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ABSTRACT

Social media is being increasingly weaponized by state-backed

actors to elicit reactions, push narratives and sway public opin-

ion. These are known as Information Operations (IO). The covert

nature of IO makes their detection difficult. This is further am-

plified by missing data due to the user and content removal and

privacy requirements. This work advances the hypothesis that the

very reactions that Information Operations seek to elicit within the

target social systems can be used to detect them. We propose an

Interval-censored Transformer Hawkes (IC-TH) architecture and

a novel data encoding scheme to account for both observed and

missing data. We derive a novel log-likelihood function that we

deploy together with a contrastive learning procedure. We show-

case the performance of IC-TH on three real-world Twitter datasets

and two learning tasks: future popularity prediction and item cat-

egory prediction. The latter is particularly significant. Using the

retweeting timing and patterns solely, we can predict the category

of YouTube videos, guess whether news publishers are reputable or

controversial and, most importantly, identify state-backed IO agent

accounts. Additional qualitative investigations uncover that the

automatically discovered clusters of Russian-backed agents appear

to coordinate their behavior, activating simultaneously to push

specific narratives.

1 INTRODUCTION

Online social platforms are explicitly designed to boost user inter-

action and engagement [31]. Recently, there has been an increase

in false and misleading claims being deliberately propagated and

legitimized as tools of foreign interference [30] — also known as

computational propaganda or Information Operations (IO). IO ac-

tors leverage a wide spectrum of problematic online content (from
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satire and parody to manipulated and outright fabricated content)

and behavior (inauthentic coordination) to elicit reactions and sway

public opinion [29]. Content- and user-based detection tools are

notoriously difficult to build due to language nuances and suffer

from language drift and adversarial attacks. Here, we start from the

hypothesis that the actions of IO actors are designed to elicit partic-

ular reactions from the target audience. This makes analyzing the

posting behavior of users and the reaction of the social systems sur-

rounding them a helpful starting point to map actors and agendas

behind those posts. This paper presents a novel approach to model

the reactions of social systems, to disentangle the structural and

functional types of users from the content posted by them. Based

solely on the timing of retweet cascades, we can separate YouTube

videos’ categories, quantify news publishers’ trustworthiness, and

even identify users involved in state-linked coordinated operations.

The ubiquitous diffusion cascades generated in the online envi-

ronment, such as reshare events on Twitter and replies on Reddit,

unveil the temporal dynamics of online items [20, 38] and have

been shown to be a proxy for characterizing them [15]. A typical

difficulty when analyzing reshare cascades is partial data loss —

i.e., when some of the events in the cascade are missing. For in-

stance, the IO dataset made available by the Twitter Moderation

Research Consortium [1] contains tweets from users relating to

state-linked coordinated operations; however, for privacy reasons,

it does not contain any of the activities of organic, non-malicious

users. Besides, a recent study by Wu et al. [33] comprehensively

examined the sampling effect of retweet cascades collected from

Twitter, where the loss of tweets may lead to modeling bias. We ask

the question: can wemodel reshare cascades with partial data

loss, containing both event times and missing event counts?

This work develops the Interval-censored Transformer Hawkes

(IC-TH) model, an enhancement of the current state-of-the-art tem-

poral point process model, the Transformer Hawkes model [36].

IC-TH leverages two sources of information — the event times-

tamps and the counts of missing events. We propose a unified data

encoding scheme that jointly accounts for the two data sources,

and we derive a novel log-likelihood function that augments the

canonical point process likelihood function [9]. Using synthetic ex-

periments, we evaluate IC-TH robustness concerning data loss. We

find that cascades generated from distinct parameter combinations
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can be near-perfectly separated even when 90% of the events in

each cascade are missing.

Characterizing problematic content (such as mis- and dis-infor-

mation) or identifyingmalicious users typically demands significant

manual labeling efforts. In practice, only limited amounts of labeled

data are available, raising the question: how do we leverage unla-

beled cascade data for learning the representation of online

items and users? Inspired by recent progress in pre-training deep

neural nets [11, 34], we propose a contrastive learning procedure

to train IC-TH on unlabeled cascade groups. We build positive and

negative pairs by sampling from cascade groups — a cascade group

contains all the cascades pertaining to a given online item or in

which a given user participates. We train the model to differenti-

ate cascades from different groups and maximize the similarities

among cascades within the same group. Contrastive learning en-

ables IC-TH to be pre-trained on large, unrelated datasets and later

fine-tuned on the available labeled data. We show that pre-training

improves performance when only small amounts of labeled data

are available.

The final question is canwe employ IC-TH to disentangle be-

tween content types and detect malicious online users? We

test IC-TH on several tasks and case studies. We study two tasks

— popularity prediction and online item categorization — on three

real-world cascade datasets (ActiveRT2017, RNCNIX and IO). We

show that IC-TH consistently outperforms the current state-of-the-

art models, such as Mean Behavior Poisson [25], HawkesN [16]

and Transformer Hawkes [41] for popularity prediction, and Dual

Mixture Model [15] and Transformer Hawkes [41] for item clas-

sification. Specifically, we augment the IO dataset with organic

Twitter users and the prediction result on the IO dataset shows

a macro-F1 of 98.7% at separating users relating to Iran-, Russia-

and Saudi Arabia-backed information operations and organic users.

Furthermore, embeddings generated by IC-TH allow for analyz-

ing the strategies of groups of users. We identify three clusters of

Russia-backed users; the users in each cluster appear to be coordi-

nated in their behavior, activating simultaneously to push specific

narratives such as the #columbiachemicals hoax in 2014.

The main contributions of this work are:

• The interval-censored Transformer Hawkes for modeling the

mixed temporal data formats of events and event counts, along

with a unified temporal data coding scheme and a log-likelihood

function.

• A pre-training procedure based on contrastive learning to lever-

age the large number of unlabeled cascade groups relating to

different online items/users.

• A set of experimental results on large real-world Twitter cascade

datasets where we observe improved performances on item/user

category and final popularity predictions from the proposed

model and the pre-training procedure.

• Qualitative and quantitative analysis of user embeddings gener-

ated by our model on the IO dataset.

Related work. Diffusion cascades are commonly observed in the

forms of individual events and event counts in between observation

times. Event-based point process models employ different intensity

functions (e.g., predefined parametric forms [13, 20, 24, 38, 39], deep

neural nets [12, 19, 21, 36, 41] and non-parametric variants [37, 40])

to characterize the likelihood of event emergence, and the model

parameters are typically estimated from the general point process

likelihood function [9]. On the other hand, count-based point pro-

cess models generally acknowledge the loss in the interval-censored

raw data and attempt to uncover the underlying parameters of the

corresponding event-based models. For instance, Kirchner [14]

shows that the Hawkes process parameters can be obtained from

event-count data using an integer-valued auto-regressive (INAR)

model, and Rizoiu et al. [25] connect the Hawkes processes with

a non-homogeneous Poisson process that can be fitted on event

counts. This work extends both classes of models by proposing

a Hawkes process variant based on the Transformer architecture

with a novel likelihood function mixing both events and count data.

On the application front, prior works use the models above, in-

cluding the Hawkes processes [15] and deep learning models [23,

26] to encode online items and users based on their temporal activ-

ities for detecting coordinated accounts from Twitter, while earlier

works apply pre-defined features to summarize online user behav-

ior [2, 35]. Our work leverages a model pre-training procedure that

further learns from a large unlabeled dataset to improve the derived

embeddings of online items and users.

2 PRELIMINARIES

This section covers the required preliminaries concerning modeling

event cascades and series of interval-censored event counts.We first

mathematically define cascades in two distinct forms: event times-

tamps and event counts.We then introduce the Hawkes process [13]

— alongside its extensions HawkesN [24], NeuralHawkes [19] and

Transformer Hawkes [41] — andMean Behavior Poisson (MBP) pro-

cess [25] for modeling event times and event counts, respectively.

As far as we are aware, no existing model can handle mixtures of

event times and counts of missing events; therefore, a gap exists

between models for interval-censored data and models for event

cascades.

Diffusion cascades. On online social media platforms, such as

Twitter, users can post/tweet content, and others may reshare or

retweet it, resulting in cascades of retweet events [3]. On other plat-

forms, the sharing events may be only available as aggregated

counts with selected granularity, such as Youtube, where only

daily view counts are available [32]. Formally, an event cascade,

H𝑇 = {𝑡0, 𝑡1, . . .}, is a set of timestamps of individual sharing

events observed until time 𝑇 . In the interval-censored setting, a set

of observation times,𝑂𝑇 = {𝑜0, 𝑜1, . . .}, partitions an event cascade

into time segments, and only the number of events 𝐶 (𝑜𝑖 , 𝑜𝑖+1] in
each segment is observed. Prior works successfully model diffusion

cascades with both data forms [25, 38], as we discuss next.

2.1 Models for event data

Hawkes process is a particular type of point process model with

the self-exciting property — i.e., the future event intensity depends

on all past events [13]. Its event intensity at time 𝑡 is given as

_(𝑡) = ` +
∑︁

𝑡𝑖 ∈H𝑇

𝜙 (𝑡 − 𝑡𝑖 ), (1)



where 𝜙 : R+ → R+ is known as the decay function capturing

the intensity excited by past events and ` is the background in-

tensity which is normally considered 0 for reshare cascades [38].

Common choices for the decay function include the exponential

function,𝜙𝐸𝑋𝑃 (𝜏) = ^\𝑒−\𝜏 , and the power-law function,𝜙𝑃𝐿 (𝜏) =
^ (𝜏 + 𝑐)−(1+\ ) [16]. A finite-population extension of Hawkes pro-

cesses, dubbedHawkesNprocesses [24], has shown superior mod-

eling performance on online social media data [16]. The intensity

function of HawkesN processes is modulated by the proportion of

remaining unaffected individuals in the population, i.e.,

_(𝑡) = 𝑁 − 𝑁𝑡

𝑁

∑︁
𝑡𝑖 ∈H𝑇

𝜙 (𝑡 − 𝑡𝑖 ). (2)

where 𝑁 is the population size and 𝑁𝑡 is the number of events up

to time 𝑡 .

Neural Hawkes process generalizes the intensity function

of vanilla Hawkes process with deep recurrent neural networks

(RNNs) [19, 21], i.e.,

_𝑁 (𝑡) = 𝑓 (𝒘⊤𝒉(𝑡)), (3)

where𝒘 is a weight matrix and 𝒉(𝑡) is a hidden state that encodes

event history information produced by a continuous-time LSTM.

𝑓 (𝑥) = 𝛽 log(1 + 𝑒
𝑥
𝛽 ) is a softplus function parameterized by 𝛽 .

Transformer Hawkes (TH) process [36, 41] is the natural

extension to the Neural Hawkes processes, leveraging an attention-

based model [27] that showed superior performance in sequence

modeling compared to RNNs. The hidden state of Transformer

Hawkes is obtained via a self-attention module. Specifically,

𝒉(𝑡 𝑗 ) = 𝑯 (𝒋, :), (4)

𝑯 (𝒋, :) = 𝑅𝑒𝐿𝑈 (𝑺𝑾1 + 𝒃1)𝑾2 + 𝒃2, (5)

𝑺 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, · · · )𝑾𝑂 , (6)

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑿𝑾𝑄

𝑖
(𝑿𝑾𝐾

𝑖
)⊤√︁

𝑑𝑘

)
𝑿𝑾𝑉

𝑖 , (7)

where𝑾𝑄

𝑖
,𝑾𝐾

𝑖
∈ R𝑑𝑚×𝑑𝑘

,𝑾𝑉
𝑖

∈ R𝑑𝑚×𝑑𝑣
,𝑾𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚 ,𝑾1 ∈

R𝑑𝑚×ℎ
, 𝒃1 ∈ Rℎ ,𝑾2 ∈ Rℎ×𝑑𝑚 and 𝒃2 ∈ R𝑑𝑚 are learned weights,

𝑑𝑚 is the embedding dimension, 𝑑𝑘 , 𝑑𝑣 are the hidden dimensions

of the projection subspace, and ℎ is the number of heads. The input

𝑿 is obtained via the temporal encoding, i.e.,

𝑿 (𝒋, 𝒊) =

{
cos(𝑡 𝑗/1000

𝑖−1
𝑑𝑚 ) if 𝑖 is odd,

sin(𝑡 𝑗/1000
𝑖

𝑑𝑚 ) if 𝑖 is even.
(8)

where trigonometric functions are used to encode each event times-

tamp 𝑡 𝑗 into a 𝑑𝑚-dimensional feature vector, 𝑋 ( 𝑗, :).
Parameter estimation. The parameters of the models men-

tioned above are estimated via maximizing the general point pro-

cess log-likelihood [9], i.e.,

ℒLL =
∑︁

𝑡𝑖 ∈H𝑇

_(𝑡𝑖 ) −
∫ 𝑇

0
_(𝜏)𝑑𝜏 . (9)

2.2 Models for interval-censored data

Mean Behavior Poisson (MBP) processes are a particular variant

of Poisson processes that fit on interval-censored data. MBP is

defined as the point process whose event intensity is the mean

Figure 1: 4 observed events (lollipops with solid lines) of an

example retweet cascade with the presence of unobserved

retweet events (lollipops with dotted lines). Only retweet

counts are given (i.e., 𝑟𝑡𝑐0, 𝑟𝑡𝑐1, 𝑟𝑡𝑐2, · · · ) by Twitter API and

the exact timestamps of unobserved events are missing.

Hawkes process intensity over all the possible realizations of a

parameter set. As a result, MBP’s parameters directly correspond

to their Hawkes process counterparts [7, 25]. Specifically, given

a Hawkes process in Eq. (1), its MBP equivalence is defined by a

deterministic intensity function

b (𝑡) = ` +
∫ 𝑡

0
b (𝜏)𝜙 (𝑡 − 𝜏)𝑑𝜏, (10)

where b (𝑡) = EH𝑡
[_(𝑡)]. The MBP log-likelihood is

ℒIC−LL (\ ) =
𝑚∑︁
𝑖=1

C (𝑜𝑖−1, 𝑜𝑖 ) logΞ (𝑜𝑖−1, 𝑜𝑖 ;\ ) −
𝑚∑︁
𝑖=1

Ξ (𝑜𝑖−1, 𝑜𝑖 ;\ )

(11)

where C (𝑜𝑖−1, 𝑜𝑖 ) is the number of events recorded in the interval

(𝑜𝑖−1, 𝑜𝑖 ), and we define the compensator

Ξ (𝑜𝑖−1, 𝑜𝑖 ;\ ) =
∫ 𝑜𝑖

𝑜𝑖−1
b (𝑧)𝑑𝑧 (12)

3 INTERVAL-CENSORED TRANSFORMER

HAWKES

This section first explores where the mixing of event counts and

event times is applicable (Section 3.1). We then propose to encode

such data in a flexible format, extend the Transformer Hawkes to

model it, and propose a novel log-likelihood function (Section 3.2).

Finally, we discuss a contrastive learning and pre-training pro-

cedure for training IC-TH without large volumes of labeled data

(Section 3.3).

3.1 Missing events on Twitter

Twitter sampling in data collection.While existing studies mod-

eling information diffusions on Twitter generally analyze diffusion

cascades with individual retweet events crawled via the official API

endpoint [16, 20, 38], the sampled-down effect from the API [33]

has been usually overlooked and may lead to modeling bias. For in-

stance, the sampled streaming API returns roughly 1% of all public

tweets in real-time and the widely adopted filtered streaming API

also rate limits on popular search queries.

Piecing together themissing events count.Themissing event

counts between two consecutive observed events can be derived by

leveraging the ‘𝑟𝑒𝑡𝑤𝑒𝑒𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ’ in tweet metadata. This field is

included in every retweet and indicates how many times the orig-

inal tweet has been retweeted (including by the current retweet).

Fig. 1 depicts an example Twitter cascade with missing tweets as



dashed lollipops. Four tweets are observed at times 𝑡0, 𝑡1, 𝑡2 and

𝑡3. 𝑟𝑡𝑐𝑖 indicates the ‘𝑟𝑒𝑡𝑤𝑒𝑒𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ’ value in the 𝑖-th observed

tweet. We compute 𝑐0, 𝑐1, 𝑐2, · · · as the number ofmissing retweets
between two observed tweets. This leads to a cascade that mixes

both event counts and individual events.

A mixed data format. We propose the triple representation

(𝑜𝑖 , 𝑑𝑖 , 𝑐𝑖 ) for the 𝑖𝑡ℎ observation, where 𝑜𝑖 is the starting observa-

tion time, 𝑑𝑖 is the observation duration and 𝑐𝑖 is the number of

events (observed or missing) within the time segment (𝑜𝑖 , 𝑜𝑖 + 𝑑𝑖 )
— note, excluding interval ends. Using this notation, we denote an

observed event at 𝑡𝑖 as (𝑡𝑖 − 𝑑𝑡, 2𝑑𝑡, 1) where 𝑑𝑡 is an infinitesi-

mal time period. We denote the missing events between 𝑡𝑖 and 𝑡𝑖+1
as (𝑡𝑖 , 𝑡𝑖+1 − 𝑡𝑖 , 𝑐𝑖 ). Note that 𝑐𝑖 would correspond to C(𝑡𝑖 , 𝑡𝑖+1) in
MBP’s interval-censored notation in Section 2.2. Finally, we can de-

note the reshare cascade asH∗ = {(𝑡𝑖 , 𝑑𝑖 , 𝑐𝑖 ) | 𝑖 = 0, · · · ,𝑚, 𝑜𝑖+𝑑𝑖 ≤
𝑇 } given a maximum observation time 𝑇 and𝑚 the number of ob-

served timestamps. For instance, one can denote the cascade in

Fig. 1 as = {(𝑡0 −𝑑𝑡, 2𝑑𝑡, 1), (𝑡0, 𝑡1 − 𝑡0, 0), (𝑡1 −𝑑𝑡, 2𝑑𝑡, 1), (𝑡1, 𝑡2 −
𝑡1, 1), · · · }.

3.2 Interval-censored Transformer Hawkes

In this section, we propose the Interval-censored Transformer

Hawkes (IC-TH) that generalizes the Transformer Hawkes account-

ing for event times and missing event counts. IC-TH takes data

in the interval-censored event sequences format proposed in Sec-

tion 3.1, and produces the hidden states using the self-attention

mechanism proposed by Zuo et al. [41].

Model event intensity. Due to missing event timestamps (only

their counts are available), IC-TH models reshare cascades using

the expected conditional event intensity. We adopt the notations of

Rizoiu et al. [25] and denote the expected event intensity function

as

b (𝑡 | H∗) = EH∗
𝑢
[_(𝑡)] = 𝑓 (𝒘⊤𝒉(𝑡)), (13)

whereH∗
𝑢 = {(𝑡𝑖 , 𝑑𝑖 , 𝑐𝑖 ) ∈ H∗ | 𝑑𝑖 > 2𝑑𝑡, 𝑐𝑖 > 0} ⊆ H∗

is the sub-

set of triples denoting missing event counts. The intensity function

is modeled from the hidden state 𝒉(𝑡) via a softplus function 𝑓 (·)
and a weight matrix𝒘 .

We note that whenH∗
𝑢 = ∅ orH∗ = H∗

𝑢 , b (𝑡 | H∗) degrades to
_(𝑡 | H∗) or b (𝑡) discussed in Section 2, respectively.

EncodingH∗
. IC-TH employs the same temporal encoding pro-

cedure as TH to convert the timestamp 𝑡𝑖 into an input vector 𝑋 ′
𝑖
.

However, unlike the timestamps, the duration and event count

information needs extra encoding layers before being fed to the

self-attention module. Inspired by Li et al. [17], we encode the du-

ration 𝑑𝑖 and the event count 𝑐𝑖 as masks to 𝑋 ′
𝑖
. Specifically, for 𝑑𝑖 ,

we compute the context vector 𝑐𝑑
𝑖
using a fully connected layer 𝑓\ ,

i.e., 𝑐𝑑
𝑖
= 𝑓\ (log(𝑑𝑖 )). The duration mask𝑚𝑑

𝑖
is then obtained via a

linear transformation parameterized by𝑾𝑑 , 𝒃𝑑 and a sigmoid func-

tion 𝜎 , i.e.,𝑚𝑑
𝑖
= 𝜎 (𝑐𝑑

𝑖
𝑾𝑑 + 𝒃𝑑 ). Similarly, the event count mask𝑚𝑐

𝑖
is computed following the same layers with a different parameter

set. Finally, 𝑋𝑖 = 𝑋 ′
𝑖

⊙
𝑚𝑑
𝑖

⊙
𝑚𝑐
𝑖
, where

⊙
is an element-wise

multiplication.

Log-likelihood function. Starting from Eq. (11), we compute

the log-likelihood function for the mixings of event counts and

individual events.

ℒIC-TH-LL (\ ) =
∑︁
𝑖∈H∗

𝑐𝑖 logΞ (𝑜𝑖 , 𝑜𝑖 + 𝑑𝑖 ) −
∑︁
𝑖∈H∗

Ξ (𝑜𝑖 , 𝑜𝑖 + 𝑑𝑖 )

=
∑︁
𝑖∈H∗

𝑢

𝑐𝑖 logΞ (𝑡𝑖 , 𝑡𝑖+1)︸                      ︷︷                      ︸
missing event counts

+
∑︁
𝑖∈H∗

𝑐

logΞ (𝑡𝑖 − 𝑑𝑡, 𝑡𝑖 + 𝑑𝑡)︸                             ︷︷                             ︸
observed event times

−
∑︁
𝑖∈H∗

Ξ (𝑡𝑖 , 𝑡𝑖+1)

=
∑︁
𝑖∈H∗

𝑢

𝑐𝑖 logΞ (𝑡𝑖 , 𝑡𝑖+1) +
∑︁
𝑖∈H∗

𝑐

log b (𝑡𝑖 ) 2𝑑𝑡 −
∑︁
𝑖∈H∗

Ξ (𝑡𝑖 , 𝑡𝑖+1)

=
∑︁
𝑖∈H∗

𝑢

𝑐𝑖 logΞ (𝑡𝑖 , 𝑡𝑖+1) +
∑︁
𝑖∈H∗

𝑐

log b (𝑡𝑖 ) −
∑︁
𝑖∈H∗

Ξ (𝑡𝑖 , 𝑡𝑖+1)

+
∑︁
𝑖∈H∗

𝑐

log 2𝑑𝑡, (14)

where H∗
𝑐 = {(𝑡𝑖 , 𝑑𝑖 , 𝑐𝑖 ) ∈ H∗ | 𝑑𝑖 = 2𝑑𝑡, 𝑐𝑖 = 1} is the subset of

triples denoting observed event times. This is equivalent to

ℒIC-TH-LL (\ )

=
∑︁
𝑖∈H∗

𝑢

𝑐𝑖 logΞ (𝑡𝑖 , 𝑡𝑖+1) +
∑︁
𝑖∈H∗

𝑐

log b (𝑡𝑖 ) −
∑︁
𝑖∈H∗

Ξ (𝑡𝑖 , 𝑡𝑖+1) .

(15)

The Linformer trick. The quadratic complexity of the trans-

former architecture in memory restricts the encoding of long cas-

cades and large cascade groups. Therefore, we employ the Lin-

former trick, which optimizes the model to linear complexity [28].

Specifically, the ℎ𝑒𝑎𝑑s in Linformer are computed as

ℎ𝑒𝑎𝑑𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑿𝑾𝑄

𝑖
(𝑬𝒊𝑿𝑾𝐾

𝑖
)⊤√︁

𝑑𝑘

)
𝑭𝒊𝑿𝑾𝑉

𝑖 (16)

where 𝐸𝑖 , 𝐹𝑖 ∈ R𝑘×𝑛 are two projection matrices that simplify the

computation via 𝑘 ≪ 𝑛.

Implementation details. Throughout the paper, we conduct

our experiments on a machine with an Intel Xeon CPU @ 2.20GHz

processor and with Nvidia Tesla Volta V100 GPUs (32 GB memory).

The proposed model is implemented in PyTorch 1.9.0 [22].

3.3 Model pre-training

Intuition. Here, we build a contrastive representation learning

pipeline to obtain informative embeddings from groups of unlabeled

diffusion cascades. The intuition is to leverage large amounts of

unlabeled (and possibly unrelated to the learning task) diffusion

cascades from the Twitter API.

We group the cascades into discrete groups based on a specific

criterion — such as all cascades in which a given user participates

or cascades related to a given online item (such as a YouTube video).

We build the representation for a group by aggregating the cascade

embeddings for cascades of that group. The contrastive representa-

tion learning algorithm aims to maximize latent distances between

a group representation and other groups and minimize its latent

distance to its own cascades.



Table 1: Statistics of the datasets.

ActiveRT2016 ActiveRT2017 RNCNIX IO

#items 155, 105, 987 videos 75, 717 videos 102, 429 articles 32, 486 users

#cascades 881, 587, 021 30, 535, 891 8, 129, 126 19, 476, 766
#tweets 1, 212, 945, 195 85, 334, 424 56, 397, 252 22, 845, 053

Technical detail.We first augment the dataset by building posi-

tive and negative pairs of cascade groups via downsampling. Specif-

ically, given a group of cascades, C𝑖 = {H1,H2, · · · } posted by the
same user or related to the same online item denoted as 𝑖 , we ran-

domly split the cascade group into two, C𝑖,1 and C𝑖,2, and consider

them as a positive pair. Naturally, examples formed by pairing cas-

cade groups related to different items or users are deemed negative.

We then obtain the cascade embeddings ℎ𝑖,1 and ℎ𝑖,2 with the

proposed model. Following prior works [34], we further introduce

a MLP-based projection head to a new representation, i.e., 𝑧𝑖, 𝑗 =

𝑀𝐿𝑃 (ℎ𝑖, 𝑗 ). Finally, we optimize the contrastive loss function [8]:

ℒ
𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒
𝑖 = − log

𝑒𝑥𝑝 (𝑓𝑠𝑖𝑚 (𝑧𝑖,1, 𝑧𝑖,2)/𝜏)∑𝑁
𝑘=1

∑2
𝑙=1

∑2
𝑗=1 𝑒𝑥𝑝 (𝑓𝑠𝑖𝑚 (𝑧𝑖,𝑙 , 𝑧𝑘,𝑗 )/𝜏)

,

(17)

where 𝑓𝑠𝑖𝑚 (𝑧1, 𝑧2) is the cosine similarity between 𝑧1 and 𝑧2.

4 EXPERIMENTS AND RESULTS

In this section, we present the quantitative performance results

for IC-TH. First, we present the four datasets and learning tasks

(Section 4.1). Next, we study the robustness of IC-TH concerning

data loss (Section 4.2). Finally, we evaluate IC-TH against the state-

of-the-art in two predictive tasks: popularity prediction (Section 4.3)

and online item categorization (Section 4.4).

4.1 Datasets

This work employs four real-world Twitter datasets. Two datasets

originate from prior works (ActiveRT2017 and RNCNIX). We con-

tribute two new datasets: one formodel pre-training (ActiveRT2016)

and an Information Operations (IO) dataset based on the unhashed

datasets provided by Twitter Moderation Research Consortium [1].

ActiveRT2017 [15] was constructed by Kong et al. [15] by col-

lecting tweets mentioning popular Youtube videos. Cascade groups

are constructed based on the YouTube video ID: all the cascades

mentioning the same video will be placed in the same cascade group.

The categorization task for this dataset is predicting the video’s

category (Entertainment, Gaming, Music and News&Politics, etc.)

based on retweet cascade dynamics. This dataset suffers from Twit-

ter API’s down-sampling, given the popularity of YouTube videos

on Twitter (see Wu et al. [33]). We augment each retweet cascade

with the missing event counts between consecutively recorded

retweets (as described in Section 3.1).

ActiveRT2016.We contribute a dataset by following the same

setup as ActiveRT2017 using tweets from 2016. We employ Ac-

tiveRT2016 to pretrain the IC-TH to obtain a better representation

of cascade groups. As we use the Twitter API v2 for collecting this

dataset, the cascades are complete. To make ActiveRT2016 compa-

rable with ActiveRT2017, we sample cascades at the same level as

ActiveRT2017.

RNCNIX [6]. The tweets in this dataset were collected by query-

ing the Twitter search endpoint for tweets mentioning articles from

a list of controversial news publishers and a list of leading Aus-

tralian news outlets [4–6]. The cascade groups were constructed

based on the news publishers, i.e., all cascades relating to news

articles from the same publisher are in the same group. The catego-

rization task for this dataset is predicting whether a news publisher

is reputable or controversial based on retweet cascade dynamics.

The data is obtained retrospectively using a paid service, and the

cascades are complete without the sampling-down effect.

Information Operations (IO) dataset contains the users (also

known as IO operatives) and their tweets linked to state-backed

information operations identified and released officially by Twitter

Moderation Research Consortium [1]. We obtained the unhashed

version of this dataset in Nov 2021; the dataset spans from Nov 4,

2010, to Aug 21, 2020. We select IO operatives from three countries

(Russia, Iran and Saudi Arabia) with the most significant number

of users and highest activity.

We augment the dataset with a matched set of organic Twitter

users, i.e., users who were involved in the discussions with the IO

operatives but were not identified by Twitter as operatives. Building

the organic set presents challenges, as when Twitter suspends an

IO operative account, it also deletes all its activity, including the

retweets emitted by organic users. We cannot use the Twitter API

to search for the activity of IO operatives (as all of their traces have

been removed), and the dataset does not contain organic activity.

Instead, we cross-link with a 1% sampled tweet stream. We follow

the following steps:

(1) We first collect the IDs of tweets posted or retweeted by

removed users.

(2) We augment the tweets by searching for the retweet cascades

using these tweet IDs in a complete archive of 1% sampled

tweet stream
1
hosted at archive.org

2
.

(3) We consider users who participated in these retweet cascades

but were not removed by Twitter as organic users. To obtain

users with similar popularity levels, we sample 10, 000 or-

ganic users by matching the follower count distribution of

removed users.

(4) Last, we repeat the first two steps for organic users to aug-

ment the dataset with all retweets cascades engaged by them.

We construct cascade groups based on the users, i.e., all the cascades

in which a given user participates are placed in the same group. The

categorization task is predicting whether a user is an IO operative

from one of the three countries or an organic user (4 classes). Table 1

summarizes the basic statistics of the four datasets.

4.2 Effect of data loss on IC-TH

In this section, we evaluate the robustness of IC-TH’s learned group

embeddings concerning missing data. We deploy a synthetic setup

in which cascades are synthetically generated and grouped into

cascade groups. Events are randomly removed with given probabil-

ities. Finally, we generate group embeddings using the contrastive

learning loss and evaluate the separability based on the group type.

1
https://developer.twitter.com/en/docs/twitter-api/tweets/volume-

streams/introduction

2
https://archive.org/details/twitterstream

archive.org
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(d) P𝑚 = 0.9

Figure 2: t-SNE [18] visualizations of the group embeddings of synthetic cascades obtained using IC-TH. Each circle represents

a group of cascades. The events in each cascade are removed with the probability P𝑚 , varying from no missing data (P𝑚 = 0,
(a)) to 90% of the events missing (P𝑚 = 0.9, (d)). Apart from down-sampling, the groups and the cascades are identical across

(a)-(d).

Setup. We sample the cascades from two Hawkes process mod-

els — a power-law decay kernel and an exponential decay kernel,

with randomly selected parameters. We sample 10, 000 cascades

for each model, split into 20 groups of 500 cascades. This results in

40 groups of cascades. We synthetically emulate Twitter’s sample-

down mechanism for each cascade (see Wu et al. [33] for an in-

depth discussion of Twitter’s sample-down mechanism). We choose

a sampling-down probability P𝑚 , and we remove the tweets in

each cascade independently and randomly with the probability P𝑚 .

Once an event is marked as missing, we remove it from its cas-

cade and update the event count in the time interval. We conduct

contrastive learning on the simulated cascade groups and apply

a widely employed dimension reduction tool, t-SNE [18], on the

group embeddings for visualization. We repeat the experiments

with varying P𝑚 missing probability to examine the effect of differ-

ent levels of data loss.

Fig. 2 depicts the embeddings of cascade groups produced from

the trained IC-TH, for the various P𝑚 . When there is no missing

data (P𝑚 = 0) or half of the tweets are missing (P𝑚 = 0.5), the
color groups are perfectly separated. As the data loss increases

(P𝑚 > 0.5), the color groups start mixing together. However, we

achieve near-perfect separability even at very large data sampling

rates (P𝑚 = 0.9 in Fig. 2(d)). This shows that IC-TH captures the

differences in cascade groups even as most events are missing and

represented as missing event counts.

4.3 Future popularity prediction

In this section, we evaluate IC-TH for the cascade future popularity

prediction task on the ActiveRT2017 dataset. We evaluate the

impact of pre-training for this task by testing IC-TH with and

without pre-trained weights on the ActiveRT2016 dataset.

Setup and baselines. We compare IC-TH against the base-

line models discussed in Section 2. This includes an event count

model (MBP [25]) and two event time models (the generalized

HawkesN [16] and TransformerHawkes [41]). As theActiveRT2017

is a sampled-down dataset, it contains both retweet counts and

retweet events. We process the data to adapt it to the requirements

of each baseline as follows. For event time models, we model only

the observed event times in a cascade. For the event count model

0.683

0.708

0.366 0.35 0.339

0.87

0.68

0.42 0.42 0.39

0.00

0.25

0.50

0.75

1.00

1.25

HawkesN MBP Pretrained IC−TH TH IC−TH

A
b
so

lu
te

 P
e
rc

e
n
ta

g
e
 E

rr
o
r

Figure 3: Performance of predicting final popularity mea-

sured using the absolute percentage error (APE) on Ac-

tiveRT2017— lower is better. We compare IC-TH (with and

without pre-training, in bold font) against three state-of-

the-art baselines: HawkesN [16], MBP [25] and Transformer

Hawkes (TH) [41]. The boxplots summarize all the cascades

in the dataset. The red diamond shows the mean APE.

(i.e., MBP), we consider the observed event timestamps as observa-

tion times and compute the total event counts for each observation

period — e.g., 𝑐1 + 1 for the observation period 𝑡0 to 𝑡1. These oper-

ations introduce information loss; however, we highlight that we

are unaware of any other model that can leverage event count and

individual event data simultaneously.

Results. Fig. 3 shows the results of the popularity prediction.

Visibly, all transformer-based approaches (IC-TH and TH) provide

a significant performance boost over the generative approaches

(HawkesN and MBP). Furthermore, our proposed IC-TH outper-

forms TH in terms of both mean and median Absolute Percentage

Error (APE). Surprisingly, unlike the categorization prediction (see

next section), pre-training does not boost performance. The pre-

trained IC-TH shows performances on par with TH.

4.4 Categorical prediction of online items

Here, we evaluate the categorization of online items outside Twitter

(video categories, publisher reputation, IO state-backed agents)

using solely the retweet cascades temporal information.

Setup.We follow the experimental setup outlined by Kong et al.

[15]. For ActiveRT2017 we predict the category of YouTube videos

among four video categories (Entertainment, Gaming, Music and

News&Politics). For RNCNIX, we predict whether a publisher is

controversial or reputable. For IO, we distinguish among four user



Table 2: Macro-F1 of predicting the category of YouTube

videos (on ActiveRT2017), controversial news publishers

(RNCNIX) and state-backed Information Operations opera-

tives (IO). We compare three flavors of IC-TH against two

state-of-the-art models. Higher is better.

Models ActiveRT2017 RNCNIX IO

DMM [15] 0.488 0.675 0.968

TH [41] 0.469 0.823 0.983

IC-TH w/o missing counts 0.495 0.840 0.985

IC-TH 0.499 - 0.987

Pre-trained IC-TH 0.503 0.853 0.987

0.325
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0.375

0.400

0.425

20% 40% 60% 80%

Proportions of training data
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1

None

ActiveYT2016

Pre-training

Figure 4: Comparison of prediction performances on Ac-

tiveRT2017 of IC-THwith and without pre-trained weights

after being trained on different proportions of training data.

Mean F1 scores and standard deviations among 10 runs are

shown as colored lines and areas, respectively.

state-backed agent identities (Russia-, Iran-, Saudi Arabia-backed

and Organic User). We evaluate the prediction performance using

the macro-F1 with the same 50%-50% train-test split setup as [15]

and employing 5% of the training data for validation. We compare

our proposed IC-TH (with and without pre-trained weights) to

state-of-the-art baselines TH [41] and DMM [15]. We also evaluate

a version of IC-TH where retweet count data is excluded from the

input — i.e., we remove the missing event counts and show only the

event times — to evaluate the contribution of knowing how many

events are missing. Note the dash for IC-TH on RNCNIX, as this

dataset does not have any missing data; therefore IC-TH is identical

to IC-TH w/o missing counts.

Results. We show the category prediction results in Table 2.

We make three observations. First, the classification task is more

straightforward on the datasetsRNCNIX and IO than onActiveRT2017,

as all algorithms obtain significantly higher macro-F1 scores. Sec-

ond, our pre-trained IC-TH outperforms all other baselines and

IC-TH flavors. Third, we estimate the performance impact of the

three modeling contributions of pre-trained IC-TH over TH. The

new data representation introduced in Section 3.1 appears to have

the highest impact (IC-TH w/o missing counts compared to TH).

Introducing missing counts and pre-training both lead to moderate

performance increases.

Effect of pre-training weights. To explore the benefits of pre-

trained weights, we test the IC-TH model (with and without pre-

training) on training sets of ActiveRT2017 of varying sizes (in

percentage). We repeat the train-test procedure 10 times for each

Table 3: Mean ± standard deviation of Jaccard similarity in

hashtag usage between pairs of users in different clusters

(inter-cluster line) andwithin the same cluster (intra-cluster

line) for users affiliated with each country. Higher scores in-

dicate more similarity.

Russia (𝑘 = 3) Saudi Arabia

(𝑘 = 3)
Iran (𝑘 = 4)

Inter-cluster sim. 0.064±0.0183 0.038±0.0467 0.034±0.0171
Intra-cluster sim. 0.133±0.0289 0.260±0.2390 0.089±0.0405

training set size and report the mean and standard deviation of

Macro-F1. All pre-training is performed onActiveRT2016. Fig. 4 de-

picts the performance increase with the size of the training dataset.

We see that the improvements from the pre-trained weights become

notable and consistent when using more than 40% of training data.

5 ANALYZING STATE-BACKED IO AGENTS

In this section, we perform an in-depth quantitative (Section 5.1)

and qualitative analysis (Section 5.2) of the users in the IO dataset,

studying both the temporal dynamics and the content of the tweets.

5.1 Identify clusters of state-backed accounts

Method.We leverage IC-TH fine-tuned onActiveRT2016 to derive

cascade group embeddings for users — a cascade group corresponds

to each user and contains all the retweet cascades in which the user

is involved. We visualize in Fig. 5(a) the user embeddings from

IO with t-SNE. The figure shows a clear separation between the

removed state-backed agents from the three countries and the or-

ganic users who were not removed. This is not surprising given

the macro-F1 score of 0.987 obtained by the pre-trained IC-TH on

IO (see Table 2). However, clear divisions also exist within each

country group — e.g., at least three clusters can be observed for

Russia-linked users. Next, we investigate whether the users in the

same clusters have more in common than temporal tweeting pat-

terns.

Assess content similarity of clusters.We first quantitatively

measure the pairwise similarities of users within clusters. For state-

backed removed users, we apply the k-means clustering on the

t-SNE space with the 𝑘 number manually selected to match the

cluster numbers in Fig. 5(a): 3 for Russia, 3 for Saudi Arabia and 4

for Iran. We then build the sets of hashtags used by each user and

compute the Jaccard similarity scores between all pairs of users.

We show in Table 3 the average similarity scores and standard

deviations of inter-cluster and intra-cluster user pairs. The scores

consistently indicate higher similarity among users within the same

cluster for all countries. This indicates that users placed in the same

cluster based on their temporal tweeting patterns (captured by IC-

TH) exhibit similar hashtag usage. In other words, the identified

clusters appear coherent both temporally and content-wise.

5.2 Investigation of Russia-backed

Information Operations strategies

Here we analyze the agenda-setting episodes for each cluster and

investigate for signs of possible coordination across clusters by
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Figure 5: Understanding the strategies of state-backed agents. (a) T-SNE visualizations of the users in the IO dataset. The colors

indicate the countries of origin for state-backed agents, as identified by Twitter. Three clusters of Russian-backed users are

highlighted. (b) Temporal patterns of coordinated activity across the clusters of Russian-backed users. Annotations show the

most used messages and hashtags on particular days.

checking whether they post similar messages with increased fre-

quency on the same day.

First, we map the temporal posting patterns of the identified

Russia-backed clusters (i.e., number of tweets per day) to determine

the days of increased activity within each cluster. We identify the

“spikes” — the days characterized by increased frequency of tweets

from the users in each particular cluster — and sample and analyze

their tweets’ content at peak times. For example, in Fig. 5(b), we

observe a distinct spike in activity among Cluster 2 and Cluster 3
on 18-19 July 2014. On 17 July 2014, Malaysia Airlines flight MH17

was shot down using an anti-aircraft system belonging to the Rus-

sian military, killing all 298 passengers and crew on board. We see

from the IO tweets data that on the next day (18 July), users from

both Clusters 2 and 3 released an avalanche of accusatory tweets

in an attempt to shift blame towards Ukraine. The content of the

Russian-language tweets included hashtags such as #KievShotDown-
theBoeing, #KievProvocation and #KievTelltheTruth. The narratives
alleged Ukraine’s responsibility for committing the attack. They

also drew conclusions regarding Ukraine’s future as an independent

state. These narratives were aligned with Russia’s strategic geopo-

litical interests — shifting the blame to Ukraine and delegitimizing

the Ukrainian government allowed them to justify their military

intervention in the region.

Interestingly, while we can observe instances of coordinated

activity across clusters like the one above, we can also see that each

cluster exhibits unique information-spreading patterns. After the

downing of MH17, Cluster 2 continued tweeting Russian news and

messages of support for the Russian government in the Russian

language. In contrast, users in Cluster 3 have switched to English

in an apparent effort to target a new audience on the platform.

Some of these accounts posted inspirational quotes and engaged

in popular culture discussions marked by common hashtags such

as #music and #usa. Others engaged in conversations with other

users, providing relationship advice and even consolation. Then

on 11/09/2014, all of these accounts started pushing information

using the hashtag #columbianchemicals — a known hoax claim-

ing an explosion at a chemical plant in Centerville, Louisiana in

2014 [10]. #columbianchemicals was not the only issue discussed

in the cluster — other parts were dedicated to spreading false nar-

ratives about Ukraine, including negative portrayals of Ukraine’s

Revolution of Dignity and snapshots of a happy civilian life in the

Russian-occupied Crimea. Another slightly smaller fraction of these

conversations was dedicated to discussing the Russian soul and the

“indomitable Russian spirit” that were often linked to Christianity

and Russia’s much-celebrated victory inWorldWar II. Thus, Cluster
3 captures a broad repertoire of Russia’s attempts at foreign and

domestic influence perpetrated by seemingly “ordinary” accounts.

Unlike Cluster 3, the tweets in Clusters 1 and 2 were exclusively
in the Russian language. Cluster 1 contains retweets of news re-
ported by the Russian mainstream media. Most of the tweets from

this cluster have a notably patriotic framing, praising the Russian

president Vladimir Putin or Russia’s achievements in the automo-

tive industry and sports. On certain days, users from this cluster

would participate in coordinated campaigns, such as the #Madein-
Russia campaign that aimed to justify Russia’s import substitution

policy. Following the official announcement, these accounts shared

information on various Russian-made goods and praised their ad-

vantages compared to their sanctioned analogs.

Cluster 2 is thematically similar to Cluster 1 but has a distinct
prevalence of regional (rather than national) newswith amix of con-

servative sentiment. It has been activated to promote pro-Russian

hashtags that mimic public sentiments, such as #LavrovBeStrong on

21/03/2015 or #TurkeyAggressor on 24/11/2015.

Overall, the temporal analysis of coordinated behavior within

clusters suggests theymight represent separate organizational units,

such as troll farms. This is a plausible scenario in which each or-

ganizational unit/troll farm would be engaged in a separate set of

activities that constitute Russia’s information operations for do-

mestic or international audiences. However, as we can observe in

Fig. 5(b), in the case of significant political events, they can also

join their forces and participate in coordinated campaigns across

clusters.



6 CONCLUSION

This paper proposes the Interval-censored Transformer Hawkes

(IC-TH), an extension to the Transformer Hawkes model that ac-

counts for both observer event times and counts of missing events

between observed events. We start by observing that most Twitter

feeds are sampled-down, and tweets are missing at varying rates.

We show that the number of missing tweets can be reconstructed

using the ‘𝑟𝑒𝑡𝑤𝑒𝑒𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ’ information embedded in each retweet.

We propose a novel data embedding scheme that accounts for both

observed and missing data, a new log-likelihood function for train-

ing IC-TH and a contrastive learning approach for training it with

large volumes of unlabeled data.

We test IC-TH on three large datasets with two learning tasks:

future popularity prediction and online item categorization. We

show that IC-TH outperforms the current state-of-the-art baselines

on all datasets and tasks: generative and neural network-based,

interval-censored, and event time-based. Most importantly, we

show that the category of YouTube videos, the reputability of news

publishers and the status of state-backed actors for Twitter users

can be predicted using solely the timing of the retweet cascades

associated with these items.

IC-TH for IO detection.As validation suggests, grouping users

solely based on their temporal interaction patterns represented by

retweet cascades allows researchers to identify clusters of users

engaged in information operations. Moreover, the clusters’ gran-

ularity might be sufficient in many cases to identify each distinct

information operation and its textual and hypertextual features.

Based on these preliminary findings, the interval-censored Trans-

former Hawkes might be used to identify coordinated inauthentic

behavior in other datasets independent of their content, making it

a potentially helpful tool for combatting foreign interference on

social technology platforms.
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