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ABSTRACT 
Link prediction aims to identify potential missing triples in knowl-
edge graphs. To get better results, some recent studies have intro-
duced multimodal information to link prediction. However, these 
methods utilize multimodal information separately and neglect 
the complicated interaction between diferent modalities. In this 
paper, we aim at better modeling the inter-modality information 
and thus introduce a novel Interactive Multimodal Fusion (IMF) 
model to integrate knowledge from diferent modalities. To this 
end, we propose a two-stage multimodal fusion framework to pre-
serve modality-specifc knowledge as well as take advantage of the 
complementarity between diferent modalities. Instead of directly 
projecting diferent modalities into a unifed space, our multimodal 
fusion module limits the representations of diferent modalities 
independent while leverages bilinear pooling for fusion and in-
corporates contrastive learning as additional constraints. Further-
more, the decision fusion module delivers the learned weighted 
average over the predictions of all modalities to better incorpo-
rate the complementarity of diferent modalities. Our approach has 
been demonstrated to be efective through empirical evaluations on 
several real-world datasets. The implementation code is available 
online at https://github.com/HestiaSky/IMF-Pytorch. 
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1 INTRODUCTION 
Knowledge Graph (KG) stores rich knowledge and is essential for 
many real-world applications, such as question answering [14, 41, 
52], urban computing [46, 49] and recommendation systems [6, 
35, 36]. Typically, a KG consists of relational triples, which are 
represented as <head entity, relation, tail entity> [24]. Nevertheless, 
KGs are inevitably incomplete due to the complexity, diversity 
and mutability of knowledge. To fx this gap, the problem of link 
prediction is studied so as to predict potential missing triples [4]. 

Traditional link prediction models, including translation-
based [4, 38] and neural network methods [21, 23], sufered from 
the structural bias problem among triples. Recently, some stud-
ies [26, 28, 39] addressed this problem by enriching the dataset and 
proposing new models to capture multimodal information for link 
prediction. However, the performances of such studies were limited 
as they projected all modalities into a unifed space with the same 
relation to capture the commonality, which might fail to preserve 
specifc information in each modality. As a result, they could not 
efectively model the complicated interactions between modalities 
to capture the complementarity. 

To address the above issue, we incline to learn the knowledge 
comprehensively rather than separately, which is similar to how 
humans think. Take the scenario in Figure 1 as an example, such 
a model might also get the wrong prediction that LeBorn James 
playsFor Golden States Warriors based on the similarity with 
Stephen Curry of the common bornIn relation to Akron, Ohio in 
graph structure. Meanwhile, it is difcult for visual features to ex-
press fne-grained semantics and the only conclusion is that LeBorn 
James is a basketball player. Also, it might also make the outdated 
prediction of Cleveland Cavaliers due to ‘played’ in the second sen-
tence (more consistent with playsFor than ‘joined’ in the third 
sentence) in the textual description. Nevertheless, by integrating 
the knowledge, it is easy to get the correct answer Log Angeles 
Lakers with the interaction between complementary information 
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Figure 1: An example of link prediction which may be hard 
to predict without interaction of multimodal information. 

of structural, visual and textual highlighted in Figure 1. Since the 
knowledge learned from diferent modalities is diverse and complex, 
it is very challenging to efectively integrate multimodal informa-
tion. 

In this paper, we propose a novel Interactive Multimodal Fusion 
Model (IMF) for multimodal link prediction over knowledge graphs. 
IMF can learn the knowledge separately in each modality and jointly 
model the complicated interactions between diferent modalities 
with a two-stage fusion which is similar to the natural recognition 
process of human beings introduced above. In the multimodal fu-
sion stage, we employ a bilinear fusion mechanism to fully capture 
the complicated interactions between the multimodal features with 
contrastive learning. For the basic link prediction model, we uti-
lize the relation information as the context to rank the triples as 
predictions in each modality. In the fnal decision fusion stage, we 
integrate predictions from diferent modalities and make use of 
the complementary information to make the fnal prediction. The 
contributions of this paper are summarized as follows: 

• We propose a novel two-stage fusion model, IMF, that is efec-
tive in integrating complementary information of diferent 
modalities for link prediction. 

• We design an efective multimodal fusion module to capture 
bilinear interactions with contrastive learning for jointly 
modeling the commonality and complementarity. 

• We demonstrate the efectiveness and generalization of IMF 
with extensive experiments on four widely used datasets for 
multimodal link prediction. 

2 METHODOLOGY 
Formally, a knowledge graph is defned as G = ⟨E, R, T⟩, where 
E and R indicate sets of entities and relations, respectively. T = 
{(ℎ, �, �) |ℎ, � ∈ E, � ∈ R} represents relational triples of the KG. 
In multimodal KGs, each entity in KGs is represented by multi-
ple features from diferent modalities. Here, we defne the set of 
modalities K = {�, �, �,�} where �, �, �,� denote structural, visual, 
textual and multimodal modality, respectively. Due to the complex-
ity of real-world knowledge, it is almost impossible to take all the 
triples into account. Therefore, given a well-formulated KG, the 
Link Prediction task aims at predicting missing links between en-
tities. Specifcally, link prediction models expect to learn a score 
function of relational triples to estimate the likelihood of a triple, 
which is always formulated as � : E × R × E → R. 

2.1 Overall Architecture 
In order to fully exploit the complicated interaction between dif-
ferent modalities, we propose a two-stage fusion model instead 
of simply considering the multimodal information separately in a 
unifed vector space. As shown in Figure 2, IMF consists of four key 
components: 
1 The Modality-Specifc Encoders are used for extracting structural, 
visual and textual features as the input of multimodal fusion stage. 

2 The Multimodal Fusion Module, which is the frst fusion stage, 
efectively models bilinear interactions between diferent modal-
ities based on Tucker decomposition and contrastive learning. 

3 The Contextual Relational Model calculates the similarity of 
contextual entity representations to formulate triple scores as 
modality-specifc predictions for decision fusion stage. 

4 The Decision Fusion Module, which is the second fusion stage, 
takes all the similarity scores from structural, visual, textual and 
multimodal models into account to make the fnal prediction. 

2.2 Modality-Specifc Encoders 
In this subsection, we frst introduce the pre-trained encoders used 
for diferent modalities. These encoders are not fne-tuned during 
training and we treat them as fxed feature extractors to obtain the 
modality-specifc entity representations. Note that IMF is a general 
framework and it is straightforward to replace them with other 
up-to-date encoders or add ones for new modalities into IMF. 

2.2.1 Structural Encoder. From the most basic view, the struc-
tural information of KG, we employ a Graph Attention Network 
(GAT)1 [33] with TransE loss. 

Specifcally, our GAT encoder takes L1 distance of neighbor 
aggregated representations as energy function of triples, which is 
� (ℎ, �, �) = | |h + r − t| |. In the training process, we minimize the 
following Hinge loss (1): ∑ ∑ 

= max{0,L��� 
(ℎ,�,� ) ∈T (ℎ ′ ,� ,� ′ ) ∈T′ (1) 
� + � (ℎ, �, �) − � (ℎ ′ , �, � ′)} 

′where � is margin hyper-parameter and T denotes set of negative 
′triples derived from T . T is created by randomly replacing head 

1https://github.com/Diego999/pyGAT 
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Figure 2: Overall architecture of IMF. The left part represents diferent modality-specifc encoders to extract latent features and 
the multimodal fusion module to integrate multimodal representations. The right part represents the contextual relational 
model decoders to get the similarity score and the decision fusion module to make the fnal prediction on all modalities. 

or tail entities of triples in T , which is (2): 
′ ′ T = {(ℎ ′ , �, �) |ℎ ′ ∈ E\ℎ} ∪ {(ℎ, �, � ′) |� ∈ E\� } (2) 

2.2.2 Visual Encoder. Visual features are greatly expressive while 
providing diferent views of knowledge from traditional KGs. To 
efectively extract visual features, we utilize VGG162 pre-trained 
on ImageNet3 to get image embeddings of corresponding entities 
following [20]. Specifcally, we take outputs of the last hidden 
layer before softmax operation as visual features, which are 4096-
dimensional vectors. 

2.2.3 Textual Encoder. Entity descriptions contain much richer 
but more complex knowledge than pure KGs. To fully extract the 
complex knowledge, we employ BERT [11] as the textual encoder, 
which is very expressive to get description embeddings of corre-
sponding entities. The textual features are 768-dimensional vectors, 
i.e., pooled outputs of pre-trained BERT-Base model4. 

2.3 Multimodal Fusion 
The multimodal fusion stage aims to efectively get multimodal rep-
resentations, which fully capture the complex interactions between 
diferent modalities. Many existing multimodal fusion methods 
have achieved promising results in many tasks like VQA (Visual 
Question Answering). However, most of them aim at fnding the 
commonality to get more precise representations by modality pro-
jecting [9, 12] or cross-modal attention [25]. These types of methods 
will sufer from the loss of unique information in diferent modali-
ties and can not achieve sufcient interaction between modalities. 
2https://github.com/machrisaa/tensorfow-vgg 
3https://image-net.org/
4https://github.com/huggingface/transformers 

To this end, we propose to employ the bilinear models, which have 
a strong ability to realize full parameters interaction as the corner-
stone to perform the fusion of multimodal information. Specifcally, 
we extend the Tucker decomposition, which decomposes the tensor 
into a core tensor transformed by a matrix along with each mode 
to 4-mode factors as expressed in Equation (3): 

P = (((P� × M� ) × M� ) × M� ) × M� (3) 

where M� ∈ R�� ×�� , M� ∈ R�� ×�� , M� ∈ R�� ×�� , M� ∈ RD×�� 

∈ R�� ×�� ×�� ×�� denotes transformation matrix and P� denotes a 
smaller core tensor. 

In such a situation, entity embeddings are frst projected into 
a low-dimensional space and then fused with the core tensor P� . 
Following [3], we further reduce the computation complexity by 
decomposing the core tensor P� to merge representations of all 
modalities into a unifed space with element-wise product. The 
detailed calculation process is expressed as Equation (4): 

T T Te� = ẽ� M
� ∗ ẽ� M

� ∗ ẽ� M� (4)
� � � 

where ˜ = ReLU(e� M� ) ∈ R�� denotes latent representations e� 
and e� ∈ R�� is the original embedding representations and M� ∈

� 
R�� ×�� is decomposed transformation matrix for each modality 
� ∈ {�, �, � }. 

However, the multimodal bilinear fusion has no bound limitation 
while the gradient produced by the fnal prediction result can only 
implicitly guide parameter learning. To alleviate this problem, we 
add constraints to limit the correlation between diferent modality 
representations of the same entity to be stronger. Therefore, we 
further leverage contrastive learning [7, 16, 42] between diferent 
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Figure 3: Example of multimodal contrastive learning. The 
distance between the representations of the same entity in 
diferent modalities is minimized, while the distance between 
the representations of diferent entities is maximized. 

entities and modalities as an additional learning objective for regu-
larization. In the settings of contrastive learning, we take the pairs 
of representations of the same entity of diferent modalities as pos-
itive samples and the pairs of representations of diferent entities 
as negative samples. As shown in Figure 3, we aim at limiting the 
distance of negative samples to be larger than positive samples to 
enhance multimodal fusion, which is: 

� (� (�), � (�+)) << � (� (�), � (� −)) (5) 

where � (·, ·) denotes the distance measure and � (·) denotes the 
embedding function. The superscript +, − represent the positive 
and negative samples, respectively. 

Specifcally, we randomly sample � entities from the entity set 
as a minibatch and defne contrastive learning loss upon it. The pos-
itive pairs are naturally obtained with the same entities while the 
negative pairs are constructed by negative sharing [8] of all other en-
tities. We take the latent representations ˜ = ReLU(e� M� ) ∈ R�� e� 

Tand leverage cosine similarity � (�, �) = −u v/| |u| |v| | as distance 
measure. Then we have the following contrastive loss function for 
each entity �: 

� ∑ ∑1 � � � � L��� = � (� , � ) − � (� , � ) + 2 (6)
� � � � 3� 

�,� ∈M � =1 

where M = {(�, �), (�, �), (�, �)} is set of modality pairs. 

2.4 Contextual Relational Model 
After obtaining representations of each modality and multimodal, 
we then design a contextual relational model, which takes relations 
in triples as contextual information for scoring, to get the predic-
tions. Note that this relational model can be easily replaced by any 
scoring function like TransE. 

Due to the variety and complexity of relations in KGs, we argue 
that improving the degree of parameter interaction [32] is crucial 

for better modeling the relational triples. The degree of parame-
ter interaction means the calculation ratio of each parameter to 
all other parameters. For example, dot product could achieve 1/� 
degree while cross product could achieve (� − 1)/� degree. Based 
on this assumption, we propose to use bilinear outer product be-
tween entity and relation embeddings to incorporate contextual 
information into entity representations. Instead of taking relations 
as input as in previous studies, our contextual relational model 
utilizes relations to provide context in the transformation matrix 
of entity embeddings. Then, entity embeddings are projected using 
the contextual transformation matrix to get contextual embeddings, 
which are used for calculating similarity with all candidate entities. 
The learning objective is to minimize the binary cross-entropy loss. 
For each modality � ∈ K , the computation details are shown as 
Equation (7) to Equation (9): 

TW� Tˆ = e + b = e (7)e� � � � W� r + b� 

· ˆe� e� y� = � (cosine(e� , ê� )) = � ( ) (8)|e� | |ê� |∑ 
L� = − 

1 � 

(�� · log(��,� ) + (1 − �� ) · log(1 − ��,� )) (9)
� 

�=1 

where e� and ê� are original and contextual entity embeddings 
respectively; W� = W� r denotes contextual transformation matrix 

�
which is obtained by matrix multiplication of weight matrix W� 
and relation vectors r while b� is a bias vector; � is sigmoid function 
and y� = [�1,� , �2,� , ..., �� ,� ] is fnal prediction of modality � . 

2.5 Decision Fusion 
Existing multimodal approaches mainly focus on projecting difer-
ent modality representations into a unifed space and predicting 
with commonality between modalities, which will fail to preserve 
the modality-specifc knowledge. We alleviate this problem in the 
decision fusion stage by joint learning and combining predictions 
of diferent modalities to further leverage the complementarity. 

Under the multimodal settings, we assign diferent contextual 
relational models for each modality and utilize their own results for 
training in diferent views. Recall the contrastive learning loss in 
Equation (6), the overall training objective is to minimize the joint 
loss shown in Equation (10): 

L� ���� = �� L� + �� L� + �� L� + �� L� + L�� (10) 

where L� denotes binary cross entropy loss for modality � as 
Equation (9) and �� is a learned weight parameter. 

To better illustrate the whole training process of IMF, we describe 
it via the pseudo-code of the optimization algorithm. As shown in 
Algorithm 1, we frst obtain the pre-trained encoders of structural, 
visual and textual and utilize them for entity embeddings (line 3-5). 
Since the pre-trained models are much larger and more complex 
than IMF, they are not fne-tuned and their outputs are directly 
used as inputs of IMF. The multimodal embeddings are obtained by 
multimodal fusion while contrastive learning is applied to further 
enhance the fusion stage (line 9-11). During training, each modality 
delivers its own prediction and loss via the modality-specifc scorers 
(line 12), and then the joint prediction and loss are computed based 
on all modalities including multimodal ones (line 14). 
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Algorithm 1 Optimization Algorithm. 
1: Input: Multimodal Knowledge Graph G 
2: Output: Trained Model M 
3: Pre-train structural encoder GAT on G with the loss in Equa-

tion(1) 
4: Obtain pre-trained visual encoder VGG16 and textual encoder 

BERT-base 
5: Initialize the entity embeddings E� , E�, E� in M with the out-

puts of pre-trained encoders 
6: while not converge do 
7: Sample a batch of entities from G 
8: for Entity � in batch do 
9: Obtain the structural, visual, textual embeddings e� , e�, e� 

of entity � 
10: Compute the multimodal fused embeddings e� of entity 

� with Equation (4) 
11: Compute the contrastive learning loss L�� with Equation 

(6) 
12: Compute the loss L� , L�, L� , L� with modality-specifc 

scorers via Equation (7) - Equation (9) 
13: Compute the joint loss L� ���� with the above losses 

L� , L�, L� , L�, L�� via Equation (10) 
14: Update model parameters of M by minimizing L� ���� 
15: end for 
16: end while 
17: return M 

For inference, we propose to jointly consider the predictions of 
each modality as well as multimodal ones. Specifcally, the overall 
predictions are shown in Equation (11): 

�� y� + �� y� + �� y� + ��y� y� ���� = (11)
�� + �� + �� + �� 

where �� denotes weight for modality � as same as Equation (10) 
while the values in y are in [0, 1]. 

3 EXPERIMENTAL SETUP 

3.1 Datasets 
In this paper, we use four public datasets to evaluate our model. 
All the datasets consist of three modalities: structural triples, en-
tity images and entity descriptions. DB15K, FB15K and YAGO15K 
datasets are obtained from MMKG5 [20], which is a collection of 
multimodal knowledge graph. Specifcally, we utilize the relational 
triples as structural features, entity images as visual features and 
we extract the entity descriptions from Wikidata [34] as textual fea-
tures. FB15K-2376 [31] is a subset of FB15K, the visual and textual 
features in FB15K can be directly reused. Each dataset is split with 
70%, 10% and 20% for training, validation and test. The detailed 
statistics are shown in Table 1. 

In the process of evaluation, we consider four metrics of valid 
entities to measure the model performance following previous stud-
ies: (1) mean rank (MR); (2) mean reciprocal rank (MRR); (3) hits 
ratio (Hits@1 and Hits@10). 

5https://github.com/nle-ml
6https://www.microsoft.com/en-us/download/details.aspx?id=52312 
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Datasets #Ent. #Rel. #Train #Valid #Test 

DB15K 
FB15K 

YAGO15K 
FB15K-237 

14,777 
14,951 
15,283 
14,541 

279 
1,345 
32 
237 

69,319 
414,549 
86,020 
272,115 

9,903 
59,221 
12,289 
17,535 

19,806 
118,443 
24,577 
20,466 

Table 1: Statistics of datasets. 

3.2 Baselines 
To demonstrate the efectiveness of our model, we choose two types 
of methods for comparison, which are monomodal methods and 
multimodal methods. 

For monomodal models, we take the baselines including: 
• TransE [4] defnes relations as transformations between entities 
and designs an energy function of relational triples as scoring 
function. 

• ConvE [10] converts 1D entity and relation embeddings into 2D 
embeddings and utilizes Convolutional Neural Network (CNN) 
to model the interactions between entities and relations. 

• ConvKB [23] employs CNN on the concatenated embeddings of 
relational triples to compute the triple scores. 

• CapsE [22] utilizes Capsule Network [27] to capture the complex 
interactions between entities and relations for prediction. 

• RotatE [29] introduces rotation operations between entities to 
represent relations in the complex space to infer symmetry, anti-
symmetry, inversion and composition relation patterns. 

• QuatE [43] extends rotation of the knowledge graph embeddings 
in the complex space into the quaternion space to obtain more 
degree of freedom. 

• KBAT [21] leverages Graph Attention Network (GAT) [33] as 
encoder to aggregate neighbors and employs ConvKB as decoder 
to compute triple scores. 

• TuckER [1] applies Tucker decomposition to capture the high-
level interactions between entity and relation embeddings. 

• HAKE [45] projects entities into polar coordinate system to 
model hierachical structures for incorporating semantics. 
For multimodal models, we take the baselines including: 

• IKRL [39] utilizes the TransE energy function as scoring function 
on each pair of modalities for joint prediction. 

• MKGC [28] extends IKRL with combination of diferent modali-
ties to explicitly deliver alignment between modalities. 

• MKBE [26] employs DistMult [40] as scoring function and de-
signs Generative Adversarial Network (GAN) [13] to predict 
missing modalities. 
For the ablation study, we design three variants of IMF: IMF 

(w/o MF) utilizes only structural information; IMF (w/o DF) simply 
takes multimodal representations for training and inference without 
decision fusion; IMF (w/o CL) removes the contrastive learning loss. 

3.3 Implementation Details 
The experiments are implemented on the server with an Intel Xeon 
E5-2640 CPU, a 188GB RAM and four NVIDIA GeForce RTX 2080Ti 
GPUs using PyTorch 1.6.0. The model parameters are initialized 
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DB15K FB15K YAGO15K 
MR MRR H@1 H@10 MR MRR H@1 H@10 MR MRR H@1 H@10 

TransE 1128 0.256 13.7 46.9 108 0.495 43.7 77.4 971 0.161 5.1 38.4 
ConvE 729 0.312 21.9 50.7 64 0.745 67.0 87.3 714 0.267 16.8 42.6 
TuckER 693 0.341 24.3 53.8 40 0.795 74.1 89.2 689 0.281 18.3 45.7 

IKRL 984 0.222 11.1 42.6 83 0.594 48.4 76.8 854 0.139 4.8 31.7 
MKGC 981 0.208 10.8 41.9 79 0.601 49.2 77.1 939 0.129 4.1 29.7 
MKBE 747 0.332 23.5 51.3 48 0.783 70.4 87.8 633 0.273 17.5 42.3 

IMF (w/o MF) 687 0.319 21.8 51.2 62 0.752 69.2 86.6 764 0.213 11.4 35.3 
IMF (w/o DF) 541 0.443 38.1 57.3 51 0.791 73.9 90.1 527 0.297 21.3 46.3 
IMF (w/o CL) 483 0.481 42.3 59.9 29 0.833 78.1 90.8 501 0.289 20.5 45.9 

IMF 478* 0.485* 42.7* 60.4* 27* 0.837* 78.5* 91.4* 488* 0.345* 27.6* 49.0* 

Table 2: Evaluation results on multimodal DB15K, FB15K and YAGO15K datasets from MMKG. “*” indicates the statistically 
signifcant improvements (i.e., two-sided t-test with � < 0.05) over the best baseline. 

with Xavier initialization and are optimized using Adam [15] opti-
mizer. The evaluation is conducted under the RONDOM settings [30], 
where the correct triples are placed randomly in test set and the 
negative sampling are correctly employed without test leakage. 

For DB15K, FB15K and YAGO15K, we obtain the results by run-
ning all the baselines with their released codes. For FB15K-237, 
we directly obtain the results of TransE, ConvE, ConvKB, CapsE, 
RotatE, KBAT and TuckER from the re-evaluation work [30] and 
run the models of QuatE, HAKE, IKRL, MKGC and MKBE with 
their released codes. 

Note that the methods with other enhancing techniques, such 
as data augmentation [2, 17, 50, 51] or AutoML [18, 37, 44, 47, 48] 
are orthogonal to our approach for comparison. 

4 EXPERIMENTAL RESULTS 

4.1 Overall Performance 
As shown in Table 2 and Table 3, we can observe that: 

• IMF signifcantly outperforms all the baselines. The performance 
gain is at most 42% for MRR on DB15K while is also more than 
20% for all the evaluation metrics on average. 

• State-of-the-art monomodal methods employ a variety of com-
plex models to improve the expressiveness and capture latent 
interactions. However, the results illustrate that the performance 
is highly limited by the structural bias of the nature of knowl-
edge graph itself. Although these methods have already achieved 
promising results, IMF can easily outperform them by a signif-
cant margin with a much simpler model structure, which amply 
demonstrates the efectiveness. 

• In comparison with multimodal methods that treat the features of 
diferent modalities separately, our IMF jointly learning from dif-
ferent modalities with the two-stage fusion, which is benefcial in 
modeling the commonality and complementarity simultaneously. 

Overall, our proposed IMF can model more comprehensive inter-
actions between diferent modalities with both commonality and 
complementarity thanks to the efective fusion of multimodal infor-
mation and thus achieve signifcant improvement of link prediction 
on KGs. 

FB15K-237 
MR MRR H@1 H@10 

TransE 357 0.294 - 46.5 
ConvE 244 0.325 23.7 50.1 
ConvKB 309 0.243 - 42.1 
CapsE 403 0.150 - 35.6 
RotatE 177 0.338 24.1 53.3 
QuatE 176 0.311 22.1 49.5 
KBAT 223 0.232 13.6 42.8 
TuckER 162 0.353 26.1 53.6 
HAKE - 0.346 25.0 54.2 

IKRL 193 0.309 23.2 49.3 
MKGC 187 0.297 22.9 49.4 
MKBE 158 0.347 25.8 53.2 

IMF (w/o MF) 188 0.324 23.4 51.8 
IMF (w/o DF) 149 0.356 26.5 55.7 
IMF (w/o CL) 138 0.371 27.8 57.1 

IMF 134* 0.389* 28.7* 59.3* 

Table 3: Evaluation results on FB15K-237. “*” indicates the 
statistically signifcant improvements (i.e., two-sided t-test 
with � < 0.05) over the best baseline. 

4.2 Ablation Study 
Table 4 shows the evaluation results of leveraging diferent modality 
information on FB15K-237, where � denotes structural information; 
� denotes visual information of images and � denotes textual in-
formation of descriptions. We can see that by introducing visual or 
textual information, the performance is signifcantly improved. The 
signifcant performance gain brought by multimodal fusion module 
not only demonstrates the efectiveness of our approach, but also 
indicates the potential of integrating multimodal information in 
KG. 

To verify the efectiveness of decision fusion, we choose a case of 
<LeBron James, playsFor > and visualize the prediction scores of 
each modality as Figure 4 shows. Due to biases in each modality, the 
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Figure 4: Visualization of prediction scores in decision fusion. 

FB15K-237 
MR MRR H@1 H@10 

S 188 0.324 23.4 51.8 
S+V 143 0.367 27.4 55.4 
S+T 139 0.374 28.1 58.6 

S+V+T 134 0.389 28.7 59.3 

Table 4: Evaluation results with diferent modality combina-
tions on FB15K-237. 

prediction of monomodal is inevitable error-prone. The results in 
Table 2 and Table 3 also demonstrate the efectiveness of applying 
decision fusion to ensemble the specifc latent features of each 
modality. 

Besides, the performance comparison between IMF (w/o CL) and 
IMF in Table 2 and Table 3 illustrates the necessity of contrastive 
learning for more robust results, especially in the scenario with 
fewer training samples and relation types. 

From the results shown above, we can see that each component 
in our propose IMF has a signifcant contribution to the overall 
performance and it is benefcial to capture the commonality and 
complementarity between diferent modalities. 

4.3 Generalization 
In order to evaluate the generalization of our proposed approach, 
we simply replace the scoring function (contextual relational model) 
with existing methods such as TransE, ConvE and TuckER. The 
results in Figure 5 illustrate that our proposed framework of two-
stage fusion is general enough to be applied to any link prediction 
model for further improvement. 

4.4 Parameter Analysis 
Figure 6 shows the performance infuence of embedding size for 
IMF. From the picture, we can see that the embedding size plays an 
important role in the model performance. Meanwhile, it is worthy 
of note that a larger embedding size not always results in better per-
formance due to the overftting problem, especially in the datasets 
with fewer relation types like YAGO15K. Considering the perfor-
mance and the efciency, the best choices of embedding size for 
these three datasets are 256, 256 and 128, respectively. 

Figure 5: MRR (%) improvement of diferent basic models on 
FB15K-237 with IMF. 

4.5 Case Study 
In order to illustrate the efectiveness of our IMF model in a more 
intuitive way, we apply t-SNE to reduce dimension and visualize 
the contextual entity representations of basketball players in fve 
diferent basketball teams. We can see in Figure 7 that the repre-
sentations of basketball players are messed up with monomodal 
information due to the biases. However, with the help of interac-
tive multimodal fusion, IMF can efectively capture complicated 
interactions between diferent modalities. 

5 RELATED WORK 

5.1 Knowledge Embedding Methods 
Knowledge embedding methods have been widely used in graph 
representation learning tasks and have achieved great success on 
knowledge base completion (a.k.a link prediction). Translation-
based methods aim at fnding the transformation relationships from 
source to target. TransE [4], the most representative translation-
based model, projects entities and relations into a unifed vector 
space and minimizes the energy function of triples. Following this 
route, many translation-based methods have emerged. TransH [38] 
formulates the translating process on relation-specifc hyperplanes. 
TransR [19] projects entities and relations into separate spaces. 
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Figure 6: Performance infuence of diferent embedding size. 

Figure 7: Visualization of low-dimensional representations for basketball players under the context playsFor. Each colored 
node denotes a basketball player and the diferent colors denote fve basketball teams. 

Recently, some neural network methods have shown promising 
results in this task. ConvE [10] and ConvKB [23] utilize Convolu-
tional Neural Network (CNN) to increase parameter interaction 
between entities and relations. KBAT [21] employ Graph Neural 
Networks (GNN) as the encoder to aggregate multi-hop neighbor-
hood information. 

However, all these methods above utilize only structural informa-
tion, which is not sufcient for more complicated situations in real 
world. By incorporating multimodal information in the training 
process, our approach is able to improve the representations with 
external knowledge. 

5.2 Multimodal Methods 
Leveraging multimodal information has yielded extraordinary re-
sults in many NLP tasks [3]. DeViSE [12] and Imagined [9] pro-
pose to integrate multimodal information with modality projecting 
which learns a mapping from one modality to another. FiLM [25] ex-
tends cross-modal attention mechanism to extract textual-attentive 
features in visual models. MuRel [5] utilizes pair-wise bilinear inter-
action between modalities and regions to fully capture the comple-
mentarity. IKRL [39] is the frst attempt at multimodal knowledge 
representation learning, which utilizes image data of the entities 
as extra information based on TransE. MKGC [28] combines tex-
tual and visual features extracted by domain-specifc models as 
additional multimodal information compared to IKRL. MKBE [26] 
creates multimodal knowledge graphs by adding images, descrip-
tions and attributes, and employs DistMult [40] as scoring function. 

Although these approaches did incorporate multimodal informa-
tion to improve performance, they cannot take full advantage of it 
as they fail to efectively model interactions between modalities. 

6 CONCLUSION 
In this paper, we study the problem of link prediction over mul-
timodal knowledge graphs. Specifcally, we aim at improving the 
interaction between diferent modalities. To reach this goal, we 
propose the IMF with a two-stage framework to enable efective 
fusion of multimodal information by (i) utilizing bilinear fusion to 
fully capture the complementarity between diferent modalities and 
contrastive learning to enhance the correlation between diferent 
modalities of the same entity to be stronger; and (ii) employing 
an ensembled loss function to jointly consider the predictions of 
multimodal representations. Experimental results on several bench-
marking datasets demonstrate the efectiveness of our proposed 
model. Besides, we also conduct in-depth exploration to illustrate 
the generalization of our proposed method and the potential op-
portunity to apply it in real applications. 

However, there are still some limitations of IMF, which are left 
to future works. For example, IMF requires the integrity of all the 
modalities and an additional component to predict the missing 
modalities may be useful to tackle this limitation. Besides, design-
ing appropriate components to support more diferent kinds of 
modalities or propose a more lightweight fusion model to replace 
the bilinear model for better efciency is also feasible. 
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