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ABSTRACT
Convolutional neural network (CNN) accelerators are being widely
used for their efficiency, but they require a large amount of mem-
ory, leading to the use of a slow and power consuming external
memory. This paper exploits two schemes to reduce the required
memory amount and ultimately to implement a CNN of reasonable
performance only with on-chip memory of a practical device like a
low-end FPGA. To reduce the memory amount of the intermediate
data, a stream-based line-buffer architecture and a dataflow for the
architecture are proposed instead of the conventional frame-based
architecture, where the amount of the intermediate data memory is
proportional to the square of the input image size. The architecture
consists of layer-dedicated blocks operating in a pipelined way with
the input and output streams. Each convolutional layer block has a
line buffer storing just a few rows of input data. The sizes of the
line buffers are proportional to the width of the input image, so
the architecture requires less intermediate data storage than the
conventional frame-based architecture, especially in the trend of
getting larger input size in modern object detection CNNs. In addi-
tion to the reduced intermediate data storage, the weight memory
is reduced by the accelerator-aware pruning. The experimental re-
sults show that a whole object detection CNN can be implemented
even on a low-end FPGA without an external memory. Compared
to previous accelerators with similar object detection accuracy, the
proposed accelerator reaches much higher throughput even with
less FPGA resources of LUTs, registers, and DSPs, showing much
higher efficiency. The trained models and implemented bit files are
available at https://github.com/HyeongjuKang/accelerator-aware-
pruning and https://github.com/HyeongjuKang/aocstream.

CCS CONCEPTS
•Hardware→Hardware accelerators; Arithmetic and datapath
circuits; Application specific integrated circuits.

KEYWORDS
CNN accelerator, object detection, on-chip memory, FPGA

1 INTRODUCTION
Recently, convolutional neural networks (CNNs) are showing great
performances in computer vision tasks, including image recogni-
tion [10, 11, 27, 29], object detection [17, 18, 26, 28], and image
segmentation [19]. However, CNNs usually require an enormous
amount of memory and computation, so special hardware is usually
adopted to implement them. Many kinds of CNN hardwares have
been used, and a CNN accelerator in ASIC or FPGA shows high
efficiency.

There have been many CNN accelerators [4, 13, 22, 30, 34], some
of which focused on object detection [3, 7, 20, 23, 25, 31]. One
of the main concerns in designing a CNN accelerator is how to
reduce the number of external memory accesses. The processing of
a CNN requires a large amount of memory, so the data are usually
stored in an external memory like DRAM. Accessing an external
DRAM consumes much power [9] and occupies long latency. Many
previous CNN accelerators have proposed various data flows to
reduce the number of external memory accesses.

To solve this problem and ultimately to implement a whole CNN
model only with on-chip memory, there are two trivial solutions,
embedding a large amount of on-chip memory [12, 21, 33] or using
a very simplified CNN model [21]. However, these solutions are
not so practical because of cost and degraded performance. It is still
a challenging problem to reduce the required memory amount so
that a CNN model of reasonable performance frequently used for
embedded implementation [8, 32] can fit in the on-chip memory of
a practical environment like a low-end or mid-range FPGA device.

In this paper, we reached this goal by adopting two approaches.
The CNN processing stores two kinds of data in memory, the
weights and the intermediate activation data. To reduce the amount
of weight memory, we exploit the pruning scheme [6, 9, 16, 24],
especially accelerator-aware pruning [14]. Pruning schemes can re-
duce the weight amount, but the irregularity leads to an inefficient
implementation. The accelerator-aware pruning prunes weights
considering the base accelerator, so it does not harm the accelerator
performance.

To reduce the amount of the intermediate data memory, this
paper proposes a stream-based line-buffer architecture. The main
component of a CNN is a convolutional layer. The proposed archi-
tecture is specialized to process a convolutional layer, storing only
a few rows of the intermediate data for each layer. A convolution is
a local operation, so the calculation of an output activation requires
only a few neighboring input data. If the input data are streamed
into the processing block, only a few rows are required to be stored.
To take full advantage of the line-buffer structure, a proper dataflow
will be proposed, too. With the two schemes reducing the weight
and the intermediate data memory, an object detection CNN can
be implemented in a low-end FPGA without an external memory.

This paper is organized as follows. Section II introduces the
basics of CNN computations, and Section III analyzes the memory
sizes of CNN accelerators. The proposed architecture is described
in Section IV, and the experimental results are shown in Section V.
Section VI makes the concluding remarks.
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2 CONVOLUTIONAL NEURAL NETWORKS
A CNN consists of many layers, which are stacked input-to-output.
The data usually flow from input to output. The main layer in
a CNN is a convolutional layer. A convolutional layer assumes
𝑁 input feature maps whose height and width are 𝐻 and𝑊 . A
convolutional layer performs a convolution operation on the input
feature maps as described in the following equation and produces
𝑀 output feature maps, as follows.

𝑓 𝑜 (𝑚,𝑦, 𝑥) =
𝑁−1∑︁
𝑛=0

𝐾−1∑︁
𝑖=0

𝐾−1∑︁
𝑗=0

𝑤 (𝑚,𝑛, 𝑖, 𝑗)× (1)

𝑓 𝑖 (𝑛, 𝑆 × 𝑦 + 𝑖, 𝑆 × 𝑥 + 𝑗) + 𝑏𝑖𝑎𝑠 (𝑚),

where 𝑓 𝑖 () and 𝑓 𝑜 () are a piece of the input and output feature
map data, an input and output activation, respectively, and𝑤 () is
the weights.

To reduce the amount of weight and computation, a convolution
layer can be divided into a depth-wise convolution and a point-
wise convolution [11], where a point-wise convolution is a normal
1×1 convolution. In the depth-wise convolution, the number of the
input feature maps, 𝑁 , is equal to that of the output feature maps,
𝑀 , and an output feature map is calculated from the corresponding
input feature map.

𝑓 𝑜 (𝑛,𝑦, 𝑥) =
𝐾−1∑︁
𝑖=0

𝐾−1∑︁
𝑗=0

𝑤 (𝑛, 𝑖, 𝑗)× (2)

𝑓 𝑖 (𝑛, 𝑆 × 𝑦 + 𝑖, 𝑆 × 𝑥 + 𝑗) + 𝑏𝑖𝑎𝑠 (𝑛)

CNNs are usually used for computer vision tasks including object
detection. One of the most popular CNN types for object detection
is the single-shot multi-box detector (SSD) [18]. The SSD exploits
an image classification CNN like VGG, ResNet, and MobileNet as
a base CNN. The feature maps shrink more with auxiliary layers,
and the detection box information is generated through a few more
layers. There are some SSD variants, and SSDLite [27] uses depth-
wise convolutional layers instead of normal convolutional layers in
the auxiliary part.

3 MEMORY SIZE OF CNN ACCELERATORS
One of the most important factors in designing CNN accelerators
is the amount of required memories. Processing a neural network
usually requires a huge amount of memories, usually larger than
the amount that can be embedded on a low-end or mid-range FPGA.
A CNN accelerator, therefore, usually uses external memories like
DRAMs.

A CNN accelerator stores two types of data in memories, weights
and intermediate activations. The amount of the weight memory is
determined at the algorithm level by the CNN structure. The amount
of the activation memory is also determined at the algorithm level,
but it can be determined at the architecture level, too.

Traditionally, the memory amount for weights is believed to
be much larger than that for the activations. In the traditional
CNNs, however, most of the weights belong to the fully-connected
layers [9]. The recent CNNs use only one or none fully-connected
layers [10, 27], and the object detection CNNs do not use fully-
connected layers at all [17, 18, 26]. In convolutional layers, the
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Figure 1: Memory amount for MobileNetV1 and SSDLiteX

memory requirement for weights is not much larger than that for
activations, compared to those in fully-connected layers.

Furthermore, the activation amount is proportional to the square
of the input image size. If the height and width of the input image
are doubled, so are those of feature maps, and the activation amount
increases by four-times. This is not a big problem when the target is
the image classification because the input image size is usually very
small, around 224. However, the modern object detection CNNs use
large input images varying from 300 [18] to 1280 [28]. Considering
the current trend of processing larger input images, the activation
memory will become larger in the future.

The amount of the activation memory also depends on the accel-
erator architecture. In the conventional CNN accelerators, a neural
network is processed layer by layer. A whole input feature map is
stored in a memory, and a CNN accelerator reads activations from
the memory, processes them, and stores the output activations. Af-
ter generating the whole output feature maps, the CNN accelerator
starts to process the next layer. Therefore, the CNN accelerator
requires a memory for the whole input or output feature maps, and
the amount is sometimes doubled for the double buffering. Some
structures process a few layers at the same time [2, 4], but they
store the intermediate data between the layer blocks, too.

To analyze the memory size, a few object detection CNNs were
designed. The CNNs consist of MobileNetV1 [11] and SSDLiteX,
a variant of SSDLite [27]. The CNNs are built for the images with
various sizes from 320 to 640. The number of auxiliary layer stages
changes with the input sizes. The input size 320 and 384 uses 4
stages, 448 and 512 uses 5 stages, and 640 uses 6 stages. The de-
tailed CNN structure is provided in [15]. Figure 1 compares the
memory amounts for each type of data with 8-bit quantization.
For small input images, the memory amount for the activations
(Activation in Figure 1) is around one-fourth of that for the weights
(Weight in Figure 1). With large input images, the activations oc-
cupy almost the same memory as the weights do. If the double
buffering scheme is applied, the intermediate activations require
twice as large memories as that in the figure.

As another example of the state-of-the-art object detection CNNs,
Figure 2 shows the memory requirement of EfficientDet [28], where
the number of channels increases according to the input size. The
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Figure 2: Memory amount for EfficientDet

amount of weights increases as input size is scaling up, but the
amount of the activation memory is larger than that of the weight
memory.

Furthermore, the weight amount can be reduced by pruning
[6, 9, 14, 16, 24]. Recent research on pruning shows the amount
of weight can be reduced by three fourths in convolutional layers
[9, 14]. If the pruning is applied, the memory amount for weights is
smaller than that for activations even with small input images, as
shown in Figure 1. The pruning can reduce the weight amount, but
there is no method to reduce the activation amount. The only way is
using a smaller input image despite of the performance degradation
or using another architecture.

4 STREAM-BASED LINE-BUFFER
ARCHITECTURE

This paper follows the accelerator-aware pruning and the corre-
sponding PE structure in [14] to reduce the weight amount, so the
remaining part will focus on the reduction of the activation memory
in the architecture and dataflow level, proposing a stream-based
line-buffer accelerator architecture for CNNs.

4.1 Top architecture
The proposed accelerator processes a CNN in a layer-level pipelined
way. Each layer has a corresponding processing block as shown
in Figure 3. When a group of data is input to a block, the block
processes the input data and generates a group of output data if
possible. The generated group of data streams into the next block.
Since each block does not wait for the previous block to complete
the corresponding layer operation, all of the blocks can operate
in parallel. The structure of a layer block is determined by the
corresponding layer type.

4.2 Convolutional layer block
The base operation of a convolutional layer is the two-dimensional
convolution. In the conventional image processing circuits, the two-
dimensional convolution is usually processed by a stream-based
structure with a line buffer of size 𝐾-1 lines. In the structure, the
input data is assumed not to reside in a memory, but to stream in
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Figure 3: Stream-based line-buffer architecture

one by one. When one piece of input data streams in, the circuit
processes the possible convolution operation.

The stream-based structure can be applied to the convolutional
layer operation, but a proper dataflow is required to maintain the
𝐾-1 line-buffer size. As in the typical image processing circuits,
it is assumed that the input data are streamed in the row-major
order. For each spatial location, 𝑁 channel data are divided into𝐺𝑖
groups, and a group of 𝑁 /𝐺𝑖 = 𝑁𝑖 data is streamed-in together at
the interval of 𝐼𝑖 cycles as shown in Figure 4. With the 𝑁𝑖 data, the
layer block performs all of the computations that can be done with
the input data and the data stored in the buffer. When 𝑔th group
data, 𝑓 𝑖 (𝑔𝑁𝑖 , 𝑦, 𝑥) ∼ 𝑓 𝑖 ((𝑔+1)𝑁𝑖 −1, 𝑦, 𝑥), are input, the layer block
calculates the following partial sums for each output 𝑓 𝑜 (𝑚,𝑌,𝑋 ),
where 0 ≤ 𝑚 < 𝑀 , 𝑌 = 𝑦 −𝐾 + 1, and 𝑋 = 𝑥 −𝐾 + 1. For simplicity,
the stride S is assumed to be 1, but the structure is not limited to
that.

𝑓 𝑜𝑔 (𝑚,𝑌,𝑋 ) =
(𝑔+1)𝑁𝑖−1∑︁
𝑛=𝑔𝑁𝑖

𝐾−1∑︁
𝑖=0

𝐾−1∑︁
𝑗=0

𝑤 (𝑚,𝑛, 𝑖, 𝑗) (3)

×𝑓 𝑖 (𝑛,𝑌 + 𝑖, 𝑋 + 𝑗),

The partial sum requires𝐾×𝐾×𝑁𝑖×𝑀×(1−𝑟 )MAC operations,
where 𝑟 is the pruning ratio, and the operations should be done
in 𝐼𝑖 cycles. Therefore, the required number of MAC operators is
𝐾 × 𝐾 × 𝑁𝑖 ×𝑀𝑖 × (1 − 𝑟 ), where𝑀𝑖 = 𝑀/𝐼𝑖 . The layer block has
𝑀𝑖 processing elements (PEs), and a PE calculates a partial sum of
an output with 𝐾 × 𝐾 × 𝑁𝑖 × (1 − 𝑟 ) multipliers at each cycle.

When a partial sum is calculated, it is accumulated with an ac-
cumulation buffer of size𝑀 . When all the data of a spatial location,
𝑓 𝑖 (𝑛,𝑦, 𝑥) for 0 ≤ 𝑛 < 𝑁 , are input through 𝐺𝑖 groups, the calcula-
tion of the output data, 𝑓 𝑜 (𝑚,𝑌,𝑋 ) for 0 ≤ 𝑚 < 𝑀 , is completed
through the accumulation. The output data are collected at the out-
put unit and streamed out in 𝐺𝑜 groups of𝑀/𝐺𝑜 = 𝑀𝑜 data at the
interval of 𝐼𝑜 cycles. If the spatial size of the input feature maps is
equal to that of the output feature maps, the following relationship
should be satisfied.

𝑁

𝑁𝑖
× 𝐼𝑖 ≥

𝑀

𝑀𝑜
× 𝐼𝑜 (4)
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Figure 4: Convolutional layer processing

Some similar line-buffer structures were proposed for CNNs
in [1, 3, 5, 21, 23, 35]. However, they did not employ a dataflow
proper to the line-buffer structure. Their dataflow focuses on the
weight data reuse, leading to the larger line-buffer of size 𝐾 or
𝐾+1 lines. The large line-buffers make their accelerators use an
external memory for the weights [23, 35] or require a very large
FPGA device [3, 21].

On the contrary to the previous works, the proposed dataflow
reuses the input feature map data as much as possible. After a
𝐾 ×𝐾 ×𝑁𝑖 input activation data block is gathered, the PEs perform
all the computations related to the block. This dataflow property
enables the line-buffer size of 𝐾-1 lines. However, this dataflow
cannot reuse the weights, so it is proper to a structure with all of
the weights in on-chip memory. With a weight memory reduction
scheme, the proposed structure can exploit the dataflow to reduce
the line-buffer size.

4.3 Depth-wise convolutional layer block
The depth-wise convolutional layer block also requires a line buffer
of (𝐾-1)-line size as the convolutional layer block in the previous
subsection. In the depth-wise convolution, the accumulation is
not required between the input data groups. When 𝑓 𝑖 (𝑔𝑁𝑖 , 𝑦, 𝑥) ∼
𝑓 𝑖 ((𝑔+1)𝑁𝑖−1, 𝑦, 𝑥) data are input, we can calculate 𝑓 𝑜 (𝑔𝑁𝑖 , 𝑌 , 𝑋 ) ∼
𝑓 𝑜 ((𝑔 + 1)𝑁𝑖 − 1, 𝑌 , 𝑋 ). The required number of MAC operations
is 𝐾 ×𝐾 ×𝑁𝑖 . Each PE has one MAC unit and the number of PEs is
determined as follows.

Number of PEs ≥ 𝐾 × 𝐾 × 𝑁𝑖
𝐼𝑖

(5)

4.4 Frame-buffer vs. line-buffer
When a CNN is processed layer-by-layer as in the conventional
architecture, a frame buffer is required. For a layer 𝑙 , a frame buffer
of size 𝐻𝑙 ×𝑊𝑙 × 𝑁𝑙 is required for the input feature maps, and
another of size 𝐻𝑙+1 ×𝑊𝑙+1 × 𝑁𝑙+1 is required for the output fea-
ture maps. Since a frame buffer can be reused between layers, the
maximum size is required as follows.
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Figure 5: Frame-buffer vs. line-buffer

Frame Buffer Size = max
𝑙
𝐻𝑙 ×𝑊𝑙 × 𝑁𝑙 (6)

In the proposed architecture, a line buffer is used for each con-
volutional layer block, depth-wise convolutional layer block, and
pooling layer block. Since the blocks operate in parallel, the line
buffers cannot be shared. Therefore, the total size of the line buffers
is as follows.

Line Buffer Size =
∑︁
𝑙

(𝐾𝑙 − 1) ×𝑊𝑙 × 𝑁𝑙 (7)

When the input image size is scaled-up, the input image is en-
larged vertically and horizontally. The frame buffer size in (6) is
increased with the square of the scale. Contrary to that, the line
buffer size in (7) has only the width term,𝑊𝑙 . The line buffer size
is proportional to the scale linearly. In Figure 1, the frame buffer
size is shown as Activation, which increases rapidly with the input
image size. However, the line buffer size, denoted as Line Buffer,
increases slowly with the input image size.

Figure 5 compares the frame buffer size and the accumulated line
buffer in each layer of MobileNetV1 and SSDLiteX with 512×512
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Table 1: FPGA Implementation Results

Architecture [31] [7] [23] AoCStream (Proposed)

CNN MNetV1+SSD MNetV2+SSDLite YOLOv3 MNetV1 + SSDLiteX
Input Size 320 224 416 320 384 448 512 320 448
MS COCO AP .193 .203 .310 .211 .231 .247 .253 .206 .247

FPGA XCZU9EG ZC706 XC7VX485T XCKU5P XC7K325T XC7VX485T
LUT(K) 162 148 230 137 145 148 154 155 154
Reg(K) 301 192 223 218 219 233 232 195 237
BRAM 771 311 972.5 454 454 476 476 445 648
URAM - - - 25 25 25 44 - -
DSP 2070 728 2640 464 464 476 476 360 476
Clock(MHz) 333 100 200 428 349 400 375 186 223
Throughput(FPS) 124.3 15.4 11.66 260.9 147.7 124.5 89.3 100.9 69.5
DSP Efficiency 1(%) 22.3 8.3 - 80.2 80.2 78.3 78.3 76.1 78.3
DSP Efficiency 2(%) - - 72.4 289 289 282 282 332 282
Ext. Mem. WA WA W None None None None None None

320 384 448 512
0.2

0.25

0.3

0.35

0.4

Input Image Size

O
b
je
ct

D
et
ec
ti
on

A
cc
u
ra
cy

AP50 AP50 (Pruned)

AP50 (Quantized)

Figure 6: Object detection accuracy for MS COCO dataset

input image. The maximum size of the frame buffer is 4M at the
output of the first point-wise convolution. The line buffer in each
layer is very small, so it would not be clearly shown in the figure.
Instead of the line buffer size in each layer, the figure illustrates the
accumulated line buffer amount, which is less than one fourth of
the frame buffer size.

4.5 All-on-chip accelerator
The weight pruning and the line buffer architecture reduces the
storage of the weights and the intermediate data, respectively, so
their combination can lead to all-on-chip implementation. The two
schemes can reduce the memory size by around three-fourths. For
example, the 512×512 input image case in Figure 1 requires the
weight memory of around 5MB and the intermediate data memory
of around 4MB. The total memory requirement of 9MB cannot
be afforded by a low-end or mid-range FPGA device like Xilinx
XCKU5P, whose on-chip memory size is 4MB. If the two schemes
are applied, the total memory size becomes around 2.3MB, which
is less than the on-chip memory size of XCKU5P.

The proposed scheme does not guarantee that any CNN can be
implemented only with the on-chip memory of any device. There
will be no such scheme. The proposed scheme, however, broadens
the possibility of the all-on-chip implementation, higher perfor-
mance CNNs on smaller devices.

5 EXPERIMENTAL RESULTS
Object detection CNNs based on MobileNetV1 and SSDLiteX with
various input sizes are trained and implemented with the proposed
architecture. The CNNs are trained with the MS COCO data set
and pruned by the accelerator-aware pruning. The pruning ratio is
75%, which means 6 weights are pruned for every 8 weights along
the channel axis. The pruned CNNs are quantized with 8–10 bits
without fine-tuning. The object detection accuracy, 𝐴𝑃50, for the
MS COCO dataset is provided after each step of training, pruning,
and quantization in Figure 6. Pruning and quantization degrade
𝐴𝑃50 by around 0.01–0.02, but the detection accuracy is still high
for such compact CNNs. If retraining is applied with quantization,
better detection accuracy could be obtained. The final 𝐴𝑃 values
are shown at the fourth row of Table 1.

The proposed accelerator is designed in the register-transfer
level (RTL) for the quantized CNNs and implemented for a low-end
Xilinx FPGA, XCKU5P, which is the second smallest device in the
UltraScale+ Kintex series. The implementation results are shown
on the right side of Table 1. The table shows the occupancy of
FPGA resources including look-up tables (LUT), registers, block
memories (BRAM), ultra memories (URAM), and DSP units. The
last two columns are the implementation results for older FPGAs,
Kintex-7 series and Virtex-7 series, for comparison with previous
works. Becasue of the resource limitation, some layers are pruned
to 87.5% for XC7K325T.

The last four rows of the table show the operating clock fre-
quency, the throughput in frames per second, the DSP efficiency,
and the external memory use. The DSP efficiency is calculated as
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follows.

DSP Efficiency 1 =
(Operations/Frame) × (Frames/second)
2 × (Num. of DSPs) × (Clock Freq.) (8)

, where the 2× in the denominator reflects that a DSP can process
two operations, a multiplication and an addition, simultaneously.
The second DSP efficiency is the effective efficiency, which includes
the zero-skipped operations in a sparsity architecture, so the effec-
tive efficiency can be higher than 100% if pruning is applied. At the
last Ext. Mem. row,W and Ameans the weights and the activations
are stored in external memories, respectively. As the table shows,
the proposed architecture can store the whole intermediate data
and weights on the on-chip BRAM and URAM even for the input
image size 512×512. The all-on-chip implementation leads to high
throughput and efficiency. The architecture can process images in
90 to 250 fps, which is much faster than the real-time speed, 30fps.

The table also compares the proposed architecture with the pre-
vious ones. The architectures of the second and third columns use
CNNs similar to the one used in this paper. The accelerator of [31]
used the MobileNetV1 and SSD combination. Their architecture
shows the highest throughput in the previous ones, but it is slower
even with around five-times more DSPs than the proposed archi-
tecture of the same input size. The architecture of the third column
used MobileNetV2 and SSDLite with a small input size [7]. Despite
of such small input size and high DSP usage, the throughput is
very low. The accelerators of [31] and [7] are based on the frame-
based architecture, so their DSP efficiency is very low because of
the DRAM accesses. At the fourth column, an accelerator using
YOLOv3 is compared [23]. The accelerator exploits a line buffer
architecture similar to the proposed one, but it uses a larger line
buffer in each layer and still needs an external memory for weights.
Because they used a different CNN, it is difficult to compare their
accelerator with the proposed one, but the DSP efficiency is lower
than AoCStream. Even though they adopted a sparsity architecture,
the effective DSP efficiency is not higher than 100% probably be-
cause of DRAM accesses for weights. HPIPE proposed in [3] also
used a line buffer architecture, but it is implemented on a different
type of FPGA. Because of the different internal FPGA structure, it
is not compared in the table. However, HPIPE uses much resource
to implement a similar object detection CNN, 4,434 DSPs and 7,179
M20K BRAMs for MobileNet v1 and SSD, showing less-than-50%
DSP efficiency.

6 CONCLUSION
In this paper, object detection CNNs with reasonable performance
were implemented only with the on-chip memory of a practical
device. The memory amount is reduced in the algorithm level,
accelerator-aware pruning, and in the architecture level, a stream-
based line buffer architecture. In the architecture, a dedicated block
is assigned to each layer, and the layer blocks operate in a pipelined
way. The intermediate data are streamed into and out of each block,
so only a few rows are stored in each block thanks to the property
of the convolution operation. The reduction of the intermediate
data storage is combined with the reduction of the weight storage
by pruning to remove the need of external memories. The all-on-
chip implementation greatly enhances the performance of the CNN

accelerator. The architecture can be applied to various CNNs for
other computer vision tasks.
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