS

To examine the quality of learned representations, we visualize
the entity embeddings. Given a link prediction task (𝑠, 𝑟, ?), we

Table 9: Hyperparameter settings of KRACL across various
benchmark datasets. We find our hyperparameter settings
robust across all datasets and all hyperparameters are cho-
sen by the performance on the validation set.

Hyperarameter FB15k-237 WN18RR NELL-995 Kinship UMLS

Entity dim 𝑑𝑒 200 200 200 200 200
Relation dim 𝑑𝑟 200 200 200 200 200
Batch size 2048 2048 2048 1024 1024
Learning rate 10−3 10−3 10−3 3 × 10−4 5 × 10−4
Epochs 1500 1000 1000 1000 1000
GNN layers 1 2 2 2 2
Encoder dropout 0.1 0.2 0.2 0.2 0.2
Temperature 𝜏 0.07 0.07 0.07 0.1 0.1
Optimizer AdamW AdamW AdamW AdamW AdamW

Table 10: Link prediction performance of KRACL and sev-
eral baseline models on the UMLS dataset. The best score is
in bold and the second best score is underlined.

Model UMLS
MRR ↑ MR ↓ H@10 ↑ H@1 ↑

TransE .615 3.6 .945 .391
DistMult .164 18.8 .403 .061
ComplEx .844 2.47 .967 .765
RotatE .822 2.1 .969 .703
ConvE .836 3.2 .946 .764
ConvKB .782 1.61 .986 .593
SACN .856 1.7 .985 .764
R-GCN .481 7.8 .835 .318
KBAT .818 1.855 .987 .711
KRACL .904 1.38 .995 .831

select queries (𝑠, 𝑟, ?) that have the same answers and visualize
their predictions with T-SNE [62]. As is shown in Figure 5, our
model shows higher level of collocation for entities, which indicates
that our KRACL framework learns high-quality representations for
entities and relations.

D IMPLEMENTATION DETAILS
We implement our KRACL model in PyTorch [48], PyTorch Light-
ning [18], and Pytorch Geometric [21] library on an RTX 3090 GPU
with 24GB memory. Following Vashishth et al. [63], each triple
(𝑠, 𝑟, 𝑜) is augmented with a flipped triple (𝑜, 𝑟−1, 𝑠). We present
our hyperparameter settings in Table 9 to facilitate reproducibil-
ity. We also use OpenKE [27] and PyKEEN [1] to reproduce the
baselines.

For the main results shown in Table 2 and 3, we adjust the
hyperparameters based on the performance on the validation set
and report the best results on the test set. For other experiments,
we present the performance of a single run.

E FUSION OPERATOR DETAILS
• Rotation: 𝜙 (𝒉𝑠 ,𝒉𝒓 ) = 𝒉𝑠 ◦ 𝒉𝑟
For each dimention 𝑖 , 𝑒 [2𝑖] and 𝑒 [2𝑖 + 1] are corresponding real
and imaginary components. Given the subject embedding 𝑒𝑠
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and relation transform embedding 𝜃𝑟 , the rotation projection is
formulated as[

(𝒉𝑠 ◦ 𝒉𝑟 ) [2𝑖]
(𝒉𝑠 ◦ 𝒉𝑟 ) [2𝑖 + 1]

]
=[

cos𝒉𝑟 (𝑖) − sin𝒉𝑟 (𝑖)
sin𝒉𝑟 (𝑖) cos𝒉𝑟 (𝑖)

] [
𝒉𝑠 [2𝑖]

𝒉𝑠 [2𝑖 + 1]

]
,

(11)

where 𝜃𝑟 is learnable parameter corresponding to relation type
𝑟 , ℎ̂𝑜 denotes the projected object embedding after rotation.

• Circular-correlation: 𝜙 (𝒉𝑠 ,𝒉𝒓 ) = 𝒉𝑠 ★ 𝒉𝑟

Taken from Nickel et al. [44], the circular-correlation operator is
formulated as

(ℎ𝑠 ★ℎ𝑟 ) [𝑘] =
𝑑−1∑︁
𝑖=0

ℎ𝑠 [𝑖] · ℎ𝑟 [(𝑘 + 𝑖) 𝑚𝑜𝑑 𝑑], (12)

where 𝑑 is the dimension of entity and relation embeddings,𝑚𝑜𝑑

denotes the modulo operation. The circular-correlation operator
can discriminate the direction of relation because of its non-
commutative property.
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