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ABSTRACT 
Collaborative Filtering (CF) models, despite their great success, suf-
fer from severe performance drops due to popularity distribution 
shifts, where these changes are ubiquitous and inevitable in real-
world scenarios. Unfortunately, most leading popularity debiasing 
strategies, rather than tackling the vulnerability of CF models to 
varying popularity distributions, require prior knowledge of the 
test distribution to identify the degree of bias and further learn the 
popularity-entangled representations to mitigate the bias. Conse-
quently, these models result in signifcant performance benefts in 
the target test set, while dramatically deviating the recommendation 
from users’ true interests without knowing the popularity distribu-
tion in advance. In this work, we propose a novel learning frame-
work, Invariant Collaborative Filtering (InvCF), to discover disen-
tangled representations that faithfully reveal the latent preference 
and popularity semantics without making any assumption about 
the popularity distribution. At its core is the distillation of unbiased 
preference representations (i.e., user preference on item property), 
which are invariant to the change of popularity semantics, while 
fltering out the popularity feature that is unstable or outdated. Ex-
tensive experiments on fve benchmark datasets and four evaluation 
settings (i.e., synthetic long-tail, unbiased, temporal split, and out-
of-distribution evaluations) demonstrate that InvCF outperforms 
the state-of-the-art baselines in terms of popularity generalization 
ability on real recommendations. Visualization studies shed light on 
the advantages of InvCF for disentangled representation learning. 
Our codes are available at https://github.com/anzhang314/InvCF. 
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1 INTRODUCTION 
Collaborative fltering (CF) is a keystone of personalized recom-
mendation, hypothesizing that behaviorally similar users tend to 
have similar preferences on items. Inspecting leading CF models 
[29, 44, 45], we can systematize a dominant paradigm — view his-
torical interactions between users and items as the training data, 
encode the collaborative signals as their representations, and then 
use these representations to predict future interactions in the test 
data. It simply assumes that the training and test data are drawn 
from the same distribution. However, this assumption hardly holds 
in the real-world scenarios, due to an inherent factor — popularity 
distribution shift between the training and test data (See real-
world datasets statistics in Figures 3, 6-8). That is, the statistical 
popularity of items varies across historical and future interactions, 
which is usually caused by the demographic, regional, and chrono-
logical diversity of human behaviors [16, 24]. For example, the 
fashion trend and alteration of the season will infuence the change 
in item popularity (See Figure 1); meanwhile, the sales of take-out 
food will fuctuate between weekdays and weekends [43]. Due to 
the prevalence of popularity distribution shifts, items and users 
representations are infused with unstable popularity correlations, 
which, under real-world recommendation scenarios, render CF 
models unrobust and severely degrade their performance. 

To overcome the lack of robustness guarantees in real appli-
cations, popularity generalization over CF models is attracting a 
surge in interest [18, 40, 55, 58]. However, rather than address-
ing the vulnerability of CF model to popularity distribution shifts 
[2, 51], current prevalent studies mainly focus on popularity de-
biasing. That is, measuring the degree of popularity bias in the 
training data frst, and then mitigating the bias using a variety of 
debiasing strategies, including regularization-based [1, 6, 11, 59], 
reweighting-based [9, 12, 19, 35, 47, 53], and causal embedding 
[14, 25, 27, 42, 56, 57]. Such the degree of bias is determined by 
the popularity distribution deviation of the training set from the 
target data. Inevitably, to precisely quantify the deviation, there is 
an implicit but impractical constraint for these debiasing methods, 
i.e., the target popularity distribution must be known in advance. 
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Figure 1: Illustration of real-world popularity distribution 
shifts. The alteration of the season naturally infuences the 
item popularity distribution, where both ����� and � 

′ 
���� are 

possible to occur but are unpredictable. More datasets statis-
tics can be found in Figure 3 and Appendix A.1 . 

• The reweighting-based approaches [7, 13, 36], also referred to as 
Inverse Propensity Score (IPS), inversely weight each item’s pre-
diction error with the propensity of its popularity. The propen-
sities, once inverted, lead to an inherent assumption that the 
uniform popularity distribution with regard to items is unbiased 
and on target. 

• Most cutting-edge debiasing techniques demand prior knowl-
edge of the test popularity distributions, such as leveraging the 
validation set equipped with similar popularity distribution of 
test as a guide for hyperparameter adjustment [12, 50, 57], or 
leaking a small amount of unbiased data to strengthen unbiased 
recommendation learning [5, 9, 27]. 

These debiasing methods sufer from injecting popularity infor-
mation into representations. As a result, without prior knowledge 
of the target distribution, highly popularity-entangled represen-
tations encounter a severe performance drop in practice, which 
further limits the applicability of these debiasing techniques. 

We postulate that an ideal method to handle unknown popularity 
distribution shifts should learn disentangled representations that 
faithfully refect the hidden invariant features and popularity se-
mantics, rather than learning superfcial entangled representations. 
Our core idea is, inspired by invariant learning [3, 23] and disentan-
gled representations [17], to identify the invariant features (i.e., a 
user’s true preference, an item’s real property) that causally deter-
mine the historical and future interactions, regardless of changes in 
variant popularity. Such popularity-invariant representations are 
able to yield a consistently plausible performance and enhanced 
generalization ability in real recommender systems (See Table 2). 

Towards this end, we propose a new learning framework, Invariant 
Collaborative Filtering (InvCF), that integrates invariance and dis-
entanglement principles. By disentanglement principle, we mean 
that the representations are decomposed into two independent 
components - popularity and preference representations, while 
changing the “popularity” semantic does not afect the preference 
representations. By invariance principle, we mean that the relations 
between preference representations and interactions are invariant 
throughout a variety of popularity distributions, and that prefer-
ence representations are sufcient on their own to preserve the 
critical facts of interactions. 

Guided by these two principles, our InvCF strategy incorporates 
four modules: a preference encoder, a popularity encoder, a repre-
sentation augmentation module, and a representation disentangling 
module. First, the popularity encoder and preference encoder, re-
spectively, learn inference mappings from popularity statistics and 
historical interactions to the latent representation space. Then the 
augmentation and disentangling modules are implemented based 
on the proposed principles to drive the representation learning. 
Specifcally, towards the disentanglement principle, disentangling 
module utilizes distance correlation as a regularizer to encourage 
independence of popularity and preference representations (See 
additional results employing various discrepancies in Table 10). 
Towards the invariant principle, the augmentation module concate-
nates the target preference representation with other’s popularity 
representations and enforces the prediction to be invariant. Jointly 
training under these two principles enables the CF models to disen-
tangle the invariant/causal semantic features and variant/spurious 
popularity information, and further boosts the model’s capability to 
popularity generalization. Our main contributions are summarized 
as follows: 

• From a more realistic standpoint, we broaden our understanding 
of the current popularity debiasing problem and reformulate it 
as the problem of popularity distribution shift in CF. 

• We propose a novel Invariant Collaborative Filtering (InvCF) 
method that hinges on the representation level disentanglement 
and augmentation to guarantee invariant feature learning. 

• We conduct in-depth experiments with extensive test evalua-
tions to justify the superiority of InvCF in diverse popularity 
distributions. 

2 PRELIMINARY 
We begin with the defnition of popularity distribution shift in 
CF, and highlight its diferences from popularity bias. Then, we 
formulate the problem of popularity generalization, and reveal 
the limitations of current debiasing approaches when facing this 
generalization problem. Throughout the paper, we represent the 
random variables and their deterministic values with the upper-
cased (e.g., � ) and lower-cased (e.g., � ) letters, respectively. 

2.1 Popularity Distribution Shift 
Background. Here we focus on item recommendation from implicit 
feedback [34], where an interaction between a user and an item 
(e.g., view, purchase, click) implicitly refects the user’s preference. 
The task is building a CF model to learn the user preference from 
historical interactions and predict future interactions. Let Dtrain = 
{(�,�) |� = (�, �), � = 1} be the training set that involves historical 
interactions between users and items, and Dtest = {(�,�) |� = 
(�, �), � = 1} be the test set that contains future interactions, where 
� = 1 indicates that user � interacts with item � , otherwise � = 0. 

Formally, the dominant paradigm of learning CF models [33, 34] 
optimizes the model parameters �̂  via maximum log-likelihood 
estimation on the training data Dtrain: ∑ 
�̂  = arg max log �train (� |� ) = arg max log � (� |�), (1) 

� � (�,�) ∈Dtrain 
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where � and � are the variables of user-item pair and interaction, 
respectively; � (� |�) is the probability of � = � conditioned on � = 
� , indicating how likely user � interacts with item � . To approach 
the estimation, extensive model architectures [15, 26, 29, 34] have 
been designed to develop the CF idea — behaviorally similar users 
tend to have similar preferences on items. Regardless of diverse 
designs, at the core is distilling the CF signals as the representation 
of � and regressing it to � . For example, MF [21] and LightGCN 
[15] learn a pair of user representation and item representation to
depict � , and use the inner product of them to ft the interaction � .

Defnition. Following prior studies [10, 57], we reveal two parts
inherent in � ’s representation: (1) information on users’ pure pref-
erences, �pref, which refects user interest in item properties; (2)
information on popularity, �pop, which describes user conformity
infuenced by item popularity. On closer inspection on these parts 
[16, 49], �pref is more stable to serve as the causation of interaction
� ; in stark contrast, �pop more easily changes due to demographic,
regional, and chronological diversity of human behaviors, thus 
holding the unstable correlation with interaction � . Conventional 
CF models mostly assume that the training and test data are from 
the same distribution, thereby having the same popularity informa-
tion �pop. However, this assumption is unrealistic in the real-world
scenarios. 

Formally, across the training and test data (i.e., Dtrain and Dtest),
we defne the underlying changes in popularity information �pop
as popularity distribution shift: 

�train (�pop, � ) ≠ �test (�pop, � ). (2) 

Diferences from Popularity Bias. There has been increasing in-
terest in the popularity distribution diference between the training 
and test data, which is quantitatively measured as popularity bias 
[9, 36, 50, 57]. However, these studies on popularity bias inherently 
assume the popularity information of test distribution is known 
or assumed in advance during training. See Section 2.2 for more 
details. In sheer contrast, the popularity distribution shift focuses 
on the more general and practical scenario, which has no access 
to any popularity information about the test distribution. That is, 
we hardly quantify the distribution discrepancy w.r.t. popularity
between the training and test data. Hence, it poses a major obstacle 
in enhancing the generalization ability of CF models to unknown 
popularity distribution shifts. 

2.2 Popularity Generalization 
Problem Formulation. Following previous work [37], we refor-
mulate the recommendation problem with the focus on popularity 
generalization. Specifcally, upon historical interactions drawn from 
the training data Dtrain, a CF model is learned to generalize well on
future interactions from the test data Dtest, considering underlying
popularity distribution shift: 

� ∗ = arg max log �test (� |� ), (3) 
� 

where � ∗ is the oracle parameters of model, which difers from the 
estimation �̂  in Equation (1); Dtest remains unknown during the
training phase. Worse still, no access is available to quantify the 
distribution shift w.r.t. popularity information between Dtrain and

Dtest. Therefore, it is infeasible to solve this generalization problem,
without any assumption. 

To make reasonable assumptions on popularity generalization, 
we derive a fne-grained analysis of �test (� |� ) and reveal how it is
distinct from �train (� |� ) w.r.t. popularity information. Specifcally,
we can decompose �test (� |� ) into the following terms via the Bayes
theorem: 

𝑃test (𝑌 |𝑋 ) = 𝑃test (𝑌 |𝑍pref, 𝑍pop)
𝑃test (𝑍pref, 𝑍pop |𝑌 ) · 𝑃test (𝑌 )

=
𝑃test (𝑍pref, 𝑍pop)

∝ 𝑃test (𝑍pop |𝑌 ) · 𝑃test (𝑍pref |𝑌, 𝑍pop) . (4)︸                    ︷︷                    ︸ ︸                                    ︷︷                                    ︸
Bias term Entanglement term

The bias term shows the direct efect of popularity information �pop
on �test (� |� ), whose comparison with �train (�pop |� ) of �train (� |� )
frames the certain popularity bias. Meanwhile, the entanglement 
term depicts that �pre are entangled with �pop, making the dis-
tillation of preference information dependent inherently on the 
popularity information. Hence, the key to popularity generaliza-
tion lies in mitigating the infuence of popularity on these terms. 

Limitations of Debiasing Approaches. Before introducing our
assumptions, we frst exhibit two defciencies of current debiasing 
approaches as follows: 

• For the bias term in Equation (4), most debiasing methods make
an implicit but unrealistic assumption that the popularity infor-
mation in test is available. For example, the reweighting methods
[7, 13, 19, 35, 36, 53] (also known as IPS families) actually use
the uniform distribution of popularity as the unbiased test data.
Recent eforts require the test knowledge in advance to help
the model training, such as leveraging the validation set con-
forming to the test data to guide the hyperparameter adjustment
[12, 50, 57], or a small unbiased set to boost the unbiased learning
[5, 9, 27]. Although these methods could achieve better perfor-
mance on certain test distribution, they still sufer from other
popularity distribution shifts and get degenerated performance.

• For the entanglement term in Equation (4), prior studies [42, 50,
56] simply hypothesize �test (�pref |�, �pop) = �train (�pref |�, �pop).
That is, the popularity information �pop has a stable infuence
on the preference information �pref across diferent distributions.
However, the correlation between �pop and �pref is naturally
shifting. Hence, it is crucial to disentangle the preference infor-
mation from the popularity information.

3 METHODOLOGY 
To achieve the popularity generalization, we propose a new learning 
paradigm, Invariant Collaborative Filtering (InvCF). Specifcally, we 
begin by introducing two principles: (1) invariance, which encour-
ages the interaction prediction to be determined by the preference 
information solely, while invariant to the popularity change; (2) 
disentanglement, which enforces the preference and popularity 
information decomposable and independent from each other. We 
then describe our implementation of these principles. 
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Figure 2: Illustration of item representation derived from InvCF and its popularity generalization. 

3.1 Invariant Collaborative Filtering 
Upon the inspection of the bias and entanglement terms in Equa-
tion (4), we draw inspiration from invariant learning [3, 23] and 
disentangled representation learning [17] to propose two principles. 
Next, we elaborate these principles towards popularity generation. 

Invariance Principle. By “invariance”, we conjecture that an ideal 
CF model should refne the invariant preference information (e.g., 
user preference on item properties) that causally determines the 
interaction behaviors, regardless of changes in popularity infor-
mation (e.g., user conformity, item popularity). More formally, this 
principle is: 

� ⊥ �pop | �pref, (5) 

where ⊥ denotes probabilistic independence. It delineates that �pref 
shields � from the infuence of �pop, making the prediction-making 
process from �pref to � stable across diferent �pop. Taking movie 
recommendation as an example, the invariance principle is a lever 
for looking at users’ stable incentives to watch a movie (e.g., in-
terest in the director and star aspects), rather than the spurious 
correlations caused by popularity factors (e.g., box ofce). 

Disentanglement Principle. By “disentanglement”, we mean that 
the preference and popularity information should be decomposable 
and independent [17] from each other , so that changing the popu-
larity does not afect the user preference on item properties. This 
principle can be formulated as: 

�pop ⊥ �pref . (6) 

It stipulates that the learning of �pref is not susceptible to �pop. 
Considering movie recommendation again, the disentanglement 
principle makes the popularity of a movie hardly derail a user’s 
interest in the director and star aspects. 

Integration of Two Principles. These two principles collaborate 
with each other to guide the learning of CF models, so as to endow 
them with powerful prediction and generalization abilities. 

3.2 Implementations of Two Principles 
Here we present how to parameterize these two principles in InvCF. 
As illustrated in Figure 2, it comprises two additional modules on top 
of the CF backbone: representation augmentation and disentangle-
ment. Specifcally, the CF backbone is used to encode the preference 
and popularity information as the corresponding representations. 
The augmentation module couple a preference representation with 
diverse popularity representations to approach an invariant pre-
diction, so as to achieve the invariance principle. Meanwhile, the 
disentanglement module pursues the independence of preference 

and popularity representations. Next, we will elaborate on these 
modules one by one. 

Representation Learning. During the training phase, the ground 
truth of oracle (ideal) preference and popularity information is 
out of reach, while only the historical user-item interactions are 
available. Such an absence motivates us to estimate them in the CF 
modeling. Specifcally, upon the historical interactions, we employ 
a CF backbone model to intensify the preference information �pref 
as the representations: 

u� , i� = �� (�, �), (7) 

where �� is the CF backbone (e.g., MF [34], LightGCN [15]), termed 
preference encoder. It takes the ID of user � and item � as the 
input, and then yields the �-dimensional preference representations 
u� ∈ R� and i� ∈ R� , respectively. 

Besides the preference encoder �� , we hire another popularity en-
coder �� , which has the same architecture to �� but aims to embrace 
the popularity information �pop as the representations: 

u� , i� = �� (�, �), (8) 

where �� takes the statistical metrics of popularity as the input (i.e., 
the numbers of interactions that user � and item � are involved in 
historically) and outputs the �-dimensional preference representa-
tions u� ∈ R� and i� ∈ R� . It is worth noting that these popularity 
statistics are treated as categorical features like ID. 

As a result, the preference and popularity representations are 
to estimate �pref and �pop, respectively. Their combination can 
parameterize user � and item � as: 

u = u� | |u� , i = i� | |i� , (9) 

where | | denotes the concatenation operation. To optimize these two 
encoders, we can adopt the prevalent learning strategy of empirical 
risk minimization (ERM). Specifcally, the risk function measures 
the quality of interaction predictions, which can be formulated as 
BPR loss [34] and Softmax loss [4, 33]. Here we apply Softmax loss 
� on an observed interaction between user � and item � as: ∑ exp (� (u� , i� )/�)
� (u� , i� ) = − log Í , (10) 

� ′ ∈N� ∪{� } exp (� (u� , i� ′ )/�)(�,� ) ∈Dtrain 

where � is the cosine similarity function; N� = {� ′ | (�, � ′) ∉ Dtrain}
is the set of sampled items that � did adopt before, in which i� ′ is 
the preference representation of � ′; � is the temperature hyperpa-
rameter in softmax [4]. Analogously, we can employ Softmax loss 
on the popularity representations u� and i� . In a nutshell, the ERM 
framework minimizes these expected risks: 

Lrep = � (u� , i� ) + � · � (u� , i� ), (11) 
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which essentially encourages these two representation groups to 
ft the training interaction and collect the signals relevant to it. 
Here, � is the hyperparameter to control the trade-of between 
preference and popularity representation learning. However, solely 
minimizing the risks over the empirical training distribution sufers 
from popularity distribution shift [51]. 

Representation Augmentation. To bring forth better generaliza-
tion w.r.t. popularity distribution shift, we advocate for the invari-
ance principle in Equation (5). Wherein, the relationship between 
the preference information and the interaction remains stable, re-
gardless of changes in popularity information. To parameterize this 
principle, we frst devise an augmentation operator on user and 
item representations, which preserves the estimated preference 
information, but intervenes the estimated popularity information. 
Formally, the operator frst collects all popularity representations 
into two memory banks U� = {u� 

′ |∀� ′} and I� = {i� 
′ |∀� ′}. Then it 

samples a memory u� 
′ ∈ U� to replace u� of �, which is combined 

with u� to create the augmented user u ∗ . Similarly, the augmenta-
tion can be performed on � in parallel to construct the augmented 
item i∗ . More formally, the augmentation process is: 

∗ ′ u = u� | |u i∗ = i� | |i′ (12)� , � . 

Having established the augmented representations, we enforce 
all (�, �)’s popularity-intervened versions to hold the consistent 
discriminative signals about interaction: 

∗ Laug = Eu� 
′ ∈U� 

� (u , i) + Ei� 
′ ∈I� 

� (u, i∗), (13) 

where � is Softmax loss in Equation (10) but with diferent inputs. As 
a result, it learns to rule out the infuence of popularity information, 
so as to make the preference representations more robust against 
diversifed popularity representations. 

Representation Disentanglement. Moreover, we parameterize 
the disentanglement principle in Equation (6) to make the prefer-
ence and popularity representations independent of each other, so 
as to assist the invariance principle. It can be achieved by mini-
mizing a disentanglement regularizer, such as distance correlation 
[17, 46, 57], Pearson correlation coefcient [10], and Maximum 
Mean Discrepancy (MMD) [38] (See Section 5). Here we minimize 
the distance correlation ���� between two representation groups: 

= ���� (u� , u� ) + ���� (i� , i� ), (14)Ldis 

which takes these representations apart in the latent space. In con-
junction with the invariance principles, it deprives the preference 
information of mixing the popularity clues. 

Joint Training. Overall, we can aggregate all foregoing risks and 
attain the fnal objective of InvCF: 

L = E(�=(�,� ),�) ∈Dtrain 
(Lrep + �1 · Laug + �2 · Ldis), (15) 

where �1 and �2 are the hyperparameters to control the strengths of 
invariance and disentanglement principles. Jointly optimizing these 
risks with these two principles allows the CF backbone (i.e., the 
preference encoder) to focus on the critical cues about users’ stable 
interest in items, regardless of popularity changes. It endows the 
CF backbone with better popularity generalization. In the inference 
phase, we use the preference representations to make predictions, 
shielding them from the infuence of popularity distribution shifts. 

Table 1: Dataset statistics. 
Yahoo!R3 Coat Douban Movie Meituan Tencent Yelp2018 

#Users 14,382 290 36,644 67,529 95,709 4886 
#Items 1,000 295 22,226 29,785 41,602 4804 
#Interactions 129,748 2,776 5,397,926 2,190,658 2,937,228 134, 031 
Density 0.0090 0.0324 0.0066 0.0011 0.0007 0.0057 
��� (������ | |����� ) 0.3561 0.1745 0.1601 0.0110 0.3639/0.7370/1.1282 -

(a) Training Set (b) Unbiased Test Set 

Figure 3: An illustration of popularity distribution shifts 
among diferent subgroups on Yahoo!R3. Compared to the 
typical long-tail distribution in the training set, the popu-
larity distribution in the unbiased test set is more evenly 
distributed. See more examples in Appendix A.1. 

4 EXPERIMENTS 
We aim to answer the following research questions: 

• RQ1: How does InvCF perform compared with other debiasing 
strategies and popularity generalization baselines? 

• RQ2: Does InvCF successfully learn popularity-disentangled 
representations? 

• RQ3: What are the impacts of the components (e.g., disentangling 
module, augmentation module) on InvCF? 

Datasets. We conduct extensive experiments on fve real-world 
benchmark datasets (i.e., Yahoo!R3 [30], Coat [36], Douban Movie 
[39], Meituan [43], and Yelp2018 [15]) and one synthetic dataset 
(i.e., Tencent [54]). Table 1 provides an overview of the statistics for 
all datasets, which difer in size, sparsity, domain, and the degree 
of popularity distribution variations. Specifcally, the popularity 
shift degree is calculated by KL-divergence between the popularity 
distribution in the training set and test set, i.e., ��� (������ | |����� ), 
where a higher KL-divergence value indicates a larger shift. More-
over, to visually demonstrate the distribution varies, we partition 
the training and test sets into nine disjoint subgroups based on the 
number of interactions of each item/user: head (the top third), mid 
(the middle), and tail (the bottom third). Then we summarize the 
frequency of interactions across all subgroups. Figure 3 and Figures 
6-8 clearly indicate that all datasets exhibit signifcant popularity 
distribution shifts between the training and test data. 
Test Evaluations. For comprehensive comparisons, three standard 
test evaluations - unbiased test set [30, 36], temporal split test set 
[6, 42, 56], and out-of-distribution test set [43, 49]) - as well as one 
synthetic evaluation - various popularity distributions as test sets 
are covered in the experiments. 
Baselines. Two high-performing Collaborative Filtering (CF) mod-
els - ID-based (MF [21]) and graph-based (LightGCN [15]), are 
selected as the backbone models being optimized. We thoroughly 
compare InvCF with two backbones and two categories of baselines: 

• Popularity debiasing baselines: regularization-based frame-
works (sam+reg [6]), reweighting-based methods (IPS-CN [13]), 
and causal embedding methods (CausE [5], MACR [50]). 
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Table 2: The performance comparison on Tencent dataset. The improvement achieved by InvCF is signifcant (�-value << 0.05). 

� = 200 � = 10 � = 2 Validation 
HR Recall NDCG HR Recall NDCG HR Recall NDCG HR Recall NDCG 

MF 
+ sam+reg 
+ IPS-CN 
+ CausE 
+ MACR 
+ sDRO 
+ CD2AN 
+ InvCF 

0.0803 
0.0811 
0.1299 
0.0936 
0.0846 
0.1468 
0.1409 
0.1580* 

0.0292 
0.0295 
0.0468 
0.0340 
0.0301 
0.0533 
0.0494 
0.0575* 

0.0167 
0.0168 
0.0273 
0.0192 
0.0173 
0.0311 
0.0286 
0.0342* 

0.0504 
0.0525 
0.0894 
0.0591 
0.0541 
0.0941 
0.0852 
0.1031* 

0.0188 
0.0192 
0.0328 
0.0212 
0.0203 
0.0336 
0.0300 
0.0374* 

0.0106 
0.0110 
0.0189 
0.0120 
0.0114 
0.0196 
0.0170 
0.0221* 

0.0347 
0.0352 
0.0656 
0.0407 
0.0386 
0.0664 
0.0569 
0.0734* 

0.0132 
0.0133 
0.0248 
0.0153 
0.0149 
0.0242 
0.0208 
0.0272* 

0.0081 
0.0082 
0.0147 
0.0091 
0.0089 
0.0144 
0.0119 
0.0165* 

0.2537 0.0919 0.0542 
0.2539 0.0917 0.0543 
0.1702 0.0613 0.0329 
0.2461 0.0878 0.0528 
0.2409 0.0862 0.0488 
0.3386 0.1318 0.0810 
0.2965 0.1108 0.0645 
0.3230 0.1246 0.0748 

Imp.% 7.63% 7.88% 9.97% 9.56% 11.31% 12.76% 10.54% 9.68% 12.24% − − − 

LightGCN 0.1167 0.0426 0.0240 0.0738 0.0272 0.0151 0.0514 0.0192 0.0114 0.3018 0.1137 0.0684 
+ sam+reg 0.1522 0.0542 0.0307 0.1008 0.0356 0.0198 0.0707 0.0255 0.0141 0.3014 0.1130 0.0682 
+ IPS-CN 0.1316 0.0472 0.0280 0.0874 0.0313 0.0182 0.0644 0.0242 0.0145 0.2496 0.0920 0.0545 
+ CausE 0.1284 0.0469 0.0259 0.0795 0.0289 0.0157 0.0558 0.0210 0.0116 0.2870 0.1065 0.0659 
+ MACR 0.1068 0.0387 0.0208 0.0663 0.0244 0.0131 0.0473 0.0182 0.0101 0.2969 0.1122 0.0666 
+ sDRO 0.1455 0.0516 0.0286 0.0857 0.0304 0.0166 0.0552 0.0205 0.0110 0.3485 0.1374 0.0872 
+ CD2AN 0.1540 0.0559 0.0305 0.0960 0.0347 0.0185 0.0658 0.0247 0.0134 0.3594 0.1427 0.0897 
+ InvCF 0.1651* 0.0605* 0.0331* 0.1061* 0.0386* 0.0204* 0.0722* 0.0272* 0.0149* 0.3611 0.1443 0.0912 

Imp.% 7.21% 8.23% 7.82% 5.26% 8.43% 3.03% 2.85% 7.94% 2.76 % − − − 

• Popularity domain generalization baselines: the latest com-
petitive methods CD2AN [10] which co-trains biased and unbi-
ased models, and sDRO [51] which improves worst-case perfor-
mance under distributionally robust optimization framework. 

See detailed introductions of datasets and baselines in Appendix A. 
Evaluation Metrics. We adopt the all-ranking strategy [22], where 
all items — aside from the positive ones in the training set — are 
ranked by the CF model for each user. Three commonly used met-
rics—Hit Ratio (HR@�), Recall@� , and Normalized Discounted 
Cumulative Gain (NDCG@�) — are used to assess the quality of 
the recommendations, with � being set by default at 20. 

4.1 Performance Comparison (RQ1) 
4.1.1 Evaluations on Various Popularity Distributions. 
Motivation. Many prevalent popularity debiasing techniques con-
centrate on mitigating bias for single target test distribution [9, 11, 
50]. However, the test popularity distributions in real-world recom-
mendation scenarios may be diverse, unpredictable, and unknown. 
We argue that a good CF model is crucial to consistently yield a 
satisfactory performance when dealing with the unidentifed popu-
larity distribution shift. In our settings, the models are identical per 
method across multiple test sets, and no prior information about 
the test distribution is provided in advance. 
Settings. To evaluate the robustness of InvCF and baselines over 
various popularity distributions, we randomly select three long-
tailed subsets of interactions as the test sets to mimic the popularity 
distribution shift, with each subset containing 10% interactions. 
Concretely, we frst rank items in descending order and divide 
them into 50 groups according to their popularity. Then, for the �-th 

� − � −1 
group, �� = �0 · 49 interactions are sampled out to generate the 
test set. Here, �0 is the maximum number of interactions among 
all the groups in the test, and � describes the long-tail degree. A 
smaller � indicates a stronger distribution shift and a more uni-
form popularity distribution compared to the training data. Besides, 
the test splits for the validation set are equally long-tailed as the 

train set, i.e., randomly split the remaining interactions into train-
ing, and validation sets (60% : 10%). Figure 9 shows the popularity 
distributions of the training and three test sets on Tencent. 
Results. Table 2 reports the comparison of performance on all 
the baselines with diferent levels of long-tail degree. The best-
performing methods per test are bold and starred, while the strongest 
baselines are underlined; Imp.% measures the relative improvements 
of BC loss over the strongest baselines. We observe that: 
• InvCF consistently and signifcantly outperforms the state-
of-the-art baselines in terms of all metrics across all pop-
ularity distributions. Specifcally, InvCF achieves remarkable 
improvements compared to the best baselines by 10.2% and 5.9% 
w.r.t. NDCG@20 on average over the MF and LightGCN back-
bones, respectively. We attribute the robustness of InvCF to distill-
ing the invariant preference information, regardless of changes 
in popularity distributions. 

• Entangled models behave in an unstable manner when 
the popularity distribution shifts. Compared to CD2AN and 
sDRO, popularity debiasing methods show a limited enhance-
ment of recommendation quality over backbone models, refect-
ing a lack of generalization capability when the target prior is 
unknown. When � = 2, as expected, IPS-CN performs the second 
best as its unbiased test defaults to a uniform distribution. With a 
closer look at performance on the validation set, debiasing mod-
els tend to gain improvements in tests by sacrifcing the ftness on 
training data. In contrast, benefting from no implicit assumption 
on the test data, CD2AN, sDRO and our InvCF can substantially 
boost the performance over backbone models by a large margin. 
These observations serve to corroborate our study in Section 2 
that entangled representations and strict requirements of prior 
information are two defciencies of current debiasing approaches. 

4.1.2 Evaluations on Unbiased Test Sets. 
Motivation. Ofine evaluation on collaborative fltering is chal-
lenging because of the missing-not-at-random condition in real-
world recommender systems. Unbiased evaluation, where its test 
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(a) BPR loss (b) Softmax loss (c) InvCF-i (d) InvCF 

Figure 4: 3D Visualizations of item representations learned by MF backbone model on Yelp2018. Subfgures (a-d) showcase 
the preference and property representations of the identical head user as red and blue stars, respectively. In each subfgure, 
representations of the head user’s all historical items are projected on the unit sphere. The brightness of the color indicates 
the popularity degree, while red and blue dots denote preference and popularity representations of items, respectively. More 
visualization results can be found in Appendix A.4. 

Table 3: The performance comparison on Yahoo!R3 and Coat. 
Yahoo!R3 Coat 

MF LightGCN MF LightGCN 
Recall NDCG Recall NDCG Recall NDCG Recall NDCG 

Backbone 0.1063 0.0476 0.1478 0.0686 0.0741 0.0361 0.2658 0.1574 
+ sam+reg 0.1198 0.0548 0.1498 0.0693 0.2303 0.1869 0.2659 0.3569 
+ IPS-CN 0.1081 0.0487 0.1331 0.0612 0.1700 0.1377 0.2474 0.1771 
+ CausE 0.1252 0.0573 0.1490 0.0693 0.2004 0.1713 0.2479 0.1689 
+ MACR 0.1243 0.0539 0.1499 0.0691 0.0798 0.0358 0.0939 0.0584 
+ sDRO 0.1390 0.0661 0.1426 0.0660 0.2012 0.1767 0.2415 0.1790 
+ CD2AN 0.1451 0.0690 0.1397 0.0638 0.2325 0.1885 0.2245 0.1708 
+ InvCF 0.1566* 0.0732* 0.1515* 0.0718* 0.2672* 0.2059* 0.2686* 0.1819* 

Imp.% 7.93% 6.09% 1.07% 3.61% 14.43% 9.23% 1.01% 1.62% 

Table 4: The performance comparison on Douban Movie. 
MF LightGCN 

HR Recall NDCG HR Recall NDCG 

Backbone 0.3509 0.0289 0.0552 0.3569 0.0294 0.0558 
+ sam+reg 0.3584 0.0303 0.0577 0.3569 0.0307 0.0575 
+ IPS-CN 0.2844 0.0216 0.0403 0.3213 0.0268 0.0522 
+ CausE 0.3587 0.0300 0.0579 0.3640 0.0310 0.0589 
+ MACR 0.3559 0.0303 0.0584 0.3620 0.0310 0.0595 
+ sDRO 0.3670 0.0303 0.0553 0.3707 0.0324 0.0618 
+ CD2AN 0.3602 0.0296 0.0553 0.3770 0.0327 0.0604 
+ InvCF 0.3757* 0.0321* 0.0604* 0.3897* 0.0343* 0.0635* 

Imp.% 2.37% 5.94% 3.42% 3.37% 5.86% 2.75% 

set is composed of items selected at random rather than by users, 
is considered an ideal ofine test for eliminating the impact of CF 
models. Here we conduct experiments on widely used missing-
complete-at-random datasets: Yahoo!R3 and Coat. 
Results. As Table 3 depicts that InvCF steadily superior over all 
baselines w.r.t. all metrics on Yahoo!R3 and Coat. Specifcally, com-
pared to the state-of-the-art baseline, it achieves substantial gains 
on the MF backbones over Yahoo!R3 and Coat in terms of Recall@20 
by 7.93% and 14.43%, respectively. In contrast, baselines perform un-
stably across datasets. Consistent with our study, this validates that 
InvCF successfully parameterizes the invariance and disentangle-
ment principle, resulting a popularity-disentangled representations. 

4.1.3 Evaluations on Temporal split and Out-of-distribution 
Test Sets. 
Motivation. In real-world applications, popularity distribution dy-
namically changes over time. For a comprehensive comparison, we 
take two time-related evaluations into consideration. On Douban 
Movie, we divide the historical interactions into the training, valida-
tion, and test sets according to the timestamps (7:1:2). On Meituan, 
following the settings in [43], the user interactions during week-
days are regarded as the training (60%) and validation (10%) sets, 

Table 5: The performance comparison on Meituan. 

HR 
MF 

Recall NDCG HR 
LightGCN 
Recall NDCG 

Backbone 
+ sam+reg 
+ IPS-CN 
+ CausE 
+ MACR 
+ sDRO 
+ CD2AN 
+ InvCF 

0.5490 
0.5518 
0.5311 
0.5665 
0.5583 
0.5922 
0.5914 
0.5954* 

0.2343 
0.2358 
0.2207 
0.2456 
0.2368 
0.2648 
0.2466 
0.2780* 

0.2250 
0.2272 
0.2046 
0.2409 
0.2129 
0.3002 
0.2664 
0.3073* 

0.5760 
0.5797 
0.5592 
0.5849 
0.5779 
0.5929 
0.5751 
0.6132* 

0.2545 
0.2590 
0.2448 
0.2615 
0.2587 
0.2279 
0.2509 
0.2642* 

0.2574 
0.2664 
0.2449 
0.2619 
0.2522 
0.2289 
0.2634 
0.2778* 

Imp.% 0.54% 4.98% 2.37% 3.42% 1.03 % 4.28% 

while user purchases during the weekend are used as the test set 
(30%). See popularity distributions of each sets in Appendix A.1. 
Results. Tables 4 and 5 clearly show, InvCF yields a consistent 
boost compared to the SOTA baselines. This indicates that InvCF 
endows the backbone models with better robustness and general-
ization ability against changes in the popularity distribution that 
are caused by time. Considering the empirical success of InvCF 
on test evaluations, we believe that InvCF provides a promising 
research direction to cope with popularity distribution shifts. 

4.2 Visualizations of Representations (RQ2) 
To visualize the latent representation space and evaluate the ef-

fectiveness of two principles in InvCF, we train toy recommenders 
on Yelp2018 using the MF backbone whose embedding size is three. 
We compare InvCF with two variants: InvCF-i, which disables the 
augmentation module, and InvCF-d, which deactivates the disen-
tangling module. In Figure 4, 3-dimensional normalized item pref-
erence and popularity representations under diferent CF models 
(i.e., MF+BPR, MF+Softmax [52], MF+InvCF-i, MF+InvCF) are il-
lustrated on a 3D unit sphere. In Figure 5, we further summarize 
the distributions of angles between the preference and popularity 
representations learned by diferent CF models. We observe that: 
• Item preference and popularity representations learned 
by BPR and SSM are chaotically distributed and difcult to 
distinguish, as shown by Figures 4 and 10. This validates that 
BPR and SSM extract entangled representations, further resulting 
in learning a suboptimal latent space. 

• Item preference and popularity representations learned by 
InvCF are disentangled and discriminative. Figure 5 reveals 
that angles learned by InvCF between preference and popularity 
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Figure 5: Distribution of angles between preference and pop-
ularity representations. 

Table 6: Ablation Study on Yahoo!R3 dataset. 
HR Recall NDCG #epoch 

Softmax 0.2224 0.1470 0.0688 264.5 
InvCF-i 0.2195−1.30% 0.1457−0.88% 0.0701+1.89% 304.8 
InvCF-d 0.2241+0.76% 0.1464−0.41% 0.0696+1.16% 419.1 
InvCF 0.2333+4.90% 0.1566+6.53% 0.0732+6.40% 164.2 

representations tend to be more concentrated, leading to stable 
latent spaces. This clearly shows that InvCF not only efectively 
learns popularity-disentangled representations but also success-
fully distills the invariant features that causally determine the 
interactions. We attribute this breakthrough to representation-
level augmentation and disentangling modules. 

4.3 Study on InvCF (RQ3) 
Ablation Study. Jointly analyzing the results in Figures 4, 5, 10, 
and Table 6, we observe that: 
• From a performance perspective, invariance and disentan-
glement principles are critical for InvCF and indispensable 
for one another. In particular, InvCF-i and InvCF-d are suscep-
tible to degrade the recommendation quality as shown in Table 6. 
Furthermore, with additional regularization terms, InvCF surpris-
ingly converges on fewer training epochs, highlighting the fact 
that lacking any principle may undermine the model learning. 

• In terms of representations, InvCF incorporates disentan-
gling and augmentation modules to decouple the invariant 
features and spurious popularity, further improving gen-
eralization ability. Precisely, from Softmax to InvCF-i in Figure 
4, the preference and popularity representations present a clear 
boundary, demonstrating the efciency of the disentangling mod-
ule. However, as Figure 5 shows, the overall angle distributions 
of InvCF-i, InvCF-d, and Softmax barely difer from one another. 
We ascribe the limited diference to employing one module alone, 
rather than two modules in cooperation, thus failing to acquire 
stable and high-quality feature spaces. Compared to InvCF-i and 
InvCF-d, InvCF drives an impressive breakthrough in represen-
tation learning, implying the cooperation of disentangling and 
augmentation modules is integral. 

Efect of Disentangling/Augmentation Module. Assembling 
diferent discrepancy regularizers in the disentangling module will 
lead to performance fuctuations (See Table 10), while InvCF might 
be insensitive to various augmentation strategies (See Table 11). 

5 RELATED WORK 
Popularity Debiasing in recommender. Leading popularity de-
biasing approaches can roughly fall into three research lines: 

• Regularization-based frameworks [1, 6, 11, 59] regulate the 
trade-of between accuracy and coverage with additional penalty 
terms. ESAM [11] introduces self-training regularizers to handle 
the missing of target labels. ALS+Reg [1] leverages intra-list 
diversity (ILD) as the regularization. 

• Re-weighting methods [9, 12, 13, 36, 47] re-weight the loss of 
training instances by inverse propensity scores. Recent studies 
explore learning unbiased propensity estimators (AutoDebias [9], 
BRD [12]) instead of directly adopting the observed frequencies 
(IPS-CN [13]) to lower the variance of propensities. 

• Causal embedding learning [5, 14, 27, 42, 50, 56, 57] utilizes 
counterfactual inference to mitigate the efect of item popular-
ity. DecRS [42] uses backdoor adjustment to eliminate the ef-
fect of imbalanced item group distribution. PDA [56] adopts 
do-calculus [20] to remove the confounding popularity bias. 

Out-of-distribution (OOD) Generalization. To devise stable 
models and address the problem of distribution shifts, s-DRO [51] 
adopts Distributionally Robust Optimization (DRO) framework, 
CD2AN [10] disentangles item property representations from popu-
larity under co-training networks, while BC Loss [55] incorporates 
bias-aware margins to achieve better generalization ability. Another 
line of research incorporates causal inference and discovery into 
OOD generalization (CausPref [16], COR [43]). 
Disentangled Representation Learning in CF. To disentangle 
user or item intents into a fner granularity, current CF models as-
semble diferent discrepancy metrics including distance correlation 
(DGCF [46], DICE [57]), Pearson Correlation Coefcient (CD2AN 
[10]), Maximum Mean Discrepancy (D2Rec [38]) and �1, �2 normal-
ization (DICE [57]). Another line of research utilizes Variational 
Auto Encoders (VAE) to factorize latent features [28, 32, 48]. 
Data Augmentation in CF. Data augmentation is a popular strat-
egy in recommender systems to deal with cold-start [8] or data 
sparsity problems [41]. However, semantic augmentation in CF 
remains stagnant. To the best of our knowledge, we are among 
the frst to undertake representation level data augmentation to 
enhance the popularity generalization ability. We believe that this 
work provides a promising research line to deal with the OOD 
problem and will shed light on future work. 

6 CONCLUSION 
Leading popularity debiasing methods in collaborative fltering are 
still far from resolving the recommender’s vulnerability to popular-
ity distribution shift. In this work, we proposed a novel learning 
strategy, InvCF, that extracts invariant and popularity-disentangled 
features to enhance popularity generalization ability. Grounded 
by extensive test evaluations and real-world visualization studies, 
InvCF steadily outperforms the SOTA baselines by learning disen-
tangled representation spaces. A worthwhile direction for future 
work is to extend InvCF to handle generic distribution shifts in 
recommender systems. We believe that InvCF will inspire research 
to incorporate latent space disentanglement and augmentation. 
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(a) Training Set (b) Unbiased Test Set 

Figure 6: Popularity distribution on Coat. 

(a) Training Set (b) Temporal Split Test Set 

Figure 7: Popularity distributions on Douban Movie. 

A EXPERIMENTAL SETTINGS 

A.1 Datasets. 
We conduct experiments on both real-world benchmark datasets 
and one synthetic dataset. 

(1) Yahoo!R3 [30] & Coat [36]: These two datasets are ob-
tained from the music and coat recommendation services. 
Both Yahoo!R3 and Coat are specially designed to evaluate 
on unbiased settings. The training data, considered as a nor-
mal biased dataset, contains ratings for items selected by 
users. The testing data is collected from an online survey, 
where each user has to rate on randomly selected items. 

(2) Douban Movie [39]: This dataset is collected from a popular 
movie review website Douban in China. We split it based on 
the temporal splitting strategy [31]. 

(3) Meituan [43]: Meituan is a public food recommendation 
dataset. The shifts of consumption levels from weekdays to 
weekends causes popularity drift in items. 

(4) Yelp2018 [15]: This dataset is a subset of Yelp’s businesses, 
reviews, and user data. We randomly sample 10% of interac-
tions from the original dataset to do the 3D visualization. 

(5) Tencent [54]: The original dataset is collected from Tencent 
short-video platform. We generate three testing datasets to 
explore model performance on dataset with diferent dis-
tribution shifts. The popularity distributions are shown in 
Figure 9. 

Figures 3, 6-9 show the popularity distribution shift from training 
to testing. In the stage of pre-processing data, explicit feedback 
(Yahoo!R3, Coat) are converted into implicit feedback. We treat the 
items rated with four or higher scores (fve in total) as positive 
feedback and the remaining as negative feedback. Following the 
standard 10-core setting [44, 56], we flter out items and users with 
less than ten interactions for all fve datasets. 

A.2 Baselines 
We compare with popular debiasing strategies in various research 
lines: sam+reg [6], IPS-CN [13], and CausE [5], MACR [50]. We 

(a) Training Set (Week-
day) 

Figure 8: Popularity distributions on Meituan. 

(b) Test Set (Weekend) 

(a) Training Set (b) Synthetic Test Set 

Figure 9: Popularity distributions on Tencent. 

also compare with domain generalization baselines: CD2AN [10] 
and s-DRO [51]. 

• sam+reg [6]: This method comprises two parts: training ex-
amples mining (sam) to balance the distribution of observed 
and unobserved items, and regularized optimization (reg) to 
minimize biased correlations between predicted user-item 
relevance and item popularity. 

• IPS-CN [13]: IPS [36] re-weights each training instance with 
item popularity to eliminate popularity bias. IPC-CN adds 
normalization on plain IPS to achieve lower variance. 

• CausE [5]: This method leverages a small unbiased dataset 
to simulate the training process under a fully random rec-
ommendation policy. 

• MACR [50]: This method assigns popularity bias to the 
causal efects of item popularity on the prediction scores. To 
this end, it introduces two additional modules to capture the 
efects of item popularity and user conformity and injects 
the results into the fnal prediction scores. 

• CD2AN [10] This model uses Pearson coefcient correlation 
to disentangle item property representations from item pop-
ularity representation and introduces additional unexposed 
items to align item popularity distributions between hot and 
long-tail items. 

• s-DRO [51]: This model adds streaming optimization im-
provement to the Distributionally Robust Optimization (DRO) 
framework to mitigate the amplifcation of Empirical Risk 
Minimization (ERM) on popularity bias. 

A.3 Parameter Settings and Training Cost 
Table 8 and 9 show the parameter settings for InvCF and baselines, 
respectively. We further record the training cost of InvCF compared 
to selected baselines in Table 7. 

A.4 Additional Experiments 
3D Visualizations We equally divide users into three subgroups: 
head, mid, and tail, according to their interaction frequencies. We 
then select the most popular one from the head group and another 
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(a) BPR loss (head) (b) Softmax loss (head) (c) InvCF-i (head) (d) InvCF (head) 

(e) BPR loss (tail) (f) Softmax loss (tail) (g) InvCF-i (tail) (h) InvCF (tail) 

Figure 10: Additional 3D Visualizations of item representations learned by MF backbone model on Yelp2018. 

Table 9: Hyper-parameters search spaces for baselines. 
Hyper-paramete space 

lr = 5e-4, batch size ∼ {64, 128, 256, 512, 1024, 2048} MF & LightGCN No. negative samples ∼ {128, 256, 512, inbatch} 

sam-reg Log(rweight) ∼ {-1,-2,-3,-4,-5,-6, -7, -8} 

CausE Log(� � _���) ∼ {-1,-2,-3,-4,-5,-6, -7, -8} 

MACR Log(�) ∼ {-1,-2,-3,-4,-5,-6, -7, -8} 

2 � ∼ {0.03, 0.05, 0.07, 0.11, 0.13, 0.15, 0.17} CD AN Log(�1) ∼ {-1,-2,-3,-4,-5}, Log(�2) ∼ {-1,-2,-3,-4,-5} 

� ∼ {0.03, 0.05, 0.07, 0.11, 0.13, 0.15, 0.17} 
sDRO �1, �2 ∼ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} 

Log(���_�����������) ∼ {-1,-2,-3}, Log(���������_�� ) ∼ {0, -1,-2} 

Table 10: Ablation Study on Diferent Discrepancy Metrics. 
NDCG@20 

� = 200 � = 10 � = 2 Validation 

���� 0.0342 0.0221 0.0165 0.0748 
MMD 0 3 80% 9 05% .0355+ . 0.0241+ . 0.0182+10.30% 0.0475 
�2 0.0279+18.42% 0 24 16% 18 18% .0178− . 0.0135− . 0.0863 

Table 11: Ablation Study on Diferent Data Augmentation 
Approaches. 

NDCG@20 
� = 200 � = 10 � = 2 

Random Permutation : randomly shufe the orders of 0.0342 0.0221 0.0165popularity embeddings inside the current batch. 

Head Group : for each user/item, randomly sample a 0.0335 0.0215 0.0163 popularity embedding from head group users/items. 

Tail Group : for each user/item, randomly sample a 0.0332 0.0214 0.0161 popularity embedding from tail group users/items. 

Diferent Groups : � .� . for a user in head group, randomly 0.0333 0.0217 0.0162 sample a popularity embedding from mid and tail groups. 

Table 7: Training cost on Yahoo!R3 (seconds per epoch/in 
total). 

Backbone 2 +sam+reg +IPS-CN +CausE +MACR sDRO CD AN InvCF 

MF 1.5 / 230 1.5 / 74 1.3 / 538 1.6 / 86 1.2 / 119 2.0 / 918 2.5 / 960 3.3 / 541 
LightGCN 1.8 / 232 1.8 / 232 1.7 / 66 2.0 / 328 1.9 / 369 4.7 /66 2.3 / 378 4.5 / 738 

Table 8: Model architectures and hyperparameters for InvCF. 
InvCF hyper-parameters 

� �1 �2 � lr batch size No. negative samples 

MF 

Yahoo!R3 1e-4 1e-5 1e-3 0.15 5e-4 1024 128

Coat 1e-3 1e-6 1e-2 0.09 5e-4 1024 64 

Douban 1e-2 1e-5 1 0.13 5e-4 1024 128

Meituan 1 1e-4 0 0.03 5e-4 1024 128 

Tencent 1 1 1e-8 0.09 5e-4 1024 128

LightGCN

Yahoo!R3 1 1e-1 1e-7 0.18 5e-4 1024 64 

Coat 1 1e-4 0 0.95 5e-4 64 inbatch 

Douban 1e-4 1e-2 1e-2 0.13 5e-4 1024 128 

Meituan 1e-1 1e-6 0 0.03 5e-4 1024 inbatch 

Tencent 1e-2 1e-2 1e-6 0.17 5e-4 1024 inbatch 

from the tail group to illustrate the feature representations of their 
interacted items in 3D space in Figure 10. 
Efect of Disentangling Module. Table 10 shows the perfor-
mance comparison among deploying diferent discrepancy metrics 
in the disentangling module, including Maximum Mean Discrep-
ancy (MMD), distance correlation and �2 normalization.
Efect of Augmentation Module. Table 11 illustrates the perfor-
mance comparison among various augmentation strategies. 
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