
Exploring the Versal AI engines for accelerating stencil-based
atmospheric advection simulation

Nick Brown
n.brown@epcc.ed.ac.uk

EPCC at the University of Edinburgh
Edinburgh, UK

ABSTRACT
AMD Xilinx’s new Versal Adaptive Compute Acceleration Platform
(ACAP) is an FPGA architecture combining reconfigurable fabric
with other on-chip hardened compute resources. AI engines are
one of these and, by operating in a highly vectorized manner, they
provide significant raw compute that is potentially beneficial for
a range of workloads including HPC simulation. However, this
technology is still early-on, and as yet unproven for accelerating
HPC codes, with a lack of benchmarking and best practice.

This paper presents an experience report, exploring porting of
the Piacsek and Williams (PW) advection scheme onto the Versal
ACAP, using the chip’s AI engines to accelerate the compute. A
stencil-based algorithm, advection is commonplace in atmospheric
modelling, including several Met Office codes who initially devel-
oped this scheme. Using this algorithm as a vehicle, we explore
optimal approaches for structuring AI engine compute kernels and
how best to interface the AI engines with programmable logic.
Evaluating performance using a VCK5000 against non-AI engine
FPGA configurations on the VCK5000 and Alveo U280, as well as a
24-core Xeon Platinum Cascade Lake CPU and Nvidia V100 GPU,
we found that whilst the number of channels between the fabric
and AI engines are a limitation, by leveraging the ACAP we can
double performance compared to an Alveo U280.

KEYWORDS
Versal ACAP, AI engines, FPGAs, stencil based algorithms, VCK5000,
atmospheric advection, HPC

1 INTRODUCTION
The Versal Adaptive Compute Acceleration Platform (ACAP) is a
new type of FPGA which combines Programmable Logic (PL) with
other facets including CPU-based Programmable Subsystem (PS)
and AI engines [4]. These AI Engines, or AIEs and we use these
two terms interchangeably throughout this paper, are of specific
interest here as they are designed to accelerate highly-parallel vec-
tor operations. The Versal AI-series contains up to 400 engines
running between 1 and 1.2 GHz, and each engine follows a Very
Long Instruction Word (VLIW) design, capable of issuing seven
instructions per cycle. AI engines are capable of undertaking 8-way
vectorized single-precision floating point operations and up to 128
8 bit fixed point arithmetic operations per cycle.

The large amount of raw compute provided by the AIEs is inter-
esting for High Performance Computing (HPC) workloads, where
the ability to use the Versal’s PL to tailor memory accesses bespoke
to an application and the AI engines to accelerate the compute has
potential. To date there have been a very limited number of prelimi-
nary AIE studies [5] [10], and-so an important outstanding question

is whether these engines can be effectively leveraged for real world
HPC kernels. In this work we use the atmospheric advection kernel
of the Met Office NERC Cloud model (MONC) [3], which is an open
source high resolution atmospheric modelling framework, as a ve-
hicle to explore the AI engines. Following a stencil-based compute
pattern, which is very common in HPC codes, in this short paper
we explore how to best map this compute pattern onto the AIEs and
how performance compares against other approaches. This paper
is structured as follows, in Section 2 we explore the background to
this work before summarising the experimental setup in Section
3. Section 4 explores structuring our AIE kernel(s) and interfacing
these with the PL, before undertaking a performance comparison
against other hardware in Section 5. We then conclude and discuss
recommendations in Section 6.

The novel contributions of this paper are 1) An exploration of
techniques to most effectively structure AIE kernels 2) An initial
performance comparison between the AIEs and other hardware 3)
Highlighting some of the limitations of the current AIE technology
that one must consider when working with the hardware.

2 BACKGROUND
2.1 The Versal AI engines
The VLIW design of Xilinx’s new AI engines is such that, per cycle,
each engine is capable of issuing a maximum of two loads, one
store, one scalar operation, one fixed point or floating point vector
operation, and two move instructions. The vector unit is of size
256 bits, and focusing on single precision floating point arithmetic
in this paper, each engine is capable of undertaking up to eight
single precision floating point calculations per cycle. Consequently
it is important to ensure code is correctly vectorized to obtain
best performance on the AIEs. Based on 400 AI engines running
at 1.2GHz on the VCK5000, there is a theoretical single precision
floating point performance of 3.6 TFLOPS.

AI engines are arranged in a 2D array, with engines connected to
their neighbours in both dimensions. Each engine contains 16KB of
program memory and 32KB of local data memory and, for the later,
is able to directly access the memories of three of its neighbours
providing a total of 128KB contiguous addressable data memory
[8]. Furthermore, each engine has two 32 bit input streams and two
32 bit output streams which are combined with a FIFO to provide
128 bit access every four clock cycles. Lastly, AI engines connect to
one of their neighbours via a cascade stream which is 384 bits wide
and designed to allow arithmetic operations to be chained.

AIE code comprises two parts, kernels which will be mapped to
AI engines and a graph description which connects kernels together
via their streams and memories, as well as to the PL. Programmati-
cally there are two ways in which data can enter or leave a kernel,

ar
X

iv
:2

30
1.

13
01

6v
1 

 [
cs

.D
C

] 
 2

8 
D

ec
 2

02
2

https://orcid.org/0000-0003-2925-7275


Nick Brown

windows and streams [9]. Windows provide a buffer, where the
current data position in the window is tracked. For input windows
data is consumed from this buffer by the kernel, for output windows
data is written. The other approach, a stream, provides an infinite
number of scalars and vectors that can be read and written by the
kernel. There underlies an important difference between these two
approaches, where a window of data will only progress to the next
window between outer iterations of the kernel, as driven by the AIE
graph, whereas streams can continually be read from and written to
inside the kernel. Consequently, with windows one must frequently
start and stop their kernels to refresh the window data, which is
not required with streams.

Whilst the AI engines are the major focus in this paper, it is
also important to highlight the general architectural improvements
that Xilinx have made to the PL in their Versal series. Built on a
7nm process technology, numerous components including DDR
controllers and PCIe interface have been hardened compared to
previous generations [1]. Furthermore, a dedicated Network on
Chip (NoC) is provided which not only connects the PL with the
AIEs, but can also be used between IP blocks on the PL.

2.2 Piacsek and Williams advection kernel
Advection is the movement of values through the atmosphere due
to wind and, at around 40% of the runtime, is the single longest
running piece of functionality in the MONC model [3]. The code
loops over three fields; U, V andW, representing wind velocity in
the x, y and z dimensions respectively. This Piacsek and Williams
(PW) [6] advection scheme is called each timestep of the model
and calculates advection results, otherwise known as source terms,
for each field. This advection scheme is a stencil based algorithm,
of depth one, where calculating the value of a grid cell requires
contributions from neighbouring values across all three dimensions.

In previous work [2] this kernel was ported to an Alveo U280
using High Level Synthesis (HLS) and leveraging the dataflow
HLS pragma to run multiple components concurrently. The struc-
ture of this HLS kernel is illustrated in Figure 1, where the boxes
are dataflow regions and arrows between these are internal HLS
streams. 3D shift buffers provide a bespoke memory solution which
is capable of delivering all 27-stencil values per cycle to the advec-
tion compute stages, which was found to be the optimal approach
even though not all 27 neighbouring stencil values are required by
the advection calculations. Given this existing structure it was our
hypothesis that we could replace the advection calculation stages
with streams to and from the AI engines, still leveraging the exist-
ing tailoring of memory accesses on the PL that worked well in [2],
with the raw compute power of the AI engines.

3 EXPERIMENTAL SETUP
In this work we are using a Xilinx VCK5000 containing a Versal
VC1902 ACAP and 16GB of DDR4-DRAM. All VCK5000 runs are
built using Vitis 2022.1, the PL is running at 300MHz, and the
VC1902 contains 400 AI engines running at 1.2GHz. We compare
against an Alveo U280which contains 8GB of HBM2, is also running
at 300MHz, and Alveo kernels are built using Vitis 2021.1. Both the
VCK5000 and Alveo U280 are PCIe based cards hosted by a machine
containing a 32-core AMD EPYC 7502 processor and 256GB DRAM.

Figure 1: Dataflow design of HLS advection kernel from [2]

All reported results are averaged over five runs and performance
results are reported as useful FLOPS, which is the number of floating
point operations undertaken that contribute to the calculation’s
result. Our performance numbers measure device-side execution
time only and do not include the time taken to copy input data
to, or result data from, the host and device. This is because we
are most interested in the performance of the AIEs in this work,
and device-side performance therefore provides a clearer picture
when comparing against other technologies that exhibit different
host-device data transfer overheads.

4 AIE PORTING AND OPTIMISATION
We started by decomposing the advection stencil-based calculation
into constituent operations, resulting in, for each grid cell, the
code undertaking six additions, followed by six multiplications,
then four subtractions and finally an addition reduction to sum
these subtractions together. A floating point vector of size six is
not supported by the tooling and-so we pad with an additional
two empty values to make a vector of size eight. This is why we
report useful, rather than total, FLOPS, as useful FLOPS ignores the
processing of these empty values by only considering those floating
point operations that actually contribute to the advection result.

The structure of this kernel is illustrated in Figure 2, with the
first 8-way vector addition requiring sixteen floating point numbers
comprising the operands. The multiplication requires an additional



Exploring the Versal AI engines for accelerating stencil-based atmospheric advection simulation

Figure 2: Illustration of AIE calculations per grid cell, with
the numbers representing the number of single precision
floating point numbers provided.

eight input numbers which are multiplied by the result of the pre-
ceding addition. We packaged this as a single AIE kernel and Listing
1 provides a partial sketch of the code. In order to prepare for the
vector addition, streams of four numbers are read and loaded into
the appropriate locations of the lhs and rhs vectors in lines 11 to 14.
These vectors are then provided as arguments to the aie::addmethod
at line 16, which undertakes the vectorized addition. Multiplication,
subtraction, and reductions operations are handled similarly and
omitted for brevity. It can be seen at line 6 that we are looping over
grid cells, and the directives at lines 7 and 8 instruct the AIE com-
piler to undertake software pipelining where possible, attempting
to keep the VLIW slots filled as per Xilinx’s best practice [8].

1 void cell_advection(input_stream<float> ∗ __restrict in_A,
input_stream<float> ∗ __restrict in_B, output_stream<
float> ∗ __restrict out) {

2 aie::vector<float, 4> in_data;
3 in_data=readincr_v<4>(in_A);
4
5 int32 cells=(int32) in_data.get(0);
6 for (int i=0;i<cells;i++)
7 chess_prepare_for_pipelining
8 chess_loop_range(64,) {
9 aie::vector<float,8> lhs_nums, rhs_nums;
10
11 lhs_nums.insert(0,readincr_v<4>(in_A));
12 lhs_nums.insert(1,readincr_v<4>(in_A));
13 rhs_nums.insert(0,readincr_v<4>(in_B));
14 rhs_nums.insert(1,readincr_v<4>(in_B));
15
16 aie::vector<float,8> vadd=aie::add(lhs_nums,rhs_nums);
17 ....
18 }

Listing 1: Sketch of AIE advection kernel code

The AIE API provides adaptive dataflow graphs which enables
parameters to be dynamically set at runtime. However this is not
supported by the VCK5000 shell and as such an alternative was
required for setting the number of loop iterations at line 6. This
is the reason that, for lines 2 to 5 in Listing 1, four floating point
numbers are read from the in_A stream and the first of these is
extracted, cast to an integer, and used as the number of grid cells to
loop over (this corresponding value has been streamed from the PL
on start up). We must read the number of cells as a float because
there are a maximum of two inputs and two outputs per kernel,
and both inputs are required for the loading of operands.

1 class simpleGraph : public graph {
2 private:

3 kernel cell_advection_kernel[3];
4 public:
5 input_plio in_A[3], in_B[3];
6 output_plio out[3];
7
8 simpleGraph(){
9 cell_advection_kernel[0]=kernel::create(cell_advection);
10 ...
11 in_A[0] = input_plio::create("krnl_0_in0", plio_128_bits,

"data/input_A.txt");
12 in_B[0] = input_plio::create("krnl_0_in1", plio_128_bits,

"data/input_B.txt");
13 out[0] = output_plio::create("krnl_0_out1", plio_32_bits,

"data/output_0.txt");
14 ...
15 for (int i=0;i<3;i++) {
16 connect<stream>(in_A[i].out[0],

cell_advection_kernel[i].in[0]);
17 connect<stream>(in_B[i].out[0],

cell_advection_kernel[i].in[1]);
18 connect<stream>(cell_advection_kernel[i].out[0], out

[i].in[0]);
19 }}};

Listing 2: Sketch of AIE graph building code

This code of Listing 2 builds the high-level AIE graph, mapping
kernels to individual AI engines. Three advection kernels are cre-
ated, one for each field, and lines 11-13 defines the input and output
ports between the PL and AIE for the first kernel (kernels two and
three are omitted for brevity). These AIE ports are connected to the
kernel ports in the loop at lines 15 to 19. As described in Section
2.1, physical connections between AI engines are 32 bits wide, but
it can be seen for input ports we specify plio_128_bits at lines 11
and 12. This directs the AIE compiler that streams on the PL are
128 bits wide (of type qdma_axis<128,0,0,0>) and therefore data will
arrive in packets of 128 bits and be unpackaged into four 32 bit
stream values. The reason for this is performance, where the PL is
running much slower (in our case 300MHz) compared to the AIEs
(1.2 GHz) and consequently in one clock cycle the PL is providing
four 32 bit numbers which the AIE will then unpack per cycle. 128
bits is the maximum width supported, and this is why in Listing
1 the eight numbers comprising either side of the calculation are
read via two readincr_v calls of size four at lines 11-12 and 13-14.

It can be seen in Listing 2 that there is a separate kernel instance
created for each of the three fields, with each of these running
on a separate AI engine. Whilst the calculations for each field are
different, this difference lies in the specific stencil locations that
are used, and the underlying arithmetic operations are the same.
Consequently we are able to reuse the same kernel code, but provide
different values to these from the PL side per field. The performance
of this version is reported in Table 1 by the initial row, and it can
be seen that this was significantly slower compared to instead
undertaking all arithmetic operations on the PL (PL-only (no AIEs)).



Nick Brown

Version Performance
(GFLOPS)

Compared
to PL-only

PL-only (no AIEs) 14.32 -
Initial 1.99 14%

Multi-kernel 4.06 28%
Cascade stream 2.78 19%

Cascade multiplex 3.87 27%
Multi-kernel windows 0.91 6%
Chunking windows 10.32 72%
Reduction on host 16.13 113%

Double vectorization 18.48 129%
Table 1: Compute performance of different versions of AIE
design compared against PL-only non-AIE implementation.
All runs undertaken in single precisionfloating point onXil-
inx VCK5000 using a problem size of 67 million grid points.

4.1 Optimising the data transfer
The maximum 128 bit width of data between the AIEs and PL was
a major reason for the poor performance of our initial version
reported in Table 1. This was because, per cycle, the PL was only
able to stream four single precision floating point numbers per
stream to the AIE, whereas 24 were required (16 for the addition
and 8 for the multiplication). The number of inputs to an AIE kernel
is limited to two, therefore meaning that the PL could provide a
maximum of eight values per cycle. Consequently three writes on
each stream were required per grid cell and this conflict resulted in
an initiation interval of three in our HLS code on the PL.

To address this we experimented with alternative kernel struc-
tures and, as illustrated by Figure 3, split the code into multiple
kernels each corresponding to a specific operation. By splitting
apart the addition and multiplication, so each handles four of the
eight calculations, we were able to increase the overall number of
streams to six (two per kernel). There is a downside, as each individ-
ual kernel is now under utilised because it is now only undertaking
four vectorized operations per cycle rather than eight, but this split-
ting results in six, rather than two, 128 bit streams connecting the
PL to AIE kernel inputs. Consequently the HLS kernel running on
the PL is able to stream the entirety of a grid cell’s required data
each cycle, reducing the initiation interval to one.

The performance of this approach is reported by themulti-kernel
row of Table 1, and whilst this doubled performance compared
to the initial version, it was still slower than the PL-only imple-
mentation. When undertaking profiling of our multi-kernel code
using Vitis analyzer, we discovered that kernels were stalling on
stream reads for over 60% of the time. This is because, as described
in Section 2.1, the physical streams between AI engines are 32 bits
wide whereas per vectorized operation the kernel is generating 128
bits. Consequently the kernels were stalling waiting for the arrival
of this data before operating upon it.

Connecting AIE kernels via cascade streams is an alternative
approach and these, unlike the normal 32 bit streams, are 384 bits
wide.We packed the 128 bit results into the cascade stream’s accfloat
type, and streamed the entirety of the required data in one cycle.
However, the limitation with cascade streams is that they physically

Figure 3: Multi-kernel design, with constituent operations
running across AIEs and connected by streams. Blue arrows
are internal streams, green arrows are external streams be-
tween the AIEs and PL.

connect between AIE cores by travelling in a horizontal manner,
and when reaching the edge of a row connecting to the core above.
Consequently their connection is inflexible, with each AIE core
capable of only consuming cascade stream input from a single
predefined neighbour and providing cascade stream output to its
other neighbour. This is a problem for our multi-kernel design
illustrated in Figure 3 as the subtraction-reduction kernel requires
inputs from two kernels, effectively requiring two cascade streams
to feed into an AIE which is not possible on this architecture.

Therefore, to experiment whether cascade streams would im-
prove performance, we adopted the design illustrated in Figure
4, where one addition kernel undertakes all eight addition oper-
ations, and a separate kernel then undertakes the multiplication,
subtraction, and reduction. The performance of this configuration is
reported by cascade stream in Table 1, and the major reason for the
poor performance is that the initiation interval on the PL increased
to two as streams to the addition kernel require two writes per PL
cycle as all eight pairs of operands are required by the single kernel.
To address this we multiplexed the cascade streaming approach,
with two separate copies on the AI engines such that, on average,
over two clock cycles each AIE configuration receives its data. Per-
formance of this approach is reported by the cascade multiplex row
in Table 1, which improved performance but was still slower than
that obtained by the non-AIE PL-only approach. Incidentally we
also experimented with 4-way and 8-way multiplexing but this had
no measurable improvement on performance.

Figure 4: Cascade streaming approach, Red arrow is cascade
stream, green arrows are external streams to/from the PL.

To this point we have explored connecting kernels and the PL
via streams, however it is also possible to use windows which
provide buffers. Importantly, an AIE can read up to 256 bits per
cycle frommemory compared to 32 bits from streams. Therefore we



Exploring the Versal AI engines for accelerating stencil-based atmospheric advection simulation

reverted to our multi-kernel design of Figure 3 and used windows
instead of streams between the kernels as well as to drive input
and output data between the PL. This is illustrated in Figure 5 and
the performance is reported as multi-kernel windows in Table 1. It
can be seen that the performance was extremely poor and this is
because we were operating the windows on a grid cell by grid cell
basis. This meant that there was no longer a pipelined loop within
each kernel because between each grid cell the kernel was stopped
and restarted by the AIE graph to fill and empty the windows as
required by the AIE tooling.

Figure 5: Multi-kernel windowing approach, coloured
squares are the windows, blue connects kernels internally,
and green arrows are external streams to/from the PL.

We modified our windowing approach to work in chunks, where
data for a number of grid cells is buffered into the windows and
these operate ping-pong fashion where one copy is filled with data
from the producer (either the PL or another AIE kernel) whilst
the other window copy is being consumed, with these switched
between outer iterations of the AIE graph. Consequently our ad-
dition, multiplication, and subtraction-reduction AIE kernels are
concurrently processing different chunks of grid cells based upon
the data available, effectively operating as a pipeline. An added com-
plication was that because AIE kernels are operating out of sync,
for example the multiplication kernels are one chunk behind their
corresponding addition kernels, this stalled the PL. This was be-
cause when streaming data to the AIEs, writes to the multiplication
streams are blocked waiting for the window to become free, but this
waiting on the PL also blocks writes to the addition streams which
are required to progress the addition AIE kernel which will unlock
its multiplication kernel. The solution was to implement explicit
ping-pong buffering on the PL for the multiplication streams, with
a dataflow region working in sizes of chunk which is concurrently
filling a buffer with the current chunk’s data and streaming out the
previous chunks data to the AIE kernel.

Performance is reported by chunking windows in Table 1, where
it can be seen that this approach has significantly increased per-
formance on the AIEs, however it is still slightly slower than the
PL-only. Based on profiling via Vitis analyzer we found that the
subtraction and reduction kernel was taking around double the
execution time of the other kernels and this imbalance of work was
causing additional stalling. Consequently we modified the kernel
to perform subtraction only and streamed back to the PL 4 floating

point numbers which the PL then adds together. This is reported by
the row reduction on host in Table 1 which outperforms the PL-only.

As described previously, in this multi-kernel approach each ker-
nel is only working with vector sizes of four whereas the hardware
is capable of undertaking eight single precision floating point oper-
ations per cycle. Working with windows, it was trivial to read two
grid cells concurrently, placing the first in the lower portion of the
vector and the second grid cell in the higher portion. Consequently
this meant that vector operations were now running over eight
operands, effectively processing two grid cells per AIE vectorized
operation. This is reported by double vectorization in Table 1 and
resulted in a performance improvement, albeit modest as we are
still limited to streaming data for only one grid cell between the PL
and AIEs per cycle due to the maximum of port width of 128 bits.

5 MULTIPLE HLS COMPUTE UNITS
In Section 4 we focused on a single PL HLS Compute Unit (CU).
By decomposing across the advection problem’s grid space, we can
scale to multiple HLS CUs, all with a separate 3D part of the grid
and working independently, connected to their own AIEs. Using
our optimised AIE approach, which requires fifteen AIEs per HLS
CU, we compared performance against other hardware options and
Table 2 reports these results.

The advection kernel running on the AI engines of the VCK5000
is reported by the row VCK5000 AIEs in Table 2. Whilst not doc-
umented directly, there are a maximum of 78 128-bit PLIO input
streaming interfaces that only become apparent during compilation
as we scaled. This is because AIE tile contains eight 32-bit AI Engine
to AXI4-Stream channels [7] and there are 39 tiles. Consequently,
there are a total of 312 32-bit channels connecting the AIEs to the
PL, or a maximum of 78 128-bit channels as each of these is built
using four 32-bit links. Incidentally AIEs accessing DRAM directly,
without the PL, would also encounter this limitation as the data
still needs to traverse these same physical links.

With six input streams per field, and three fields per CU, this
results in a maximum of four HLS CUs. We are therefore using 60
AIEs in total, and up to four CUs the performance scales well. Con-
sequently this hardware restriction is a major limitation because, if
we were able to scale to a greater number of CUs, then performance
would likely increase significantly. The importance of streaming an
entire grid cell per cycle between the PL and AIEs was highlighted
in Section 4, and out of the two AIE kernel designs which enable
this, multi-kernel and multiplexed cascade stream, the multi-kernel
is preferable in this regard as it requires six input streams per field
compared to eight for the multiplexed cascade stream.

The Alveo U280 was configured with six HLS CUs, which is
the maximum number that can fit due to limits on the number of
ports in the Alveo shell. It can be seen that performance on the
Alveo U280 is similar to that obtained on the VCK5000 using AI
engines, even though there are only four CUs on the VCK5000. This
is especially impressive considering that the U280 contains external
HBM2 memory whereas the VCK5000 only has DDR4. We are able
to fit eight CUs onto the PL-only VCK5000 configuration, which
does not suffer from limitations on the number of ports due to the
Versal containing a NoC which HLS kernels are connected to. The
VCK5000 combined result reports performance for a combination



Nick Brown

of the four AIE CUs with six PL-only CUs on the VCK5000, and
this combined approach which leverages both the AIEs and PL for
calculations delivers double the performance of the U280.

By comparison, the scheme running over the 24-core Cascade
Lake Xeon Platinum CPU, which was threaded via OpenMP and
compiled using GCC version 10.2 performs poorly compared with
every other hardware technology. The V100 GPU version is imple-
mented using OpenACC and version 20.9 of the Nvidia compiler,
and this out-performs all other CPU and FPGA configurations,
which is largely in agreement with [2]. Whilst the Versal has closed
the gap with the GPU, it is unfortunate that AIE hardware restric-
tions ultimately limit the number of AIE CUs to four.

Description Performance (GFLOPS)
VCK5000 AIEs (4 CUs) 68.73

VCK5000 PL-only (8 CUs) 101.78
VCK5000 combined (4 and 6 CUs) 145.11

Alveo U280 (6 CUs) 72.32
24-core Xeon Platinum CPU 23.52

V100 GPU 227.89
Table 2: Compute performance of FPGAAIE and PL-only ap-
proaches compared to 24-core Cascade LakeCPU andNvidia
V100 GPU. All runs undertaken in single precision floating
point using a problem size of 67 million grid points

6 CONCLUSIONS AND RECOMMENDATIONS
In this paper we have explored porting of the PW atmospheric
advection scheme to the Versal, utilising the PL for tailoring mem-
ory accesses via a 3D shift-buffer and the AIEs for undertaking
computation. Representative of a much wider class of stencil-based
algorithms, which are popular in HPC workloads, we found that
the major challenge was being able to most effectively interface
the PL and AIEs to ensure data continually flows between the
two. There are several possible approaches, and we have explored
how hardware and tooling limitations drive specific choices and
the performance impact of these. Ultimately, we found that the
most effective approach was to use windows in a ping-pong fash-
ion, working on chunks of data within the AIE kernels which rely
on software pipelined loops and fully filled 8-way vectorization.
Comparing against other hardware options, we found that a major
limitation in obtaining performance was in the total number of
streams between the PL and AIEs, which meant we were unable to
scale beyond four HLS CUs. However four CUs using AIEs on the
VCK5000 performed comparatively to six CUs on the Alveo U280
with the later benefiting from HBM2. The PL-only approach on the
VCK5000 delivered impressive performance against the other FP-
GAs and CPU, which was largely due to being able to fit eight HLS
CUs onto the PL, and when combining the AIEs and PL for compute
we were able to deliver a significant improvement in performance
compared to other FPGA approaches and the CPU. Therefore, AIEs
aside, our PL-only experiments demonstrate that the Versal is a
powerful architecture and improves on the Alveo.

From a development perspective there are many advantages in
using the AIEs, and this will likely make the ACAP more accessi-
ble to software developers compared to traditional FPGAs. These
include the overall compilation being much quicker, the ability to
undertake much of the development exploration using simulation
which itself is fast, no need to rebuild the PL if the interfaces be-
tween the PL and AIEs have not changed (which means bitstream
regeneration takes around a minute), and the rich profiling tooling
to provide insights where bottlenecks lie in the code. However it
is crucial to match the workload to the architecture, and given the
bandwidth between the PL and AIEs those kernels which have a
higher FLOP to byte ratio than the stencil computation described
in this paper will likely suit the AIEs much better. Therefore, an
important lesson from this work is to focus primarily on those
kernels that will not be limited by the current generation’s PL to
AIE interface, and algorithms with a high FLOP to byte ratio are
likely where we will see the greatest benefit from this architecture.

Considering future enhancements to the Versal, in future AIE
versions it would be beneficial if Xilinx were to make the physical
streams between AIEs wider than 32 bits and increase the PL to AIE
memory size from 128 to 256 bits, as well as supporting a larger num-
ber of PLIO streams. Increased flexibility around vector sizes would
also be useful, for instance it is not possible to have a single preci-
sion floating point vector of numerous sizes including six, which
required us to pad with empty values to eight, and this increased
the amount of data transferred between PL and AIE. Considering
the wider Vitis technology, within HLS it is not possible to create
arrays of external AXI streams (e.g. of type qdma_axis<128,0,0,0>)
and this resulted in messy code when experimenting with multi-
plexing. This is important because interfacing with AIEs will likely
require a greater number of AXI streams compared to what is cur-
rently most common in HLS, and-so improved flexibility would be
advantageous.

7 ACKNOWLEDGEMENTS
The authors would like to thank the ExCALIBUR H&ES CGRA
project who funded this work. We also acknowledge the ExCAL-
IBUR H&ES FPGA testbed and AMD Xilinx HACC program for
access to compute resource used in this work, the later who also
kindly provided comments and technical advice. For the purpose of
open access, the author has applied a Creative Commons Attribu-
tion (CC BY) licence to any Author Accepted Manuscript version
arising from this submission.

REFERENCES
[1] Sagheer Ahmad, Sridhar Subramanian, Vamsi Boppana, Shankar Lakka, Fu-Hing

Ho, Tomai Knopp, Juanjo Noguera, Gaurav Singh, and Ralph Wittig. 2019. Xilinx
first 7nm device: Versal AI core (VC1902). In 2019 IEEE Hot Chips 31 Symposium
(HCS). IEEE Computer Society, 1–28.

[2] Nick Brown. 2021. Accelerating advection for atmospheric modelling on Xilinx
and Intel FPGAs. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 767–774.

[3] Nick Brown et al. 2015. A highly scalable Met Office NERC Cloud model. In Pro-
ceedings of the 3rd International Conference on Exascale Applications and Software.
University of Edinburgh, 132–137.

[4] Brian Gaide, Dinesh Gaitonde, Chirag Ravishankar, and Trevor Bauer. 2019. Xilinx
adaptive compute acceleration platform: VersalTM architecture. In Proceedings
of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. 84–93.



Exploring the Versal AI engines for accelerating stencil-based atmospheric advection simulation

[5] David Lee, Gregory Allen, Matthew Cannon, Hunter Earnest, Paul Thelen,
Nathaniel Dodds, Jeffrey McCasland, and Carol Chen. 2021. Preliminary Re-
sults from Heavy-Ion Irradiation of the Xilinx Versal ACAP. Technical Report.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

[6] Steve A Piacsek and Gareth P Williams. 1970. Conservation properties of con-
vection difference schemes. J. Comput. Phys. 6, 3 (1970), 392–405.

[7] Xilinx. 2021. Versal ACAP AI Engine Architecture Manual (AM009). https:
//docs.xilinx.com/r/en-US/am009-versal-ai-engine

[8] Xilinx. 2022. AI Engine Kernel Coding Best Practices Guide (UG1079)). https:
//docs.xilinx.com/r/en-US/ug1079-ai-engine-kernel-coding

[9] Xilinx. 2022. Versal ACAP AI Engine Programming Environment User Guide
(UG1076). https://docs.xilinx.com/r/en-US/ug1076-ai-engine-environment

[10] Chengming Zhang, Tong Geng, Anqi Guo, Jiannan Tian, Martin Herbordt, Ang
Li, and Dingwen Tao. 2022. H-GCN: A Graph Convolutional Network Accelerator
on Versal ACAP Architecture. arXiv preprint arXiv:2206.13734 (2022).

https://docs.xilinx.com/r/en-US/am009-versal-ai-engine
https://docs.xilinx.com/r/en-US/am009-versal-ai-engine
https://docs.xilinx.com/r/en-US/ug1079-ai-engine-kernel-coding
https://docs.xilinx.com/r/en-US/ug1079-ai-engine-kernel-coding
https://docs.xilinx.com/r/en-US/ug1076-ai-engine-environment

	Abstract
	1 Introduction
	2 Background
	2.1 The Versal AI engines
	2.2 Piacsek and Williams advection kernel

	3 Experimental setup
	4 AIE porting and optimisation
	4.1 Optimising the data transfer

	5 Multiple HLS compute units
	6 Conclusions and recommendations
	7 Acknowledgements
	References

