
Cut-matching Games for Generalized Hypergraph Ratio Cuts
Nate Veldt

nveldt@tamu.edu
Texas A&M University

College Station, Texas, USA

ABSTRACT
Many social networks and web-based datasets are characterized by
multiway interactions (e.g., groups of co-purchased online retail
products or group conversations in Q&A forums) and hypergraph
clustering is a fundamental primitive for analyzing these types
of interactions. We present an � (log �)-approximation algorithm
for a broad class of hypergraph ratio cut objectives. This includes
objectives involving generalized hypergraph cut functions, which
allow a user to penalize cut hyperedges diferently depending on
the number of nodes in each cluster. Our method generalizes the
cut-matching framework for graph ratio cuts, and relies only on
solving maximum s-t fow problems in a special reduced graph. It is
signifcantly faster than existing hypergraph ratio cut algorithms,
while also solving a more general problem. In numerical experi-

ments on various web-based hypergraphs, we show that it quickly
fnds ratio cut solutions within a small factor of optimality.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; Approxi-
mation algorithms; Hypergraphs.

KEYWORDS
hypergraphs, clustering, ratio cuts, cut-matching games

ACM Reference Format:
Nate Veldt. 2023. Cut-matching Games for Generalized Hypergraph Ratio
Cuts. In Proceedings of the ACM Web Conference 2023 (WWW ’23), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583539

1 INTRODUCTION
Graphs are a popular way to model social networks and web-based
datasets, but there has been a growing realization that many com-

plex systems of interactions on the web are characterized by mul-

tiway relationships that cannot be directly encoded using graph
edges. For example, users on social media join interest groups and
participate in group events, online shoppers purchase multiple
products at once, discussions in Q&A forums typically involve mul-

tiple participants, and email communication often involves multiple
receivers. These higher-order interactions can be modeled by a hy-
pergraph: a set of nodes that share multiway relationships called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583539

hyperedges. A standard primitive for analyzing group interaction
data is to perform clustering, i.e., identifying groups of related nodes
in a hypergraph. This is a direct generalization of the well-studied
graph clustering problem. Hypergraph clustering methods have
already been used to address numerous web-based data analysis
tasks, such as detecting diferent types of Amazon products based
on groups of co-reviewed products [43], identifying related vacation
rentals on Trivago from user browsing behavior [10], clustering
restaurants based on Yelp reviews [28], and fnding related posts in
online Q&A forums from group discussion data [44].

A “good” cluster in a (hyper)graph is a set of nodes with many
internal (hyper)edges, but few (hyper)edges connecting diferent
clusters. One of the most standard ways to formalize this goal is to
minimize a ratio cut objective, which measures the ratio between
the cluster’s cut and some notion of the cluster’s size. In the graph
setting, the cut simply counts the number of edges across the cluster
boundary. The standard hypergraph cut function similarly counts
the number of hyperedges on the boundary. However, unlike the
graph setting, there is more than one way to partition a hyperedge
across two clusters. This has led to the notion of a generalized hy-

pergraph cut function, which assigns diferent penalties to diferent
ways of splitting a hyperedge. The performance of downstream
hypergraph clustering applications can strongly depend on the type
of generalized cut penalty that is used [13, 26–28, 43–45].

Previous work and limitations. Common ratio cut objectives
include conductance and expansion, which have been defned both
for graphs and hypergraphs (see Section 2). These are NP-hard
even in the graph case, but can be approximated using spectral
methods, which often come with so-called Cheeger inequality guar-

antees [11], or by using various types of multicommodity-fow and
expander embedding methods [5, 21, 24, 36]. Several techniques
for approximating graph ratio cuts have already been extended to
hypergraphs, but there are many new challenges in this setting.
First of all, many hypergraph Laplacian operators are nonlinear,
which leads to additional challenges in computing or approximating
eigenvectors to use for clustering [7, 27, 30, 51]. Secondly, there are
many challenges associated with obtaining guarantees for general-

ized hypergraph cut functions, which can be much more general
than graph cut functions. For these and other reasons, there is
currently a wide gap between theoretical algorithms and practical
techniques for minimizing hypergraph ratio cut objectives. The best
approximation algorithms rely on expensive convex relaxations
(e.g., memory intensive relaxations with � (�3) constraints [20, 31])
and complicated rounding techniques that are not implemented
in practice [7, 20, 27, 31, 51]. Another downside specifcally for
spectral and random-walk based techniques [6, 7, 25–27, 40, 51] is
that their Cheeger-like approximation guarantees are � (�) even
in the graph setting. In the hypergraph setting, their approxima-

tion factors also often get worse as the maximum hyperedge size

694

https://doi.org/10.1145/3543507.3583539
https://doi.org/10.1145/3543507.3583539
mailto:permissions@acm.org
mailto:nveldt@tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583539&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA N. Veldt

grows [6, 7, 26]. A limitation in another direction is that many
existing hypergraph ratio cut algorithms are designed only for
the simplest notion of a hypergraph cut function rather than gen-

eralized cuts [6, 7, 20, 31, 40, 52]. Finally, although a number of
recent techniques apply to generalized hypergraph cut functions
and come with practical implementations, these do not provide
theoretical guarantees for global ratio cuts because they are either
heuristics [27] or because they focus on localized objectives that are
biased to a specifc region of a large hypergraph [13, 17, 28, 43, 44].

The present work: practical approximation algorithms. We
present the frst algorithm for hypergraph ratio cuts that simul-

taneously (a) comes with a nontrivial approximation guarantee
(i.e., better than � (�)) and (b) applies to generalized hypergraph
cuts. Additionally, compared with approximation algorithms that
apply only to the standard hypergraph cut function, our method
comes with a substantially faster runtime guarantee and a practi-
cal implementation. In more detail, our algorithm has an � (log �)
approximation guarantee and applies to any cardinality-based sub-

modular hypergraph cut function, which is a general cut function
that captures many popular hypergraph cut functions as special
cases [45]. It relies only on solving a sequence of maximum �-� fow
problems in a special type of reduced graph, which can be made
efcient using an of-the-shelf max-fow subroutine.

Our method generalizes the cut-matching framework for graph
ratio cuts [21, 36], which alternates between solving max-fows and
fnding bisections in order to embed an expander into the graph.
Although maximum fow problems and expander embeddings are
well-understood in the graph setting, these concepts are more nu-

anced and not as well understood in hypergraphs, especially in the
case of generalized hypergraph cuts. We overcome these technical
challenges by providing a new approach for embedding an expander
graph inside a hypergraph, which is accomplished by solving maxi-

mum fow problems in an reduced directed graph that models the
generalized cut properties of the hypergraph. To summarize:

• We present a new framework for embedding expander graphs
into hypergraphs in order to obtain lower bounds for NP-hard
hypergraph ratio cut objectives (Lemma 3.2).

• We present an � (log �)-approximation algorithm that applies to
any hypergraph ratio cut objective with a submodular cardinality-

based cut function and any positive node weight function, and
relies simply on solving a sequence of graph max-fow problems.

• We provide additional practical techniques for making our method
more efcient in practice and for obtaining improved lower
bounds and a posteriori approximation guarantees (Theorem 5.3).

• We implement our method and show that it is orders of magni-

tude more scalable than previous approximation algorithms and
allows us to detect high quality ratio cuts in large hypergraphs
arising in various types of web-based data analysis tasks.

An extended version of the paper is available online [42].

2 PRELIMINARIES AND RELATED WORK
Let � = (� , �) denote a graph with � = |� | nodes, and an edge set
�. We denote edges in undirected graphs using bracket notation
� = {�, �} ∈ �; an edge may additionally be associated with a
nonnegative edge weight �� (�) = �� (�, �) ≥ 0. Given a subset of

nodes � ⊆ � , let � ̄ = � \� . The boundary of � is

�� (�) = �� (� ̄) = {� ∈ � : |� ∩ � | = 1 and |� ∩ � ̄| = 1}. (1)

This is the set of edges with one endpoint in � and the other end-

point in � ̄. The cut of � is the weight of edges on the boundary:Í
cut� (�) = cut� (� ̄) = � ∈�� (�) �� (�) . (2)

Given a positive node weight function � : � → R>0, the ratio cut
objective with respect to � for a set � is denoted by �

�� (�, �) = cut� (�) min{� (�), � (� ̄)}, (3)

where � (�) =
Í
� ∈� � (�). This captures the well-known special

case of conductance (when � (�) equals node degree ��), and expan-
sion (when � (�) = 1). We will refer to �� (�, �) as the �-expansion
of � . The �-expansion of a graph � is then

��,� = min �� (�, �) . (4)

� ⊂�

We may drop � and � from subscripts when clear from context. For
a given node weight function � , a graph � = (� , �) is a �-expander
if there exists a constant � > 0 such that for every � ⊆ � , � (�) > � .

Directed graphs. Many of our results apply to directed graphs.
In this case, we will use parenthesis notation to denote edge direc-
tions, i.e. (�, �) ∈ � indicates an edge from node � to node � . For a
set � ⊆ � the directed cut function is Í

cut� (�) = (�,�) ∈� : � ∈�,� ∈� ̄ �� (�, �) .

Expansion in a directed graph is defned by using a directed cut
function in (3). We can treat an undirected graph � as a directed
graph by replacing each undirected edge with two directed edges,
in which case the two notions of �-expansion match.

2.1 Graph fows
A fow function � : � → R≥0 on a directed graph � = (� , �) assigns
a nonnegative fow value �� � ≥ 0 to each edge (�, �) ∈ �. If �� � ≤
�� (�, �) for each (�, �) ∈ �, then � satisfes capacity constraints. In
general, the congestion of � is the maximum capacity violation:

congestion(�) = max �� � /�� (�, �) . (5)
(�, �) ∈�

We say that � satisfes fow constraints at a node � ∈ � if the fow
into � equals the fow out of � : Í

� : (�,�) ∈� ��� =
Í

� : (�,�) ∈� �� � . (6)

If the fow into � is greater than the fow out of � then � is an ex-
cess node. If the fow out of � is more than the fow into � then
� is a defcit node. Given two fow functions � (1) and � (2) , the
sum � ′ = � (1) + � (2) is the fow obtaining by defning � ′ =

� �
(1) (2)

� + � for each (�, �) ∈ �. This fow satisfes congestion(� ′) ≤
� � � �

congestion(� (1)) + congestion(� (2)). If � (1) and � (2) both sat-
isfy fow constraints at a node � , then � ′ will as well. We will
consider two special types of fows, and make use of a standard
fow decomposition result (Lemma 2.1).

Definition 2.1 (�-� flow). Given {�, � } ⊆ � , an �-� fow on � is
a fow that satisfes fow constraints on each � ∈ � − {�, � }. We say
that � routes fow from � to � , and has a fow value

|� | =
Í
� : (�,�) ∈� ��� −

Í
� : (�,�) ∈� ��� . (7)

695

Cut-matching Games for Generalized Hypergraph Ratio Cuts WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Definition 2.2 (multicommodity flow). A multicommodity
fow problem in � is defned by a set D of demand pairs (�, �) ∈ � ×�
and corresponding weights ��� ≥ 0. The fow � is a feasible multi-

commodity fow for D if it can be written as � =
Í
(�,�) ∈D �

(��)

where � (��)
is a �-� fow that routes ��� units of fow from � to � .

Lemma 2.1. (Theorem 3.5 in [1] or Lemma 2.20 in [49].) Let � be
a fow function on a graph � = (� , �) with � nodes and � edges. Íℓ
The fow can be decomposed as � = �=1 �� where ℓ ≤ � + �, and
where for each � , the edges with positive fow in �� either form a simple
directed path from a defcit node to an excess node or form a cycle.

2.2 General hypergraphs cuts and expansion
A hypergraph H = (� , E) is a generalization of a graph where �
denotes a node set and E is a hyperedge set where each � ∈ E is
a subset of nodes in � of arbitrary size. The degree of a node � is
denoted by �� . The boundary of � ⊆ � is denoted by

�H(�) = �H(� ¯) = {� ∈ E : |� ∩ � | > 0 and |� ∩ � ¯| > 0}. (8)

If each hyperedge � ∈ E has a nonnegative scalar weight � H(�),
the standard all-or-nothing hypergraph cut function is given by

cutH(�) =
Í
� ∈�H (�) � H(�). (9)

It is useful in many settings to assign diferent cut penalties for
separating the nodes of a hyperedge in diferent ways. This has
led to the concept of generalized hypergraph cut functions [13, 26–
28, 43–45, 51, 53]. Formally, each hyperedge � ∈ E is associated
with a splitting function w� : � ⊆ � → R that assigns a penalty for
each way of separating the nodes of a hyperedge. The generalized
hypergraph cut is then given by

cutH(�) =
Í
� ∈�H (�) w� (� ∩ �). (10)

Following recent work [27, 43–45], we focus on cardinality-based
submodular hypergraph cut function, which means all splitting func-

tions satisfying the following properties for all �, � ⊆ � :

(nonnegative) w� (�) ≥ 0; (uncut-ignoring) w� (∅) = 0

(symmetric) w� (�) = w(�\�)
(submodular) w� (�) + w� (�) ≥ w� (� ∩ �) + w� (� ∪ �)

(cardinality-based) w� (�) = w� (�) if |�| = |� |.

Our objective: generalized hypergraph cut expansion. Given
a hypergraph H = (� , E) with a cardinality-based submodular hy-

pergraph cut function cutH and node weight function � : � →
R>0, the hypergraph �-expansion of a set � ⊆ � is defned to be

cutH(�)
�H(�, �) = . (11)

min{� (�), � (� ¯)}
The minimum value of this objective over all � is denoted by �H,� .
Our focus is to develop an approximation algorithm for �H,� .

2.3 Related work
Expansion (� (�) = 1) and conductance (� (�) = ��) are two of the
most widely-studied graph ratio cut objectives. For many years,
the best approximation for graph expansion and conductance was
� (log �), based on solving a multicommodity fow problem [24]
that can also be viewed as a linear programming relaxation. The

√
current best approximation factor is � (log �), based on a semi-

defnite programming relaxation [5]. Khandekar et al. [21] later
introduced the cut-matching framework, providing an � (log2 �) ap-
proximation based on faster maximum �-� fow computations, rather
than multicommodity fows. The same framework was later used
to design improved � (log �)-approximation algorithms [34, 36].

Many variants of the hypergraph ratio-cut objective (11) have
been considered [26–28, 30, 45, 51, 52], for diferent cut functions
and node weight functions � . A number of Cheeger-style approxi-
mation guarantees have been developed for these objectives based
on eigendecompositions of nonlinear hypergraph Laplacians [7,
27, 51] or PageRank-based methods [25, 40], but their worst-case
approximation factors are never better than � (�). Other techniques
rely on clique expansions of hypergraphs [6, 26, 52], which also have
poor worst case approximation factors that also scale poorly with
the maximum hyperedge size. The � (log �) multicommodity fow √
algorithm [24] and the SDP-based � (log �) approximation for ex-
pansion [5] have been generalized to the hypergraph setting [20, 31].
However, these only apply to the standard all-or-nothing hyper-

graph cut function (9). They are also more restrictive in terms of
node weights. We consider a general nonnegative node weight func-

tion � , while these previous methods focus on either expansion
node weights (� (�) = 1) [31] or conductance node weights (� (�) =
��) [20]. There are also numerous results on minimizing locally-
biased ratio cut objectives in graphs [3, 4, 14, 22, 32, 37, 47, 48] and
hypergraphs [13, 17, 28, 43, 44], but these do not provide guarantees
for global ratio cut objectives.

Concurrent work. Ameranis et al. [2] independently and con-

currently developed an � (log �)-approximation algorithm for gen-

eralized hypergraph ratio cuts based on cut-matching. Their al-
gorithm applies to a more general class of monotone submodular
cut functions, though the authors focused on theoretical results
and therefore did not provide an implementation. See the extended
version for a more detailed comparison [42].

3 HYPERGRAPH EXPANDER EMBEDDINGS
Expander embeddings are common techniques for lower bounding
expansion in undirected graphs [5, 21, 24, 38]. We generalize this
basic approach in order to develop a strategy for lower bounding
hypergraph ratio cut objectives, by embedding an expander graph
into a special type of directed graph that models a generalized
hypergraph cut function. See the appendix for all proofs.

3.1 Hypergraph cut preservers
Many hypergraph clustering methods rely on reducing a hyper-

graph to a graph and then applying an existing graph technique [6,
18, 26, 45, 50]. We employ a precise notion of hypergraph reduction
for modeling generalized hypergraph cuts [44, 45].

Definition 3.1 (augmented cut preserver). Let H = (� , E)
be a hypergraph with generalized cut function. The directed graph
� (H) = (� ,ˆ �̂) is an augmented cut preserver for H if �̂ = � ∪ A
where A is an auxiliary node set and if � (H) preserves cuts in H in
the sense that for every � ⊆ � :

cutH(�) = min cut� (H) (� ∪ �) . (12)

� ⊆A

696

WWW ’23, April 30–May 04, 2023, Austin, TX, USA N. Veldt

ab e’’e’

v1 v2

v3 v4

a

a a

a

a
a

a
a

Figure 1: CB-gadget parameterized by weights � and � for a
four-node hyperedge � = {�1, �2, �3, �4}.

The cut preserving property in (12) essentially says that for any
fxed � ⊆ � , we can arrange nodes from A into two sides of a cut
in a way that minimizes the overall (directed) cut penalty in � (H).
There is more than one way to construct an augmented cut pre-
server � (H) for a cardinality-based submodular hypergraph cut
function [23, 44, 45]. The general strategy is to replace each hyper-

edge � ∈ E with a small gadget involving directed weighted edges
and auxiliary nodes, in a way that models the splitting function of
the hyperedge. We specifcally use reductions based on symmetric
cardinality-based gadgets (CB-gadgets) [44, 45] (Figure 1). For a
hyperedge � ∈ E with � nodes, a CB-gadget introduces two new
nodes � ′ and � ′′, which are added to the augmented node set A. For
each � ∈ � , the gadget has two directed edges (�, � ′) and (� ′′ , �) that
are both given weight �, and a directed edge (� ′ , � ′′) with weight
��, where � and � are nonnegative parameters for the CB-gadget.
Figure 2(b) is an illustration of an augmented cut preserver for a
small hypergraph, where each hyperedge is replaced by a single CB-

gadget and edge-weights are omitted. Each hyperedge could also
be replaced by a combination of CB-gadgets with diferent weights,
in order to model more complicated hypergraph cut functions. It
is possible to model any cardinality-based submodular splitting
function using a combination of ⌊|� |/2⌋ CB-gadgets, by carefully
choosing parameters (�, �) for each gadget [45]. In cases where it is
enough to approximately model the hypergraph cut function, one
can instead use an augmented sparsifer [44] to approximate the
cut function while using fewer CB-gadgets.

3.2 Expander embeddings in hypergraphs
Let � = (� , ��) be a directed graph with edge weight �� (�, �) for
each (�, �) ∈ �� , and let � = (� , ��) be an undirected graph on the
same set of nodes with weight �� (�, �) ≥ 0 for edge {�, � } ∈ �� .
For every set � ⊆ � , let D(�) = {(�, �) ∈ � × � ¯: {�, � } ∈ �� }
denote a set of directed pairs of nodes that share an edge in � .

Definition 3.2 (embedding � in �). Graph � can be embedded
in � with congestion � if for each bisection {�, � ̄}:

• For each (�, �) ∈ D(�) there is a �-� fow function � (��) that
routes �� (�, �) units of fow from � to � via edges in � .

• The fow � =
Í
(�,�) ∈D(�) �

(��)
can be routed through �

with congestion at most � , i.e., for each (�, �) ∈ �� , Í (��)
(�,�) ∈D(�) �� � ≤ ��� (�, �). (13)

Lemma 3.1. If � is embedded in � with congestion � , then for
every node weight function � , ��,� ≥ 1 ��,� .�

The immediate implication of Lemma 3.1 is that if � is an ex-
pander, then the expansion of � is Ω(1). Defnition 3.2 difers �

slightly from other notions of embeddings that are used when ap-
proximating graph ratio cuts. This defnition is chosen in a way
that is easier to generalize to the hypergraph setting.

Combining hypergraph cut preservers [44, 45] with Defnition 3.2
provides a new strategy for bounding hypergraph �-expansion.

Lemma 3.2. Let H = (� , E) be a hypergraph with a generalized
hypergraph cut function cutH and let � (H) = (�̂ = � ∪ A, �̂)
be an augmented cut preserver for H . If graph � = (� , ��) can be
embedded in � (H) with congestion � , then for every node weight
function � , �H,� ≥ �

1 ��,� .

This assumes fxed node weights � and does not directly relate
conductance in H to conductance in � (as conductance depends on
node degrees). However, this provides an important step in lower
bounding arbitrary ratio-cut objectives, including conductance.

4 HYPERGRAPH FLOW EMBEDDING
To apply Lemma 3.2, we would like to embed an expander into
� (H) with a small congestion, and then fnd a set � that is not too
far from the resulting lower bound. As an important step in this
direction, in this section we will show how to embed a special type
of bipartite graph into H whose congestion is related to a small
expansion set. Given a partition {�, � ¯} of the node set � , we will
design a procedure that takes in a parameter � > 0 and using a
single maximum fow computation either (1) returns a set � ⊆ �
such that �H(�, �) < � , or (2) produces a bipartite graph between
� and � ¯ that can be embedded in � (H) with congestion 1/� . In
Section 5, we will show how to combine these bipartite graphs to
embed an expander into � (H). Proofs are provided in the appendix.

4.1 Maximum fows in an auxiliary graph
Fix � > 0 and a partition {�, � ¯} satisfying � (�) ≤ � (� ¯), and set
� = � (�)/� (� ¯). We will solve a maximum �-� fow problem on an
auxiliary graph � (H , �, �) (see Figure 2(c)) constructed as follows:

• Construct a CB-gadget cut preserver � (H) for H [44, 45],
and scale all edge weights by �

1
.

• Add an extra source node � and a sink node � .
• For each � ∈ �, add a directed edge (�, �) with weight � (�).
• For each � ∈ � ¯, add a directed edge (�, �) with weight �� (�).

We will use a solution to the maximum �-� fow problem to either
fnd a set � with small expansion (by considering the dual minimum
�-� cut problem), or fnd an embeddable bipartite graph between
� and � ̄ with congestion 1

(by considering a fow decomposition). �
This mirrors the same strategy that is used in cut-matching games
for graph expansion [21], though the construction and proofs are
more involved for generalized hypergraph cut functions.

Finding a small �-expansion set. The minimum �-� cut prob-
lem in � (H , �, �) is equivalent to solving the following optimiza-

tion problem over the hypergraph H :
1

minimize� ⊆� cutH(�) + � (� ∩ � ̄) + �� (� ̄ ∩ �). (14)

�
If we set � = ∅, this corresponds to separating node � from all other
nodes in � (H , �, �), which is a valid �-� cut with value � (�). If
we can fnd an �-� cut value that is strictly smaller than � (�) in
� (H , �, �), it will provide a set � with small expansion in H .

697

Cut-matching Games for Generalized Hypergraph Ratio Cuts WWW ’23, April 30–May 04, 2023, Austin, TX, USA

(a) H (b) � (H) (c) � (H, �, �) (d) ��

Figure 2: (a) An example hypergraph H = (� , E). (b) An augmented cut preserver � (H) (Defnition 3.1) for H . (c) The auxiliary
graph � (H , �, �) and minimum �-� cut (red line). (d) Toy example of an embedded �-regular bipartite graph �� .

Lemma 4.1. If the minimum �-� cut value in � (H , �, �) is less than
� (�), then the set � minimizing objective (14) satisfes �H(�, �) < � .

Max-fow subroutines for solving an objective closely related
to (14) have already been used to minimize localized ratio cut objec-
tives in hypergraphs [43]. This generalizes earlier work on localized
ratio cuts in graphs [4, 37, 47, 48]. The present work difers in that
we use max-fow solutions to approximate global ratio cut objec-
tives. A key step in doing so is showing how to embed a bipartite
graph into � (H) when Lemma 4.1 does not apply.

Embedding a bipartite graph. If the min �-� cut in � (H , �, �)
is � (�), then the max �-� fow solution in � (H , �, �) saturates
every edge touching � or � . We can then defne a bipartite graph ��
between � and � ¯ that can be embedded in � (H) with congestion 1

� .
Let � be a maximum �-� fow on � (H , �, �) with value |� | = � (�).
Letting � = |� |, defne a matrix M� ∈ R�×�

that is initialized to be
the all zeros matrix. Using Lemma 2.1, we can decompose the fowÍℓ� into � = �=1 �� , where for each � the edges that have a positive
fow in �� form either a cycle or a simple �-� path. For our purposes
we can ignore the cycles and focus on the �-� paths. An �-� fow
path �� always starts by sending |�� | units of fow from � to some
node � ∈ �, and eventually ends by sending the same amount of
fow through an edge (�, �) where � ∈ � ¯. For each such fow path,
we perform the update M� (�, �) ← M� (�, �) + |�� |. After iterating
through all ℓ fow paths, we defne �� to be the bipartite graph
whose adjacency matrix is M� (see Figure 2(d)). The construction
of � (H , �, �) and the fact that � saturates all edges touching � and
� implies the following degree properties for �� :

• For each � ∈ �, the weighted degree of � in �� is � (�).
• For each � ∈ � ¯, the weighted degree of � in �� is �� (�).

Following previous terminology [35], we refer to a bipartite graph
satisfying these properties as a �-regular bipartite graph. To relate
this to previous cut-matching games for graph expansion, note that
if |� | = |� ¯| and � (�) = 1 for all � ∈ � , then �� will be a fractional
matching and M� will be a doubly stochastic matrix.

Proving a bound on congestion. When |� | = � (�), the max-

imum �-� fow in � (H , �, �) can be viewed as a directed multi-

commodity fow that is routed through a 1
-scaled copy of � (H).�

However, there is one subtle issue we must overcome in order to
confrm that �� can be embedded in � (H) with congestion 1

� .
Defnition 3.2 requires that for every bisection {�, � ̄}, there must
be a way to route M� (�, �) units of fow from � to � if � ∈ � and
� ∈ � ̄. However, � only routes fow from � to � ̄ in the directed graph
� (H , �, �). This issue does not arise in cut-matching games for
undirected graphs, as each undirected edge {�, � } can be viewed as

a pair of directed edges (�, �) and (�,�), making it easy to send fow
in two directions simultaneously. However, in the directed graph
� (H , �, �), it is possible that for a given bipartition {�, � ̄}, the fow
� will send fow from a node � ∈ � ∩ � ̄ to a node � ∈ � ̄ ∩ � , which
does not directly satisfy the requirement in Defnition 3.2. The fol-
lowing lemma confrms that we can overcome this. Its proof relies
on carefully considering the edge structure in � (H) and showing
how to use an implicit fow-reversing procedure when necessary in
order to satisfy Defnition 3.2. A proof is included in the appendix.

Lemma 4.2. If |� | = � (�), the graph �� can be embedded in
� (H) with congestion 1

in the sense of Defnition 3.2. �

4.2 The fow-embedding algorithm
We combine Lemmas 4.1 and 4.2 into a method HyperCutOrEmbed
(Algorithm 1) for obtaining both a good cut and an embeddable
bipartite graph for any input partition {�, � ¯} with � (�) ≤ � (� ¯).
We assume that the hypergraph H is connected, and that the hy-

pergraph weights are scaled so that there is a minimum penalty
of 1 when cutting any hyperedge. This implies a lower bound of
2/� (�) on the minimum �-expansion, which is achieved if there is
a set � with �H(�) = � (�)/2 and cutH(�) = 1. HyperCutOrEm-
bed repeatedly solves maximum �-� fow problems to fnd either a
bipartite graph or a cut with bounded �-expansion. The algorithm
uses black-box subroutines for maximum �-� fows and minimum
�-� cuts, and a procedure FlowEmbed that decomposes a fow into
a �-regular bipartite graph as outlined in Section 4.1.

Theorem 4.3. HyperCutOrEmbed returns a �-regular bipartite
graph �� that can be embedded in � (H) with congestion 1/� and
a set � with �H(�, �) < 2� for some � ≥ 2/� (�). The algorithm
terminates in � (log |� | + log� + log � (�)) iterations where � is the
maximum hyperedge cut penalty.

5 HYPERGRAPH RATIO CUT ALGORITHMS
HyperCutOrEmbed fnds a node set whose �-expansion is related
to a graph that can be embedded in H . Applying Lemma 3.2 directly
does not imply a useful lower bound or approximation algorithm
for �-expansion in H , as the bipartite graph itself does not have
a large �-expansion. In this section we show how to use existing
strategies for building an expander graph in order to design an
approximation algorithm for hypergraph �-expansion.

5.1 Expander building subroutines
The standard cut-matching procedure for expansion in an undi-

rected graph � = (� , �) can be described as a two-player game

698

WWW ’23, April 30–May 04, 2023, Austin, TX, USA N. Veldt

Algorithm 1 HyperCutOrEmbed(H , �, �)
Input: H = (� , E), node weights � , bisection {�, � ̄}
Output: �� with congestion 1/� ; � with �H(�, �) ≤ 2�
Set � = 2/� (�), NoCutFound = true
while NoCutFound do

5: � = MaxSTflow(� (H , �, �)).
if |� | = � (�) then
�� ← FlowEmbed(� (H), �, �); � ← 2�

else
� = MinSTcut(� (H , �, �), �)

10: NoCutFound = false
Return �� , � , �

between a cut player and a matching player. At the start of iteration
� , the cut player produces a bisection {�� , �� }, and the matching ¯

player produces a fractional perfect matching �� between �� and
¯ �� , encoded by a doubly stochastic matrix M� ∈ [0, 1] |� |× |� |

. AfterÐ� � iterations, the union of matchings defnes a graph �� = =1 �� � Í�
with adjacency matrix A� = =1 M� . The goal of the cut player is �
to choose bisections in a way that minimizes the number of rounds
it takes before �� is an expander, while the goal of the matching
player is to choose matchings that maximize the number of rounds.
Khandekar et al. [21] provided a strategy for the cut player which,
for any matching player subroutine, will force �� to have expansion
at least 1/2 for some � = � (log2 �) with high probability. This was
used to show an � (log2 �) approximation for graph expansion.

In follow-up work, the cut-matching framework has been gener-

alized in many diferent ways [29, 34–36, 38]. Although most results
focus on expansion node weights (� (�) = 1), Orecchia et al. [35]
recently introduced a setting where the cut player produces a set ��
satisfying � (��) ≤ � (� ¯ �) at each iteration, and the matching player
produces a �-regular bipartite graph �� on {�� , �� }. Taking the ¯

union of all bipartite graphs up through the �th iteration produces
a graph �� = (� , ���). Lemma 5.1 summarizes a cut player strategy
that applies to this setting and leads to an � (log �)-approximation
for graph ratio cut objectives.

Lemma 5.1 (Theorem 7 in [35]). There exists a cut player strategy
such that, for any matching player strategy, �� satisfes ��� ,� =
Ω(log �) with high probability for some � = � (log2 �). In round � ,
the cut player can compute �� in time � (|��� | · polylog(� (�))).

This strategy applies a heat-kernel random walk in �� , so we re-
fer to it as HeatKernelPartition. The approach was frst used for
expansion weights (� (�) = 1) by Orecchia et al. [36] and considered
in more depth in Orecchia’s PhD thesis [34]. Lemma 5.1 generalizes
this to general node weights and was presented in recent work
on overlapping graph clustering [35]. More technical details on
cut-matching games with general node weights were presented
recently by Amerinas et al. [2]. In the frst iteration, �0 is empty,
so the cut player starts with any balanced bipartition {�, � ̄}.

5.2 The approximation algorithm
The notion of expander embedding that we have introduced in-

volves embedding an expander graph into a hypergraph H . There-

fore, we can use existing cut player strategies to build a �-expander,

Algorithm 2 HCM: � (log �) approximation for �-expansion

Input: H = (� , E), generalized cutH , bisection {�, � ̄}
Output: Set � with small �-expansion
�0 = ∅
for � = 1 to � do
�� = HeatKernelPartition(�0, �1, �2, . . . , �� −1)
�� , �� , �� = HyperCutOrEmbed(H , ��)

Return �∗ = argmin�=1,2,...� �H(�� , �)

which we embed into H in the sense of Defnition 3.2 using al-
gorithm HyperCutOrEmbed. Our cut-matching approximation
algorithm for generalized hypergraph cut expansion (Algorithm 2)
is obtained by using HyperCutOrEmbed for the matching player
and HeatKernelPartition for the cut player. See the appendix
for a detailed runtime analysis.

Theorem 5.2. For some � = � (log2 �), Algorithm 2 is an � (log �)-
approximation algorithm for hypergraph �-expansion where cutH
is any submodular cardinality-based hypergraph cut function.

Proof. At iteration � , HyperCutOrEmbed produces a �-regular
bipartite graph �� that can be embedded in � (H) with expan-

1
sion and a set �� with expansion �H(�� , �) ≤ 2�� . Defne��
�∗ = argmin� �� and note that �H(�∗, �) ≤ �H(��∗ , �). The union
of bipartite graphs �� can be embedded in � (H) with conges-Í� 1 �
tion ≤ . From Lemma 5.1, we have � ≤ �1 log

2 � and�=1 �� ��∗
��� ,� ≥ �2 log � with high probability, where �1 and �2 are positive
constants. Combining this with Lemma 3.2 we have

�∗ �1�
∗ �1�

∗
� � � ≤ log � ≤ ��� ,� ≤ �1 �H,� .log � � �2� �2� �

So �H,� = Ω �
�
∗/log � , and the algorithm returns a set �∗ with

�H(�∗, �) ≤ 2�∗, proving the � (log �) approximation guarantee.
�

□

5.3 Practical improvements
We incorporate a number of practical updates to the algorithm to
simplify its implementation and improve approximation guarantees
in practice. First of all, our implementation uses the push-relabel
max-fow algorithm [9], which has a worse (but still fast) theoretical
runtime and comes with various heuristics that make it very fast
in practice. For the fow decomposition, we use a standard decom-

position technique (see Theorem 3.5 in [1]) that does not require
dynamic trees. We also use an altered version of HyperFlowEm-

bed that returns a bipartite graph �� that can be embedded with
congestion 1/� as well as a set � that has �-expansion equal to � ,
rather than just a set � with �H(�, �) < 2� . This improves the ap-
proximation by a factor of 2, which does not change the theoretical
� (log �) approximation but can make a substantial diference in
practice. See the appendix for details.

Finally, we establish sharper lower bounds on the approximation
guarantee satisfed by the algorithm in each iteration. This allows
us to obtain improved a posteriori approximation guarantees in
practice. For node weight function � , let D� be the diagonal matrix

where D� (�, �) = � (�) and defne L� = D�
−1/2L� D

−1/2
. Let �2 (L�)�

be the 2nd smallest eigenvalue of this matrix. The following theo-

rem presents a precise and easy-to-compute lower bound on the

699

Cut-matching Games for Generalized Hypergraph Ratio Cuts WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: HCM results on 4 larger hypergraphs.

� � avg |� | Approx. Run. (s)

Amazon9 13138 31502 8.1 2.78 ±0.012 254.8 ±10.4
Mathoverf 73851 5446 24.2 3.08 ±0.014 643.8 ±31.1
Tripadvisor 8929 130568 4.1 2.71 ±0.025 699.3 ±29.8
Trivago 172738 233202 3.1 2.78 ±0.038 2372.6 ±50.8

approximation factor achieved by our approximation algorithm
at each iteration. For this result we use the updated version of
HyperFlowEmbed that returns a set � with �H(�, �) = � .

Theorem 5.3. After � iterations, Algorithm 2 returns a set �∗ �
2�� �H (�� ∗) 2�

satisfying �H(�� ∗, �) ≤ �� �H,� , where �� =
�2 (L�) ≤

�2 (L�)Í� 1
and �� = .�=1 ��

This theorem suggests another alternative for the cut player
strategy: choose a partition {�, � ̄} by thresholding entries in the
second smallest eigenvector of L� . Embedding a �-regular bipartite
graph across this partition increases the value of �2 (L�) in subse-

quent iterations. There exist extreme cases where greedily choosing
a bipartition based on this eigenvector makes slow progress (see
discussion on page 35 of [34]). However, this tends to produce good
results in practice, and we can use Theorem 5.3 to compute concrete
lower bounds on �-expansion using this strategy.

6 EXPERIMENTS
We implement our hypergraph cut matching algorithm (HCM)
in Julia using all of the practical improvements from Section 5.3.
We compare it against other hypergraph ratio-cut algorithms in
minimizing global ratio cut objectives on various hypergraphs en-

coding common types of higher-order multiway interactions on
the web. All experiments were run on an Macbook Air with an
Apple M1 Chip and 16GB of RAM. Code and data are provided
at https://github.com/nveldt/HyperCutMatch. The full version of
the paper contains additional details and experiments [42].

Web-based hypergraphs. Trivago encodes sets of vacation
rentals on Trivago.com that are visited during a browsing ses-
sion [10]. Mathoverfow encodes sets of mathoverflow.com posts
that are answered by the same user [43]. Amazon9 encodes sets of
retail products (from 9 product categories of a larger dataset [33])
that are reviewed by the same user. TripAdvisor encodes sets of
co-reviewed Tripadvisor.com accommodations [46].

6.1 Comparison against convex relaxations
Our method is orders of magnitude more scalable than previous
theoretical approximation algorithms for hypergraph ratio cuts
and also applies to a much broader class of problems. We compare√
against the � (log �) approximation based on semidefnite pro-
gramming [31] (SDP) and the � (log �)-approximation algorithm
(LP) based on rounding a linear programming relaxation [20]. We
focus on the expansion objective (� (�) = 1 for all �) with the stan-

dard hypergraph cut function, since these methods do not apply
to generalized hypergraph cuts. We solve the SDP relaxation with
Mosek software, using CVX [15] in Matlab as a front end. We use
Gurobi software with Julia as a front end to solve the LP relaxation.
We select a range of small Mathoverfow and Trivago hypergraphs

(a) Mathoverfow approximation (b) Trivago approximation

(c) Mathoverfow runtime (d) Trivago runtime

Figure 3: Results for three approximation algorithms on
small hypergraphs. LP and SDP do not scale and often
fail even for these small hypergraphs. HCM-1 uses 10 log

2 �
rounds of cut-matching, and HCM-2 uses 30 log

2 � rounds.

(subhypergraphs of the hypergraphs in Table 1) to use as bench-

marks. We chose 23 Mathoverfow hypergraphs, each corresponding
to a set of posts (nodes) with a certain topic tag (e.g., graph-theory).
These hypergraphs have between � = 80 and � = 209 nodes. The
number of hyperedges � tends to be between �/3 and �/2 for these
hypergraphs, and the average hyperedge size ranges from 3 to 7.
We also consider 41 Trivago hypergraphs (each corresponding to a
diferent city tag, e.g., Austin, USA), most of which have between 1-3
times as many hyperedges as nodes, and all of which have average
hyperedge sizes between 2 and 4.

Figure 3 reports results for LP, SDP, and our method HCM, all
of which compute an explicit lower bound on the optimal expan-

sion which can be used to compute an a posteriori approximation
guarantee. We run HCM with two diferent iteration numbers to
illustrate the tradeof between runtime and approximation guar-

antee. When SDP and LP converge, they produce very good lower
bounds for hypergraph expansion and can be rounded to produce
very good a posteriori approximation guarantees. The issue is that
these methods do not scale well even to very small instances. We
are able to obtain results for all Mathoverfow datasets using LP,
but the method times out (> 30 minutes) on all but 19 of the 41
Trivago hypergraphs. The SDP method is even less scalable and
would not converge for almost any of the small hypergraphs if we
set a 30-minute time limit. It took 4.5 hours to run this method for a
141-node Mathoverfow hypergraph. Given scalability issues, we did
not attempt to use this method on larger datasets. Meanwhile, HCM
obtains high quality solutions extremely quickly, typically within a
matter of a few seconds. Table 1 lists additional results (averages
and standard deviations over 5 runs) for 5 log

2 � iterations of HCM
on four larger hypergraphs, which are far too large for LP and SDP.

700

https://github.com/nveldt/HyperCutMatch
https://Tripadvisor.com
https://mathoverflow.com
https://Trivago.com

WWW ’23, April 30–May 04, 2023, Austin, TX, USA N. Veldt

1 1.1 1.5 2 5 10 100

2.2

2.4

2.6

2.8

A
pp

ro
xi

m
at

io
n

R
at

io

CE+HCM
IPM+HCM
HCM

1 1.1 1.5 2 5 10 100
2.0

2.1

2.2

2.3

2.4

2.5

A
pp

ro
xi

m
at

io
n

R
at

io

1 1.1 1.5 2 5 10 100

2.1

2.4

2.7

3.0

A
pp

ro
xi

m
at

io
n

R
at

io

1 1.1 1.5 2 5 10 100
2.45

2.50

2.55

2.60

A
pp

ro
xi

m
at

io
n

R
at

io

(a) Trivago-Australia Approx Ratios (b) Trivago-UK Approx Ratios (c) Trivago-Germany Approx Ratios (d) Trivago-Japan Approx Ratios
� = 1854, � = 4328, avg |� | = 2.9 � = 3293, � = 9988, avg |� | = 3.0 � = 2869, � = 7405, avg |� | = 3.0 � = 5598, � = 17509, avg |� | = 3.0

1 1.1 1.5 2 5 10 100
0

5

10

15

20

25

R
un

tim
e

(s
)

1 1.1 1.5 2 5 10 100

5
10
15
20
25
30
35

R
un

tim
e

(s
)

1 1.1 1.5 2 5 10 100
0

20

40

60

80

R
un

tim
e

(s
)

1 1.1 1.5 2 5 10 100

30

60

90

120

150

R
un

tim
e

(s
)

(e) Trivago-Australia Runtimes (f) Trivago-UK Runtimes (g) Trivago-Germany Runtimes (h) Trivago-Japan Runtimes

Figure 4: Top row: approximations obtained by comparing the best conductance set found by each method against the conduc-
tance lower bound computed by HCM. Bottom row: runtimes in seconds. The runtimes for IPM and CE do not include the time
it takes to compute the HCM lower bound. We plot mean over 5 runs of HCM; shaded region indicates standard deviation.

6.2 Trivago hypergraphs and generalized cuts
One distinct advantage of HCM is that it computes explicit lower
bounds on hypergraph �-expansion (via Theorem 5.3) that can be
used to check a posteriori approximation guarantees in practice.
To illustrate the power of this feature, we compare HCM against
the inverse power method for submodular hypergraphs (IPM) [27]
and the clique expansion method for inhomogeneous hypergraphs
(CE) [26]. These methods constitute the current state-of-the-art in
minimizing ratio cuts in hypergraphs with generalized cut functions.
IPM is a generalization of a previous method that applied only to
the standard hypergraph cut [16]. CE generalizes previous clique
expansion techniques [6, 52], which only applied to more restrictive
hypergraph cut functions. Both methods are more practical than
LP and SDP and apply to generalized hypergraph cuts, but they
have weaker theoretical guarantees. IPM is a heuristic with no
approximation guarantees, while the approximation guarantee for
CE scales poorly with the maximum hyperedge size, and can be
� (�) in the worst case even for graphs. The performance of IPM
depends heavily on which vector it is given as a warm start. We
tried several options and found that the best results were obtained
by using the eigenvector computed by CE as a warm start.

Figure 4 displays runtimes and a posteriori approximation guar-

antees for HCM, IPM, and CE on four Trivago hypergraphs, cor-
responding to vacation rentals in Australia, United Kingdom, Ger-

many, and Japan. We specifcally consider the 2-core of each hy-

pergraph, as these 2-cores have more interesting and varied cut
structure and therefore serve as better case studies for comparing
algorithms for generalized hypergraph ratio cuts. For these exper-

iments we are minimizing the conductance objective (� (�) = ��),
and we use a generalized hypergraph cut function that applies a
�-linear splitting function w� (�) = min{|� ∩� |, |� ¯∩� |, �} at each hy-

peredge. We choose this splitting function as previous research has

shown that the choice of � can signifcantly afect the size and struc-

ture of the output set and infuence performance in downstream
clustering applications [28, 43, 44]. The four Trivago hypergraphs
exhibit a range of diferent cuts that are found by varying � , and
therefore provide a good case study for how well these algorithms
fnd diferent types of ratio cuts for generalized splitting functions.

In terms of fnding small conductance sets, HCM trades of in
performance with IPM, though they return very similar results.
However, HCM is signifcantly faster, and unlike IPM it is addition-

ally computing lower bounds that allow it to certify how close its
solution is to optimality. In Figure 4, we are in fact using the HCM
lower bound to obtain a posteriori approximations for IPM and CE.
These methods are unable to provide such strong approximation
guarantees on their own. Hence, even in cases where IPM fnds
better conductance sets, the lower bounds computed by HCM pro-
vide new information that can be used to prove an approximation
guarantee. Since the performance of IPM also relies on using CE as
a warm start, we see that in many ways it is a combination of all
three algorithms that leads to the best results.

7 DISCUSSION
We have presented the frst algorithm for minimizing hypergraph
ratio cuts that simultaneously (1) has an � (log �) approximation
guarantee, (2) applies to generalized hypergraph cut functions, and
(3) comes with a practical implementation. This algorithm is very
successful at fnding ratio cuts within a small factor (around 2-3) of
a lower bound on the optimal solution. One open question is to ex-
plore how to choose the best generalized hypergraph cut functions
to use in diferent applications of interest. Another open direction
is fnding improved approximation algorithms for hypergraph ratio
cuts that apply to general submodular splitting functions, even
those that are not cardinality-based.

701

Cut-matching Games for Generalized Hypergraph Ratio Cuts WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. 1988. Network fows.

Prentice-Hall Inc.
[2] Konstantinos Ameranis, Antares Chen, Lorenzo Orecchia, and Erasmo Tani. 2023.

Efcient Flow-based Approximation Algorithms for Submodular Hypergraph Par-

titioning via a Generalized Cut-Matching Game. arXiv preprint arXiv:2301.08920
(2023).

[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local Graph Partitioning
using PageRank Vectors. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’06).

[4] Reid Andersen and Kevin J. Lang. 2008. An Algorithm for Improving Graph
Partitions. In Proceedings of the 2008 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’08). Society for Industrial and Applied Mathematics, 651–660.

[5] Sanjeev Arora, Satish Rao, and Umesh Vazirani. 2009. Expander fows, geometric
embeddings and graph partitioning. Journal of the ACM (JACM) 56, 2 (2009).

[6] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order organi-

zation of complex networks. Science 353, 6295 (2016), 163–166.
[7] T-H Hubert Chan, Anand Louis, Zhihao Gavin Tang, and Chenzi Zhang. 2018.

Spectral properties of hypergraph laplacian and approximation algorithms. Jour-
nal of the ACM (JACM) 65, 3 (2018), 1–48.

[8] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum Flow and Minimum-Cost Flow in Almost-

Linear Time. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS ’22). 612–623. https://doi.org/10.1109/FOCS54457.2022.00064

[9] Boris V Cherkassky and Andrew V Goldberg. 1997. On implementing the push-

relabel method for the maximum fow problem. Algorithmica 19, 4 (1997).
[10] Philip S. Chodrow, Nate Veldt, and Austin R. Benson. 2021. Generative hypergraph

clustering: From blockmodels to modularity. Science Advances 7, 28 (2021),
eabh1303. https://doi.org/10.1126/sciadv.abh1303

[11] Fan R. K. Chung. 1997. Spectral Graph Theory. Vol. 92. American Mathematical
Society. https://doi.org/10.1090/cbms/092

[12] Michael B Cohen, Yin Tat Lee, and Zhao Song. 2021. Solving linear programs in
the current matrix multiplication time. Journal of the ACM (JACM) 68, 1 (2021).

[13] Kimon Fountoulakis, Pan Li, and Shenghao Yang. 2021. Local hyper-fow difusion.
In Advances in Neural Information Processing Systems (NeurIPS ’21, Vol. 34).

[14] K. Fountoulakis, M. Liu, D. F. Gleich, and M. W. Mahoney. 2023. Flow-based
Algorithms for Improving Clusters: A Unifying Framework, Software, and Per-

formance. SIAM Review (to appear) (2023).
[15] Michael Grant and Stephen Boyd. 2014. CVX: Matlab Software for Disciplined

Convex Programming, version 2.1. http://cvxr.com/cvx.
[16] Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram.

2013. The total variation on hypergraphs-learning on hypergraphs revisited. In
Advances in Neural Information Processing Systems (NeurIPS ’13, Vol. 26).

[17] Rania Ibrahim and David F Gleich. 2020. Local hypergraph clustering using
capacity releasing difusion. Plos one 15, 12 (2020), e0243485.

[18] Edmund Ihler, Dorothea Wagner, and Frank Wagner. 1993. Modeling hypergraphs
by graphs with the same mincut properties. Inform. Process. Lett. 45, 4 (1993), 171
– 175. https://doi.org/10.1016/0020-0190(93)90115-P

[19] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. 2021. A Faster
Algorithm for Solving General LPs. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC ’21). Association for Computing Ma-

chinery, New York, NY, USA, 823–832. https://doi.org/10.1145/3406325.3451058
[20] Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. 2020.

Towards Tight Bounds for Spectral Sparsifcation of Hypergraphs. arXiv preprint
arXiv:2011.06530 (2020).

[21] Rohit Khandekar, Satish Rao, and Umesh Vazirani. 2009. Graph partitioning
using single commodity fows. Journal of the ACM (JACM) 56, 4 (2009), 1–15.

[22] Kyle Kloster and David F Gleich. 2014. Heat kernel based community detection.
In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’14). 1386–1395.

[23] Pushmeet Kohli, L’ubor Ladický, and Philip H. S. Torr. 2009. Robust Higher Order
Potentials for Enforcing Label Consistency. International Journal of Computer
Vision 82, 3 (2009), 302–324. https://doi.org/10.1007/s11263-008-0202-0

[24] Tom Leighton and Satish Rao. 1999. Multicommodity max-fow min-cut theorems
and their use in designing approximation algorithms. Journal of the ACM (JACM)
46, 6 (1999), 787–832.

[25] Pan Li, Niao He, and Olgica Milenkovic. 2020. Quadratic Decomposable Submod-

ular Function Minimization: Theory and Practice. Journal of Machine Learning
Research 21, 106 (2020), 1–49. http://jmlr.org/papers/v21/18-790.html

[26] Pan Li and Olgica Milenkovic. 2017. Inhomogeneous Hypergraph Clustering with
Applications. In Advances in Neural Information Processing Systems 30 (NeurIPS
’17). 2308–2318.

[27] Pan Li and Olgica Milenkovic. 2018. Submodular Hypergraphs: p-Laplacians,
Cheeger Inequalities and Spectral Clustering. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (ICML ’18). 3014–3023.

[28] Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F Gleich. 2021. Strongly local
hypergraph difusions for clustering and semi-supervised learning. In Proceedings

of the Web Conference 2021 (WWW ’21). 2092–2103.
[29] Anand Louis. 2010. Cut-matching games on directed graphs. arXiv preprint

arXiv:1010.1047 (2010).
[30] Anand Louis. 2015. Hypergraph Markov Operators, Eigenvalues and Approxi-

mation Algorithms. In Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing (STOC ’15). 713–722.

[31] Anand Louis and Yury Makarychev. 2016. Approximation algorithms for hyper-

graph small-set expansion and small-set vertex expansion. Theory of Computing
12, 1 (2016), 1–25.

[32] Michael W Mahoney, Lorenzo Orecchia, and Nisheeth K Vishnoi. 2012. A local
spectral method for graphs: With applications to improving graph partitions and
exploring data graphs locally. The Journal of Machine Learning Research 13, 1
(2012), 2339–2365.

[33] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations
using Distantly-Labeled Reviews and Fine-Grained Aspects. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP
’19). 188–197.

[34] Lorenzo Orecchia. 2011. Fast approximation algorithms for graph partitioning
using spectral and semidefnite-programming techniques. Ph. D. Dissertation.
University of California, Berkeley.

[35] Lorenzo Orecchia, Konstantinos Ameranis, Charalampos Tsourakakis, and Kunal
Talwar. 2022. Practical Almost-Linear-Time Approximation Algorithms for Hy-

brid and Overlapping Graph Clustering. In International Conference on Machine
Learning (ICML ’22). 17071–17093.

[36] Lorenzo Orecchia, Leonard J Schulman, Umesh V Vazirani, and Nisheeth K
Vishnoi. 2008. On partitioning graphs via single commodity fows. In Proceedings
of the fortieth annual ACM symposium on Theory of computing (STOC ’08). 461–
470.

[37] Lorenzo Orecchia and Zeyuan Allen Zhu. 2014. Flow-based algorithms for local
graph clustering. In Proceedings of the twenty-ffth annual ACM-SIAM symposium
on Discrete algorithms (SODA ’14). SIAM, 1267–1286. √

[38] Jonah Sherman. 2009. Breaking the multicommodity fow barrier for � (log�)-
approximations to sparsest cut. In 2009 50th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS ’09). 363–372.

[39] Daniel D Sleator and Robert Endre Tarjan. 1983. A data structure for dynamic
trees. Journal of computer and system sciences 26, 3 (1983), 362–391.

[40] Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. 2020. Hy-

pergraph clustering based on pagerank. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1970–1978.

[41] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron
Sidford, Zhao Song, and Di Wang. 2021. Minimum Cost Flows, MDPs, and ℓ1-
Regression in Nearly Linear Time for Dense Instances. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021). 859–869.

[42] Nate Veldt. 2023. Cut-matching Games for Generalized Hypergraph Ratio Cuts.
arXiv preprint arXiv:2301.12274 (2023).

[43] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2020. Minimizing Localized
Ratio Cut Objectives in Hypergraphs. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Virtual Event,
CA, USA) (KDD ’20). 1708–1718.

[44] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2021. Approximate Decompos-

able Submodular Function Minimization for Cardinality-Based Components. In
Advances in Neural Information Processing Systems (NeurIPS ’21, Vol. 34).

[45] Nate Veldt, Austin R. Benson, and Jon Kleinberg. 2022. Hypergraph Cuts with
General Splitting Functions. SIAM Rev. 64, 3 (2022), 650–685.

[46] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2023. Combinatorial character-

izations and impossibilities for higher-order homophily. Science Advances 9, 1
(2023), eabq3200.

[47] Nate Veldt, David Gleich, and Michael Mahoney. 2016. A Simple and Strongly-

Local Flow-Based Method for Cut Improvement. In Proceedings of The 33rd Inter-
national Conference on Machine Learning (ICML ’16). 1938–1947.

[48] Nate Veldt, Christine Klymko, and David F. Gleich. 2019. Flow-Based Local
Graph Clustering with Better Seed Set Inclusion. In Proceedings of the 2019 SIAM
International Conference on Data Mining (SDM ’19).

[49] David P Williamson. 2019. Network fow algorithms. Cambridge University Press.
[50] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. 2017. Local Higher-

Order Graph Clustering. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’17). 555–564.

[51] Yuichi Yoshida. 2019. Cheeger Inequalities for Submodular Transformations. In
Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’19). 2582–2601. https://doi.org/10.1137/1.9781611975482.160

[52] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. 2006. Learning with
Hypergraphs: Clustering, Classifcation, and Embedding. In Advances in Neural
Information Processing Systems (NeurIPS ’06). 1601–1608.

[53] Yu Zhu and Santiago Segarra. 2022. Hypergraph cuts with edge-dependent vertex
weights. Applied Network Science 7, 1 (2022), 1–20.

702

https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1126/sciadv.abh1303
https://doi.org/10.1090/cbms/092
http://cvxr.com/cvx
https://doi.org/10.1016/0020-0190(93)90115-P
https://doi.org/10.1145/3406325.3451058
https://doi.org/10.1007/s11263-008-0202-0
http://jmlr.org/papers/v21/18-790.html
https://doi.org/10.1137/1.9781611975482.160

WWW ’23, April 30–May 04, 2023, Austin, TX, USA N. Veldt

A PROOFS
Proof of Lemma 3.1. Let � ⊆ � be an arbitrary set of nodes
satisfying � (�) ≤ � (� ̄). For each pair (�, �) ∈ D(�) there is a fow
� (��)

over edges in �� with fow value �� (�, �), and these fows
can simultaneously be routed in �� with congestion � . All of these
fows must pass through the cut edges in �� , since each such pair
(�, �) crosses the bipartition {�, � ̄}. Thus, we have ∑ ∑ ∑ (��)cut� (�) = �� (�, �) ≤ �

� �
(�,�) ∈D(�) (�,�) ∈D(�) (�, �) ∈�� � ∑

≤ � �� (�, �) = �cut� (�).
(�, �) ∈�� �

1
Therefore, �� (�) = cut

�
�
(�
(
)
�) ≥ �

1 cut
�
�
(�
(
)
�)

= � �� (�).

Proof of Lemma 3.2. Let � ⊆ � be an arbitrary set of nodes
satisfying � (�) ≤ � (� ̄). Defne �̂ = � ∪� where � ⊆ A is chosen in
such a way that cutH(�) = cut� (H) (�ˆ). Recall that D(�) denotes
the set of pairs (�, �) where {�, � } ∈ �� with � ∈ � and � ∈ � − � .
Since � is embedded in � (H) with congestion � , for each pair
(�, �) ∈ D(�) we have routed �� (�, �) fow from � to � . Summing
up all of the fows crossing the cut gives: ∑ ∑

cut� (�) = �� (�, �) ≤ � �� (H) (�, �)
(�,�) ∈D(�) (�, �) ∈�� (H) �̂

= �cut� (H) (�ˆ) = �cutH(�).

cutH (�) ≥ 1 cut� (�) 1
And so we have �H(�) =

� (�) � � (�) = � �� (�).

Proof of Lemma 4.1. The minimum �-� cut set in � (H , �, �) is
some set of nodes {�} ∪ � ∪A� where � ⊆ � is a set of nodes from
the original hypergraph H and A� is a subset of the auxiliary nodes
from the cut preserver � (H), designed so that the cut function in
� (H) matches the cut function in H . If the minimum �-� cut value
in � (H , �, �) is less than � (�), this means that for the set � :

1
cutH(�) + � (� ∩ � ¯) + �� (� ¯ ∩ �) < � (�)

�
=⇒ cutH(�) + �� (� ∩ � ¯) + ��� (� ¯ ∩ �) < �� (�)
=⇒ cutH(�) < �� (� ∩ �) − ��� (� ¯ ∩ �)

cutH(�)
=⇒ < �.

� (� ∩ �) − �� (� ̄ ∩ �)

The result will hold as long as we can show that min{� (�), � (� ̄)} ≥
� (� ∩ �) − �� (� ¯ ∩ �). First note that � (�) ≥ � (� ∩ �) ≥ � (� ∩ �) −
�� (� ̄ ∩ �). Additionally, we have

� (� ∩ �) − �� (� ̄ ∩ �) = � (� ∩ �) + �� (� ̄ ∩ � ̄) − �� (� ̄)
= �� (� ̄ ∩ � ̄) − � (� ∩ � ̄) ≤ � (� ̄) . Í (��)Proof of Lemma 4.2. Let �� = (�,�) ∈�×� ¯ �� be the directed

multicommodity fow in � (H) obtained from the maximum �-�
fow � in � (H , �, �). In other words, for each pair for � ∈ � and

(��) (��)
¯ � ∈ �, � is a �-� fow function that sends |� | = M� (�, �)� �

fow from � to � . Each � ∈ � will be a defcit node, and each � ∈ � ̄

will be an excess node for this multicommodity fow function.

Figure 5: Every directed path in the reduced graph � (H)
between two nodes in � alternates between nodes in � and
pairs of auxiliary nodes {� ′ , � ′′ } from diferent CB-gadgets. If

� �
the original fow function sends fow from �0 to �� , replacing
the fow along blue solid edges with fow along the dashed
gray edges reverses the fow direction. Reversing fow paths
in this way will not increase congestion.

We can assume without loss of generality that � is cycle-free,
which implies that �� is also cycle-free. Let � ⊆ � be an arbi-
trary set; our goal is to edit �� to turn it into a fow functionÍ (��)
�� = (�,�) ∈� ×� ¯ �� that routes M� (�, �) fow from � to � when-

ever � ∈ � , � ∈ � , and {�, �} is an edge in �� . In particular, this¯

means we need to fnd a way to reverse the fow direction for any
pair (�, �) ∈ (� ∩ � ¯) × (� ¯ ∩ �), since for this type of pair �� sends
fow from � to � rather than from � to � .

We will frst consider what it means to reverse fow on a single
directed fow path. Consider an arbitrary edge {�, �} in �� such
that � ∈ � ∩ � ¯ and � ∈ � ∩ �. The original multicommodity fow ¯

(��)
function �� includes a fow function � that sends M� (�, �)�
units of fow from � to �. By Lemma 2.1, this can be decomposed as
(��) Í� (��)

� = =1 � , where each �� is a directed fow path from � to
� � �
�. By the construction of � (H), this fow path will travel through
nodes and edges in a sequence of CB-gadgets corresponding to
a sequence of hyperedges {�1, �2, . . . , �� } ⊆ E in the hypergraph
H = (� , E). For the �th hyperedge �� in this sequence and the
corresponding �th CB-gadget, let � ′ be the frst auxiliary node in

�
the gadget for this hyperedge, and � ′′ be the second. Recall that

�
there is an edge (� ′ , � ′′), and for each node � ∈ �� there is a directed

� � ′′
edge (�, � ′) and a directed edge (� , �) (see Figure 1). A simple

� �
(��)

directed fow path � from � = �0 to � = ��+1 is therefore is a
�

sequence of the form:

� = �0 → (�
1
′ → �

1
′′) → �1 → (�

2
′ → �

2
′′) → �2 → · · ·

′′ · · · → �� −1 → (� ′ → �) → �� = �,
(15)

� �

where �� ∈ � for each � ∈ {0, 1, . . . , �}, and where the same amount
of fow is sent along each edge. By the construction of every CB-

gadget, there is a path in the opposite direction with the same exact
set of edge weights:

′ � = �� → (� → � ′′) → �� −1 → · · ·
� �

· · · → �2 → (�
2
′ → �

2
′′) → �1 → (�

1
′ → �

1
′′) → �0 = � .

(16)

Recall that �� is cycle-free. This means that no fow is sent along
edges of the form (�� , � ′) for � ∈ {1, 2, . . . , �}, because �� contains a

�
(��)

fow path � with positive fow on the edges (� ′ , � ′′) and (� ′′ , ��).� � � �
(��)

Therefore, we can replace the fow path � in (15) with the fow
�

(��)
path �ˆ defned on the edges in (16), with the same fow value

�
(��)

as � but traveling in the opposite direction. Figure 5 illustrates
�

this fow reversal process for a single fow path.

703

Cut-matching Games for Generalized Hypergraph Ratio Cuts

We construct a new multicommodity fow function �� by simulta-

neously applying this fow reversal process to every fow path in ��
that goes in the wrong direction. Formally, if ��� denotes the set of
simple directed fow paths from � to � in �� (obtained from a fow de-Í Í (��)
composition as in Lemma 2.1), then �� = (�,�) ∈�×� ¯ � ∈���

�
� ,

and we defne: ∑ ∑ (��) (��)
�� = �� + �ˆ − � .

� �
(�,�) ∈ (� ¯∩�)×(�∩� ¯) � ∈���

In other words, for every (�, �) ∈ (� ∩ � ̄) × (� ̄ ∩ �) and every
(��) (��) (��)

directed fow path � from � to � in �� , replace � with �ˆ .
� � �

It remains to prove that �� has congestion at most 1/� . We prove
this by considering diferent types of edges (�, � ′), (� ′′ , �), and
(� ′ , � ′′), where � ∈ � , and where {� ′ , � ′′ } are the two auxiliary
nodes from a CB-gadget for some hyperedge � ∈ E. Observe frst
of all that this fow reversal procedure never changes the fow on
edge (� ′ , � ′′), so the congestion remains the same on edges that
go between auxiliary nodes. The other two edges (�, � ′) or (� ′′ , �)
have the same weight, and because �� is cycle free, at most one
of these edges has a positive amount of fow in �� . If (�, � ′) has
a positive amount of fow in �� , then (� ′′ , �) has no fow in �� . If
the fow reversal process changes anything, it will take some of
the fow through (�, � ′) and transfer it to (� ′′ , �). In this case, the
congestion on edge (�, � ′) cannot be worse because we are only re-
moving fow. Meanwhile, the edge (� ′′ , �) started with no fow and
then received some of the fow from (�, � ′). After the fow transfer
process, the congestion on (� ′′ , �) will not exceed 1/� since it has
the same weight as edge (�, � ′) and the congestion on (�, � ′) was
at most 1/� . We can provide an analogous argument in the case
where (� ′′ , �) has a positive fow in �� but (�, � ′) does not. Thus,
this fow reversal process does not make the congestion worse.

Proof of Theorem 4.3. In each iteration the algorithm computes
a maximum �-� fow in � (H , �, �). By Lemma 4.2, if the fow value
is � (�) then we can return a �-regular bipartite graph �� that can
be embedded with congestion 1/� . Otherwise, Lemma 4.1 guaran-

tees that the minimum �-� cut set has expansion less than � . The
algorithm is guaranteed to return a bipartite graph on the frst
iteration, because it is impossible to fnd a set with �-expansion
less than the minimum value 2/� (�). If the algorithm fnds a set
� with �H(�, �) < � and then terminates, this means that in the
previous iteration it found a bipartite graph �� that can be em-

bedded with congestion �/2. For every � > � |E |, fnding a max-

imum �-� fow in � (H , �, �) is guaranteed to return a cut set �
with �H(�, �) < � . This is because cutH(�) ≤ � |E |, so the node
set {� ∪ �} is an �-� cut set in the auxiliary graph with cut value
cutH(�)/� ≤ � |E |/� < 1 ≤ � (�). Since HyperCutOrEmbed
starts at � = 2/� (�) and doubles � at every iteration, it will take
at most � (log� |E |� (�)) iterations before returning a cut set.

B RUNTIME ANALYSIS
To provide a runtime analysis for Algorithm 2, assume the hyper-

graph is connected and that all hyperedge weights are scaled to
be integers. Let � = |� |, � = |� |, and � =

Í
� ∈E |� |. In order to

focus on the main terms in the runtime, will use �̃ notation to hide
logarithmic factors of � and �. For our analysis we also assume

WWW ’23, April 30–May 04, 2023, Austin, TX, USA

that the maximum edge penalty � and sum of node weights are
small enough that � (log�) and � (log � (�)) are both �̃ (1), and
hence the maximum number of iterations of HyperCutOrEmbed
is �̃ (1). When choosing a node weight function corresponding to
conductance we have log � (�) = � (log��), and choosing the �
corresponding to standard expansion we have log � (�) = log �.

In order to speed up the runtime for Algorithm 2, we can apply
existing sparsifcation techniques for hypergraph-to-graph reduc-

tion [44]. This allows us to model the generalized cut function of
H to within a factor of (1 + �) for a small constant � > 0 with an
augmented graph � (H) with � = � (� +

Í
� ∈E log |� |) = � (� + �)˜Í

nodes and � = � (� ∈E |� | log |� |) = �̃ (�) edges. Constructing
this graph takes � (�) time. For � > 0, the graph � (H , �, �) also
has � (�) nodes and � (�) edges.

The fow decomposition step in HyperCutOrEmbed can be
accomplished in � (� log �) = � (�) time using dynamic trees [39];˜

note that for this step we do not need to explicitly return the entire
fow decomposition but simply must identify the endpoints in each
directed path for the bipartite graph we are embedding. Lemma 5.1
indicates that the total time spent on the cut player strategy will be
˜� (|���) |), which is bounded above by �˜ (�). To see why, observe
that the number of edges added to the bipartite graph constructed
by FlowEmbed will be bounded above by the number of diferent
directed fow paths, which by Lemma 2.1 is bounded above by
� (�) = � (�). Combining the edges from all � (log2 �) bipartite

˜graphs shows �˜ (|��� |) = � (�).
The overall runtime of our algorithm is dominated by the time

it takes to solve a maximum �-� fow in � (H , �, �). This overall
runtime is �˜ (� + (� + �)3/2) if using the algorithm of van den
Brand et al. [41]. The recent algorithm of Chen et al. [8] brings the
runtime down to �˜ (�1+� (1)), nearly linear in terms of the hyper-

graph size �. For comparison, the existing LP relaxation [20] and
SDP relaxation [31], which only apply to all-or-nothing hypergraphÍ
cuts, both involve Ω(�2 +�) variables and Ω(�3 + � ∈� |� |2) linear
constraints. When written in the form minAx=b c� x, the LP has Í
Ω(�3 + � ∈� |� |2) constraints and variables. Even recent break-
through theoretical results in LP solvers [12, 19] lead to runtimes
signifcantly worse than Ω(�6 + �3 Í

� |� |2 + �2).

C PRACTICAL IMPROVEMENTS
In practice we use a slightly altered version of the HyperFlowEm-

bed procedure that returns a bipartite graph �� that can be embed-

ded with congestion 1/� and a set � that has �-expansion equal to
� , rather than just a set � with �H(�, �) < 2� . To accomplish this,
we set � = �H(�, �) in the frst iteration and solve a maximum �-�
fow problem on � (H , �, �) to search for a set � with �-expansion
better than �H(�, �). In each iteration, we update � to equal the
�-expansion of the improved set found in the previous iteration,
until no more improvement is found. This iterative refnement ap-
proach is standard and typically used in practice by related ratio
cut improvement algorithms [35, 43, 47]. Although performing a
bisection method over � leads to better theoretical runtimes, in
practice it typically takes only a few iterations of cut improvement
before the iterative refnement procedure converges. Thus, this is
often faster in practice in addition to improving the approximation
guarantee by a factor 2.

704

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Graph flows
	2.2 General hypergraphs cuts and expansion
	2.3 Related work

	3 Hypergraph Expander Embeddings
	3.1 Hypergraph cut preservers
	3.2 Expander embeddings in hypergraphs

	4 Hypergraph Flow Embedding
	4.1 Maximum flows in an auxiliary graph
	4.2 The flow-embedding algorithm

	5 Hypergraph Ratio Cut Algorithms
	5.1 Expander building subroutines
	5.2 The approximation algorithm
	5.3 Practical improvements

	6 Experiments
	6.1 Comparison against convex relaxations
	6.2 Trivago hypergraphs and generalized cuts

	7 Discussion
	References
	A Proofs
	B Runtime Analysis
	C Practical Improvements

