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ABSTRACT 
The design of internet advertisement systems is both an auction 
design problem and an information retrieval (IR) problem. As an 
auction, the designer needs to take the participants incentives into 
account. As an information retrieval problem, it needs to identify 
the ad that it is the most relevant to a user out of an enormous set 
of ad candidates. Those aspects are combined by frst having an IR 
system narrow down the initial set of ad candidates to a manageable 
size followed by an auction that ranks and prices those candidates. 

If the IR system uses information about bids, agents could in 
principle manipulate the system by manipulating the IR stage even 
when the subsequent auction is truthful. In this paper we investi-
gate the design of truthful IR mechanisms, which we term eligibility 
mechanisms. We model it as a truthful version of the stochastic 
probing problem. We show that there is a constant gap between the 
truthful and non-truthful versions of the stochastic probing prob-
lem and exhibit a constant approximation algorithm. En route, we 
also characterize the set of eligibility mechanisms, which provides 
necessary and sufcient conditions for an IR system to be truthful. 

CCS CONCEPTS 
• Theory of computation → Algorithmic game theory and 
mechanism design. 
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1 INTRODUCTION 
The design of internet advertisement systems is both an auction 
design problem and an information retrieval (IR) problem. As an 
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auction, the designer needs to take the participants’ incentives into 
account. As an information retrieval problem, it needs to identify 
the ad that is the most relevant to a user out of an enormous set of 
ad candidates. The paradigmatic problem in information retrieval is 
organic web search. In this problem, the corpus of possible results 
is enormous and needs to be narrowed down to a small set by the 
application of successive fltering algorithms, until we have a small 
enough set to rank and display to users. An ad system is not very 
diferent. We have again an enormous corpus of ad candidates that 
we need to flter to a small set that then participates in the auction. 
Filters applied early in the funnel must be very fast as they are 
applied to a huge number of candidates. Filters applied later on can 
be more computationally costly. To give some examples, one may 
early on exclude all ads whose language is diferent from the user’s 
language, and later on exclude an ad because a machine learning 
model tells us that the probability of a user clicking on this ad is 
very low. 

While there is a large body of work on both the auction aspect 
[10, 27] and the information retrieval aspect [4, 5, 9] of ads, very 
little is known about their interaction. In fact, we can decouple 
both problems by preventing the IR system from using any bid 
information so that advertisers can’t infuence the fltering directly. 
The auction, then, ranks and prices the set of candidates returned 
by IR, only then using the bid information. 

In this paper we investigate how to design an incentive com-

patible information retrieval system that can beneft by taking bid 
information into account. To make this problem concrete, con-
sider the problem of maximizing welfare in a click-through auction, 
where � buyers compete for a single ad slot. Each buyer � is de-
scribed by their bid �� representing the value for a click, which is 
reported by the buyer and a click-through rate (CTR) �� specifying 
the probability of a click. The ideal solution for the auctioneer is to 
choose the ad maximizing the product �� �� and then price according 
to a second price auction. 

In practice, the CTRs �� are computed by an expensive machine 
learning model, by taking into account all available contextual 
information about the user, the ad creative and the landing page. 
Because the auction happens in real-time, the auctioneer can’t 
aford to apply this model to all possible ad candidates. Instead, 
what happens in practice is that the ad system frst computes rough 
estimates �̃� of the CTRs based on a few salient features. Given 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA these estimates, the auctioneer narrows the set of buyers down 
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to a handful of potential winners, by, for example, sorting buyers 
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by �� �̃� and picking the top � buyers. Restricted to these potential 
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winners, the auctioneer then performs a refned procedure to obtain 
more accurate estimates of the CTRs, which are then used to run a 
second-price auction among potential winners and decide the fnal 
winner. A more detailed discussion of this design in practice can 
be found in [18] for Facebook1 

and in [28] for Alibaba. 

Truthful stochastic probing. The above procedure that determines 
the set of potential winners can be viewed as a stochastic probing 
problem: each buyer � is associated with a value �� and a CTR 
distribution �� . The actual CTR of each ad � is given by �� ∼ �� , 
independent across buyers. The distribution �� encodes the rough 
estimate given by a weaker machine learning model while the 
sample �� encodes the refned estimate. 

Knowing each �� and �� , the auctioneer can probe a subset 
� ⊆ [�] of |� | = � < � buyers. After probing, the auctioneer 
learns the value of �� ∼ �� for all � ∈ � and then can select the 
buyer � ∈ � with the highest ���� . The expected welfare is then 
E�� ∼�� [max� ∈� ���� ], which the auctioneer seeks to maximize by 
choosing � appropriately. 

If we ignore incentives, this is precisely the ProbeMax problem 
([8], [11], [21] and [24]). While the problem is known to be NP-
hard, Segev and Singla [24] have recently shown that it admits an 
efcient polynomial-time approximation scheme (EPTAS). Those 
algorithms, however, are not incentive compatible, in the sense that 
agents may misreport their private value to manipulate the probing 
procedure to exclude competitors from the later auction. To see 
why this is the case, consider the following situation: suppose the 
seller wants to implement the “frst-best” allocation, which, given � , 
frst probes a set � that maximizes E[max� ∈� ���� ], and then upon 
the realization of the CTRs, chooses the buyer in � with the highest 
CTR as the winner. If a buyer is better informed about the other 
buyers’ CTRs than the seller before the probing stage, then this 
buyer might be motivated to misreport his value to exclude the 
buyers with high CTR from the probed set � . In Theorem 1 we 
show a concrete instance of such an example and argue that the 
seller cannot prevent such manipulation by charging appropriate 
payments based on the seller’s predictions (rather than the realized 
values) of the CTRs. 

The above argument illustrates a gap between the frst-best 
welfare, i.e., the optimal welfare that can be guaranteed when all 
values are known to the auctioneer, and the second-best welfare, 
i.e, the maximum welfare that can be guaranteed when the values 
need to be reported by strategic agents. This brings us to the main 
goal of this paper, which is to formally understand this gap and the 
computational aspects thereof. 

1.1 Our Results 
First-best is not achievable. We formulate a combined problem 

where a seller starts with a very large collection of ad candidates 
with rough information about their quality (CTRs) and needs to 
select a subset of the agents to probe in order to learn their quality. 
When defning the notion of truthfulness for this setting we apply 
the philosophy that inaccuracies in ML predictions may afect the 
performance of the mechanism but should not harm incentives. 

1
He et al. [18] say: ”In order tackle a very large number of candidate ads per request, 
where a request for ads is triggered whenever a user visits Facebook, we would frst build 
a cascade of classifers of increasing computational cost“ 

This has been a guiding principle behind the design of auctions in 
online advertising. In our setting, this leads to the notion of ex-post 
truthfulness: the combined auction should be truthful regardless of 
what information or belief the buyers have about the CTRs. Our 
frst result is a lower bound showing a constant gap between the 
truthful and non-truthful version of the problem. 

Notion of eligibility mechanisms and their characterization. Our 
problem can be thought of as two separate stages: the eligibility 
stage where we select/probe the ads that will participate in the 
auction and the auction stage where we rank and price candidates. 
Motivated by the modular nature of mechanism design in practice, 
we introduce a framework to decouple the design of the probing 
stage and the subsequent auction stage. We say that a probing 
mechanism is truthful when it remains truthful when composed with 
any downstream auction mechanism that is truthful by itself. We call 
such mechanisms “eligibility mechanisms”. We provide a complete 
characterization of eligibility mechanisms: such a mechanism (in 
addition to being monotone) must satisfy the property that for any 
agent, whenever this agent is chosen by the mechanism, the action 
of this agent cannot afect which other agents are also chosen. In 
other words, no agent can choose their competitors in the next 
stage by misreporting in the current stage, unless they cannot enter 
the next stage in the frst place. 

The practical relevance of this characterization is that it en-
ables practitioners to design information retrieval systems that may 
use bid information without harming incentives. From a theory 
standpoint, this characterization enables the subsequent results on 
approximation mechanisms. 

Constant-factor eligibility mechanisms. We study the problem 
where the mechanism can probe � agents and then choose � < � 
agents to allocate in the auction. Here, � corresponds to the number 
of ad slots to be allocated (for simplicity, we assume the ad slots 
are identical). We then give an efcient eligibility mechanism that 
approximates the frst-best welfare within a factor of 2�/(� − 1)
when � = 1; this factor goes to 2 when � goes to infnity, roughly √
at a rate of 2 + � (1/ �). This implies that the gap between the 
frst-best welfare and the second-best welfare is constant. 

Moreover, we give another efcient eligibility mechanism with 
an approximation ratio of � (log(�/�) + 1). While this ratio is gen-
erally super-constant, we will later see that the unique properties 
of this mechanism makes it useful in the more general multi-stage 
setting. Technically, both our mechanisms are based on an ex-ante 
relaxation of the probing problem, which has proved useful in 
posted-price mechanisms [2, 6], prophet inequalities [17, 23] and 
team formation [20]. The main technical innovation is the use of 
this relaxation to design a truthful mechanism: we approximate the 
optimal solution to the ex-ante relaxation by another solution to 
the same relaxation, which can be computed in a truthful way. 

Multi-stage eligibility mechanisms. We fnally consider a more 
general setting where the mechanism gradually obtains more and 
more refned information about fewer and fewer agents by probing 
in multiple stages. This model is inspired by the successive levels 
of fltering that ad candidates go through in practice (see footnote 
1, for example). In this model, each agent � is associated with a 
Markov chain ��,� for � = 1, 2, . . . ,� + 1 and the CTR is a function 
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of the last state �� +1,� . Given �1 ≥ �2 ≥ . . . ≥ �� , the mechanism 
can probe the agents in � stages. In the �-th stage, the mechanism 
can probe �� agents out of the �� −1 agents who are still active 
(any agent who is not probed immediately becomes inactive). After 
agent � is probed in stage � , the mechanism learns ��,� . The goal is 
again to maximize the (expected) welfare among the agents who 
are still active after all � stages. To showcase the modularity of 
our approach, we analyze the mechanism obtained by stacking � 
copies of our � (log(�/�) + 1)-approximate single-stage eligibility 
together. 

1.2 Further Related Work 
Our results are along the line of research on optimization under 
uncertainty. In particular, the stochastic probing problems that 
we consider (and generalizations thereof) have been studied in 
environments without strategic behavior [1, 3, 12–16, 26]. For a 
comprehensive overview, see the dissertation by Singla [25] and 
references therein. The main diference between our results and 
prior work on stochastic probing is that we consider probing mech-

anisms that are truthful, while prior work does not take strategic 
behavior into consideration. 

Closest to our model is the paper by [28] on two-stage auction 
design, who also study the problem of selecting a subset of ad candi-
dates to enter the auction based on bids and other information. The 
focus of their paper is on machine learning techniques for the frst 
stage. While they briefy discuss incentives, their incentive analysis 
is in a non-standard utility model where agents are indiferent to 
payments as long as they are below their value. Our paper’s main 
focus is on incentives in the standard quasi-linear model. 

2 THE COMBINED PROBING+AUCTION 
PROBLEM AND A LOWER BOUND 

In this section, we formally defne the combined problem of design-
ing a frst-stage probing mechanism and a second-stage auction 
mechanism in order to maximize the social welfare resulted from 
the overall allocation. We consider mechanisms that are “ex-post 
truthful”, meaning that reporting truthfully is a dominant strategy 
fxing the CTRs �� . As we argue below, this notion of truthfulness 
captures robustness against potentially inaccurate ML estimates 
of the CTRs, as well as misaligned beliefs between the seller and 
the buyers. We then give a lower bound which illustrates a gap 
between the frst-best welfare and the best welfare that can be 
achieved by an ex-post truthful combined mechanism. This moti-

vates our investigation on eligibility mechanisms, as discussed in 
later sections. 

Setting. Throughout this paper, we consider single-parameter 
settings with � agents2 [�], where the private information of each 
agent � is a single value �� ∈ R+. Each agent has also a click-through 
rate �� that is drawn from a publicly known distribution �� over 
[0, 1]. We use � = (�1, . . . , �� ) to denote the product distribution 
of each �� . The mechanism knows �� but in order to observe �� , it 
needs to probe3 

agent � . We consider nonadaptive probing, which 
means the mechanism must choose a subset � ⊆ [�] of agents 
2
We use the terms agent, buyer and ad candidate interchangeably. 
3
In practice, probing corresponds to running an expensive ML model to predict the 
agent’s click-through rate. 

beforehand, and then probe all agents in � simultaneously.
4 
After 

the agents are probed, the mechanism decides the fnal winner(s) 
based on �� = {�� }� ∈� and �� = {�� }� ∈� , and charges payments 
for agents in � . 

Formally, a combined mechanism consists of a probing mecha-

nism � and a winner determination mechanism ({�� , �� }� ). Below 
we defne the two parts respectively. 

For the probing mechanism, let F ⊆ 2[� ] 
be a feasibility set 

representing a set of agents that can be probed simultaneously. For 
most of the paper we focus on sets of the type F = {� ⊆ [�] | 
|� | ≤ �}, but some of our results are able to accommodate more 
sophisticated settings such as arbitrary matroid constraints. Fixing 
the CTR distributions �� associated with the agents (which are given 
as prior knowledge), a probing mechanism is a mapping � : R� 

+ → 
Δ(F ) associating a vector of bids (�1, . . . , �� ) to a distribution over 
feasible subsets � ∈ F to probe given those bids. In the rest of the 
paper, unless otherwise specifed, we focus on truthful mechanisms 
where the bids are always the same as the true values. 

The winner determination mechanism is parametrized by the set 
� probed by the probing mechanism. Fixing � , �� 

: R� 
+ ×[0, 1]� → 

[0, 1]� 
maps the vector of bids �� 

and the vector of CTRs �� 
(which 

becomes available after probing) of agents in � to an allocation 
vector �� (�� , �� ), where for each � ∈ � , �� (�� , �� ) is the fraction 

� 
of the item agent � receives. Similarly, �� 

: R� × [0, 1]� → R� 
+ + 

maps �� 
and �� 

to the payment vector, where for each � ∈ � , 
�� (�� , �� ) is the amount agent � pays. Note that we allow the
�

winner determination mechanism to behave diferently on diferent 
subsets of agents. That is, the winner determination mechanism 
is actually given by a collection of allocation and payment rules 
{(�� , �� )}� , one for each feasible subset � . 

Given a probing mechanism � and a winner determination mech-

anism {(�� , �� )}� , the allocation rule of the combined mechanism 
� � : R� 

+ × [0, 1]� → [0, 1]� 
is defned such that for any � ∈ R� 

+, 
� ∈ [0, 1]� 

, and � ∈ [�], 
� 
� (�, � ) = E�∼� (�) [�� (�� , �� )] (1)
� � 

where �� ≡ 0 whenever � ∉ � . The payment rule of the combined 
� 

mechanism � � is defned similarly. In particular, it is possible that 
(�� , �� ) for some � is not truthful on its own, but the combined 
mechanism is still truthful. 

Ex-post truthfulness. We focus on combined mechanisms where 
truthful reporting is a dominant strategy for every realization of 
the CTRs � . Formally, a combined mechanism (� � , � � ) is ex-post 

′
truthful

5 
, if for any � ∈ [�], � ∈ R� 

+, � ∈ [0, 1]� 
and �

� ∈ R+, 

� � � ′ � ′ � (�, � ) · �� − � (�, � ) ≥ � (�� , �−� , � ) · �� − � (�� , �−� , � ).� � � � 

In light of Myerson’s characterization [22], we focus on 
the parametrized allocation rule {�� }� , since there exists a 
parametrized payment rule {�� }� such that the combined mech-

anism is ex-post truthful, if and only if the combined allocation 
rule is non-decreasing. That is, � � can be implemented truthfully, 

4
It is known that probing adaptively can only increase the welfare by a constant factor 
[25].

5
The term “ex-post” often means “after types are revealed”, which, notably, is diferent 
from its meaning here: “after CTRs are revealed”. 
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[�]\{� }
if and only if for each � ∈ [�], �−� ∈ R , and � ∈ [0, 1]� 

,+ 
� � (�� , �−� , � ) is non-decreasing in �� . 

Ex-post truthfulness and robustness. Robust auctions with ML 
predictions must gracefully handle inaccurate predictions as well 
as misalignment between agents’ beliefs and the prediction. For 
example, the CTR prediction may be inaccurate in a slice of the 
inventory where data is sparser and for some segments, the agents 
themselves may have diferent beliefs about what the CTR is. 

For that reason it is important to design auctions that remain 
truthful even if the predictions are inaccurate. Note that a pay-
per-click second price auction that chooses the winner using the 
product of CTR and bid is truthful no matter how of the prediction 
is. A bad ML model can hurt efciency but not incentives. 

For this practical reason we choose ex-post truthfulness instead 
of just truthfulness in expectation over the CTRs. In fact, it is not 
hard to see that a combined mechanism remains truthful regardless 
of the agents’ prior beliefs, if and only if it is ex-post truthful. This is 
because if the former is true, then the combined mechanism must be 
truthful when all agents share any single-point prior belief, which 
means the combined mechanism is ex-post truthful. On the other 
hand, if the mechanism is ex-post truthful, then conditioned on the 
realized CTRs, it is still truthful. Then taking the expectation over 
each agent’s prior belief, the mechanism must also be truthful given 
any prior beliefs of the agents. This is especially desirable in the 
context of ad auctions, because the ML algorithms used to predict 
the CTRs are almost never perfectly accurate, neither are the agents’ 
predictions of the CTRs. In other words, there is almost certainly a 
misalignment between the mechanism’s prior and the agents’. In 
such cases, ex-post truthfulness ensures that the mechanism is still 
truthful, even under arbitrary misalignment of prior beliefs. 

A lower bound. Ex-post truthfulness is desirable. However, as we 
show below, it is impossible to achieve the frst-best welfare using 
ex-post truthful combined mechanisms. The proof of the theorem, 
as well as all other missing proofs, is deferred to the appendix in 
the full version of the paper. 

Theorem 1. In a setting with � = 3 agents, out of which 2 are 
probed, i.e., F = {� ⊆ [�] | |� | ≤ 2}, there exists CTR distributions 
such that no ex-post truthful combined mechanism approximates the 
frst-best welfare within a factor of 23

22 ≈ 1.045. 

Remark on in-expectation truthful mechanism. We also remark 
that it is possible to achieve the frst-best welfare using an in-
expectation truthful mechanism over the random realization of 
the CTRs. In fact, let (� , {�� }� ) be (the allocation rule of) the 
frst-best mechanism. Then for any agent � , the allocation rule 

� (� )
� ↦→ E� ∼� [� (�, � )] is non-decreasing in �� . So there exists a

�
payment rule �� (�) that truthfully implements this allocation rule in 
expectation. However, the above lower bound shows that this mech-

anism can’t be made ex-post truthful, and therefore will introduce 
incentive issues when there are misaligned prior beliefs. 

3 ELIGIBILITY MECHANISMS 
Having established a gap between the frst-best welfare and the best 
welfare achievable by (ex-post) truthful mechanisms, we now focus 
on the design of truthful approximation mechanisms. Our frst step 

is to present a framework to decouple the design of probing stage 
and the winner determination stage. Recall that a mechanism has 
two components: 

• a probing mechanism � : R� 
+ → Δ(F ), and 

• a family of winner determination allocation rules {�� }� ∈F . 

Using equation (1), we can combine those into a single allocation 
rule � � . In the previous section we defned truthfulness of the 
combined mechanism. Here we will defne a notion of truthfulness 
for each component in a way that it is preserved under composition. 

For winner determination mechanisms, this notion is rather 
standard. Recall that in our setting the allocation rule �� 

takes as 
input a vector of valuations �� 

and a vector of CTRs �� 
. 

+ × [0, 1]� Defnition 1. A winner determination rule � : R� → 
[0, 1]� 

is truthfully implementable if there exists a payment rule 
� : R� 

+ × [0, 1]� → R� 
such that for every � ∈ [�], � ∈ [0, 1]� 

,+ 
′ � ∈ R� 

+ and �
� ∈ R+ it holds that: 

�� (�, � ) · �� − �� (�, � ) ≥ �� (� ′ , �−� , � ) · �� − �� (� ′ , �−� , � ). 

A family of winner determination mechanisms {�� }� ∈F is truth-
fully implementable if for each � ∈ F , the winner determination 
rule �� 

is truthfully implementable. 

For probing mechanisms, our defnition is somewhat more ab-
stract and less syntactic. However, as we will see momentarily, this 
abstract defnition admits a rather nice syntactic characterization. 

Defnition 2. A deterministic function � : R� 
+ → F is an eligibility 

mechanism if for any truthfully implementable family of winner 
determination mechanisms {�� }� ∈F its composition � � is truth-
fully implementable. A randomized function � : R� 

+ → Δ(F ) is an 
eligibility mechanism, if it randomizes over deterministic eligibility 
mechanisms. 

It is easy to check that randomized eligibility mechanisms also 
preserve truthfulness. We do not consider “truthful-in-expectation” 
probing mechanisms in this paper for two reasons: (1) eligibil-
ity mechanisms according to our defnition are already powerful 
enough, and (2) “truthful-in-expectation” mechanisms may not 
be as robust to strategic behavior. For the rest of the paper we 
will focus on mechanisms that are compositions of an eligibility 
mechanism with a truthful winner determination mechanism. This 
decoupling is very appealing from a practical standpoint: typically 
auction and information retrieval systems are designed with dif-
ferent goals in mind by teams with diferent expertise. As long as 
both components satisfy their respective notions of truthfulness, 
they can be designed and modifed independently. 

For this defnition to be useful, however, we should provide a 
clean characterization of eligibility mechanism. This is what we do 
in the next theorem, which says that a deterministic eligibility is 
truthful if and only if it is monotone, and no agent chosen by the 
mechanism can afect which other agents are chosen. By extension, 
this also characterizes randomized eligibility mechanisms. 

: R� 
Theorem 2. A deterministic mechanism � → 2[�] is an+ 

eligibility mechanism, if and only if for any � ∈ [�], � ∈ R� 
+, and 

′ �
� ≥ �� , 

′ � ∈ � (�) =⇒ � (�) = � (�� , �−� ) . 

3544



Eligibility Mechanisms: Auctions Meet Information Retrieval WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Examples of eligibility mechanisms. Theorem 2 ofers a guide 
for practitioners on how to use bid information when designing 
information retrieval systems. We now give a few examples of 
mechanisms satisfying the conditions in the theorem: 

• bid-free algorithms: any probing mechanism that doesn’t 
use information about the bids. For example, an algorithm 
that flters all ad candidates whose language is diferent from 
the user’s language. 

• Top-� mechanisms: a mechanism that sorts agents by a score 
�� (�� ) that depends monotonically on �� and chooses the � 
agents with the largest scores. For example, the algorithm 

′
that probes the agents with largest �� E� ′ [� ].∼�� � � 

• Selection among disjoint groups: given a fxed (bid-
independent) partition �1, . . . ,�� of [�] and a scoring func-

�� 
tions � � : R → R, probes the set �� maximizing � � (��� ).+ 
For example, we can partition agents randomly and then 

′
probe the partition with highest E� ′∼� [ 

Í 
� ∈� � �� ].� 

In fact, we show below that a fairly general class of mechanisms, 
namely maximizers over an arbitrary matroid, are all eligibility 
mechanisms. Such mechanisms subsume top-� mechanisms as a 
subclass. 

Lemma 1. Fix an arbitrary matroid feasibility constraint F , and 
an arbitrary mapping �� : R+ → R+ for each agent � . If each �� 
is monotonically non-decreasing, then the following mechanism � : 
R� 
+ → F is an eligibility mechanism: ∑ 

� (�) = argmax �� (�� ). 
� ∈F � ∈� 

Remarks on payments. Although payments are not the focus of 
this paper, here we briefy discuss how they can be computed in 
a modular way when eligibility mechanisms are used for probing. 
With two or more stages (see Section 5 for the setup), in general, 
the fnal payments of the combined mechanism must depend on 
earlier stages. However, when eligibility mechanisms are used in 
earlier stages, this dependency is in fact extremely simple: one 
can show that the overall payment of agent � should simply be 
max� ��,� , where ��,� is simply the minimum value required for 
agent � to be chosen in stage � (conditioned on the randomness 
of the mechanism). This dependence should not be a problem in 
decoupling diferent stages given its sheer simplicity. In particular, 
no matter what happens in earlier or later stages, each stage � only 
needs to pass ��,� to the next stage or the module that determines 
the payments, and modularity can be preserved. 

4 CONSTANT-FACTOR ELIGIBILITY 
MECHANISMS 

We complement the impossibility result in Theorem 1 with a con-
stant approximation mechanism. We consider a setting where mech-

anism can probe any � agents F = {� ⊆ [�] | |� | ≤ �} and after 
probing can allocate to at most � agents. The goal of the mecha-

nism is to optimize efciency of the allocation measured by socialÍ
welfare, i.e., � ∈� �� �� for the set � of allocated agents. 

We will adopt the framework developed in Section 3 and optimize 
over eligibility mechanisms � : 2[� ] → Δ(F ) (Defnition 2 and 
Theorem 2). For the winner determination stage, we will select the 

� agents with highest �� �� , by running the second-price auction. 
Our objective then can be phrased as:" #∑ 

obj(�, �) = E� ∼� max ���� . 
� ⊆� : |� | ≤� 

� ∈� 

The distribution � is our prior belief of the CTR, and � � refnes this 
by realizing the belief into an accurate CTR without uncertainty. 
The outer expectation then says we want to maximize the inner 
objective in expectation based on our prior belief, because that is 
all we know before probing. 

We will compare against the frst-best benchmark, i.e., the wel-
fare obtained by an algorithm that knows the true values of all 
agents, but is still constrained in terms of the set of agents it can 
probe. The approximation ratio � of a given eligibility mechanism 
� is given by: 

obj(�, �)
� = sup max . 

� ∈F ′∼� (�) [obj(� ′ , �)] � ∈R� E� + 

Example 1. A natural rule is to select the agents in the probing 
stage using the best possible estimate of the CTR available before 
probing, i.e., probe the agents with largest �� E�� ∼�� [�� ]. This mech-

anism is ex-post truthful by Theorem 2, but its approximation ratio 
is unbounded. To see that, consider � agents where the frst �/2 
have �� = 1 and �� = 1 with probability 1. The other �/2 agents 
have �� = �/2 and �� = 1 with probability 1/� and �� = 0 otherwise. 
Assume we can probe � = �/2 agents and must select � = 1 in the 
end. If we were to select based on �� E�� ∼�� [�� ], we would select the 
frst �/2 agents and would end up with total welfare 1. By selecting 
the second half, however, we obtain total welfare Θ(�). 

4.1 The Ex-Ante Relaxation 
Our frst step will be to approximate the objective obj(�, �) by the 
ex-ante relaxation rel(�, �), which we defne next. For ease of pre-
sentation, it will be convenient to assume that the �� distributions 
are continuous (i.e. the CDF is continuous). With this, we can defne 
the quantile function �� (� ) and the expectation above the quantile 
�� (� ). Let I[·] denote the indicator function and defne: 

�� (� ) = sup{� | Pr [�� ≥ �] ≥ � }, 
�� ∼�� 

�� (� ) = E�� ∼�� [�� · I[�� ≥ �� (� )]] . 
Also defne W as the set of feasible allocations and W(�) as the 
set of feasible allocations with support in � : 

W = {� ∈ [0, 1]� | ∥� ∥1 ≤ �}, 

W(�) = {� ∈ W | �� = 0, ∀� ∉ � }. 
With that we are ready to defne the ex-ante relaxation as:" #∑ 

rel(�, �) = max �� · �� (�� ) . 
� ∈W(� ) 

� ∈� 

Next we argue it is a good approximation of the objective: 

Lemma 2. For any � ∈ R� and � ⊆ [�],+ 

�! � 
obj(�, �) ≤ rel(�, �) ≤ ·obj(�, �) ≤ ·obj(�, �). 

�! − �−��� � − 1 
(2) 

3545



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Goel, et al. 

The proof of Lemma 2 is based on the following result by [7, 19]: 

Lemma 3 ([7, 19]). Let � be an integer and � be a random subset 
of [�] such that E[|� |] ≤ �. Then there exists a random subset 
� (�) ⊆ � such that |� (�) | ≤ � almost surely and for each � ∈ [�]
and Pr[� ∈ � (�)] ≥ � Pr[� ∈ �] for � = 1 − �−��� /�! ≥ 1 − 1/� . 

Proof of Lemma 2. We frst show rel(�, �) ≥ obj(�, �). Let ∑ 
�� (�, � ) = argmax � � � � . 

� ⊆� : |� | ≤� � ∈� 

Throughout the paper we assume argmax gives an arbitrary but 
consistent single maximizer, instead of the set of all maximizers. 
Observe that ∑ h h i i 

obj(�, �) = E �� �� · I � ∈ �� (�, � )
� ∈[�] � � 
�� 

Defne probabilities = Pr � ∈ �� (�, � ) and ob-
� 

serve that 
Í 
� �
� = E[|�� (�, � ) |] ≤ �. Further-� � � 

more, E �� · I[� ∈ �� (�, � )] ≤ �� (�� ). This is because 
� 

= �� �� (�� ) = sup{E[�� · I[E]] | Pr[E] } ≥ E[�� · I[� ∈ �� (�, � )]],
� � 

= �� 
since Pr[� ∈ �� (�, � )] . Therefore: 

�∑ 
obj(�, �) ≤ �� · �� (�� ) ≤ rel(�, �).� 

� ∈[�] 

For the second inequality, let � ∈ W(�) be a vector such that 
rel(�, �) = 

Í 
� ∈� �� �� (�� ) and consider the random set: 

�� = {� ∈ � | �� ≥ �� (�� )}. 

Observe that E[|�� |] = 
Í 
� ∈� Pr[� ∈ �� ] = 

Í 
� ∈� �� ≤ �. Applying 

Lemma 3 with � = 1 − �−��� /�! we have: ∑ ∑ 
rel(�, �) = ���� (�) = �� E[�� I[� ∈ �� ]] 

� ∈� � ∈�    ∑  1  ∑    = E ���� ≤ E� ���� .   � � ∈�� 
 � ∈� (�� )     

Since |� (�� ) | ≤ �, we clearly have: " #∑ 
1 1

rel(�, �) ≤ E� max ���� = obj(�, �) . □ 
� � ⊆� ; |� | ≤� � 

� ∈� 

Lemma 2 implies that if we obtain a �-approximation with re-
spect to the ex-ante relaxation in the following sense: 

rel(� (�), �) ≥ � max rel(�, �), 
� ∈F 

then this implies a (�/�)-approximation with respect to the origi-
nal objective, since: 

1 � � 
obj(� (�), �) ≥ rel(� (�), �) ≥ max rel(�, �) ≥ max obj(�, �) . 

� � � ∈F � � ∈F 

4.2 A Constant-Factor Eligibility Mechanism 
Now we are ready to present our constant-factor eligibility mech-

anism. The approximation factor of this mechanism is 2�/(� − 1)
when � = 1, and goes to 2 as � goes to infnity, roughly at a√
rate of 2 + � (1/ �). The mechanism � itself is simple: sort all 

agents by �� · �� (�/�), and choose the top � agents (ties are broken 
consistently). Formally, ∑ 

� (�) = argmax �� · �� (�/�) . 
� ⊆[� ]: |� | ≤� � ∈� 

The rest of the subsection is devoted to the analysis of the mecha-

nism. 

Theorem 3. For any �, � , � and distributions of {�� }, there exists 
an eligibility mechanism that achieves an approximation factor of √
2�!/(�! − �−� ) = 2 + � (1/ �). 

Proof. Let � be the Top-� mechanism stated above. First observe 
that � is in fact an eligibility mechanism. In particular, it is easy 
to check � satisfes the condition in Theorem 2. Now consider the 
approximation factor. Given Lemma 2, we only need to show that 
for any � ∈ R� 

+, 

1

rel(� (�), �) ≥ max rel(�, �) .
2 � ⊆[�]: |� | ≤� 

Let �∗ = argmax� ⊆[� ]: |� | ≤� rel(�, �), and �∗ = 
argmax� ∈W(� ∗ ) rel(�, �). The plan is to explicitly construct 
� ∈ W(� (�)), such that ∑ ∑ 

1 1

rel(� (�), �) ≥ ���� (�� ) ≥ ���� (�� 
∗) = rel(� ∗ , �). (3)

2 2
� � 

□ 

Step 1: Construct an intermediary vector �̂ ∈ W(�∗) such that Í Í 
� �� �� (�̂� ) ≥ 1 

� ���� (�∗) and all the non-zero components of �̂� 
2 � 

are at least �/� . To do so, we split �∗ in two disjoint sets: 

� = {� ∈ � ∗ | � ∗ ≥ �/�}, � = {� ∈ � ∗ | � ∗ < �/�}.� � Í Í
If � ∈� ���� (�∗) ≥ 1 

� ∈�∗ ���� (�∗), then set �̂� = �∗ for � ∈ � 
� 2 � � 

and �̂� = 0 for � ∉ �. It is straightforward to observe �̂� satisfes 
the desired properties. 

Otherwise, it must be the case that 
Í 
� ∈� ���� (�∗) ≥

� 
1 Í 

� ∈� ∗ ���� (� ∗). In such case, set �̂� = �/� if � ∈ � and �̂� = 0 if
2 � 
� ∉ �. First we observe that �̂ ∈ W(�∗) since: ∑ � � 

�̂� ≤ |� | ≤ � = �. 
� � 

� 

Then observe that that �̂� ≥ �∗ for � ∈ �, and then: 
� ∑ ∑ ∑ 

1 
�� �� (�̂� ) ≥ ���� (�� 

∗) ≥ ���� (�� 
∗).

2 
� ∈� � ∈� � ∈� ∗ 

Step 2: Construct fnal vector � satisfying equation (3). Defne 
�̂ = {� | �̂� > 0} and defne a vector � such that �� = �̂� for 
� ∈ � (�) ∩ �̂ and �� = � for � ∈ � (�) \ �̂ for some constant � suchÍ
that �� = �. Since |� (�) | = � and the weights in � (�) ∩ �ˆ are at 
least �/� , the weights in � (�) \ �ˆ (which are all equal to �) must 
be at most �/� . Now, defne 

�� (�̂� )
Φ = max �� . 

� ∈�̂ \� (�) �̂� 
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The core of the proof is encapsulated in the following chain of 
inequalities where we bound �� (�� ) for each � ∈ � (�) \ �̂ : 

�� (�� ) �� (�/�) �� (�/�)
�� ≥ �� ≥ max �� 

�� �/� [� ]\� (� ) �/� 

�� (�/�) �� (�� )≥ max �� ≥ max �� = Φ (4) 
�̂ \� (�) �/� �̂ \� (�) �� 

where the frst inequality follows from the fact that � ↦→ �� (�)/� 
are non-increasing and �� ≤ �/� ; the second inequality follows 
from the defnition of � (�) and the fourth inequality follows from 
monotonicity and �� ≥ �/� for � ∈ �̂ . 

Finally, we put it all together to prove equation (3):∑ ∑ ∑ 
���� (�� ) = �� �� (�� ) + �� �� (�� )

� ∈ � (� ) � ∈ � (�)∩�ˆ � ∈ � (�)\�ˆ ∑ ∑ 
≥ ���� (�̂� ) + �� Φ 

� ∈ � (�)∩�̂ � ∈ � (�)\�̂ ∑ ∑ 
= �� �� (�̂� ) + �̂� Φ 

� ∈ � (�)∩�̂ � ∈�̂ \� (�)∑ ∑ 
≥ ���� (�̂� ) + �� �� (�̂� ) 
� ∈ � (�)∩�̂ � ∈�̂ \� (� )∑ 
1 ≥ �� �� (�� 

∗)
2 
� ∈� ∗ 

where the frst inequality follows from equation (4). The following 
equality comes from the fact that the total weight of � in � (�) \ �ˆ 
is equal to the total weight of �̂ in �ˆ \ � (�) by construction. Finally, 
the inequality in the last line follows from the defnition of Φ and 
from the property of �̂ established in Step 1. 

4.3 An Alternative Eligibility Mechanism 
In this section, we present another quantile-based eligibility mech-

anism. The approximation factor of this mechanism is not as good 
as that of the previous mechanism. However, it will useful as a 
building block for the multi-stage mechanism developed in the next 
section. The mechanism is again simple. Let 

Θ = {1/2, 1/4, . . . , 2−⌈log(�/�) ⌉ }. 
The mechanism frst chooses some � ∈ Θ uniformly at random, 
and then sorts all agents by �� · �� (� ), and chooses the top � agents 
(ties are broken consistently). Formally, it allocates according to � � 

where ∑ 
� � (�) = argmax �� · �� (� ), 

� ⊆[�]: |� | ≤min{�,�/� } � ∈� 

where � is drawn from Θ uniformly at random. Notably, � is a ran-
domized probing mechanism, and may sometimes choose strictly 
fewer than � agents.6 

Theorem 4. For any �, � , � and distributions of {�� }, there exists 
an eligibility mechanism that achieves an approximation factor of 
� (log(�/�) + 1). 

The proof of Theorem 4 actually gives the following properties, 
which will be useful in the analysis of our multi-stage mechanism. 

6
Choosing � agents is without loss of generality, but we will see that this way of 
presentation carries more clarity. 
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Corollary 1. For any �, � , � and distributions of {�� }," #∑ 
1 

max obj(�, �) ≤ E� max �� · �� (� ) ,
2|Θ| � ⊆[�]: |� | ≤� � ⊆[� ]: |� | ≤min{�,�/� } 

� ∈� 

where � is a uniformly random element from Θ, as defned above. 
Moreover, for any � ∈ Θ,∑ 

max �� · �� (� ) ≤ � (1) · max obj(�, �). 
� ⊆[� ]: |� | ≤min{�,�/� } � ⊆[� ]: |� | ≤� 

� ∈� 

Richer feasibility constraints. We remark that this alternative 
mechanism works for richer feasibility constraints, such as gen-
eral matroids (while the constant-factor mechanism does not). In 
particular, consider the setting where the set chosen by the prob-
ing mechanism � (�) must be independent in some given matroid, 
and the objective is to maximize the total value (scaled by �� ) of 
agents in an independent set (which also must be a subset of � (�)) 
of another given matroid. The single-stage setting discussed above 
is a special case of this setting where both the outer matroid and 
the inner matroid are uniform matroids. By adapting the above 
analysis, one can show that the alternative mechanism guarantees 
an approximation ratio of � (log(rankouter/rankinner)) for general 
matroids. We omit the details here since the proof is essentially the 
same, only with additional notation. 

5 MULTI-STAGE ELIGIBILITY MECHANISMS 
So far we studied settings with a single stage of probing followed 
by an auction. In practice, sometimes there are multiple stages re-
ducing the set of auction participants to fewer and fewer agents 
(see the quote in footnote 1, for example). Each state corresponds to 
applying a more accurate, but also more computationally expensive, 
ML model. In this section we generalize the problem to multi-stage 
probing and design a truthful approximation (via eligibility mecha-

nisms) for it. 

5.1 Multi-Stage Probing Setting 
We have again � agents. Each agent � ∈ [�] is associated with: 

• a private value �� , 
• a state space S� , an initial state �1,� ∈ S� and a Markov chain 
��,� on S� , and 

• a function �� : S� → R+ denoting the CTR associated with 
each state. 

Only the value �� is private information of the agent. The algorithm 
knows from the beginning the complete description of the Markov 
chain, the initial state for each agent the and �� functions. 

In a multi-stage probing problem we are given a number of stages 
� , budgets �1 ≥ �2 ≥ . . . ≥ �� indicating how many agents can be 
probed in each stage, and a number � of agents that can be selected 
in the last stage. For notational simplicity let �� +1 = �. The timing 
of the process is as follows: 

• Algorithm starts with all agents �0 = [�] knowing only the 
initial states �1,� . 

• Algorithm chooses a set �1 ⊂ �0 of size at most �1 to probe. 
For each � ∈ �1 we observe �2,� . 

• Algorithm chooses a set �2 ⊂ �1 of size at most �2 to probe. 
For each � ∈ �2 we observe �3,� . 

• ... 
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• Algorithm chooses a set �� ⊂ �� −1 of size at most �� to 
probe. For each � ∈ �� we observe �� +1,� . 

• The fnal CTRs �� (�� +1,� ) are observed and the algorithm can 
choose a set � ⊆ �� of � agents maximizing ���� (�� +1,� ). 

A multi-stage probing mechanism � = (�� )� ∈[� ] consists of a 
sequence of functions, where each �� maps the current set of active 
candidates �� −1, the current state �� = (��,� )� ∈�� −1 and the values 
� = (�1, . . . , �� ) to the set �� ⊆ �� −1 with |�� | ≤ �� . 

The objective value achieved by � is: " #∑ 
obj(� , �) = E max ���� (�� +1,� ) , 

� ⊆�� : |� | ≤� 
� ∈� 

where the expectation is over the random set �� which depends on 
the Markov chains ��,� and the internal randomness of the mecha-

nism � . 
As before, we can compose all the probing stages with the winner 

determination mechanism by recursively applying equation (1). 
We say that the multi-stage probing mechanism � is an eligibility 
mechanism if the fnal composite mechanism is ex-post truthful. 
The approximation obtained by an eligibility mechanism � is again 
the ratio between the objective value of the optimal mechanism 
(not necessarily an eligibility mechanism) and the objective value 
of � : 

obj(� ′ , �)
� = sup sup . 

general � ′ � ∈R� obj(� , �)
+ 

5.2 Mechanism Construction 
We now apply a recursive version of the construction in Theo-
rem 4. The construction will be parametrized by a vector � = 
(�1, �2, . . . , �� ) which will again correspond to quantiles used in 
each stage. 

To defne the probing rule � � 
in stage � , it will be useful to frst � 

defne an approximate estimate �� 
for the value we expect to 

�,� 
extract from agent � if we select it in stage � . This proxy will again 
correspond to the solution of the ex-ante relaxation. We defne 
those backwards. For � = � , the notion of value will be exactly 
the same as in Theorem 4 with the distribution of CTRs being the 
conditioned on the current state �� ,� . We will defne: 

�� (�� ,� ) = sup{� ∈ R | Pr[�� (�� +1,� ) ≥ � | �� ,� ] ≥ �� },� ,� 

�� (�� ,� ) = E[�� (�� +1,� ) · I{�� (�� +1,� ) ≥ �� (�� ,� )} | �� ,� ] .� ,� � ,� 

For all the other stages, we will compute the estimate �� 
as a

�,� 

function of the estimates �� 
of the subsequent stage. For � = 

� +1,� 
� − 1,� − 2, . . . , 1, we defne: 

�� 
�,� (��,� ) = sup{� ∈ R | Pr[��

� 
+1,� (�� +1,� ) ≥ � | ��,� ] ≥ �� }, 

��,� 
� (��,� ) = E[��

� 
+1,� (�� +1,� ) · I{��

� 
+1,� (�� +1,� ) ≥ ��,� 

� (�� ,� )} | ��,� ] . 
With this recursive defnition in place, we can now defne the prob-
ing mechanism as follows. First we sample a vector � = (�1, . . . , �� )
where each component �� is uniformly at random from 

Θ� = {2−� | � = 1, 2, . . . , ⌈log(�� /�� +1)⌉}. 

Then we probe according to: ∑ 
� � 
� (�� −1, �� , �) = argmax �� ��,� 

� (��,� ), 
�� ⊆�� −1; |�� | ≤ℓ� 

� � ∈�� 

where ( 
ℓ� 

) 

ℓ� � +1 
ℓ� = min �� , , = �. � �� 
� +1 

5.3 Mechanism Analysis 
Ex-post truthfulness. First observe that for each fxed parameter 

� , the multiple stages of probing composed with the winner deter-
mination rule that chooses the � agents to maximize �� (�� +1,� )�� is 
ex-post truthful. This is by a recursive application of Theorem 2. 

To argue this formally, note that for each � ∈ [� ] the function 
� � 

is an eligibility mechanism (Defnition 2). Now we can argue � 
backwards that for every � the composition of � � 

, �
�
� 
+1, . . . , � 

� 
� �

and the winner determination mechanism is ex-post truthful. Now 
suppose the above is true for some � . Observe that the composition 
of �

�
� 
−1 with the composite mechanism starting from � is ex-post 

truthful, since �
�
� 
−1 is an eligibility mechanism, and the composite 

mechanism after stage � is ex-post truthful. 

Approximation ratio. Finally, we argue about our probing mech-

anism’s approximation ratio. While the approximation ratio is ex-
ponential in � , it provides a framework for designing multi-stage 
mechanisms. In practical applications, it is possible to use heuristics 
to choose the parameters �� instead of choosing them randomly, 
leading to much better performance. 

Theorem 5. There is a universal constant � such that for any multi-
stage setting, the mechanism {� � }� ∈[� ] with � randomly chosen from Î � 
� Θ� has an approximation factor of� � 

log(�1/�) 
��� 

� + 1 . 
� 
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