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ABSTRACT
Knowledge tracing (KT) is the problem of predicting students’

future performance based on their historical interactions with

intelligent tutoring systems. Recent studies have applied multiple

types of deep neural networks to solve the KT problem. However,

there are two important factors in real-world educational data

that are not well represented. First, most existing works augment

input representations with the co-occurrence matrix of questions

and knowledge components
1
(KCs) but fail to explicitly integrate

such intrinsic relations into the final response prediction task.

Second, the individualized historical performance of students

has not been well captured. In this paper, we proposed AT-
DKT to improve the prediction performance of the original deep

knowledge tracing model with two auxiliary learning tasks, i.e.,

question tagging (QT) prediction task and individualized prior
knowledge (IK) prediction task. Specifically, the QT task helps

learn better question representations by predicting whether

questions contain specific KCs. The IK task captures students’

global historical performance by progressively predicting student-

level prior knowledge that is hidden in students’ historical

∗
The corresponding author: Qiongqiong Liu.

1
A KC is a generalization of everyday terms like concept, principle, fact, or skill.
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learning interactions. We conduct comprehensive experiments on

three real-world educational datasets and compare the proposed

approach to both deep sequential KT models and non-sequential

models. Experimental results show that AT-DKT outperforms all

sequential models with more than 0.9% improvements of AUC

for all datasets, and is almost the second best compared to non-

sequential models. Furthermore, we conduct both ablation studies

and quantitative analysis to show the effectiveness of auxiliary tasks

and the superior prediction outcomes of AT-DKT. To encourage

reproducible research, wemake our data and code publicly available

at https://github.com/pykt-team/pykt-toolkit
2
.
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1 INTRODUCTION
Knowledge tracing (KT) is a sequential prediction task that aims

to predict the outcomes of students over questions by modeling

their mastery of knowledge, i.e., knowledge states, as they interact

2
We merged our model to the pyKT benchmark at https://pykt.org/.
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Figure 1: KT illustration and a toy example of the individualization effect. 𝑟𝑐𝑖 , 𝑟𝑐 and 𝑟𝑞 represent the individualized historical
scoring rates for KC 𝑐𝑖 , all KCs, and all questions respectively.“
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” denote the question is answered correctly and
incorrectly and “
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” denotes the student doesn’t get chance to answer the question.

with learning platforms such as massive open online courses and

intelligent tutoring systems, as shown in Figure 1. Solving the

KT problems may help teachers better detect students that need

further attention, or recommend personalized learning materials to

students.

The KT related research has been studied since the 1990s when

Corbett and Anderson, to the best of our knowledge, were the

first to estimate students’ current knowledge with regard to each

individual knowledge component (KC) [7]. A KC is a description

of a mental structure or process that a learner uses, alone or in

combination with other KCs, to accomplish steps in a task or a

problem
1
. Since then, many attempts have been made to solve the

KT problem, such as probabilistic graphical models [10] and factor

analysis based models [3, 11, 31].

Recently, with the rapid development of deep neural networks,

many deep learning based knowledge tracing (DLKT) models are

developed, such as auto-regressive based deep sequential KTmodels

[4, 5, 9, 16, 23, 39], memory-augmented KT models [1, 38, 41],

attention based KT models [6, 8, 20, 21, 24], and graph based KT

models [19, 32, 37]. Besides model variations in terms of neural

architectures, a large spectrum of DLKT models are designed to

incorporate as much as possible learning related information to

augment its prediction ability. Such supplemental information

includes question texts [13, 34], question similarities [14, 35],

question difficulties [8, 14, 25], and relations between questions

and KCs [14, 21, 32, 37].

Although the aforementioned DLKT approaches have

constituted new paradigms of the KT problem and achieved

promising results, two important factors in real-world educational

data are not well represented. First, existing explorations of

modeling the intrinsic relations between questions and KCs and

building accurate student answer predictors are loosely connected.

Previous approaches tend to learn relation enhanced embeddings

from graphs involving questions, KCs and students and then

augment the initial model input with the learned representations

[14, 21, 32, 37]. Unfortunately, such a graph is extremely sparse in

real-world data. For example, Table 1 shows basic data statistics

of three widely used KT benchmark datasets. The majority of

questions are only associated with 1 or 2 KCs and the average

numbers of KC per question are 1.3634, 1.0136, and 1.0148 for the

above datasets. Furthermore, due to the fact that such associations

are manually annotated, mislabeled relations are inevitable and the

Table 1: Data statistics of three widely used KT datasets
containing both question and KC information. The details
of the AL2005, BD2006, NIPS34 datasets are described in
Section 5.1. “avg/p50/p90/p95/p99 KCs per Qs” denote the
average/median/90th/95th/99th percentile numbers of KCs
per question.

AL2005 BD2006 NIPS34

# of interactions 607,021 1,817,458 1,382,678

# of students 574 1,145 4,918

# of questions 173,113 129,263 948

# of KCs 112 493 57

avg KCs per Qs 1.3634 1.0136 1.0148

p50 KCs per Qs 1 1 1

p90 KCs per Qs 2 1 1

p95 KCs per Qs 2 1 1

p99 KCs per Qs 3 2 2

corresponding errors might be easily propagated in the learning

process of graph based DLKT models [34].

Second, many existing DLKT models assess knowledge states

without explicitly capturing the student-level variability, i.e.,

individualization, such as different knowledge acquisition abilities

and learning rates. Modeling such student-level individualization

could benefit the KT model’s statistical goodness of fit, as well as

potentially improve the generalization of the KT model [22, 27, 40].

Figure 1 shows a toy example that illustrates the individualization

effects on the KT prediction tasks, where 3 students have answered 5

questions related to 4 KCs. As we can see from Figure 1, even though

student 𝑆1 and student 𝑆2 have the same historical scoring rate at

the question level
3
, their knowledge mastery levels (eg. scoring

rate per KC.) differ a lot. Meanwhile, student 𝑆1 and student 𝑆3
have the same scoring rate per KC, but their question-level and

KC-level historical ratings are quite different. Unfortunately, such

individualization information of different students is not given in

advance, which makes it very challenging to measure them.

In this paper we develop solutions that are applicable and can

learn KT models from real-world educational contexts. Our work

focuses on the refinements of a popular DLKT model: the Deep

3
The scoring rate is a fraction of the number of times one student correctly answers

questions or KCs divided by the total number of times that the student practices such

questions or KCs.
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Knowledge Tracing (DKT) [23] and its application to student

assessment. We aim to develop an algorithm to automatically learn

a DKT that performs better student assessment by addressing the

aforementioned two challenges.

Briefly, the DKT is one of the most widely used models of using

deep neural networks to capture student interaction dynamics in

the KT domain [5, 9, 16, 39]. This is due to its relative simplicity,

mathematically accurate prediction behavior, and the fact that it

still leads the leaderboard across 7 popular datasets across different

education domains according to a recent DLKT benchmarking

report [15]. The DKT is Markovian and assumes the dynamic

knowledge states of the student are captured well using a small

set of real-valued hidden-state variables. The DKT can be learned

from observational interaction data with any gradient descent

optimization algorithms.

In this work, we address the above issues by introducing two

auxiliary learning tasks including:

• Question tagging (QT) prediction task: automatically

predicting whether questions contain specific KCs.

• Individualized prior knowledge (IK) prediction task:
progressively predicting student-level prior knowledge that

is hidden in students’ historical learning interactions.

Our approach builds upon the original auto-regressive DKT

architecture, and augments its original cross-entropy objective

function that optimizes the probabilities that a student can correctly

answer questions with two auxiliary tasks. In the QT task, we use a

Transformer encoder with a masked attention mechanism to extract

contextual similar question-level information that is relevant to

the exercise to be answered and assign KCs to each question. In

the IK task, at each time step, we use a student ability network

to measure individualized historical performance considering all

the previous questions and responses for each student. To ensure

that our approach can be fairly comparable with other recently

developed DLKT models, we choose to follow a publicly available

standardized KT task evaluation protocol [15]. We conduct rigorous

experiments on three public datasets and the results show that our

auxiliary task enhanced DKTmodel, i.e., AT-DKT, is able to improve

the “simple but tough-to-beat” DKT model in terms of AUC by at

least 0.9%.

2 RELATEDWORK
A large spectrum of approaches has been developed to enhance the

original objective function that predicts students’ next interaction

performance via explicitly adding either regularization penalties

or auxiliary learning tasks
4
. For example, Sonkar et al. [28] used a

Laplacian regularizer to incorporate the assumption that the success

probabilities of multiple questions are associated with the same KC

should not be significantly different for a given learner. Chen et al.

[5] proposed to restrict the model learning under the prerequisite

KC ordering pair constraints. Yeung and Yeung [39] developed

three regularization terms to address the reconstruction and wavy

transition problems in the original DKT model. Zhang et al. [42]

added regularization terms about question difficulty level to restrict

question representations to fine-tuning. Wang et al. [35] designed

4
Broadly speaking, the regularization penalty terms can also be viewed as a part of

auxiliary tasks.

an auxiliary task to model the hierarchical relations between KCs

and questions. Guo et al. [9] constructed adversarial examples

to improve the generalization of the original DKT model with

extra adversarial perturbation loss. For KT tasks on multiple choice

questions, An et al. [2] proposed a multi-task learning framework

to predict both the student’s correctness and option choice for a

given question.

3 PROBLEM STATEMENT
Our objective is given an arbitrary question 𝑞∗ to predict the

probability of whether a student will answer 𝑞∗ correctly or

not based on the student’s historical interaction data. More

specifically, for each student S, we assume that we have observed

a chronologically ordered collection of 𝑇 past interactions i.e.,

S = {s𝑗 }𝑇𝑗=1. Each interaction is represented as a 4-tuple s, i.e.,

s =< 𝑞, {𝑐}, 𝑟 , 𝑡 >, where 𝑞, {𝑐}, 𝑟 , 𝑡 represent the specific question,
the associated KC set, the binary valued student response, and

student’s response time step respectively. The response is a binary

valued indicator variable where 1 represents the student correctly

answered the question, and 0 otherwise. We would like to estimate

the probability 𝑟∗ of the student’s performance on the arbitrary

question 𝑞∗.

4 ENHANCING DEEP KNOWLEDGE
TRACINGWITH AUXILIARY TASKS

4.1 Notation
In real-world educational scenarios, the question bank is usually

much bigger than the set of KCs. For example, the number of

questions is more than 1500 times larger than the number of KCs in

the AL2005 dataset
5
. Following the recommended suggestions by

[8, 15, 23], we train the DLKT models on KC-response data, which

is artificially generated from question-response data by expanding

each question-level interaction into multiple KC-level interactions

when the question is associated with a set of KCs. Notations are

based on this expanded KC-response data in the rest of the paper.

LetX = {x𝑡 }𝑇
′

𝑡=1 be the expanded student’s historical interaction

sequence at the KC level, where 𝑇 ′
is the length of the interaction

sequence. Let x𝑡 , q𝑡 and c𝑡 represent the 𝑑-dimensional dense

interaction, question, KC embeddings at time step t, i.e., x𝑡 , q𝑡 , c𝑡 ∈
R𝑑×1. Let𝑀 and 𝑁 be the total number of questions and KCs. Let

⊕, I(·) 𝑅𝑒𝐿𝑈 (·) and 𝜎 (·) be the element-wise addition operation,

indicator function, rectified linear unit activation function and the

element-wise sigmoid function.

4.2 Deep Knowledge Tracing
The DKT model predicts students’ future performance by using an

auto-regressive neural architecture to capture the evolving changes

of students’ knowledge states [23]. In DKT, each interaction x𝑡
is generated by a response encoder that encodes both the KC

and response related information at time step 𝑡 . Then, it uses a

recurrent neural network to obtain a 𝑑-dimensional hidden state

h𝑡 to represent the current knowledge state and uses a linear feed

forward network layer to output the estimated levels of knowledge

mastery r̂𝑡 , i.e.,

5
Details about the AL2005 dataset is described in Section 5.1.
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x𝑡 = W0e𝑡 ; h𝑡 = LSTM(h𝑡−1, x𝑡 ); r̂𝑡 = 𝜎 (W1h𝑡 + b1)

whereW0,W1 and b1 are learnable parameters andW0 ∈ R2𝑁×𝑑
,

W1 ∈ R𝑁×𝑑
, b1 ∈ R𝑁×1

. e𝑡 is the one-hot encoding of the raw

input representation, i.e., e𝑡 ∈ {0, 1}2𝑁 , and 𝑒𝑘𝑡 = 1 if the answer is

wrong and 𝑒𝑘+𝑁𝑡 = 1 if the answer is correct. 𝑘 represents the KC

index at time step 𝑡 .

4.3 The AT-DKT Framework
In this section, we present theAT-DKT framework overview (shown

in Figure 2) that improves the original DKT model with two

auxiliary learning tasks. In Figure 2, we outline the key components

of the original DKTmodel with dash lines and visualize the auxiliary

tasks enhanced components in AT-DKT with solid lines. In the

AT-DKT framework, we explicitly incorporate the additional QT

and IK prediction tasks together with the original KT predictor to

better student assessment. The QT task focuses on predicting the

assigned KCs to the questions by modeling the intrinsic relations

among the questions and KCs with students’ previous learning

outcomes and the IK task aims to estimate the individualized

historical performance of each student according to their learning

processes.

LSTM

Response Encoder
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Figure 2: The overview of the proposed AT-DKT framework.

4.4 Question Tagging Prediction Task
Different from previous graph based DLKT approaches that first

learn representations of questions and KCs from their relation graph

and then concatenate the learned embeddings as part of the model

input, we improve the representation discriminative ability by

explicitly using the intermediate representations to predict whether

a KC is associated with the question at each time step. Specifically,

we construct the initial question representation a𝑡 by combining

both the question and KC embedding, i.e., a𝑡 = q𝑡 + c𝑡 . Then, based
on each student’s learning history, we use a Transformer based

question encoder with a masked dot production attention function

to capture the long-term contextual dependencies of both questions

and KCs within the student learning history. This operation not

only models the temporal recency effects during student learning

[42] but tries to find latent connections among questions and KCs.

To assess the relevance between current representation a𝑡 at
time step 𝑡 and previously answered questions a𝑖 , we compute

the relevant coefficients 𝛼𝑖𝑡 by taking the Softmax activation

of the masked dot product between a𝑡 and a𝑖 , i.e., 𝛼𝑖𝑡 =

Softmax(a𝑖 · a𝑡 ), 𝑖 = 1, · · · , 𝑡 . These relevant coefficients are

used as attention scores in the standard multi-head Transformer

encoders to obtain the enhanced question representation z𝑡 , i.e.,
z𝑡 = MultiHeadTransformer({a𝑖 }𝑡𝑖=1).

To further conduct the QT task, we design a relation network

first to extract the representation of the question and KCwith a fully

connected neural layer and then project it into the KC space via non-

linear transformation. We use the output of the relation network

for the QT prediction. The predicted result of KC membership for

the specific question at time step 𝑡 is computed as follows:

ĉ𝑡 = 𝜎

(
W𝑐

2 · ReLU(W𝑐
1 · z𝑡 + b𝑐1) + b𝑐2

)
where W𝑐

1, W
𝑐
2, b

𝑐
1 and b𝑐2 are trainable parameters and W𝑐

1 ∈
R𝑑/2×𝑑 ,W𝑐

2 ∈ R𝑁×𝑑/2
, b𝑐1 ∈ R𝑑/2×1, b𝑐2 ∈ R𝑁×1

.

The QT prediction task is optimized by minimizing the binary

cross-entropy loss between the ground-truth KC tag 𝑐𝑡 and the

prediction result 𝑐𝑡 of the question 𝑞𝑡 :

L
QT

=
∑︁

− (𝑐𝑡 log 𝑐𝑡 + (1 − 𝑐𝑡 ) log (1 − 𝑐𝑡 ))

4.5 Individualized Prior Knowledge Prediction
Task

In real-world educational contexts, generally speaking, students’

prior knowledge is embedded in their historical learning

interactions [27, 42]. Several research works have demonstrated

that the scoring rates of students could be viewed as the reflection

of their overall knowledge mastery [34]. Therefore, we explicitly

add the IK task to measure the individualized prior knowledge

of students comprehensively based on their historical learning

interactions. The student-level scoring rate accounts for the overall

knowledge mastery on all the KCs learned so far and is computed

as 𝑦𝑡 = (∑𝑡
𝑗=1 I(𝑟 𝑗 == 1))/𝑡 . Please note that we choose to not

use the individualized KC-wise scoring rate because the student

interaction sequence is usually very short and the frequency based

KC-wise scoring rate becomes very unreliable.

In this work, we introduce a time-aware student prior knowledge

estimation task to progressively predict student overall scoring rate.

Specifically, once we have the current knowledge state h𝑡 updated
by the LSTM cell at each time step 𝑡 , we use a prior knowledge

network of a two-layer fully connected networks to summarize

the students’ mastery of prior knowledge. The prior knowledge

network will conduct non-linear transformations on the general

knowledge states and convert it to the estimated historical scoring

rate 𝑦𝑡 as follows:

ŷ𝑡 = 𝜎

(
W

𝑦

2 · ReLU(W𝑦

1 · h𝑡 + b
𝑦

1 ) + b
𝑦

2

)
where h𝑡 = 𝐿𝑆𝑇𝑀 (h𝑡−1,m𝑡 ), m𝑡 = z𝑡 ⊕ c𝑡 ⊕ x𝑡 , W

𝑦

1 , W
𝑦

2 , b
𝑦

1

and b
𝑦

2 are trainable parameters andW
𝑦

1 ∈ R𝑑/2×𝑑 ,W𝑦

2 ∈ R1×𝑑/2,
b
𝑦

1 ∈ R𝑑/2×1, b𝑦2 ∈ R1.
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We use the mean square loss function to measure the accuracy

of our estimated scoring rating in the IK task as follows:

L
IK

=
∑︁

I(𝑡 > 𝛿) (𝑦𝑡 − 𝑦𝑡 )2

where 𝛿 is the tuning hyper-parameter that controls the length of

historical observations and helps the model avoid noisy scoring

rating calculation when 𝑡 is too small.

4.6 Knowledge Tracing Predictor
Our AT-DKT is built upon the original DKT model and chooses

to use the auto-regressive neural architecture as the backbone of

our AT-DKT model. In addition, we make two modifications to

improve the modeling ability of the standard DKT model. First,

different from the DKTmodel that only relies on the representations

of KCs and responses, we add question specific information z𝑡
and c𝑡 into the interaction encoding, i.e., m𝑡 = z𝑡 ⊕ c𝑡 ⊕ x𝑡 .
This will help the deep sequential based model to capture more

question-sensitive information. Second, the vanilla version of DKT

makes the KT predictions from the linearly transformed hidden

knowledge states while in our AT-DKT model, we replace such

linear transformation operation with a non-linear projection of

two-layer neural networks, i.e.,

r̂𝑡 = 𝜎

(
W𝑟

2 · ReLU(W𝑟
1 · h𝑡 + b𝑟1) + b𝑟2

)
where W𝑟

1, W
𝑟
2, b

𝑟
1 and b𝑟2 are trainable parameters and W𝑟

1 ∈
R𝑑/2×𝑑 ,W𝑟

2 ∈ R𝑁×𝑑/2
, b𝑟1 ∈ R𝑑/2×1, b𝑟2 ∈ R𝑁×1

.

The knowledge tracing predictor is optimized by minimizing the

binary cross-entropy loss between the ground-truth response 𝑟𝑡+1
and the prediction probability 𝑟𝑡 of the KC 𝑐𝑡+1. Let 𝛿 (𝑐𝑡+1) be the
one-hot encoding of the KC is answered at time 𝑡 + 1, the loss of
this task is:

L
KT

=
∑︁

− (𝑟𝑡+1 log r̂𝑡𝛿 (𝑐𝑡+1) + (1 − 𝑟𝑡+1) log (1 − r̂𝑡𝛿 (𝑐𝑡+1)))

4.7 Model Optimization
All parameters in the entire AT-DKT model are optimized together

in a unified framework by minimizing the three losses above. The

final loss of our method is:

L = L
KT

+ 𝛽1LQT
+ 𝛽2LIK

where 𝛽1, 𝛽2 are the tuning hyper-parameters.

5 EXPERIMENT
5.1 Datasets
We select three public real-world educational datasets to evaluate

the effectiveness of our model.

• Algebra 2005-2006
6
(AL2005): This dataset stems from KDD Cup

2010 EDM Challenge which includes 13-14 year-old students’

interactions with Algebra questions. It has detailed step-level

student responses to the mathematical problems [29]. In our

experiment, we use the concatenation of the problem name and

step name as a unique question.

6
https://pslcdatashop.web.cmu.edu/KDDCup/

• Bridge to Algebra 2006-2007
6
(BD2006): Similar to AL2005, the

data of BD2006 are mathematical problems from logs of students’

interactions with intelligent tutoring systems [29]. The unique

question construction of BD2006 is similar to AL2005.

• NeurIPS2020 Education Challenge
7
(NIPS34): This dataset is

provided by NeurlPS 2020 Education Challenge. We use the

dataset of Task 3 & Task 4 to evaluate our models [36]. The

dataset contains students’ answers to mathematics questions

from Eedi which millions of students interact with daily around

the globe.

To conduct reproducible experiments, we attentively follow the

data pre-processing steps suggested in [15]. We remove student

sequences shorter than 3 attempts and the maximum length of

student interaction history is set to 200 for high computational

efficiency.

5.2 Baselines
5.2.1 Deep Sequential KT Models. Deep sequential KT models

utilize an auto-regressive architecture to capture the intrinsic

dependencies among students’ chronologically ordered interactions

[5, 9, 12, 13, 17, 18, 23, 30, 39]. Since the very first and successful

research work of DKT that applies recurrent neural networks

to model students’ dynamic learning behaviors by Piech et al.

[23], a large number of works have been done to improve DKT’s

performance [5, 9, 12, 13, 18, 30, 39]. In this work, we select 5 widely

used baselines as follows:

• DKT [23]: It uses Recurrent Neural Networks(RNNs) to model

student learning and predict the mastery of each KC after one

response to a new question. In this paper, we use LSTM as the

base RNN cell. DKT is the first model which uses deep learning

to KT.

• DKT+ [39]: This method was proposed for solving the two

problems of DKT, the first problem is that DKT fails to reconstruct

the observed input, and the second problem is the inconsistent

performance of KCs across time-steps. For the second problem,

the authors used both L1-norm and L2-norm to measure the

difference between two adjacent prediction results.

• DKT-F [18]: This model is also an extension of DKT, which adds

a forgetting mechanism to predict the performance of users.

The authors proposed three time-related features to improve

the original DKT model, which are repeated time gap, sequence

time gap and past trial counts.

• KQN [12]: It uses neural networks to encode the students’ ability

and skill vectors respectively and uses the dot product of the

two types of vectors to do prediction. The authors introduced

probabilistic skill similarity to make KQN interpretable and

intuitive.

• ATKT [9]: It uses adversarial perturbations to enhance the KT

model’s generalization and reduce the overfitting problem of the

DNNs-based KT models. The adversarial perturbations and the

original interaction embedding are added to predict the students’

performance. In this paper, an attention-LSTM was used as the

KT backbone.

7
https://eedi.com/projects/neurips-education-challenge

https://pslcdatashop.web.cmu.edu/KDDCup/
https://eedi.com/projects/neurips-education-challenge
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Table 2: Performance comparisons in terms of AUC and accuracy for deep sequential models. Marker ∗, ◦ and • indicate
whether AT-DKT is statistically superior/equal/inferior to the comparedmethod (using paired t-test at 0.01 significance level).

Model

AUC Accuracy
AL2005 BD2006 NIPS34 AL2005 BD2006 NIPS34

DKT 0.8149±0.0011* 0.8015±0.0008* 0.7689±0.0002* 0.8097±0.0005* 0.8553±0.0002* 0.7032±0.0004*

DKT+ 0.8156±0.0011* 0.8020±0.0004* 0.7696±0.0002* 0.8097±0.0007* 0.8553±0.0003* 0.7039±0.0004*

DKT-F 0.8147±0.0013* 0.7985±0.0013* 0.7733±0.0003* 0.8090±0.0005* 0.8536±0.0004* 0.7076±0.0002*

KQN 0.8027±0.0015* 0.7936±0.0014* 0.7684±0.0003* 0.8025±0.0006* 0.8532±0.0006* 0.7028±0.0001*

ATKT 0.7995±0.0023* 0.7889±0.0008◦ 0.7665±0.0001* 0.7998±0.0019* 0.8511±0.0004◦ 0.7013±0.0002*

AT-DKT 0.8246±0.0018 0.8105±0.0009 0.7816±0.0002 0.8144±0.0009 0.8560±0.0005 0.7145±0.0002*

Table 3: Performance comparisons in terms ofAUCand accuracy for non-sequentialmodels.Marker ∗, ◦ and • indicatewhether
AT-DKT is statistically superior/equal/inferior to the compared method (using paired t-test at 0.01 significance level).

Model

AUC Accuracy
AL2005 BD2006 NIPS34 AL2005 BD2006 NIPS34

DKVMN 0.8054±0.0011◦ 0.7983±0.0009* 0.7673±0.0004* 0.8027±0.0007◦ 0.8545±0.0002* 0.7016±0.0005*

SKVMN 0.7463±0.0022* 0.7310±0.0065* 0.7513±0.0005* 0.7837±0.0023* 0.8404±0.0007* 0.6885±0.0004*

GKT 0.8110±0.0009* 0.8046±0.0008* 0.7689±0.0024* 0.8088±0.0008* 0.8555±0.0002* 0.7014±0.0028*

SAKT 0.7880±0.0063* 0.7740±0.0008◦ 0.7517±0.0005* 0.7954±0.0020* 0.8461±0.0005◦ 0.6879±0.0004*

SAINT 0.7775±0.0017* 0.7781±0.0013* 0.7873±0.0007• 0.7791±0.0016* 0.8411±0.0065* 0.7180±0.0006•
AKT 0.8306±0.0019◦ 0.8208±0.0007• 0.8033±0.0003• 0.8124±0.0011◦ 0.8587±0.0005• 0.7323±0.0005•
AT-DKT 0.8246±0.0018 0.8105±0.0009 0.7816±0.0002 0.8144±0.0009 0.8560±0.0005 0.7145±0.0002

5.2.2 Deep Non-Sequential KT Models. Besides the deep sequential
KT models, other types of neural network based approaches are

applied in the KT domain as well, such as memory augmented KT

models that explicitly model latent relations between KCs with an

external memory [1, 26, 41], graph based KT models that capture

interaction relations with graph neural networks [19, 33, 37], and

attention based KTmodels that use the attention mechanism and its

variants to capture dependencies between interactions [8, 21, 24, 42].

In this work, we select 6 widely used baselines as follows:

• DKVMN [41]: This is a memory augmented neural network that

exploits the relationships between underlying concepts by a key

matrix and uses a value matrix to represent the student’s mastery

of each KC at each time step.

• SKVMN [1]: It exploits a key-value memory network to enhance

the representation capability of students’ knowledge state and

capture long-term dependencies of a student’s learning sequence

based on Hop-LSTM.

• GKT [19]: Inspired by the potential graph structure of

coursework, GKT casts the knowledge structure as a graph

and reformulates the KT task as a time series node-level

classification problem in GNN. The authors also proposed various

implementations of the graph structure to overcome the lack of

graph structure in many datasets.

• SAKT [20]: This method uses self-attention to identify the

relevance between KCs to improve the lack of generalization

to deal with sparse data in other models. SAKT uses question

embeddings as query and uses the interaction embeddings as key

and value.

• SAINT [6]: It uses a Transformer-based model for KT, the

encoder applies self-attention to the sequence of exercises, and

the decoder applies self-attention and masked encoder-decoder

attention to the sequence of responses.

• AKT [8]: This model applies a novel monotonic attention

mechanism to connect the learners’ future performance to their

past responses, and uses a Rasch model to regularize the KC and

question embeddings.

5.3 Experimental Setup
To evaluate the models’ performance, we perform standard 5-fold

cross-validation for all the combinations of pairs of method and

dataset. We choose to use early stopping when the performance

is not improved after 10 epochs. For each hyperparameter

combination, we use the Adam optimizer to train the models up to

200 epochs. We adopt the Bayesian search method to find the best

hyper-parameters for each fold. Specifically, the embedding size is

searched from {64, 256}, the search space of the hidden size of the

LSTM module is the same as the embedding size, the number of

layers and the number of attention heads of the relation network

are set to {1, 2, 4} and {4, 8}, the model’s learning rate is set to {1e-3,

1e-4, 1e-5}, the hyper-parameters 𝛿 , 𝛽1 and 𝛽2 are searched from {0,

10, 30, 50, 70, 100, 120, 150}, {0.01, 0.1, 0.3, 0.5, 0.7, 1.0}, and {0.01, 0.1,

0.3, 0.5, 0.7, 1.0} respectively. Similar to existing works [15, 23, 39],

we use the area under the receiver operating characteristics curve

(AUC) and accuracy to evaluate the KT prediction performance.

5.4 Results
5.4.1 Performance on Deep Sequential Models. Table 2 shows the
performance of all sequential models in the three datasets. We

report the average AUCs and accuracy and the standard deviations

across 5 folds. From the table, we have the following observations:

(1) AT-DKT significantly outperforms all deep sequential KTmodels

and improves the AUC of the original DKT model by 0.97% for

AS2005, 0.90% for BD2006 and 1.27% for NIPS34. This indicates

the effectiveness of the proposed auxiliary learning tasks; and (2)

DKT is still a very strong baseline compared to its variants such as

DKT+ and DKT-F. The performance of DKT-F on NIPS34 is slightly

better rather than which on AL2005 and BD2006. We believe this

is because the interval time in NIPS34 is 35,904 seconds, which

is about 5 times longer than the numbers in AL2005 and BD2006
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Figure 3: Accumulative predictions in the multi-step ahead scenario in terms of AUC on all datasets in sequential models.
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Figure 4: Accumulative predictions in themulti-step ahead scenario in terms of AUC on all datasets in non-sequential models.

datasets. The DKT-F model is able to capture latent time related

information from long-span intervals.

5.4.2 Performance on Deep non-Sequential Models. We show the

AUC and accuracy performance of the three datasets in non-

sequential models in Table 3. From the table, we can see that: (1)

AT-DKT is on par with the best model on the AL2005 dataset,

1.03% worse than AKT on the BD2006 dataset and 2.17% and

0.57% worse than AKT and SAINT on the NIPS34 dataset. We

believe this is because the QT task in AT-DKT heavily relies on

the relationships between KCs and questions. When comparing

AL2005 to BD2006 and NIPS34, the AL2005 dataset has much denser

question-KC associations and its averaged number of KCs per

question is 1.3634, which is about 30% larger than the numbers

in BD2006 and NIPS34 datasets. The rich question-KC associations

help AT-DKT achieves better representations for both questions

and KCs; (2) AKT outperforms all the other non-sequential baseline

models. We believe that this is because the AKT model utilizes

not only a monotonic attention mechanism to capture short-term

dependencies from past interactions at different time scales but

also a Rasch model to consider the question difficulties; and (3)

comparing DKVMN and SKVMN, SKVMN performs much worse

than DKVMN. This is because the SKVMN only uses interactions

of the same KCs and ignores interactions of similar KCs which is

also very useful for student response prediction.

5.4.3 Multi-step ahead KT Prediction. To make the KT prediction

close to real application scenarios, we evaluate DLKT models in

a multi-step prediction setting where the models are required to

predict a future span of students’ responses given their historical

interactions. We conduct prediction in an accumulative prediction,

i.e., use the model estimation of 𝑟𝑡+1, 𝑟𝑡+2, · · · , 𝑟𝑡+Δ−1, when
predicting 𝑟𝑡+Δ whereΔ is an arbitrary future time span. Specifically,

we vary the observed percentages of student interaction length from

20% to 90% with a step size of 10%. In Figures 3 and 4, we show

the AUC performance of accumulative prediction in sequential

and non-sequential models respectively. Due to the space limit, we

provide the performance results in terms of accuracy in Appendix

A.

From Figures 3 and 4, we can see that: (1) AT-DKT outperforms all

other sequential models in accumulative prediction for all datasets,

which indicates that the estimated responses made by AT-DKT are

accurate and beneficial for the next-step prediction in sequential

models; (2) compared to non-sequential methods, AT-DKT has

the best performance on AL2005 and BD2006 datasets and is the

second best model in NIPS34. We find the data in NIPS34 is multiple

choice questions while the questions in AL2005 and BD2006 consist

of step-level problems. Since the proposed auxiliary task IK is

to measure the prior knowledge of students according to their

historical learning interactions, the step-level problems are strongly

correlated to get a better prediction result in the prior knowledge

estimation task hence improving the student response prediction;

(3) AT-DKT has a much smaller variance compared to other models

indicating that our AT-DKT model is more stable and robust to

varying prediction scenarios; and (4) with the increasing percentage
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Figure 5: An example of knowledge state changes of 5 concepts as a student solves 50 questions from the AL2005 dataset.
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Figure 6: Visualization of m𝑡 in AL2005, BD2006 and NIPS34 datasets. Best viewed zoomed in and in color.

of student historical interactions, the performance of all the DLKT

models’ gradually increase. This suggests that accurate student

assessment requires moderate-size student response observations.

5.4.4 Visualization of Prediction Outcomes. The model estimated

knowledge states of each concept will dynamically change when

the student responds to each question. Therefore, in this section,

we conduct qualitative analysis to investigate such a phenomenon.

Figure 5 shows an example of changes in the estimated knowledge

states of 5 concepts as a student solves 50 questions from

the AL2005 dataset. As we can see, the estimated knowledge

states of 𝑐2/𝑐5 decrease/increase quite a bit when the student

mistakenly/correctly answers the 2nd/11th question that contains

the KC 𝑐2/𝑐5 respectively. As the student practices more questions,

the knowledge state estimations become much more stable and

after finishing all these 50 questions, the model is confident that

the student has acquired the KCs 𝑐1 and 𝑐5. Due to the space limit,

we provide more visualization in Appendix B.

5.4.5 Visualization of m𝑡 . To examine the effectiveness of the

learned representations, we conduct qualitative analysis on the

combined representations m𝑡 s of questions, KCs and responses,

i.e., m𝑡 = z𝑡 ⊕ c𝑡 ⊕ x𝑡 (shown in Figure 2). We first select the

top 10 KCs from each dataset in terms of the number of student

responses. For each selected KC, we randomly select 200 students’

correct and incorrect responses respectively and the corresponding

representation visualizations are shown in Figure 6. In Figure 6,

different KCs are shown in different colors. The correct responses

and incorrect responses are marked with horizontal lines and

asterisks respectively. We draw a line between the centers of correct

and incorrect representations for better visualization. From Figure

6, we can observe that the learned representation of m𝑡 can well

reconstruct the observed input. As a result, when a student performs

well on a KC, the predicted mastery level of that KC increases. This

alleviates the reconstruction problem mentioned in [39].

5.4.6 Ablation Study. We systematically examine the effect of key

components by constructing four model variants in Table 4. “w/o”

means excludes such module from AT-DKT. Please note that AT-

DKT w/o QT & IK is equivalent to the vanilla DKT model proposed

by [23]. From Table 4, we can easily observe that (1) compared to

other variants (e.g., AT-DKT w/o IK, AT-DKT w/o QT, and AT-DKT

w/o IK & QT), AT-DKT obtains the highest AUC score in all cases.

This suggests that prediction performance degrades when ignoring

either auxiliary learning task. Thus, it is important to incorporate

such intrinsic information of question-KC relations and student-

level prior knowledge in DLKT models; and (2) when comparing

AT-DKT to AT-DKT w/o IK and AT-DKT w/o QT, we can see that

the prediction improvements from the QT task and the IK task are

complementary. The QT task is the leading contribution to the AUC

score boost that the performance of AT-DKT drops 0.75%, 0.85%

and 1.20% for AL2005, BD2006 and NIPS34 datasets respectively

without QT.

Table 4: Contribution analysis of the two auxiliary tasks.

Models AL2005 BD2006 NIPS34

AT-DKT 0.8246±0.0018 0.8105±0.0009 0.7816±0.0002
AT-DKT w/o IK 0.8234±0.0016 0.8097±0.0011 0.7808±0.0005

AT-DKT w/o QT 0.8171±0.0005 0.8020±0.0007 0.7696±0.0002

AT-DKT w/o QT & IK 0.8149±0.0011 0.8015±0.0008 0.7689±0.0002

6 CONCLUSIONS
In this paper, we propose to enhance the original deep knowledge

tracing model with both the question tagging prediction task and

the individualized prior knowledge prediction task. With these

two auxiliary learning tasks, our AT-DKT approach is able to (1)
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directly mine intrinsic associations between questions and KCs

and (2) extract students’ global performance from their historical

interactions. Experiment results on three real-world educational

datasets demonstrated that AT-DKT outperforms a wide range of

state-of-the-art DLKT learning approaches in terms of both AUC

and accuracy. In the future, we plan to study a combination of our

auxiliary learning tasks with non-sequential KT models.
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A PERFORMANCE RESULTS IN TERMS OF ACCURACY IN THE MULTI-STEP AHEAD SCENARIO
In Section 5.4.3, we show the performance of AUC in accumulative prediction settings on all models. Here we show the accuracy of these

model in Figure 7 and 8.
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Figure 7: Accumulative predictions in the multi-step ahead scenario in terms of Accuracy on all datasets in sequential models.
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Figure 8: Accumulative predictions in the multi-step ahead scenario in terms of Accuracy on all datasets in non-sequential
models.

B MORE VISUAL SAMPLES OF PREDICTION OUTCOMES
This this section, we show the other three students’ prediction outcomes in the AL2005 dataset in Figure 9, 10 and 11.
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Figure 9: An example of knowledge state changes of 5 concepts as the student 2 solves 50 questions from the AL2005 dataset.
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Figure 10: An example of knowledge state changes of 5 concepts as the student 3 solves 50 questions from the AL2005 dataset.
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Figure 11: An example of knowledge state changes of 5 concepts as the student 4 solves 50 questions from the AL2005 dataset.
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