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ABSTRACT 
Many social networks and web-based datasets are characterized by 
multiway interactions (e.g., groups of co-purchased online retail 
products or group conversations in Q&A forums) and hypergraph 
clustering is a fundamental primitive for analyzing these types 
of interactions. We present an � (log �)-approximation algorithm 
for a broad class of hypergraph ratio cut objectives. This includes 
objectives involving generalized hypergraph cut functions, which 
allow a user to penalize cut hyperedges diferently depending on 
the number of nodes in each cluster. Our method generalizes the 
cut-matching framework for graph ratio cuts, and relies only on 
solving maximum s-t fow problems in a special reduced graph. It is 
signifcantly faster than existing hypergraph ratio cut algorithms, 
while also solving a more general problem. In numerical experi-

ments on various web-based hypergraphs, we show that it quickly 
fnds ratio cut solutions within a small factor of optimality. 
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1 INTRODUCTION 
Graphs are a popular way to model social networks and web-based 
datasets, but there has been a growing realization that many com-

plex systems of interactions on the web are characterized by mul-

tiway relationships that cannot be directly encoded using graph 
edges. For example, users on social media join interest groups and 
participate in group events, online shoppers purchase multiple 
products at once, discussions in Q&A forums typically involve mul-

tiple participants, and email communication often involves multiple 
receivers. These higher-order interactions can be modeled by a hy-
pergraph: a set of nodes that share multiway relationships called 
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hyperedges. A standard primitive for analyzing group interaction 
data is to perform clustering, i.e., identifying groups of related nodes 
in a hypergraph. This is a direct generalization of the well-studied 
graph clustering problem. Hypergraph clustering methods have 
already been used to address numerous web-based data analysis 
tasks, such as detecting diferent types of Amazon products based 
on groups of co-reviewed products [43], identifying related vacation 
rentals on Trivago from user browsing behavior [10], clustering 
restaurants based on Yelp reviews [28], and fnding related posts in 
online Q&A forums from group discussion data [44]. 

A “good” cluster in a (hyper)graph is a set of nodes with many 
internal (hyper)edges, but few (hyper)edges connecting diferent 
clusters. One of the most standard ways to formalize this goal is to 
minimize a ratio cut objective, which measures the ratio between 
the cluster’s cut and some notion of the cluster’s size. In the graph 
setting, the cut simply counts the number of edges across the cluster 
boundary. The standard hypergraph cut function similarly counts 
the number of hyperedges on the boundary. However, unlike the 
graph setting, there is more than one way to partition a hyperedge 
across two clusters. This has led to the notion of a generalized hy-

pergraph cut function, which assigns diferent penalties to diferent 
ways of splitting a hyperedge. The performance of downstream 
hypergraph clustering applications can strongly depend on the type 
of generalized cut penalty that is used [13, 26–28, 43–45]. 

Previous work and limitations. Common ratio cut objectives 
include conductance and expansion, which have been defned both 
for graphs and hypergraphs (see Section 2). These are NP-hard 
even in the graph case, but can be approximated using spectral 
methods, which often come with so-called Cheeger inequality guar-

antees [11], or by using various types of multicommodity-fow and 
expander embedding methods [5, 21, 24, 36]. Several techniques 
for approximating graph ratio cuts have already been extended to 
hypergraphs, but there are many new challenges in this setting. 
First of all, many hypergraph Laplacian operators are nonlinear, 
which leads to additional challenges in computing or approximating 
eigenvectors to use for clustering [7, 27, 30, 51]. Secondly, there are 
many challenges associated with obtaining guarantees for general-

ized hypergraph cut functions, which can be much more general 
than graph cut functions. For these and other reasons, there is 
currently a wide gap between theoretical algorithms and practical 
techniques for minimizing hypergraph ratio cut objectives. The best 
approximation algorithms rely on expensive convex relaxations 
(e.g., memory intensive relaxations with � (�3) constraints [20, 31]) 
and complicated rounding techniques that are not implemented 
in practice [7, 20, 27, 31, 51]. Another downside specifcally for 
spectral and random-walk based techniques [6, 7, 25–27, 40, 51] is 
that their Cheeger-like approximation guarantees are � (�) even 
in the graph setting. In the hypergraph setting, their approxima-

tion factors also often get worse as the maximum hyperedge size 
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grows [6, 7, 26]. A limitation in another direction is that many 
existing hypergraph ratio cut algorithms are designed only for 
the simplest notion of a hypergraph cut function rather than gen-

eralized cuts [6, 7, 20, 31, 40, 52]. Finally, although a number of 
recent techniques apply to generalized hypergraph cut functions 
and come with practical implementations, these do not provide 
theoretical guarantees for global ratio cuts because they are either 
heuristics [27] or because they focus on localized objectives that are 
biased to a specifc region of a large hypergraph [13, 17, 28, 43, 44]. 

The present work: practical approximation algorithms. We 
present the frst algorithm for hypergraph ratio cuts that simul-

taneously (a) comes with a nontrivial approximation guarantee 
(i.e., better than � (�)) and (b) applies to generalized hypergraph 
cuts. Additionally, compared with approximation algorithms that 
apply only to the standard hypergraph cut function, our method 
comes with a substantially faster runtime guarantee and a practi-
cal implementation. In more detail, our algorithm has an � (log �)
approximation guarantee and applies to any cardinality-based sub-

modular hypergraph cut function, which is a general cut function 
that captures many popular hypergraph cut functions as special 
cases [45]. It relies only on solving a sequence of maximum �-� fow 
problems in a special type of reduced graph, which can be made 
efcient using an of-the-shelf max-fow subroutine. 

Our method generalizes the cut-matching framework for graph 
ratio cuts [21, 36], which alternates between solving max-fows and 
fnding bisections in order to embed an expander into the graph. 
Although maximum fow problems and expander embeddings are 
well-understood in the graph setting, these concepts are more nu-

anced and not as well understood in hypergraphs, especially in the 
case of generalized hypergraph cuts. We overcome these technical 
challenges by providing a new approach for embedding an expander 
graph inside a hypergraph, which is accomplished by solving maxi-

mum fow problems in an reduced directed graph that models the 
generalized cut properties of the hypergraph. To summarize: 

• We present a new framework for embedding expander graphs 
into hypergraphs in order to obtain lower bounds for NP-hard 
hypergraph ratio cut objectives (Lemma 3.2). 

• We present an � (log �)-approximation algorithm that applies to 
any hypergraph ratio cut objective with a submodular cardinality-

based cut function and any positive node weight function, and 
relies simply on solving a sequence of graph max-fow problems. 

• We provide additional practical techniques for making our method 
more efcient in practice and for obtaining improved lower 
bounds and a posteriori approximation guarantees (Theorem 5.3). 

• We implement our method and show that it is orders of magni-

tude more scalable than previous approximation algorithms and 
allows us to detect high quality ratio cuts in large hypergraphs 
arising in various types of web-based data analysis tasks. 

An extended version of the paper is available online [42]. 

2 PRELIMINARIES AND RELATED WORK 
Let � = (� , �) denote a graph with � = |� | nodes, and an edge set 
�. We denote edges in undirected graphs using bracket notation 
� = {�, �} ∈ �; an edge may additionally be associated with a 
nonnegative edge weight �� (�) = �� (�, �) ≥ 0. Given a subset of 

nodes � ⊆ � , let � ̄ = � \� . The boundary of � is 

�� (�) = �� (� ̄) = {� ∈ � : |� ∩ � | = 1 and |� ∩ � ̄| = 1}. (1) 

This is the set of edges with one endpoint in � and the other end-

point in � ̄. The cut of � is the weight of edges on the boundary:Í 
cut� (�) = cut� (� ̄) = � ∈�� (� ) �� (�) . (2) 

Given a positive node weight function � : � → R>0, the ratio cut 
objective with respect to � for a set � is denoted by � 

�� (�, �) = cut� (�) min{� (�), � (� ̄)}, (3) 

where � (�) = 
Í 
� ∈� � (�). This captures the well-known special 

case of conductance (when � (�) equals node degree �� ), and expan-
sion (when � (�) = 1). We will refer to �� (�, �) as the �-expansion 
of � . The �-expansion of a graph � is then 

��,� = min �� (�, �) . (4)

� ⊂� 

We may drop � and � from subscripts when clear from context. For 
a given node weight function � , a graph � = (� , �) is a �-expander 
if there exists a constant � > 0 such that for every � ⊆ � , � (�) > � . 

Directed graphs. Many of our results apply to directed graphs. 
In this case, we will use parenthesis notation to denote edge direc-
tions, i.e. (�, �) ∈ � indicates an edge from node � to node � . For a 
set � ⊆ � the directed cut function is Í 

cut� (�) = (�,�) ∈� : � ∈�,� ∈� ̄ �� (�, �) . 

Expansion in a directed graph is defned by using a directed cut 
function in (3). We can treat an undirected graph � as a directed 
graph by replacing each undirected edge with two directed edges, 
in which case the two notions of �-expansion match. 

2.1 Graph fows 
A fow function � : � → R≥0 on a directed graph � = (� , �) assigns 
a nonnegative fow value �� � ≥ 0 to each edge (�, �) ∈ �. If �� � ≤ 
�� (�, �) for each (�, �) ∈ �, then � satisfes capacity constraints. In 
general, the congestion of � is the maximum capacity violation: 

congestion(� ) = max �� � /�� (�, �) . (5) 
(�, � ) ∈� 

We say that � satisfes fow constraints at a node � ∈ � if the fow 
into � equals the fow out of � : Í 

� : (�,�) ∈� ��� = 
Í 

� : (�,� ) ∈� �� � . (6) 

If the fow into � is greater than the fow out of � then � is an ex-
cess node. If the fow out of � is more than the fow into � then 
� is a defcit node. Given two fow functions � (1) and � (2) , the 
sum � ′ = � (1) + � (2) is the fow obtaining by defning � ′ = 

� � 
(1) (2)

� + � for each (�, �) ∈ �. This fow satisfes congestion(� ′) ≤
� � � � 

congestion(� (1) ) + congestion(� (2) ). If � (1) and � (2) both sat-
isfy fow constraints at a node � , then � ′ will as well. We will 
consider two special types of fows, and make use of a standard 
fow decomposition result (Lemma 2.1). 

Definition 2.1 (�-� flow). Given {�, � } ⊆ � , an �-� fow on � is 
a fow that satisfes fow constraints on each � ∈ � − {�, � }. We say 
that � routes fow from � to � , and has a fow value 

|� | = 
Í 
� : (�,� ) ∈� ��� − 

Í 
� : ( �,� ) ∈� ��� . (7) 
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Definition 2.2 (multicommodity flow). A multicommodity 
fow problem in � is defned by a set D of demand pairs (�, �) ∈ � ×� 
and corresponding weights ��� ≥ 0. The fow � is a feasible multi-

commodity fow for D if it can be written as � = 
Í 
(�,� ) ∈D � 

(��) 

where � (�� ) 
is a �-� fow that routes ��� units of fow from � to � . 

Lemma 2.1. (Theorem 3.5 in [1] or Lemma 2.20 in [49].) Let � be 
a fow function on a graph � = (� , �) with � nodes and � edges. Íℓ
The fow can be decomposed as � = �=1 �� where ℓ ≤ � + �, and 
where for each � , the edges with positive fow in �� either form a simple 
directed path from a defcit node to an excess node or form a cycle. 

2.2 General hypergraphs cuts and expansion 
A hypergraph H = (� , E) is a generalization of a graph where � 
denotes a node set and E is a hyperedge set where each � ∈ E is 
a subset of nodes in � of arbitrary size. The degree of a node � is 
denoted by �� . The boundary of � ⊆ � is denoted by 

�H(�) = �H(� ¯) = {� ∈ E : |� ∩ � | > 0 and |� ∩ � ¯| > 0}. (8) 

If each hyperedge � ∈ E has a nonnegative scalar weight � H(�), 
the standard all-or-nothing hypergraph cut function is given by 

cutH(�) = 
Í 
� ∈�H (� ) � H(�). (9) 

It is useful in many settings to assign diferent cut penalties for 
separating the nodes of a hyperedge in diferent ways. This has 
led to the concept of generalized hypergraph cut functions [13, 26– 
28, 43–45, 51, 53]. Formally, each hyperedge � ∈ E is associated 
with a splitting function w� : � ⊆ � → R that assigns a penalty for 
each way of separating the nodes of a hyperedge. The generalized 
hypergraph cut is then given by 

cutH(�) = 
Í 
� ∈�H (� ) w� (� ∩ �). (10) 

Following recent work [27, 43–45], we focus on cardinality-based 
submodular hypergraph cut function, which means all splitting func-

tions satisfying the following properties for all �, � ⊆ � : 

(nonnegative) w� (�) ≥ 0; (uncut-ignoring) w� (∅) = 0 

(symmetric) w� (�) = w(�\�)
(submodular) w� (�) + w� (�) ≥ w� (� ∩ �) + w� (� ∪ �) 

(cardinality-based) w� (�) = w� (�) if |�| = |� |. 

Our objective: generalized hypergraph cut expansion. Given 
a hypergraph H = (� , E) with a cardinality-based submodular hy-

pergraph cut function cutH and node weight function � : � → 
R>0, the hypergraph �-expansion of a set � ⊆ � is defned to be 

cutH(�)
�H(�, �) = . (11)

min{� (�), � (� ¯)} 
The minimum value of this objective over all � is denoted by �H,� . 
Our focus is to develop an approximation algorithm for �H,� . 

2.3 Related work 
Expansion (� (�) = 1) and conductance (� (�) = �� ) are two of the 
most widely-studied graph ratio cut objectives. For many years, 
the best approximation for graph expansion and conductance was 
� (log �), based on solving a multicommodity fow problem [24] 
that can also be viewed as a linear programming relaxation. The 

√ 
current best approximation factor is � ( log �), based on a semi-

defnite programming relaxation [5]. Khandekar et al. [21] later 
introduced the cut-matching framework, providing an � (log2 �) ap-
proximation based on faster maximum �-� fow computations, rather 
than multicommodity fows. The same framework was later used 
to design improved � (log �)-approximation algorithms [34, 36]. 

Many variants of the hypergraph ratio-cut objective (11) have 
been considered [26–28, 30, 45, 51, 52], for diferent cut functions 
and node weight functions � . A number of Cheeger-style approxi-
mation guarantees have been developed for these objectives based 
on eigendecompositions of nonlinear hypergraph Laplacians [7, 
27, 51] or PageRank-based methods [25, 40], but their worst-case 
approximation factors are never better than � (�). Other techniques 
rely on clique expansions of hypergraphs [6, 26, 52], which also have 
poor worst case approximation factors that also scale poorly with 
the maximum hyperedge size. The � (log �) multicommodity fow √ 
algorithm [24] and the SDP-based � ( log �) approximation for ex-
pansion [5] have been generalized to the hypergraph setting [20, 31]. 
However, these only apply to the standard all-or-nothing hyper-

graph cut function (9). They are also more restrictive in terms of 
node weights. We consider a general nonnegative node weight func-

tion � , while these previous methods focus on either expansion 
node weights (� (�) = 1) [31] or conductance node weights (� (�) = 
�� ) [20]. There are also numerous results on minimizing locally-
biased ratio cut objectives in graphs [3, 4, 14, 22, 32, 37, 47, 48] and 
hypergraphs [13, 17, 28, 43, 44], but these do not provide guarantees 
for global ratio cut objectives. 

Concurrent work. Ameranis et al. [2] independently and con-

currently developed an � (log �)-approximation algorithm for gen-

eralized hypergraph ratio cuts based on cut-matching. Their al-
gorithm applies to a more general class of monotone submodular 
cut functions, though the authors focused on theoretical results 
and therefore did not provide an implementation. See the extended 
version for a more detailed comparison [42]. 

3 HYPERGRAPH EXPANDER EMBEDDINGS 
Expander embeddings are common techniques for lower bounding 
expansion in undirected graphs [5, 21, 24, 38]. We generalize this 
basic approach in order to develop a strategy for lower bounding 
hypergraph ratio cut objectives, by embedding an expander graph 
into a special type of directed graph that models a generalized 
hypergraph cut function. See the appendix for all proofs. 

3.1 Hypergraph cut preservers 
Many hypergraph clustering methods rely on reducing a hyper-

graph to a graph and then applying an existing graph technique [6, 
18, 26, 45, 50]. We employ a precise notion of hypergraph reduction 
for modeling generalized hypergraph cuts [44, 45]. 

Definition 3.1 (augmented cut preserver). Let H = (� , E) 
be a hypergraph with generalized cut function. The directed graph 
� (H) = (� ,ˆ �̂) is an augmented cut preserver for H if �̂ = � ∪ A 
where A is an auxiliary node set and if � (H) preserves cuts in H in 
the sense that for every � ⊆ � : 

cutH(�) = min cut� (H) (� ∪ � ) . (12)

� ⊆A 
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Figure 1: CB-gadget parameterized by weights � and � for a 
four-node hyperedge � = {�1, �2, �3, �4}. 

The cut preserving property in (12) essentially says that for any 
fxed � ⊆ � , we can arrange nodes from A into two sides of a cut 
in a way that minimizes the overall (directed) cut penalty in � (H). 
There is more than one way to construct an augmented cut pre-
server � (H) for a cardinality-based submodular hypergraph cut 
function [23, 44, 45]. The general strategy is to replace each hyper-

edge � ∈ E with a small gadget involving directed weighted edges 
and auxiliary nodes, in a way that models the splitting function of 
the hyperedge. We specifcally use reductions based on symmetric 
cardinality-based gadgets (CB-gadgets) [44, 45] (Figure 1). For a 
hyperedge � ∈ E with � nodes, a CB-gadget introduces two new 
nodes � ′ and � ′′, which are added to the augmented node set A. For 
each � ∈ � , the gadget has two directed edges (�, � ′) and (� ′′ , �) that 
are both given weight �, and a directed edge (� ′ , � ′′ ) with weight 
��, where � and � are nonnegative parameters for the CB-gadget. 
Figure 2(b) is an illustration of an augmented cut preserver for a 
small hypergraph, where each hyperedge is replaced by a single CB-

gadget and edge-weights are omitted. Each hyperedge could also 
be replaced by a combination of CB-gadgets with diferent weights, 
in order to model more complicated hypergraph cut functions. It 
is possible to model any cardinality-based submodular splitting 
function using a combination of ⌊|� |/2⌋ CB-gadgets, by carefully 
choosing parameters (�, �) for each gadget [45]. In cases where it is 
enough to approximately model the hypergraph cut function, one 
can instead use an augmented sparsifer [44] to approximate the 
cut function while using fewer CB-gadgets. 

3.2 Expander embeddings in hypergraphs 
Let � = (� , �� ) be a directed graph with edge weight �� (�, �) for 
each (�, �) ∈ �� , and let � = (� , �� ) be an undirected graph on the 
same set of nodes with weight �� (�, �) ≥ 0 for edge {�, � } ∈ �� . 
For every set � ⊆ � , let D(�) = {(�, �) ∈ � × � ¯: {�, � } ∈ �� }
denote a set of directed pairs of nodes that share an edge in � . 

Definition 3.2 (embedding � in �). Graph � can be embedded 
in � with congestion � if for each bisection {�, � ̄}: 

• For each (�, �) ∈ D(�) there is a �-� fow function � (��) that 
routes �� (�, �) units of fow from � to � via edges in � . 

• The fow � = 
Í 
(�,�) ∈D(� ) � 

(��) 
can be routed through � 

with congestion at most � , i.e., for each (�, �) ∈ �� , Í (��)
(�,�) ∈D(� ) �� � ≤ ��� (�, �). (13) 

Lemma 3.1. If � is embedded in � with congestion � , then for 
every node weight function � , ��,� ≥ 1 ��,� .� 

The immediate implication of Lemma 3.1 is that if � is an ex-
pander, then the expansion of � is Ω( 1 ). Defnition 3.2 difers � 

slightly from other notions of embeddings that are used when ap-
proximating graph ratio cuts. This defnition is chosen in a way 
that is easier to generalize to the hypergraph setting. 

Combining hypergraph cut preservers [44, 45] with Defnition 3.2 
provides a new strategy for bounding hypergraph �-expansion. 

Lemma 3.2. Let H = (� , E) be a hypergraph with a generalized 
hypergraph cut function cutH and let � (H) = (�̂ = � ∪ A, �̂)
be an augmented cut preserver for H . If graph � = (� , �� ) can be 
embedded in � (H) with congestion � , then for every node weight 
function � , �H,� ≥ � 

1 ��,� . 

This assumes fxed node weights � and does not directly relate 
conductance in H to conductance in � (as conductance depends on 
node degrees). However, this provides an important step in lower 
bounding arbitrary ratio-cut objectives, including conductance. 

4 HYPERGRAPH FLOW EMBEDDING 
To apply Lemma 3.2, we would like to embed an expander into 
� (H) with a small congestion, and then fnd a set � that is not too 
far from the resulting lower bound. As an important step in this 
direction, in this section we will show how to embed a special type 
of bipartite graph into H whose congestion is related to a small 
expansion set. Given a partition {�, � ¯} of the node set � , we will 
design a procedure that takes in a parameter � > 0 and using a 
single maximum fow computation either (1) returns a set � ⊆ � 
such that �H(�, �) < � , or (2) produces a bipartite graph between 
� and � ¯ that can be embedded in � (H) with congestion 1/� . In 
Section 5, we will show how to combine these bipartite graphs to 
embed an expander into � (H). Proofs are provided in the appendix. 

4.1 Maximum fows in an auxiliary graph 
Fix � > 0 and a partition {�, � ¯} satisfying � (�) ≤ � (� ¯), and set 
� = � (�)/� (� ¯). We will solve a maximum �-� fow problem on an 
auxiliary graph � (H , �, �) (see Figure 2(c)) constructed as follows: 

• Construct a CB-gadget cut preserver � (H) for H [44, 45], 
and scale all edge weights by � 

1
. 

• Add an extra source node � and a sink node � . 
• For each � ∈ �, add a directed edge (�, � ) with weight � (� ). 
• For each � ∈ � ¯, add a directed edge (�, �) with weight �� (�). 

We will use a solution to the maximum �-� fow problem to either 
fnd a set � with small expansion (by considering the dual minimum 
�-� cut problem), or fnd an embeddable bipartite graph between 
� and � ̄ with congestion 1 

(by considering a fow decomposition). � 
This mirrors the same strategy that is used in cut-matching games 
for graph expansion [21], though the construction and proofs are 
more involved for generalized hypergraph cut functions. 

Finding a small �-expansion set. The minimum �-� cut prob-
lem in � (H , �, �) is equivalent to solving the following optimiza-

tion problem over the hypergraph H : 
1

minimize� ⊆� cutH(�) + � (� ∩ � ̄) + �� (� ̄ ∩ �). (14)

� 
If we set � = ∅, this corresponds to separating node � from all other 
nodes in � (H , �, �), which is a valid �-� cut with value � (�). If 
we can fnd an �-� cut value that is strictly smaller than � (�) in 
� (H , �, �), it will provide a set � with small expansion in H . 
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(a) H (b) � (H) (c) � (H, �, � ) (d) �� 

Figure 2: (a) An example hypergraph H = (� , E). (b) An augmented cut preserver � (H) (Defnition 3.1) for H . (c) The auxiliary 
graph � (H , �, �) and minimum �-� cut (red line). (d) Toy example of an embedded �-regular bipartite graph �� . 

Lemma 4.1. If the minimum �-� cut value in � (H , �, �) is less than 
� (�), then the set � minimizing objective (14) satisfes �H(�, �) < � . 

Max-fow subroutines for solving an objective closely related 
to (14) have already been used to minimize localized ratio cut objec-
tives in hypergraphs [43]. This generalizes earlier work on localized 
ratio cuts in graphs [4, 37, 47, 48]. The present work difers in that 
we use max-fow solutions to approximate global ratio cut objec-
tives. A key step in doing so is showing how to embed a bipartite 
graph into � (H) when Lemma 4.1 does not apply. 

Embedding a bipartite graph. If the min �-� cut in � (H , �, �)
is � (�), then the max �-� fow solution in � (H , �, �) saturates 
every edge touching � or � . We can then defne a bipartite graph �� 
between � and � ¯ that can be embedded in � (H) with congestion 1 

� . 
Let � be a maximum �-� fow on � (H , �, �) with value |� | = � (�). 
Letting � = |� |, defne a matrix M� ∈ R�×� 

that is initialized to be 
the all zeros matrix. Using Lemma 2.1, we can decompose the fowÍℓ� into � = �=1 �� , where for each � the edges that have a positive 
fow in �� form either a cycle or a simple �-� path. For our purposes 
we can ignore the cycles and focus on the �-� paths. An �-� fow 
path �� always starts by sending |�� | units of fow from � to some 
node � ∈ �, and eventually ends by sending the same amount of 
fow through an edge (�, �) where � ∈ � ¯. For each such fow path, 
we perform the update M� (�, �) ← M� (�, �) + |�� |. After iterating 
through all ℓ fow paths, we defne �� to be the bipartite graph 
whose adjacency matrix is M� (see Figure 2(d)). The construction 
of � (H , �, �) and the fact that � saturates all edges touching � and 
� implies the following degree properties for �� : 

• For each � ∈ �, the weighted degree of � in �� is � (� ). 
• For each � ∈ � ¯, the weighted degree of � in �� is �� (�). 

Following previous terminology [35], we refer to a bipartite graph 
satisfying these properties as a �-regular bipartite graph. To relate 
this to previous cut-matching games for graph expansion, note that 
if |� | = |� ¯| and � (�) = 1 for all � ∈ � , then �� will be a fractional 
matching and M� will be a doubly stochastic matrix. 

Proving a bound on congestion. When |� | = � (�), the max-

imum �-� fow in � (H , �, �) can be viewed as a directed multi-

commodity fow that is routed through a 1 
-scaled copy of � (H).� 

However, there is one subtle issue we must overcome in order to 
confrm that �� can be embedded in � (H) with congestion 1 

� . 
Defnition 3.2 requires that for every bisection {�, � ̄}, there must 
be a way to route M� (�, �) units of fow from � to � if � ∈ � and 
� ∈ � ̄. However, � only routes fow from � to � ̄ in the directed graph 
� (H , �, �). This issue does not arise in cut-matching games for 
undirected graphs, as each undirected edge {�, � } can be viewed as 

a pair of directed edges (�, �) and (�,�), making it easy to send fow 
in two directions simultaneously. However, in the directed graph 
� (H , �, �), it is possible that for a given bipartition {�, � ̄}, the fow 
� will send fow from a node � ∈ � ∩ � ̄ to a node � ∈ � ̄ ∩ � , which 
does not directly satisfy the requirement in Defnition 3.2. The fol-
lowing lemma confrms that we can overcome this. Its proof relies 
on carefully considering the edge structure in � (H) and showing 
how to use an implicit fow-reversing procedure when necessary in 
order to satisfy Defnition 3.2. A proof is included in the appendix. 

Lemma 4.2. If |� | = � (�), the graph �� can be embedded in 
� (H) with congestion 1 

in the sense of Defnition 3.2. � 

4.2 The fow-embedding algorithm 
We combine Lemmas 4.1 and 4.2 into a method HyperCutOrEmbed 
(Algorithm 1) for obtaining both a good cut and an embeddable 
bipartite graph for any input partition {�, � ¯} with � (�) ≤ � (� ¯). 
We assume that the hypergraph H is connected, and that the hy-

pergraph weights are scaled so that there is a minimum penalty 
of 1 when cutting any hyperedge. This implies a lower bound of 
2/� (� ) on the minimum �-expansion, which is achieved if there is 
a set � with �H(�) = � (� )/2 and cutH(�) = 1. HyperCutOrEm-
bed repeatedly solves maximum �-� fow problems to fnd either a 
bipartite graph or a cut with bounded �-expansion. The algorithm 
uses black-box subroutines for maximum �-� fows and minimum 
�-� cuts, and a procedure FlowEmbed that decomposes a fow into 
a �-regular bipartite graph as outlined in Section 4.1. 

Theorem 4.3. HyperCutOrEmbed returns a �-regular bipartite 
graph �� that can be embedded in � (H) with congestion 1/� and 
a set � with �H(�, �) < 2� for some � ≥ 2/� (� ). The algorithm 
terminates in � (log |� | + log� + log � (� )) iterations where � is the 
maximum hyperedge cut penalty. 

5 HYPERGRAPH RATIO CUT ALGORITHMS 
HyperCutOrEmbed fnds a node set whose �-expansion is related 
to a graph that can be embedded in H . Applying Lemma 3.2 directly 
does not imply a useful lower bound or approximation algorithm 
for �-expansion in H , as the bipartite graph itself does not have 
a large �-expansion. In this section we show how to use existing 
strategies for building an expander graph in order to design an 
approximation algorithm for hypergraph �-expansion. 

5.1 Expander building subroutines 
The standard cut-matching procedure for expansion in an undi-

rected graph � = (� , �) can be described as a two-player game 

698



WWW ’23, April 30–May 04, 2023, Austin, TX, USA N. Veldt 

Algorithm 1 HyperCutOrEmbed(H , �, �) 
Input: H = (� , E), node weights � , bisection {�, � ̄}
Output: �� with congestion 1/� ; � with �H(�, �) ≤ 2� 
Set � = 2/� (� ), NoCutFound = true 
while NoCutFound do 

5: � = MaxSTflow(� (H , �, �)). 
if |� | = � (�) then 
�� ← FlowEmbed(� (H), �, � ); � ← 2� 

else 
� = MinSTcut(� (H , �, �), � )

10: NoCutFound = false 
Return �� , � , � 

between a cut player and a matching player. At the start of iteration 
� , the cut player produces a bisection {�� , �� }, and the matching ¯ 

player produces a fractional perfect matching �� between �� and 
¯ �� , encoded by a doubly stochastic matrix M� ∈ [0, 1] |� |× |� | 

. AfterÐ� � iterations, the union of matchings defnes a graph �� = =1 �� � Í� 
with adjacency matrix A� = =1 M� . The goal of the cut player is � 
to choose bisections in a way that minimizes the number of rounds 
it takes before �� is an expander, while the goal of the matching 
player is to choose matchings that maximize the number of rounds. 
Khandekar et al. [21] provided a strategy for the cut player which, 
for any matching player subroutine, will force �� to have expansion 
at least 1/2 for some � = � (log2 �) with high probability. This was 
used to show an � (log2 �) approximation for graph expansion. 

In follow-up work, the cut-matching framework has been gener-

alized in many diferent ways [29, 34–36, 38]. Although most results 
focus on expansion node weights (� (�) = 1), Orecchia et al. [35] 
recently introduced a setting where the cut player produces a set �� 
satisfying � (�� ) ≤ � (� ¯ � ) at each iteration, and the matching player 
produces a �-regular bipartite graph �� on {�� , �� }. Taking the ¯ 

union of all bipartite graphs up through the �th iteration produces 
a graph �� = (� , ��� ). Lemma 5.1 summarizes a cut player strategy 
that applies to this setting and leads to an � (log �)-approximation 
for graph ratio cut objectives. 

Lemma 5.1 (Theorem 7 in [35]). There exists a cut player strategy 
such that, for any matching player strategy, �� satisfes ��� ,� = 
Ω(log �) with high probability for some � = � (log2 �). In round � , 
the cut player can compute �� in time � ( |��� | · polylog(� (� ))). 

This strategy applies a heat-kernel random walk in �� , so we re-
fer to it as HeatKernelPartition. The approach was frst used for 
expansion weights (� (�) = 1) by Orecchia et al. [36] and considered 
in more depth in Orecchia’s PhD thesis [34]. Lemma 5.1 generalizes 
this to general node weights and was presented in recent work 
on overlapping graph clustering [35]. More technical details on 
cut-matching games with general node weights were presented 
recently by Amerinas et al. [2]. In the frst iteration, �0 is empty, 
so the cut player starts with any balanced bipartition {�, � ̄}. 

5.2 The approximation algorithm 
The notion of expander embedding that we have introduced in-

volves embedding an expander graph into a hypergraph H . There-

fore, we can use existing cut player strategies to build a �-expander, 

Algorithm 2 HCM: � (log �) approximation for �-expansion 

Input: H = (� , E), generalized cutH , bisection {�, � ̄}
Output: Set � with small �-expansion 
�0 = ∅ 
for � = 1 to � do 
�� = HeatKernelPartition(�0, �1, �2, . . . , �� −1)
�� , �� , �� = HyperCutOrEmbed(H , �� )

Return �∗ = argmin�=1,2,...� �H(�� , �) 

which we embed into H in the sense of Defnition 3.2 using al-
gorithm HyperCutOrEmbed. Our cut-matching approximation 
algorithm for generalized hypergraph cut expansion (Algorithm 2) 
is obtained by using HyperCutOrEmbed for the matching player 
and HeatKernelPartition for the cut player. See the appendix 
for a detailed runtime analysis. 

Theorem 5.2. For some � = � (log2 �), Algorithm 2 is an � (log �)-
approximation algorithm for hypergraph �-expansion where cutH 
is any submodular cardinality-based hypergraph cut function. 

Proof. At iteration � , HyperCutOrEmbed produces a �-regular 
bipartite graph �� that can be embedded in � (H) with expan-

1
sion and a set �� with expansion �H(�� , �) ≤ 2�� . Defne�� 
�∗ = argmin� �� and note that �H(�∗, �) ≤ �H(��∗ , �). The union 
of bipartite graphs �� can be embedded in � (H) with conges-Í� 1 � 
tion ≤ . From Lemma 5.1, we have � ≤ �1 log

2 � and�=1 �� ��∗ 
��� ,� ≥ �2 log � with high probability, where �1 and �2 are positive 
constants. Combining this with Lemma 3.2 we have 

�∗ �1�
∗ �1�

∗ 
� � � ≤ log � ≤ ��� ,� ≤ �1 �H,� .log � � �2� �2� �

So �H,� = Ω �
� 
∗/log � , and the algorithm returns a set �∗ with 

�H(�∗, �) ≤ 2�∗, proving the � (log �) approximation guarantee. 
� 

□ 

5.3 Practical improvements 
We incorporate a number of practical updates to the algorithm to 
simplify its implementation and improve approximation guarantees 
in practice. First of all, our implementation uses the push-relabel 
max-fow algorithm [9], which has a worse (but still fast) theoretical 
runtime and comes with various heuristics that make it very fast 
in practice. For the fow decomposition, we use a standard decom-

position technique (see Theorem 3.5 in [1]) that does not require 
dynamic trees. We also use an altered version of HyperFlowEm-

bed that returns a bipartite graph �� that can be embedded with 
congestion 1/� as well as a set � that has �-expansion equal to � , 
rather than just a set � with �H(�, �) < 2� . This improves the ap-
proximation by a factor of 2, which does not change the theoretical 
� (log �) approximation but can make a substantial diference in 
practice. See the appendix for details. 

Finally, we establish sharper lower bounds on the approximation 
guarantee satisfed by the algorithm in each iteration. This allows 
us to obtain improved a posteriori approximation guarantees in 
practice. For node weight function � , let D� be the diagonal matrix 

where D� (�, �) = � (�) and defne L� = D� 
−1/2L� D

−1/2
. Let �2 (L� )� 

be the 2nd smallest eigenvalue of this matrix. The following theo-

rem presents a precise and easy-to-compute lower bound on the 
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Table 1: HCM results on 4 larger hypergraphs. 

� � avg |� | Approx. Run. (s) 

Amazon9 13138 31502 8.1 2.78 ±0.012 254.8 ±10.4 
Mathoverf 73851 5446 24.2 3.08 ±0.014 643.8 ±31.1 
Tripadvisor 8929 130568 4.1 2.71 ±0.025 699.3 ±29.8 
Trivago 172738 233202 3.1 2.78 ±0.038 2372.6 ±50.8 

approximation factor achieved by our approximation algorithm 
at each iteration. For this result we use the updated version of 
HyperFlowEmbed that returns a set � with �H(�, �) = � . 

Theorem 5.3. After � iterations, Algorithm 2 returns a set �∗ � 
2�� �H (�� ∗ ) 2� 

satisfying �H(�� ∗, �) ≤ �� �H,� , where �� = 
�2 (L� ) ≤ 

�2 (L� )Í� 1
and �� = .�=1 �� 

This theorem suggests another alternative for the cut player 
strategy: choose a partition {�, � ̄} by thresholding entries in the 
second smallest eigenvector of L� . Embedding a �-regular bipartite 
graph across this partition increases the value of �2 (L� ) in subse-

quent iterations. There exist extreme cases where greedily choosing 
a bipartition based on this eigenvector makes slow progress (see 
discussion on page 35 of [34]). However, this tends to produce good 
results in practice, and we can use Theorem 5.3 to compute concrete 
lower bounds on �-expansion using this strategy. 

6 EXPERIMENTS 
We implement our hypergraph cut matching algorithm (HCM) 
in Julia using all of the practical improvements from Section 5.3. 
We compare it against other hypergraph ratio-cut algorithms in 
minimizing global ratio cut objectives on various hypergraphs en-

coding common types of higher-order multiway interactions on 
the web. All experiments were run on an Macbook Air with an 
Apple M1 Chip and 16GB of RAM. Code and data are provided 
at https://github.com/nveldt/HyperCutMatch. The full version of 
the paper contains additional details and experiments [42]. 

Web-based hypergraphs. Trivago encodes sets of vacation 
rentals on Trivago.com that are visited during a browsing ses-
sion [10]. Mathoverfow encodes sets of mathoverflow.com posts 
that are answered by the same user [43]. Amazon9 encodes sets of 
retail products (from 9 product categories of a larger dataset [33]) 
that are reviewed by the same user. TripAdvisor encodes sets of 
co-reviewed Tripadvisor.com accommodations [46]. 

6.1 Comparison against convex relaxations 
Our method is orders of magnitude more scalable than previous 
theoretical approximation algorithms for hypergraph ratio cuts 
and also applies to a much broader class of problems. We compare√ 
against the � ( log �) approximation based on semidefnite pro-
gramming [31] (SDP) and the � (log �)-approximation algorithm 
(LP) based on rounding a linear programming relaxation [20]. We 
focus on the expansion objective (� (�) = 1 for all �) with the stan-

dard hypergraph cut function, since these methods do not apply 
to generalized hypergraph cuts. We solve the SDP relaxation with 
Mosek software, using CVX [15] in Matlab as a front end. We use 
Gurobi software with Julia as a front end to solve the LP relaxation. 
We select a range of small Mathoverfow and Trivago hypergraphs 

(a) Mathoverfow approximation (b) Trivago approximation 

(c) Mathoverfow runtime (d) Trivago runtime 

Figure 3: Results for three approximation algorithms on 
small hypergraphs. LP and SDP do not scale and often 
fail even for these small hypergraphs. HCM-1 uses 10 log

2 � 
rounds of cut-matching, and HCM-2 uses 30 log

2 � rounds. 

(subhypergraphs of the hypergraphs in Table 1) to use as bench-

marks. We chose 23 Mathoverfow hypergraphs, each corresponding 
to a set of posts (nodes) with a certain topic tag (e.g., graph-theory). 
These hypergraphs have between � = 80 and � = 209 nodes. The 
number of hyperedges � tends to be between �/3 and �/2 for these 
hypergraphs, and the average hyperedge size ranges from 3 to 7. 
We also consider 41 Trivago hypergraphs (each corresponding to a 
diferent city tag, e.g., Austin, USA), most of which have between 1-3 
times as many hyperedges as nodes, and all of which have average 
hyperedge sizes between 2 and 4. 

Figure 3 reports results for LP, SDP, and our method HCM, all 
of which compute an explicit lower bound on the optimal expan-

sion which can be used to compute an a posteriori approximation 
guarantee. We run HCM with two diferent iteration numbers to 
illustrate the tradeof between runtime and approximation guar-

antee. When SDP and LP converge, they produce very good lower 
bounds for hypergraph expansion and can be rounded to produce 
very good a posteriori approximation guarantees. The issue is that 
these methods do not scale well even to very small instances. We 
are able to obtain results for all Mathoverfow datasets using LP, 
but the method times out (> 30 minutes) on all but 19 of the 41 
Trivago hypergraphs. The SDP method is even less scalable and 
would not converge for almost any of the small hypergraphs if we 
set a 30-minute time limit. It took 4.5 hours to run this method for a 
141-node Mathoverfow hypergraph. Given scalability issues, we did 
not attempt to use this method on larger datasets. Meanwhile, HCM 
obtains high quality solutions extremely quickly, typically within a 
matter of a few seconds. Table 1 lists additional results (averages 
and standard deviations over 5 runs) for 5 log

2 � iterations of HCM 
on four larger hypergraphs, which are far too large for LP and SDP. 
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Figure 4: Top row: approximations obtained by comparing the best conductance set found by each method against the conduc-
tance lower bound computed by HCM. Bottom row: runtimes in seconds. The runtimes for IPM and CE do not include the time 
it takes to compute the HCM lower bound. We plot mean over 5 runs of HCM; shaded region indicates standard deviation. 

6.2 Trivago hypergraphs and generalized cuts 
One distinct advantage of HCM is that it computes explicit lower 
bounds on hypergraph �-expansion (via Theorem 5.3) that can be 
used to check a posteriori approximation guarantees in practice. 
To illustrate the power of this feature, we compare HCM against 
the inverse power method for submodular hypergraphs (IPM) [27] 
and the clique expansion method for inhomogeneous hypergraphs 
(CE) [26]. These methods constitute the current state-of-the-art in 
minimizing ratio cuts in hypergraphs with generalized cut functions. 
IPM is a generalization of a previous method that applied only to 
the standard hypergraph cut [16]. CE generalizes previous clique 
expansion techniques [6, 52], which only applied to more restrictive 
hypergraph cut functions. Both methods are more practical than 
LP and SDP and apply to generalized hypergraph cuts, but they 
have weaker theoretical guarantees. IPM is a heuristic with no 
approximation guarantees, while the approximation guarantee for 
CE scales poorly with the maximum hyperedge size, and can be 
� (�) in the worst case even for graphs. The performance of IPM 
depends heavily on which vector it is given as a warm start. We 
tried several options and found that the best results were obtained 
by using the eigenvector computed by CE as a warm start. 

Figure 4 displays runtimes and a posteriori approximation guar-

antees for HCM, IPM, and CE on four Trivago hypergraphs, cor-
responding to vacation rentals in Australia, United Kingdom, Ger-

many, and Japan. We specifcally consider the 2-core of each hy-

pergraph, as these 2-cores have more interesting and varied cut 
structure and therefore serve as better case studies for comparing 
algorithms for generalized hypergraph ratio cuts. For these exper-

iments we are minimizing the conductance objective (� (�) = �� ), 
and we use a generalized hypergraph cut function that applies a 
�-linear splitting function w� (�) = min{|� ∩� |, |� ¯∩� |, �} at each hy-

peredge. We choose this splitting function as previous research has 

shown that the choice of � can signifcantly afect the size and struc-

ture of the output set and infuence performance in downstream 
clustering applications [28, 43, 44]. The four Trivago hypergraphs 
exhibit a range of diferent cuts that are found by varying � , and 
therefore provide a good case study for how well these algorithms 
fnd diferent types of ratio cuts for generalized splitting functions. 

In terms of fnding small conductance sets, HCM trades of in 
performance with IPM, though they return very similar results. 
However, HCM is signifcantly faster, and unlike IPM it is addition-

ally computing lower bounds that allow it to certify how close its 
solution is to optimality. In Figure 4, we are in fact using the HCM 
lower bound to obtain a posteriori approximations for IPM and CE. 
These methods are unable to provide such strong approximation 
guarantees on their own. Hence, even in cases where IPM fnds 
better conductance sets, the lower bounds computed by HCM pro-
vide new information that can be used to prove an approximation 
guarantee. Since the performance of IPM also relies on using CE as 
a warm start, we see that in many ways it is a combination of all 
three algorithms that leads to the best results. 

7 DISCUSSION 
We have presented the frst algorithm for minimizing hypergraph 
ratio cuts that simultaneously (1) has an � (log �) approximation 
guarantee, (2) applies to generalized hypergraph cut functions, and 
(3) comes with a practical implementation. This algorithm is very 
successful at fnding ratio cuts within a small factor (around 2-3) of 
a lower bound on the optimal solution. One open question is to ex-
plore how to choose the best generalized hypergraph cut functions 
to use in diferent applications of interest. Another open direction 
is fnding improved approximation algorithms for hypergraph ratio 
cuts that apply to general submodular splitting functions, even 
those that are not cardinality-based. 
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A PROOFS 
Proof of Lemma 3.1. Let � ⊆ � be an arbitrary set of nodes 
satisfying � (�) ≤ � (� ̄). For each pair (�, �) ∈ D(�) there is a fow 
� (�� ) 

over edges in �� with fow value �� (�, �), and these fows 
can simultaneously be routed in �� with congestion � . All of these 
fows must pass through the cut edges in �� , since each such pair 
(�, �) crosses the bipartition {�, � ̄}. Thus, we have ∑ ∑ ∑ (�� )cut� (�) = �� (�, �) ≤ �

� � 
(�,� ) ∈D(� ) (�,� ) ∈D(� ) (�, � ) ∈�� � ∑ 

≤ � �� (�, �) = �cut� (�). 
(�, � ) ∈�� � 

1
Therefore, �� (�) = cut 

� 
� 
(�
(
) 
� ) ≥ � 

1 cut 
� 
� 
(�
(
) 
� ) 

= � �� (�). 

Proof of Lemma 3.2. Let � ⊆ � be an arbitrary set of nodes 
satisfying � (�) ≤ � (� ̄). Defne �̂  = � ∪� where � ⊆ A is chosen in 
such a way that cutH(�) = cut� (H) (�ˆ). Recall that D(�) denotes 
the set of pairs (�, �) where {�, � } ∈ �� with � ∈ � and � ∈ � − � . 
Since � is embedded in � (H) with congestion � , for each pair 
(�, �) ∈ D(�) we have routed �� (�, �) fow from � to � . Summing 
up all of the fows crossing the cut gives: ∑ ∑ 

cut� (�) = �� (�, �) ≤ � �� (H) (�, �)
(�,�) ∈D(� ) (�, � ) ∈�� (H) �̂  

= �cut� (H) (�ˆ) = �cutH(�). 

cutH (� ) ≥ 1 cut� (� ) 1
And so we have �H(�) = 

� (� ) � � (� ) = � �� (�). 

Proof of Lemma 4.1. The minimum �-� cut set in � (H , �, �) is 
some set of nodes {�} ∪ � ∪A� where � ⊆ � is a set of nodes from 
the original hypergraph H and A� is a subset of the auxiliary nodes 
from the cut preserver � (H), designed so that the cut function in 
� (H) matches the cut function in H . If the minimum �-� cut value 
in � (H , �, �) is less than � (�), this means that for the set � : 

1 
cutH(�) + � (� ∩ � ¯) + �� (� ¯ ∩ �) < � (�)

� 
=⇒ cutH(�) + �� (� ∩ � ¯) + ��� (� ¯ ∩ �) < �� (�) 
=⇒ cutH(�) < �� (� ∩ �) − ��� (� ¯ ∩ �)

cutH(�)
=⇒ < �. 

� (� ∩ �) − �� (� ̄ ∩ �) 

The result will hold as long as we can show that min{� (�), � (� ̄)} ≥ 
� (� ∩ �) − �� (� ¯ ∩ �). First note that � (�) ≥ � (� ∩ �) ≥ � (� ∩ �) − 
�� (� ̄ ∩ �). Additionally, we have 

� (� ∩ �) − �� (� ̄ ∩ �) = � (� ∩ �) + �� (� ̄ ∩ � ̄) − �� (� ̄) 
= �� (� ̄ ∩ � ̄) − � (� ∩ � ̄) ≤ � (� ̄) . Í (��)Proof of Lemma 4.2. Let �� = (�,�) ∈�×� ¯ �� be the directed 

multicommodity fow in � (H) obtained from the maximum �-� 
fow � in � (H , �, �). In other words, for each pair for � ∈ � and 

(��) (�� )
¯ � ∈ �, � is a �-� fow function that sends |� | = M� (�, �)� � 

fow from � to � . Each � ∈ � will be a defcit node, and each � ∈ � ̄ 

will be an excess node for this multicommodity fow function. 

Figure 5: Every directed path in the reduced graph � (H) 
between two nodes in � alternates between nodes in � and 
pairs of auxiliary nodes {� ′ , � ′′ } from diferent CB-gadgets. If 

� � 
the original fow function sends fow from �0 to �� , replacing 
the fow along blue solid edges with fow along the dashed 
gray edges reverses the fow direction. Reversing fow paths 
in this way will not increase congestion. 

We can assume without loss of generality that � is cycle-free, 
which implies that �� is also cycle-free. Let � ⊆ � be an arbi-
trary set; our goal is to edit �� to turn it into a fow functionÍ (��)
�� = (�,�) ∈� ×� ¯ �� that routes M� (�, �) fow from � to � when-

ever � ∈ � , � ∈ � , and {�, �} is an edge in �� . In particular, this¯ 

means we need to fnd a way to reverse the fow direction for any 
pair (�, �) ∈ (� ∩ � ¯) × (� ¯ ∩ �), since for this type of pair �� sends 
fow from � to � rather than from � to � . 

We will frst consider what it means to reverse fow on a single 
directed fow path. Consider an arbitrary edge {�, �} in �� such 
that � ∈ � ∩ � ¯ and � ∈ � ∩ �. The original multicommodity fow ¯ 

(�� )
function �� includes a fow function � that sends M� (�, �)� 
units of fow from � to �. By Lemma 2.1, this can be decomposed as 
(�� ) Í� (�� )

� = =1 � , where each �� is a directed fow path from � to
� � � 
�. By the construction of � (H), this fow path will travel through 
nodes and edges in a sequence of CB-gadgets corresponding to 
a sequence of hyperedges {�1, �2, . . . , �� } ⊆ E in the hypergraph 
H = (� , E). For the �th hyperedge �� in this sequence and the 
corresponding �th CB-gadget, let � ′ be the frst auxiliary node in 

� 
the gadget for this hyperedge, and � ′′ be the second. Recall that 

� 
there is an edge (� ′ , � ′′ ), and for each node � ∈ �� there is a directed 

� � ′′ 
edge (�, � ′) and a directed edge (� , �) (see Figure 1). A simple 

� � 
(�� )

directed fow path � from � = �0 to � = ��+1 is therefore is a 
� 

sequence of the form: 

� = �0 → (�
1 
′ → �

1 
′′ ) → �1 → (�

2 
′ → �

2 
′′ ) → �2 → · · · 

′′ · · · → �� −1 → (� ′ → � ) → �� = �, 
(15) 

� � 

where �� ∈ � for each � ∈ {0, 1, . . . , �}, and where the same amount 
of fow is sent along each edge. By the construction of every CB-

gadget, there is a path in the opposite direction with the same exact 
set of edge weights: 

′ � = �� → (� → � ′′ ) → �� −1 → · · · 
� � 

· · · → �2 → (�
2 
′ → �

2 
′′ ) → �1 → (�

1 
′ → �

1 
′′ ) → �0 = � . 

(16) 

Recall that �� is cycle-free. This means that no fow is sent along 
edges of the form (�� , � ′) for � ∈ {1, 2, . . . , �}, because �� contains a 

� 
(�� )

fow path � with positive fow on the edges (� ′ , � ′′ ) and (� ′′ , �� ).� � � � 
(�� )

Therefore, we can replace the fow path � in (15) with the fow 
� 

(�� )
path �ˆ defned on the edges in (16), with the same fow value 

� 
(�� )

as � but traveling in the opposite direction. Figure 5 illustrates 
� 

this fow reversal process for a single fow path. 
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We construct a new multicommodity fow function �� by simulta-

neously applying this fow reversal process to every fow path in �� 
that goes in the wrong direction. Formally, if ��� denotes the set of 
simple directed fow paths from � to � in �� (obtained from a fow de-Í Í (�� )
composition as in Lemma 2.1), then �� = (�,� ) ∈�×� ¯ � ∈��� 

�
� , 

and we defne: ∑ ∑ (�� ) (�� )
�� = �� + �ˆ − � .

� � 
(�,� ) ∈ (� ¯∩�)×(�∩� ¯) � ∈��� 

In other words, for every (�, �) ∈ (� ∩ � ̄) × (� ̄ ∩ �) and every 
(�� ) (�� ) (�� )

directed fow path � from � to � in �� , replace � with �ˆ .
� � � 

It remains to prove that �� has congestion at most 1/� . We prove 
this by considering diferent types of edges (�, � ′), (� ′′ , �), and 
(� ′ , � ′′ ), where � ∈ � , and where {� ′ , � ′′ } are the two auxiliary 
nodes from a CB-gadget for some hyperedge � ∈ E. Observe frst 
of all that this fow reversal procedure never changes the fow on 
edge (� ′ , � ′′ ), so the congestion remains the same on edges that 
go between auxiliary nodes. The other two edges (�, � ′) or (� ′′ , �)
have the same weight, and because �� is cycle free, at most one 
of these edges has a positive amount of fow in �� . If (�, � ′) has 
a positive amount of fow in �� , then (� ′′ , �) has no fow in �� . If 
the fow reversal process changes anything, it will take some of 
the fow through (�, � ′) and transfer it to (� ′′ , �). In this case, the 
congestion on edge (�, � ′) cannot be worse because we are only re-
moving fow. Meanwhile, the edge (� ′′ , �) started with no fow and 
then received some of the fow from (�, � ′). After the fow transfer 
process, the congestion on (� ′′ , �) will not exceed 1/� since it has 
the same weight as edge (�, � ′) and the congestion on (�, � ′) was 
at most 1/� . We can provide an analogous argument in the case 
where (� ′′ , �) has a positive fow in �� but (�, � ′) does not. Thus, 
this fow reversal process does not make the congestion worse. 

Proof of Theorem 4.3. In each iteration the algorithm computes 
a maximum �-� fow in � (H , �, �). By Lemma 4.2, if the fow value 
is � (�) then we can return a �-regular bipartite graph �� that can 
be embedded with congestion 1/� . Otherwise, Lemma 4.1 guaran-

tees that the minimum �-� cut set has expansion less than � . The 
algorithm is guaranteed to return a bipartite graph on the frst 
iteration, because it is impossible to fnd a set with �-expansion 
less than the minimum value 2/� (� ). If the algorithm fnds a set 
� with �H(�, �) < � and then terminates, this means that in the 
previous iteration it found a bipartite graph �� that can be em-

bedded with congestion �/2. For every � > � |E |, fnding a max-

imum �-� fow in � (H , �, �) is guaranteed to return a cut set � 
with �H(�, �) < � . This is because cutH(�) ≤ � |E |, so the node 
set {� ∪ �} is an �-� cut set in the auxiliary graph with cut value 
cutH(�)/� ≤ � |E |/� < 1 ≤ � (�). Since HyperCutOrEmbed 
starts at � = 2/� (� ) and doubles � at every iteration, it will take 
at most � (log� |E |� (� )) iterations before returning a cut set. 

B RUNTIME ANALYSIS 
To provide a runtime analysis for Algorithm 2, assume the hyper-

graph is connected and that all hyperedge weights are scaled to 
be integers. Let � = |� |, � = |� |, and � = 

Í 
� ∈E |� |. In order to 

focus on the main terms in the runtime, will use �̃ notation to hide 
logarithmic factors of � and �. For our analysis we also assume 
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that the maximum edge penalty � and sum of node weights are 
small enough that � (log� ) and � (log � (� )) are both �̃ (1), and 
hence the maximum number of iterations of HyperCutOrEmbed 
is �̃ (1). When choosing a node weight function corresponding to 
conductance we have log � (� ) = � (log��), and choosing the � 
corresponding to standard expansion we have log � (� ) = log �. 

In order to speed up the runtime for Algorithm 2, we can apply 
existing sparsifcation techniques for hypergraph-to-graph reduc-

tion [44]. This allows us to model the generalized cut function of 
H to within a factor of (1 + �) for a small constant � > 0 with an 
augmented graph � (H) with � = � (� + 

Í 
� ∈E log |� |) = � (� + �)˜Í

nodes and � = � ( � ∈E |� | log |� |) = �̃ (�) edges. Constructing 
this graph takes � (�) time. For � > 0, the graph � (H , �, �) also 
has � (� ) nodes and � (�) edges. 

The fow decomposition step in HyperCutOrEmbed can be 
accomplished in � (� log � ) = � (�) time using dynamic trees [39];˜ 

note that for this step we do not need to explicitly return the entire 
fow decomposition but simply must identify the endpoints in each 
directed path for the bipartite graph we are embedding. Lemma 5.1 
indicates that the total time spent on the cut player strategy will be
˜� ( |��� ) |), which is bounded above by �˜ (�). To see why, observe 
that the number of edges added to the bipartite graph constructed 
by FlowEmbed will be bounded above by the number of diferent 
directed fow paths, which by Lemma 2.1 is bounded above by 
� (�) = � (�). Combining the edges from all � (log2 �) bipartite

˜graphs shows �˜ ( |��� |) = � (�). 
The overall runtime of our algorithm is dominated by the time 

it takes to solve a maximum �-� fow in � (H , �, �). This overall 
runtime is �˜ (� + (� + �)3/2) if using the algorithm of van den 
Brand et al. [41]. The recent algorithm of Chen et al. [8] brings the 
runtime down to �˜ (�1+� (1) ), nearly linear in terms of the hyper-

graph size �. For comparison, the existing LP relaxation [20] and 
SDP relaxation [31], which only apply to all-or-nothing hypergraphÍ
cuts, both involve Ω(�2 +�) variables and Ω(�3 + � ∈� |� |2) linear 
constraints. When written in the form minAx=b c� x, the LP has Í 
Ω(�3 + � ∈� |� |2) constraints and variables. Even recent break-
through theoretical results in LP solvers [12, 19] lead to runtimes 
signifcantly worse than Ω(�6 + �3 Í 

� |� |2 + �2). 

C PRACTICAL IMPROVEMENTS 
In practice we use a slightly altered version of the HyperFlowEm-

bed procedure that returns a bipartite graph �� that can be embed-

ded with congestion 1/� and a set � that has �-expansion equal to 
� , rather than just a set � with �H(�, �) < 2� . To accomplish this, 
we set � = �H(�, � ) in the frst iteration and solve a maximum �-� 
fow problem on � (H , �, �) to search for a set � with �-expansion 
better than �H(�, �). In each iteration, we update � to equal the 
�-expansion of the improved set found in the previous iteration, 
until no more improvement is found. This iterative refnement ap-
proach is standard and typically used in practice by related ratio 
cut improvement algorithms [35, 43, 47]. Although performing a 
bisection method over � leads to better theoretical runtimes, in 
practice it typically takes only a few iterations of cut improvement 
before the iterative refnement procedure converges. Thus, this is 
often faster in practice in addition to improving the approximation 
guarantee by a factor 2. 
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