
Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA
Sasindu Wijeratne

University of Southern California, USA

kangaram@usc.edu

Ta-Yang Wang

University of Southern California, USA

tayangwa@usc.edu

Rajgopal Kannan

DEVCOM US Army Research Lab, USA

rajgopal.kannan.civ@army.mil

Viktor Prasanna

University of Southern California, USA

prasanna@usc.edu

ABSTRACT
Sparse Matricized Tensor Times Khatri-Rao Product (spMTTKRP) is

the most computationally intensive kernel in sparse tensor decom-

position. In this paper, we propose a hardware-algorithm co-design

on FPGA to minimize the execution time of spMTTKRP along all

modes of an input tensor. We introduce FLYCOO, a novel tensor

format that eliminates the communication of intermediate values to

the FPGA external memory during the computation of spMTTKRP

along all the modes. Our remapping of the tensor using FLYCOO

also balances the workload among multiple Processing Engines

(PEs). We propose a parallel algorithm that can concurrently pro-

cess multiple partitions of the input tensor independent of each

other. The proposed algorithm also orders the tensor dynamically

during runtime to increase the data locality of the external memory

accesses.We develop a custom FPGA accelerator design with (1) PEs

consisting of a collection of pipelines that can concurrently process

multiple elements of the input tensor and (2) memory controllers

to exploit the spatial and temporal locality of the external memory

accesses of the computation. Our work achieves a geometric mean

of 8.8× and 3.8× speedup in execution time compared with the

state-of-the-art CPU and GPU implementations on widely-used

real-world sparse tensor datasets.

CCS CONCEPTS
• Computer systems organization→ Reconfigurable comput-
ing; Special purpose systems.

KEYWORDS
Tensor Decomposition, Sparse MTTKRP, FPGA, Hardware Acceler-

ators

ACM Reference Format:
Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, and Viktor Prasanna.

2023. Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA.

In Proceedings of the 2023 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA ’23), February 12–14, 2023, Monterey, CA,
USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3543622.

3573179

This work is licensed under a Creative Commons Attribution

International 4.0 License.

FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9417-8/23/02.

https://doi.org/10.1145/3543622.3573179

1 INTRODUCTION
Tensor Decomposition (TD) transforms input tensors into a re-

duced latent space which can then be leveraged to learn salient

features of the underlying data distribution. TD has been success-

fully employed inmany fields includingmachine learning [2, 15, 18],

signal processing [22], and network analysis [3]. One popular TD

algorithm is Canonical Polyadic Decomposition via alternating

least squares (CP-ALS) [6], which can be accelerated by optimiz-

ing spMTTKRP, its most expensive computation task. Since real-

world tensors are generally sparse, keeping only nonzero values

in memory is a natural way to reduce the memory footprint. How-

ever, there is a concomitant need to develop optimized sparse ten-

sor formats that support highly irregular data access patterns of

spMTTKRP [23].

Several tensor formats have been proposed for real-world sparse

tensors [5, 12, 14, 16, 20]. Many of the proposed formats seek to

alleviate the problem of irregular data access by either using the

number of tensor copies proportional to the number of modes or

through additional memory to save intermediate by-products of the

computation. However, as the number of modes and the sparsity of

the tensor increases, these approaches might introduce significant

amount of memory overhead. One desirable solution to reduce the

memory traffic to the external memory is to reduce the number of

accesses to the external memory by increasing the data reuse. A

cache can be used as an intermediate memory to achieve this goal.

In addition, reordering the tensor based on space-filling curves

has shown promising results. Tensor formats such as HiCOO [12]

and ALTO [5] use variations of Z-Morton data ordering [12]. It

brings the tensor elements with neighboring coordinates closer and

increases the data reuse. However, these tensor formats still commu-

nicate a significant amount of intermediate values to the external

memory. In this paper, we propose FLYCOO, a tensor format that

eliminates the communication of intermediate values to the FPGA

external memory during the execution time of spMTTKRP along all

the modes of the input tensor. It also increases the locality of data

used in spMTTKRP. Our work hides the cost of on-the-fly tensor

remapping time by overlapping the spMTTKRP computations with

the tensor remapping.

The key contributions of this paper are:

• We introduce FLYCOO, a novel tensor format that eliminates

the communication of intermediate values generated dur-

ing spMTTKRP computation to the FPGA external memory.

FLYCOO balances the workload among multiple Processing

Engines along all the output modes of the input tensor.

• We develop a novel FPGA accelerator for spMTTKRP, which

consists of (1) PEs with multiple pipelines to concurrently

259

https://doi.org/10.1145/3543622.3573179
https://doi.org/10.1145/3543622.3573179
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3543622.3573179
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573179&domain=pdf&date_stamp=2023-02-12


FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, & Viktor Prasanna

process input tensors in a streaming fashion, (2) cache sub-

systems to exploit the locality of input factor matrices, (3)

DirectMemoryAccess (DMA) buffers to load the input tensor

partitions and store the output factor matrices in a stream-

ing fashion, and (4) custom hardware to support on-the-fly

tensor remapping.

• The memory controller design introduced in this paper re-

duces the total execution time by 4.5× compared with the

traditional Direct Memory Access (DMA) buffer-based mem-

ory controllers. The memory controller further reduces 67%

of the pipeline stalls caused by FPGA external memory ac-

cesses.

• On widely used real-world large tensor datasets, our FPGA

accelerator achieves a geometric mean of 8.8× and 3.8× im-

provement in total execution time compared with the state-

of-the-art CPU and GPU implementations, respectively.

2 BACKGROUND
2.1 Notations
An 𝑁 -dimensional, real-valued sparse tensor is denoted by X ∈
R𝐼0×···×𝐼𝑁 −1 . For a thorough review of tensors and tensor algebra,

please refer to [10]. Table 1 summarizes the list of symbols used in

this paper. Table 1: Notations
Symbol Description

𝑎 scalar (lowercase letter)

v vector (bold lowercase letter)

M matrix (bold capital letter)

X sparse tensor (Euler script letter)

𝑁 number of modes

X(𝑛) mode-𝑛 matricization of the tensor X
◦ vector outer product

⊗ Kronecker product

⊙ Khatri-Rao product

2.2 Tensor Decomposition
Canonical Polyadic Decomposition (CPD) [10] on sparse tensors

decomposes a sparse tensor X into a sum of dense matrices for

each mode which best approximates the original sparse tensor.

For example, given a sparse tensor X ∈ R𝐼0×𝐼1×𝐼2 , our goal is to
express it as X ≈ ∑𝑅−1

𝑟=0 a𝑟 ◦ b𝑟 ◦ c𝑟 , where 𝑅 ∈ Z+ refers to the

rank of X, which is defined as the smallest sum of rank-one tensors

required to generate X, a𝑟 ∈ R𝐼0 , b𝑟 ∈ R𝐼1 , and c𝑟 ∈ R𝐼2 for

𝑟 = 0, . . . , 𝑅 − 1. For illustration purposes, we assume the number

of modes of tensors to be three in the rest of the section. The

components of the above summation can be expressed as input

factor matrices, i.e., A = [a0, . . . , a𝑅−1] and likewise for B and

C. It is often useful to constrain the components to unit length,

factoring the weights into the vector 𝜆 = [𝜆0, . . . , 𝜆𝑅−1] ∈ R𝑅 ,
which allows to concisely express the model as X ≈ [[𝜆;A,B,C]] =∑𝑅−1

𝑟=0 𝜆𝑟 · a𝑟 ◦ b𝑟 ◦ c𝑟 .
Since the problem is non-convex and has no closed-form solution,

existing methods for this optimization problem rely on iterative

schemes. The alternating least squares algorithm for computing the

CP decomposition (CP-ALS) is the most popular method due to its

simplicity and efficiency. Algorithm 1 shows a common formulation

of CP-ALS for 3-mode tensors. It consists of several iterations of the

sparse Matricized Tensor-Times Khatri-Rao Product (spMTTKRP)

operation on each mode.

As illustrated in Algorithm 1, executing spMTTKRP in eachmode

is the most expensive operation of CP-ALS. spMTTKRP involves

the mode-𝑑 matricization X(𝑑 ) and the Khatri-Rao product [5] —

given two matrices B ∈ R𝐼1×𝑅 and C ∈ R𝐼2×𝑅 , their Khatri-Rao
product B ⊙ C = [b1 ⊗ c1 b2 ⊗ c2 · · · b𝑅 ⊗ c𝑅]. spMTTKRP can

be expressed as

spMTTKRP(X(𝑟 ) ,B,C) = X(𝑟 ) (B ⊙ C) .

Algorithm 1: CP-ALS for the 3-mode tensors

1 Input: A tensor X ∈ R𝐼0×𝐼1×𝐼2 , the rank 𝑅 ∈ Z+
2 Output: CP decomposition [[𝜆;A,B,C]], 𝜆 ∈ R𝑅 , A ∈ R𝐼0×𝑅 ,

B ∈ R𝐼1×𝑅 , C ∈ R𝐼2×𝑅
3 while stopping criterion not met do
4 A← spMTTKRP(X(0) ,B,C)
5 B← spMTTKRP(X(1) ,A,C)
6 C← spMTTKRP(X(2) ,A,B)
7 Normalize A, B, C and store the norms as 𝜆

3 RELATEDWORK
Srivastava et al. [21] propose a custom CGRA fabric to acceler-

ate sparse computations, including spMTTKRP. The authors use a

mode-specific tensor format to compute spMTTKRP. In our work,

we propose a mode-agnostic tensor format that only requires one

additional tensor copy regardless of the number of modes of the

tensor.

Nisa et al. [17] optimize MTTKRP on GPUs. They propose a

tensor slicing technique for the load balancing between GPU warps.

We develop a simple load balancing scheme that fairly shares the

total workload between ACCELs (see Section 4.6).

There are several CPU-based MTTKRP acceleration algorithms

proposed in the literature. J. Li et al. propose HiCOO [12], a block-

based format that compresses the sparse tensor. Helal et al. propose

ALTO [5], a space-filling curve-based tensor ordering method that

can efficiently encode spaces with irregular shapes. ALTO requires

the least amount of external memory to store tensors. Unlike prior

formats, we perform on-the-flymemory layout remapping to reduce

external memory communication time.

4 ACCELERATOR DESIGN
4.1 Target Platform
We develop a hardware accelerator for a data center FPGA device

directly connected to external DRAM memory.

4.2 Hypergraph Representation of Tensors

Figure 1: Hypergraph
of a sparse tensor

The hypergraph representation of a

tensor has been used to describe the

spMTTKRP operation in the litera-

ture [8, 13]. To describe our proposed

tensor format based on the hyper-

graph, we will briefly introduce the

hypergraph representation of a ten-

sor in this section. For a given tensor

X with 𝑁 modes, we build a hyper-

graph ℋ = (𝒱,ℰ) with the vertex

set𝒱 and the hyperedge setℰ as follows:𝒱 = 𝑉0∪𝑉1∪· · ·∪𝑉𝑁−1,
where 𝑉𝑛 is the set of all the tensor indices in mode 𝑛;ℰ contains

260



Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA FPGA ’23, February 12–14, 2023, Monterey, CA, USA

hyperedges that represent the nonzero tensor elements inX. For a 3-
mode sparse tensor X ∈ R |𝑉0 |× |𝑉1 |× |𝑉2 |

with𝑀 nonzero tensor ele-

ments, its hypergraphℋ = (𝒱,ℰ) consists of |𝒱 | = |𝑉0 |+|𝑉1 |+|𝑉2 |
vertices and |ℰ | = 𝑀 hyperedges. A hyperedge X(𝑖, 𝑗, 𝑘) connects
the three vertices 𝑖 , 𝑗 , and 𝑘 , which correspond to the row indices of

the factor matrices. Figure 1 shows an example of the hypergraph

for a sparse tensor.

Figure 2: Example FLYCOO Format Generation
4.3 Tensor Format
During tensor decomposition, spMTTKRP is computed along each

mode, one mode after the other (see Algorithm 1). For an 𝑁 -mode

tensor, when computing spMTTKRP for mode 𝑛, we refer to mode

𝑛 as the output mode and its corresponding factor matrix as the

output factor matrix. Meanwhile, the rest of the modes becomes

input modes, and their factor matrices become input factor matrices.

For each mode, the FLYCOO format assigns each nonzero tensor

element to a tensor partition. Then embed the partition ids to each

tensor element. Figure 2 illustrates the tensor format generation

process for an example tensor with 3 modes and 8 elements. For a

given output mode, FLYCOO divides the tensor into multiple parti-

tions with an equal number of output mode indices. We call these

partitions super-shards. Each PE processes the super-shards one by

one. The number of intermediate values generated while processing

each super-shard is proportional to the number of output mode

indices in the super-shard. It ensures the intermediate values are

combined in the FPGA internal memory to generate the output fac-

tor matrices. Despite generating many intermediate values similar

to other tensor formats, our method enables combining them into

output factor matrix elements before communicating the results to

the FPGA external memory.

Due to the sparsity of input tensors, each super-shard contains

a different number of nonzero tensor elements. We further divide

each super-shard into shards, where the shards have the same num-

ber of nonzero tensor elements residing inside. Having the same

size shards throughout the execution enables streaming memory

access to the input tensor stored in FPGA external memory. It also

leads to a static load balancing scheme described in Section 4.7 that

fairly distributes the workload among PEs in all the output mode

computations. Before partitioning the super-shards into shards,

each super-shard is ordered based on Z-Morton order [12] using

input mode indices of each nonzero element (see Figure 2). As a re-

sult, the nonzero tensor elements with the same input mode indices

reside within the same shard. Z-Morton order recursively partitions

multidimensional data into one dimension while preserving the

locality of the data [12]. We adopt the Z-Morton order that lays

out the elements along a recursive 𝑍 -shaped curve. The Z-Morton

vector of each nonzero element is computed from the indices of

each input mode by interleaving their binary coordinate values. For

each nonzero tensor element, the input factor matrices are accessed

based on their indices of the input modes. Hence, the proposed

ordering improves the data locality in each shard while accessing

input factor matrices.

4.3.1 Tensor Format Definition. Following the hypergraph repre-

sentation described in Section 4.2, we can define the tensor for-

mat as follows. Consider a FPGA internal memory with enough

space to store 𝑚 rows of the output factor matrix. For each out-

put mode 𝑛, we partition the vertex set 𝑉𝑛 which represent the

indices of the input tensor in mode 𝑛 into equal-size vertex sets

𝑉𝑛,0,𝑉𝑛,1, . . . ,𝑉𝑛,𝑘𝑛−1, where 𝑘𝑛 =
|𝑉𝑛 |
𝑚 . Here, |𝑉𝑛 | refers to the size

of vertex set 𝑉𝑛 . For 𝑗 = 0, 1, . . . , (𝑘𝑛 − 1), each vertex set 𝑉𝑛,𝑗 of

size𝑚 is defined as a subset of vertex set 𝑉𝑛 . We call each vertex

set 𝑉𝑛,𝑗 as an interval. Then, we collect all the hyperedges incident
on the vertices (i.e., nonzero tensor elements) in 𝑉𝑛,𝑗 together as

a super-shard, denoted by SS𝑛,𝑗 . Since real-world sparse tensors

have high variance in the distribution of nonzero tensor elements,

each super-shard contains a different number of hyperedges. This

leads to load imbalance during the spMTTKRP computation. To

address this, we further divide each super-shard into equal-sized

sets called shards. Each super-shard SS𝑛,𝑗 is further divided into

𝑡𝑛,𝑗 =
⌈
|SS𝑛,𝑗 |/𝑔

⌉
shards to fit in the FPGA buffers of size 𝑔. Here,

we denote the 𝑞-th shard in SS𝑛,𝑗 as 𝑠ℎ𝑎𝑟𝑑𝑛,𝑗,𝑞 . The total number

of shards for mode 𝑛 is 𝜏𝑛 =
∑𝑘𝑛−1
ℎ=0

𝑡𝑛,ℎ ≈ |𝑇 |/𝑔 for a tensor with
|𝑇 | nonzero tensor elements.

FLYCOO format maps each nonzero element in the tensor to

a shard in each mode. A tensor of size |𝑇 | with 𝑁 modes in the

FLYCOO format is a sequence 𝑥0, . . . , 𝑥 |𝑇 |−1, where each element

𝑥𝑖 is a tuple ⟨𝑠𝑖 , 𝑝𝑖 , 𝑣𝑎𝑙𝑖 ⟩, 𝑠𝑖 = (𝑏0, . . . , 𝑏𝑁−1) is a shard ID vector

where each shard ID corresponds to a mode of the tensor. Here,

𝑏𝑛 = ( 𝑗, 𝑞) if and only if 𝑥𝑖 ∈ 𝑠ℎ𝑎𝑟𝑑𝑛,𝑗,𝑞 . This is used to locate the

shards where each nonzero tensor element belongs in each mode.

𝑝𝑖 = (𝑐0, . . . , 𝑐𝑁−1) is the original indices of the nonzero tensor

element in each dimension. 𝑣𝑎𝑙𝑖 is the value of the nonzero tensor

elements of the tensor at 𝑝𝑖 . Following the notation used in Section

4.3.1, a single nonzero element in the FLYCOO format requires

approximately 𝑁 × log
2

(
|𝑇 |
𝑔

)
+∑𝑁−1

ℎ=0
log

2
|𝑉ℎ | + 𝛽float bits, where

𝛽
float

is the number of bits needed to store the floating-point value

of the nonzero tensor element. We encode |𝑠𝑖 | ≈ 𝑁 × log
2

(
|𝑇 |
𝑔

)
,

|𝑝𝑖 | =
∑𝑁−1
ℎ=0

log
2
|𝑉ℎ |, and |𝑣𝑎𝑙𝑖 | = 𝛽float.

The FLYCOO format generation is a preprocessing task. Even

though the remapping process is executed in real-time, the FPGA

external memory spaces (i.e., memory layout) for each shard can be

statically decided during the preprocessing time (see Section 4.7).

While FLYCOO and HiCOO [12] adopt similar tensor ordering

strategies, such as Z-Morton ordering during the format generation,

they have significant differences, including: (1) Intermediate value

communication: According to the FLYCOO tensor format intro-

duced in Section 4.3.1, each super-shard contains all the nonzero

261



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, & Viktor Prasanna

tensor elements of an output factor matrix interval. Since each in-

terval can be fit in the FPGA internal memory, each interval can be

computed without communicating intermediate values generated

during the computation to the FPGA external memory. However,

HiCOO requires intermediate values to be communicated to the

FPGA external memory. Since spMTTKRP is a memory-bound op-

eration and FLYCOO avoids communicating intermediate values

to the FPGA external memory, FLYCOO significantly reduces the

overall execution time. (2) Tensor partitioning scheme and nonzero

element distribution: HiCOO partitions contain an equal number

of tensor indices for each mode, while the FLYCOO shards have the

same number of nonzero tensor elements. The approach used by

FLYCOO leads to load-balanced computation in a multi-PE accel-

erator, as discussed in Section 4.6. HiCOO partitions vary in size

because nonzero elements are not distributed evenly across tensor

indices. Hence, HiCOO leads to non-uniform partitioning of the

tensor. (3) Applying Z-Morton ordering: FLYCOO applies Z-Morton

ordering for each super-shard independent of each other along the

indices of the input mode. HiCOO applies Z-Morton ordering once

considering all the modes. FLYCOO enables better data reuse of

input factor matrices while computing spMTTKRP with the use of

the accelerator hardware (see Section 4.5).

4.4 Parallel Algorithm
We perform mode-by-mode super-shard computation. Since each

super-shard can be executed independently by construction (see

Section 4.3), the order of super-shard computation does not af-

fect the outputs. Further, multiple super-shards can be executed in

parallel.

Algorithm 2 shows the parallel algorithm for a super-shard for a

given mode. The functions Load and Store correspond to loading

and storing data from the FPGA external memory. The parallel

algorithm consists of (1) spMTTKRP Computation and (2) Data

Remapping for the next mode. These 2 stages are executed concur-

rently.

In Algorithm 2, all the factor matrices are accessed in row-major

order. Hence, the factor matrices are stored in the FPGA external

memory in row-major order.

At the beginning of Algorithm 2, a super-shard gets assigned

to a PE for execution. In the spMTTKRP Computation, the shards

that belongs to the same super-shard are loaded into an internal

buffer one by one (Algorithm 2: line 7). After a shard is loaded, the

tensor elements inside the shard are assigned for execution. First,

the coordinates of the modes are extracted from the tensor element

in FLYCOO format (Algorithm 2: line 10). Then the corresponding

rows (based on input mode indices of the tensor element) of the

input factor matrices are loaded into the PE from the FPGA external

memory. After, the element-wise operations between the tensor

element and the rows of the input factor matrices are performed in-

side the PEs (Algorithm 2: line 15-20). The PE maintains an internal

memory buffer to store the intermediate values of the computation.

Keeping this internal buffer size proportional to interval size, |𝐼 |
(see Section 4.3.1) ensures that all the intermediate values can be up-

dated only using the internal memory of FPGA. After a super-shard

is completely processed, the generated output interval is stored in

the FPGA external memory (Algorithm 2: line 26).

After computing spMTTKRP for mode 𝑛, the accelerator should

compute spMTTKRP for the subsequent mode (i.e., mode (𝑛 + 1)

mod 𝑁 ). Nonzero tensor elements should be ordered according

to the output mode to support our proposed parallel algorithm.

Therefore, the tensor should be remapped according to the shard

IDs of mode (𝑛 + 1) mod 𝑁 to compute the spMTTKRP of the

upcoming mode. Hence, as the current mode runs, the tensor is

remapped in parallel according to the shard IDs of the upcoming

mode, allowing sequential execution of all the modes.

Algorithm 2: Computation of a super-shard in mode 𝑛

1 Input: Input factor matrices-set Y = {𝑌0, 𝑌1, ...𝑌𝑁−1} \ {𝑌𝑛},
2 super-shard in mode 𝑛 𝑆𝑆𝑛,𝑗 = {shard𝑛,𝑗,0, . . ., shard𝑛,𝑗,𝑘−1}
Result: Store interval 𝐼 from output factor matrix 𝑌𝑛 ,

remap and store each tensor element 𝑥𝑖
3 Compute & On-the-fly Remap(𝑆𝑆 , Y):
4 Initialize 𝐼 as a zero matrix

5 𝑦 ← (𝑛 + 1) mod 𝑁 // upcoming mode

6 for each shard𝑛,𝑗,𝑎 in SS do
7 Buffer𝑡 ← Load(shard𝑛,𝑗,𝑎)
8 for each element 𝑥𝑖 = ⟨𝑠𝑖 , 𝑝𝑖 , 𝑣𝑎𝑙𝑖 ⟩ in Buffer𝑡 do
9 𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑖

10 𝑝𝑖 = (𝑐0, . . . , 𝑐𝑁−1)
11 𝑠ℎ𝑎𝑟𝑑_𝑖𝑑𝑠 , 𝑠𝑖 = (𝑏0, . . . , 𝑏𝑁−1)
12 𝑧 ← 𝑏𝑦

13 // ℓ is a vector of size R. Each element initialized to 1

14 ℓ ← 1

15 for each input mode𝑤 ∈ {0, . . . , 𝑁 − 1} \ {𝑛} do
16 𝑣𝑒𝑐 ← Load(row 𝑐𝑤 from𝑤 th

factor matrix)

17 for each rank 𝑟 in 𝑅 parallel do
18 ℓ (𝑟 ) ← ℓ (𝑟 ) × 𝑣𝑒𝑐 (𝑟 )

19 for each rank 𝑟 in 𝑅 parallel do
20 𝐼 (𝑐𝑛, 𝑟 ) ← 𝐼 (𝑐𝑛, 𝑟 ) + 𝑣𝑎𝑙𝑢𝑒 × ℓ (𝑟 )

21 // Inside Remap_Cache_Buffer

22 shard_collector(𝑏𝑦 ) ← Update(shard_collector(𝑏𝑦 ) ∪𝑥𝑖 )

23 if Remap_Cache_Buffer full then
24 for each collected shard_collector(𝑏𝑦 ) in

Remap_Buffer do
25 Store(append shard_collector(𝑏𝑦 ) to 𝑠ℎ𝑎𝑟𝑑𝑦,𝑏𝑦 )

26 Bufferoutput ← 𝐼

27 Store(Bufferoutput to n
𝑡ℎ

factor matrix)

28 for each collected shard_collector(𝑏𝑦 ) in
Remap_Cache_Buffer do

29 Store(append shard_collector(𝑏𝑦 ) to 𝑠ℎ𝑎𝑟𝑑𝑦,𝑏𝑦 )

The on-the-fly remapping for the upcoming mode is performed

as follows: First, the shard ID of the subsequent mode to be executed

is extracted from each tensor element. Then, the tensor elements

with the same shard ID of the subsequent mode are collected to-

gether inside the Remap_Cache_Buffer using the update function

(Algorithm 2: line 22). Remap_Cache_Buffers are not large enough

to store all shards; therefore, as the Remap_Cache_Buffer becomes

full, we store partially aggregated shards (i.e., shard collectors) in

262



Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA FPGA ’23, February 12–14, 2023, Monterey, CA, USA

the corresponding shard locations in the FPGA external memory

(Algorithm 2: lines 23-25 & 28-29).

The total computations per mode in the proposed Algorithm 2 is

𝑁 × |𝑇 | × 𝑅. Here, the factor 𝑁 comes from 𝑁 − 1 multiplications

and the addition we perform per nonzero tensor element. The

accelerator loads all the nonzero tensor elements and stores the

factor matrix of the output mode. Meanwhile, it also stores the

remapped tensor optimized for the next mode. Hence it requires a

total of 2 × |𝑇 | + 𝐼𝑜𝑢𝑡 × 𝑅 memory transfers. Here, 𝐼𝑜𝑢𝑡 represents

the length of the output dimension (𝐼𝑜𝑢𝑡 ∈ {𝐼0, 𝐼1, . . . , 𝐼𝑁−1}). For
factor matrices of rank 𝑅 with no data reuse, the total factor matrix

elements transferred per mode is (𝑁 − 1) × |𝑇 | ×𝑅. Hence, the total
amount of data transferred from the FPGA external memory per

mode is 2 × |𝑇 | + (𝑁 − 1) × |𝑇 | × 𝑅 + 𝐼𝑜𝑢𝑡 × 𝑅.
4.5 FPGA Design
Algorithm 3 is designed for multi-SLR [25] datacenter FPGAs. These

FPGAs contain a large number of DSPs and multiple DRAM memo-

ries to provide high compute power and memory bandwidth.

Algorithm 3: FLYPAR: FLYCOO-based Parallel algorithm

1 Input: Input factor matrices-set Y = {𝑌0, 𝑌1, ...𝑌𝑁−1},
2 super-shards of mode 0, {H0} = {𝑆𝑆0, 𝑗 : ∀ 𝑗}
3 Output: Updated factor matrices-set 𝑌 = {𝑌0, 𝑌1, ...𝑌𝑁−1}
4 for each mode 𝑛 = 0, . . . , 𝑁 − 1 do
5 whileH𝑛 ≠ ∅ do
6 for each ACCEL𝑘 parallel do
7 if ACCEL𝑘 is idle then
8 Fetch super-shard 𝑆𝑆 ∈ H𝑛 in DRAM𝑘 to

ACCEL𝑘

9 H𝑛 ←H𝑛 \ {𝑆𝑆}
10 (H(𝑛+1) mod 𝑁 , 𝑌 )← Compute &

On-the-fly Remap(𝑆𝑆 , Y) // Algorithm 2

11 Wait(All ACCELs are idle)

The proposed accelerator contains multiple custom hardware

units called ACCELs. For a FPGA with 𝑝 DRAMs, we employ 𝑝

ACCELs where each ACCEL is directly connected to a DRAM via

memory controller as shown in Figure 3 (a). ACCELs communicate

with each other using ACCEL routers in a ring interconnection.

Inter-SLR switches in the FPGA [24] are used to connect neighbor-

ing ACCELs in different Super Logic Regions (SLRs).

Our design has the following features: (1) custom multi-pipeline

PEs to support concurrent element-wise tensor multiply and add

operations, (2) internal buffers in each pipeline to ensure all the

intermediate values remain in the FPGA internal memory while

processing a super-shard, (3) use Direct Memory Accesses (DMAs)

to load shards and store output factor matrix rows as bulk transfers

while optimally using the FPGA external memory bandwidth, (4)

multi-cache subsystem to exploit locality while loading input factor

matrices, and (5) tensor remapping module to support on-the-fly

remapping.

Each ACCEL is assigned a super-shard during the execution time

in which the super-shard resides in its directly connected DRAM as

described in FLYPAR: Parallel spMTTKRP Accelerator Algorithm

based on FLYCOO (Algorithm 3). The 𝑝 ACCELs process 𝑝 super-

shards in parallel following the parallel algorithm in Section 4.4.

All the ACCELs synchronize at the end of the computations in each

output mode. Our workload distribution (see Section 4.6) ensures

PE idle time is minimized. As shown in Figure 3 (b), each ACCEL

has a Processing Engine (PE) and a memory controller. Each PE

executes the element-wise computation on the tensor elements.

The memory controller manages the data flow between the PEs

and their external memory.

4.5.1 Processing Engine (PE). PE is the compute unit inside an

ACCEL. It can concurrently process 𝑞 input tensor elements in

each clock cycle using 𝑞 (𝑞 ≥ 1) processing pipelines as shown in

Figure 3 (c). A PE processes a shard with the following 3 steps: (1)

a pipeline reads an element of the shard from the tensor buffer,

(2) pipeline extracts the coordinates of the tensor element and

requests corresponding input factor matrices from the caches in the

memory controller, (3) When all the requested input factor matrix

rows become available inside the pipeline, it performs element-wise

compute as indicated in Algorithm 2 and stores the corresponding

partial value in its matrix buffer, (4) after computing all the elements

in a super-shard, PE computes the final output factor matrix rows

by adding the partial sums in the partial matrix buffers in all the

pipelines with the same output mode indices using PE’s adder tree.

For a PE with 𝑞 pipelines, the adder tree has log
2
(𝑞) stages with

𝑞(𝑞 + 1)/2 total adders, (5) outputs the output factor matrix rows to

the output matrix buffer inside the memory controller. This process

generates a interval of the output factor matrix that corresponds to

the input super-shard. At the end of the process, it is transferred to

the FPGA external memory as a bulk transfer using DMA inside

the memory controller.

4.5.2 Memory Controller. Figure 3 (d) shows the details of themem-

ory controller (MC). It consists of a cache subsystem, DirectMemory

Accesses (DMA) module, a Tensor Remapper Module (TRM), an

ACCEL router, and an external memory interface. The cache sub-

system exploits the spatial and temporal locality of the input factor

matrix accesses enabled by the proposed FLYCOO format. Each

cache is a set-associative cache with the Least Recently Used (LRU)

cache-line replacement policy. Multiple input factor matrices can

share a cache. The number of caches inside a MC, the number of

input factor matrices that share a single cache, and cache size are

chosen based on available FPGA resources. DMAs can efficiently

access sequential data as bulk transfers. DMAs load shards to the

tensor buffer and store the output factor matrix from the output

matrix buffer as bulk transfers. By keeping the size of a shard as

same as the tensor buffer size and the interval size equal to the

output matrix buffer size, we avoid data overflows inside the DMAs.

The DMA uses double buffers to overlap the communication time

of the shards from the FPGA external memory with the compute

time of the PEs. On-the-fly remapping is supported by the tensor

remapping module (TRM) in the MC.When the PE requests a tensor

element from the tensor buffer, a copy of the same tensor element

is passed to the TRM using a shared bus, as shown in Figure 3 (d).

TRM extracts the shard ID of the upcoming output mode of the

spMTTKRP in the CPD decomposition iteration (see Algorithm 1).

The TRM collects the tensor elements with the same shard ID until

it fills a complete row of the TRM buffer and transfers it to the

FPGA external memory.

ACCEL router maintains the super-shard scheduling while con-

trolling the data flow between PE, DRAM, and neighboring ACCELs.

263



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, & Viktor Prasanna

Figure 3: FPGA design: (a) Overall FPGA design, (b) architecture of an ACCEL, (c) Processing Engine, (d) memory controller
ACCEL router resides inside the memory controller of each ACCEL.

Each ACCEL Router is connected to neighboring ACCEL routers

as a ring (see Figure 3 (b)). Each ACCEL router communicates data

as data packets between its neighboring ACCEL routers in the ring.

It uses large data buses between ACCELs while maximally using

inter SLR [24] routing resources to transfer multiple data packets

simultaneously. The accelerator maintains a virtual address space to

keep track of the memory addresses of each tensor shards of all the

modes and the intervals of all the factor matrices. The accelerator

also maintains memory pointers to identify the location to be read

or stored in a shard to support the proposed tensor remapping. The

virtual addresses are generated during the tensor generation pro-

cess and stored in the FPGA external memory as initial meta-data.

4.5.3 ACCEL Router. Each ACCEL Router performs Algorithm 4

that, (1) loads shards from directly connected external DRAM, (2)

stores the output factor matrix rows depending on the PE requests,

(3) loads the input factor matrix rows depending on the PE requests

from different ACCELs, and (4) stores the remapped tensor elements

in the corresponding shard location. The destination location of

the remapped tensor element can be in any of the external DRAMs

connected to the FPGA.

The data router loads each shard from its directly connected

DRAM and forwards it to Tensor Buffer inside DMA (Algorithm 4

line 2-8). Additionally, memory access requests are received from

Cache Subsystem (Algorithm 4 line 9-10) and Tensor Remapping

Module (Algorithm 4 line 11-12) to the ACCEL router. In addition,

data packets are forwarded from the previously connected ACCEL

router (Algorithm 4 line 13-14). For the input factor matrix row read

requests, if the factor matrix is in the directly connected DRAM, it is

loaded from the DRAMand forwarded either to the previous ACCEL

router in the ring or to the cache subsystem. Otherwise, the request

is forwarded to the next ACCEL router in the ring (Algorithm 4 line

15-26). When a tensor remapping request is reached to the ACCEL,

if the corresponding shard of the nonzero tensor element is located

inside the directly connected DRAM, it is stored in the DRAM.

Otherwise, remap request with the tensor element is forwarded to

the next ACCEL router in the ring (Algorithm 4 line 27-32).

We use memory interface IPs [7, 26] to maintain the low-level

signals (e.g., refresh, and pre-charge) between DRAMs and FPGA.

4.6 Load balancing
Since the accelerator performs spMTTKRP computation for a sin-

gle output mode at a time, we consider load balancing the total

computation mode by mode. In a given mode, the total number of

computations corresponding to a super-shard is proportional to the

number of nonzero tensor elements in the super-shard. Since each

super-shard is further partitioned into shards with same number

Algorithm 4: Data Routing Algorithm for ACCEL𝑖

1 Routing (ACCEL𝑖 , 𝑛): // For output mode 𝑛

2 if PE is Idle then
3 SS = Get Active super-shard ID
4 shard = Next shard (SS)

5 if all shards of SS processed then
6 interval data = Get output data from PE
7 Store DRAM𝑖 (Get Interval (SS), interval data)
8 SS = Get Next super-shard ID

9 if Factor Matrix Row 𝑘 is requested by a Cache Miss then
10 {type, src_accel, w, info}← {fm_read, i, n, k}

11 if else remapped tensor y available from Tensor Remapper
then

12 {type, src_accel, w, info}← {remap_store, i, n, y}

13 if else data_packet from from ACCEL𝑖−1 then
14 {type, src_accel, w, info}←data_packet

15 if type = fm_read then
16 I = Extract Interval (info, w)

17 if I is in DRAM𝑖 then
18 value = Read DRAM𝑖 (w, info)

19 if src_ACCEL = ACCEL𝑖 then
20 Forward Cache(value, w, info)

21 else Forward ACCEL𝑖−1 ({fm_write, src_accel, n, w,
info})

22 else Forward ACCEL𝑖+1 ({fm_read, src_accel, n, w,
info})

23 if type = remap_store then
24 𝑆 = Get Next Mode shard ID (y)
25 if 𝑆 is in DRAM𝑖 then
26 Store DRAM(info, S)

27 else Forward ACCEL𝑖+1 ({remap, src_accel, n, w, info})

of tensor elements, the total number of computations also propor-

tional to the number of shards in a super-shard. Each super-shard

contains a different number of shards depending on the sparsity

of the tensor. We use a greedy approach to distribute the super-

shards and perform the spMTTKRP computation. For each mode,

the proposed method evenly distributes the total workload among

the ACCELs. Suppose a FLYCOO tensor of size𝑇 is partitioned into

super-shards {𝑆𝑆𝑛,𝑗 : ∀ 𝑗} for a mode 𝑛. Let 𝐾𝑛,𝑗 be the number of

264



Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA FPGA ’23, February 12–14, 2023, Monterey, CA, USA

shards in the super-shard 𝑆𝑆𝑛,𝑗 . We reorder the indices of super-

shards so that 𝐾𝑛,𝑗 ≥ 𝐾𝑛,𝑗 ′ if 𝑗 < 𝑗 ′, so that they are sorted in

descending order of number of shards. Each super-shard 𝑆𝑆𝑛,𝑗 is

iteratively assigned to the ACCEL that is currently the least heavily

loaded (i.e., with the least number of shards). We perform the above

operation for all the modes of the tensor.

For a given output mode, let𝐾max be the largest number of shards

assigned to a single ACCEL and 𝐾∗
max

be the value of 𝐾max in an

optimal shard distribution among the ACCELs. Then our proposed

greedy approach above guarantees that 𝐾max ≤ 4/3 ·𝐾∗
max

[4]. The

proof of this approximation guarantee is shown by induction in the

following.

Theorem 4.1. For a given mode 𝑛, based on our greedy approach,
the number of shards assigned to each ACCEL is at most 4/3 · 𝐾∗max.

Proof. Assume the theorem is true for at most 𝑘′ < 𝑘 super-

shards. Suppose there are 𝑘 super-shards, and the ℓ-th super-shard

is the last one that is assigned to the ACCEL 𝐴 containing the

most shards. Consider two cases: (i) If ℓ < 𝑘 , then since the 𝑘-

th super-shard is not assigned to 𝐴, removing it doesn’t affect the

result. Therefore, the theorem follows immediately by the induction

hypothesis on the first 𝑘 − 1 super-shards. (ii) If ℓ = 𝑘 , then 𝐾max ≤
𝐾∗
max
+𝐾𝑛,𝑘 . If 𝐾𝑛,𝑘 ≤ 𝐾∗max

/3 then the theorem holds immediately.

Suppose 𝐾𝑛,𝑘 > 𝐾∗
max
/3, then 𝐾∗

max
< 3𝐾𝑛,𝑘 , so each ACCEL has

been assigned either one or two super-shards, which is in fact an

optimal assignment: exchanging any two super-shards in different

ACCELs will increase the largest number of shards in an ACCEL.

So 𝐾max = 𝐾∗
max

in this case. □

4.7 Tensor Remapping
As described in Section 4.4, tensor elements are remapped according

to the shard IDs of the upcoming mode. Theorem 4.2 shows that it

only requires 2 × |𝑇 | FPGA external memory to perform on-the-fly

tensor remapping. Note that the mode-specific formats require the

number of tensor copies proportional to the number of modes of

an input tensor. Theorem 4.3 shows the tensor layout generated

through the proposed tensor remapping technique is load balanced

across all ACCELs, and the tensor data is locally available to each

ACCEL in its directly connected external DRAM memory during

each output mode computing time.

The accelerator requires the external memory address point-

ers for each shard to identify the destination memory address of

nonzero elements while tensor remapping. The memory address

pointers for the initial position of each shard are computed during

the tensor format generation time. These memory address pointers

are updated as the shards are getting filled during the runtime. Dur-

ing the remapping, the accelerator only requires to keep track of

the address pointers corresponding to a single mode. Also, follow-

ing the routing algorithm discussed in Section 4.5.2, each ACCEL

only requires to keep track of the shards mapped into its directly

connected DRAM.

Theorem 4.2. The total FPGA external memory required to store
an input tensor 𝑇 in the FLYCOO format for our proposed algorithm
FLYPAR is 2 × |𝑇 |, where |𝑇 | is the size of the tensor, independent of
the number of modes.

Proof. Consider a FPGA external memory space of size 𝐵 =

2 × |𝑇 |, divided to 𝐵 [0] and 𝐵 [1]. If the current mode (𝑛) being

executed is even (i.e., 𝑛 = 2, 4, 6 . . . ), then it uses 𝐵 [0] to keep the

tensor copy ordered according to mode 𝑛 shard IDs. 𝐵 [1] is used

to keep the tensor copy ordered according to shard IDs of mode

(𝑛 + 1) mod 𝑁 during the on-the-fly remapping. Similarly, if the

current output mode being executed is odd (i.e., 𝑛 = 1, 3, 5 . . . ), it

uses space 𝐵 [1] to keep the tensor copy ordered according to mode

𝑛. 𝐵 [0] is used to keep the tensor copy ordered according to mode

(𝑛 + 1) mod 𝑁 . As a result, we only need |𝐵 | = 2 × |𝑇 | space to
store the tensor to support the algorithm FLYPAR. □

Theorem 4.3. Algorithm FLYPAR performs spMTTKRP for all the
modes of an input tensor such that the computation is load balanced
across all ACCELs and the tensor data is available for each ACCEL
in its directly connected external DRAM memory for all the output
mode computations.

Proof. In the FLYCOO format, each tensor element contains its

shard IDs for all the modes (see Section 4.3). For an input tensor

with 𝑁 modes, during the computation of mode 𝑛 − 1, the on-the-
fly-remapping remaps each nonzero tensor element according to

the shard IDs of mode 𝑛 (0 ≤ 𝑛 < 𝑁 ). The data routing algorithm

(Algorithm 4.5.3) allows this by remapping each tensor element to

the DRAM directly connected to the PE. Hence, at the beginning of

the spMTTKRP computation for an output mode 𝑛 (Algorithm 2),

all the nonzero elements in the tensor have been assigned to the

shards of mode 𝑛 {𝑠ℎ𝑎𝑟𝑑𝑛,𝑗,𝑧 : ∀ 𝑗, 𝑧}. Therefore, the tensor data is
available for each ACCEL in its directly connected external DRAM

memory for all the output mode computations.

The load balancing approach in Section 4.6 proves that the com-

putation is load balanced if each tensor element is in its assigned

shard for an output mode 𝑛. According to the on-the-fly remapping,

at the beginning of the computation, all nonzero elements in the

tensor are in the shards of mode 𝑛. Since we perform the over-

all computation mode-by-mode, the overall computation is load

balanced for all the modes. □
Theorem 4.4 proves that the remapping cost introduced in FLY-

PAR is insignificant compared to total FPGA external memory

accesses while accessing input factor matrices in each mode.

Theorem 4.4. In any mode, without data reuse, the ratio of the
total amount of data transferred in remapping to that for accessing

the input factor matrices is O
(

1

(𝑁−1)𝑅

)
, where 𝑁 is the number of

modes and 𝑅 is the rank of the factor matrices.
Proof. For a givenmode, since every nonzero element is remapped

for spMTTKRP in the upcoming mode, the total amount of data

transferred per mode for remapping is equal to the size of the total

number of nonzero elements (|𝑇 |). With no data reuse, the total

amount of data transferred per mode for the input factor matrices

is (𝑁 − 1) × |𝑇 | × 𝑅 (see Section 4.4). Therefore, the ratio of the

amount of data transferred for the remapping to that for accessing

input factor matrices is O
(

1

(𝑁−1)𝑅

)
. □

4.8 Super-shard Scheduling
After distributing super-shards among ACCELs in Section 4.6, we

further optimize the memory access cost between distinct super-

shards assigned to each ACCEL in every mode by statically schedul-

ing these super-shards. The objective of the super-shard scheduling

is to reuse cached rows of input factor matrices across multiple

super-shards as much as possible. The first step to achieving this

is to create a weighted directed complete graph Γ = (Γ𝑉 , Γ𝐸 , Γ𝑊 )
whose vertex set Γ𝑉 consists of the super-shards, which are as-

signed to the target ACCEL. Here, the weight𝑤𝑒 ∈ Γ𝑊 of each edge

265



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, & Viktor Prasanna

𝑒 ∈ Γ𝐸 represents the number of rows of factor matrices that any

two super-shards have in common. After constructing the complete

graph Γ, our goal is to find a maximum weighted Hamiltonian path

𝑃 in Γ. The order of vertices in the Hamiltonian path 𝑃 represents

the scheduling of the super-shards assigned to each ACCEL. It leads

to efficient cache utilization by maximizing the reusability of the

common input factor matrices among super-shards after loading

them into the caches. Since the maximum weighted Hamiltonian

path problem is NP-complete [1], we use a greedy heuristic by

adding one edge at a time, as summarized in Algorithm 5. The

schedule computed as a pre-processing step for each input tensor.

Algorithm 5: super-shard Scheduling

1 Input: A weighted directed complete graph Γ = (Γ𝑉 , Γ𝐸 , Γ𝑊 )
consisting of the super-shards

2 Output: A Hamiltonian path 𝑃 representing the scheduling

of the super-shards assigned to each ACCEL

3 𝑃 ← ∅
4 Sort Γ𝐸 in descending order of Γ𝑊
5 for each edge 𝑒 = (𝑢, 𝑣) ∈ Γ𝐸 do
6 if deg+ (𝑢) = 0 & deg− (𝑣) = 0 & no cycle in 𝑃 ∪ {𝑒} then
7 𝑃 ← 𝑃 ∪ {𝑒}

8 return 𝑃

5 EVALUATION
5.1 Experimental Setup
5.1.1 FPGA Platform. We implement our hardware design on Xil-

inx Alveo U250 Data Center Accelerator Card [24] using Verilog

HDL. This Alveo Card consists of 4 super logic regions (SLRs) [25].

The SLRs connected to DRAM modules through memory interface

IPs [26]. Simulation, synthesis, and place and route are performed

using Xilinx Vivado Design Suite 2020.2 [27].

5.1.2 Datasets. We use the sparse tensors from real-world appli-

cations shown in Table 2. All the tensors are from the Formidable

Repository of Open Sparse Tensors and Tools (FROSTT) dataset[19].

The selected datasets have tensors with different shapes, sizes, and

sparsities.

5.1.3 FLYCOO Format Generation Time. Since we implement the

preprocessing step using Python libraries, our preprocessing algo-

rithm is substantially slower than C/C++ implementations. There

are no meaningful comparisons of the execution time between the

pre-processing and processing steps with C/C++-based implemen-

tations in related works. Hence in this work, we do not show the

implications of preprocessing costs which are executed offline.

5.1.4 Performance Model Simulator. Performance Model Simulator

(PMS) is used for optimizing the accelerator configuration. PMS can

estimate the number of clock cycles spent on computing spMTTKRP

for a given input tensor. PMS models each hardware module in the

accelerator design at the cycle level. The PMS can further estimate

the total FPGA internal memory requirement and the DSP usage

for a given accelerator configuration.

Our objective is to use PMS to (1) identify the best set of hardware

parameters of the accelerator to obtain the least average execution

time for a given collection of datasets (see Section 5.1.5), and (2)

evaluate the impact of various hardware modules in the proposed

design and algorithmic optimizations due to the versatility of PMS.

Obtaining module-wise performance results is effortless with PMS

compared with the actual hardware implementation.

The system designer has to provide the following inputs to the

PMS: (1) resources of target FPGA (i.e., total DSPs, BRAMs, and

URAMs and data width of memory interface), (2) design parameters

(i.e., number of pipelines per ACCEL, DMA buffer sizes, number of

caches, number of cache lines, associativity of a cache, and number

of factor matrices shared by a cache), (3) algorithm parameters (i.e.,

rank of the factor matrices, size of a shard, and size of an interval),

and (4) input tensor parameters (i.e., number of modes, and length

(dimension size) of each mode).

Table 2: Characteristics of the sparse tensors
Tensor Shape #NNZs Density

NELL-1 2.9𝑀 × 2.1𝑀 × 25.5𝑀 143.6𝑀 9.1 × 10−13
NELL-2 12.1𝐾 × 9.2𝐾 × 28.8𝐾 76.9𝑀 2.4 × 10−05
PATENTS 46 × 239.2𝐾 × 239.2𝐾 3.6𝐵 1.4 × 10−03
LBNL 1.6𝐾 × 4.2𝐾 × 1.6𝐾 × 4.2𝐾× 868.1𝐾 1.7𝑀 4.2 × 10−14

DELICIOUS 532.9𝐾 × 17.3𝑀 × 2.5𝑀 × 1.4𝐾 140.1𝑀 4.3 × 10−15

The overall execution time (in cycles) reported by PMS is val-

idated using FPGA run-time results. Figure 5 compares the total

execution time of each tensor on FPGA and the PMS. The behavior

of DRAM technology and packet routing on ACCEL routers can

not be accurately simulated using a software model. Hence PMS

shows below 10% error compared with the actual hardware.

We performed an extensive parameter search to select the con-

figuration of the accelerator. The goal is to identify the hardware

parameters with the least average execution time for all the datasets

in Table 2. spMTTKRP is executed per single iteration for each

dataset.

Figure 5: PMS accuracy

5.1.5 Optimizing Accelerator Con-
figuration. The execution time de-

pends on the total number of clock

cycles and FPGA operating fre-

quency (𝑓𝐹𝑃𝐺𝐴). We use PMS to

estimate the number of clock cy-

cles for computing spMTTKRP. We

determine the average number of

FPGA cycles (𝐶𝑎𝑣𝑔) by taking the

PMS results for all the targeted ten-

sors. PMS can also estimate the to-

tal FPGA internal memory require-

ment and the DSP usage for a given accelerator configuration. We

can choose an accelerator configuration that provides the least𝐶𝑎𝑣𝑔
and is subject to the resource constraints of the FPGA using PMS.

First, we focus on identifying the shard and interval sizes that are

suitable for the target FPGA. These sizes directly correlate with the

accelerator buffer sizes. We use PMS to identify the shard and inter-

val sizes that fit the target FPGA and take the minimum number of

FPGA clock cycles. Using PMS, we select 10 suitable configurations

with a minimum of 𝐶𝑎𝑣𝑔 and fit the target FPGA resources. Then

we use Place and Route (P&R) using Xilinx Vivado to obtain the

𝑓𝐹𝑃𝐺𝐴 of each selected accelerator configuration. Finally, we pick

the configuration with the least 𝐶𝑎𝑣𝑔/𝑓𝐹𝑃𝐺𝐴 configuration. Table

3 shows the selected configuration for our targeted dataset and

FPGA. We observe that using more FPGA resources leads to lower

FPGA operating frequency which reduces the overall performance

of the design.

266



Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Figure 4: Total execution time to perform spMTTKRP along all the modes once
Table 3: Module Parameter Configuration

Module Parameter Configuration
PE No. of pipelines 16

Partial Matrix Buffer size 16 KB

No. of caches 2

Cache Set-associativity 4

subsystem No. of cachelines 4096

cache line width 64 B

Tensor Buffer 64 KB

DMA Output Matrix Buffer 16 KB

Tensor Remapping Buffer 64 KB

Table 4: Resource utilization of the selected design
LUT FF BRAM URAM DSP

37.23% 24.52% 20.84% 20.52% 25%

5.1.6 Baselines. The baseline experiments are conducted on an

Intel Xeon Gold 5120 CPU, an NVIDIA RTX 3090 GPU, and an

NVIDIA RTX A6000 GPU. Platform specifications are summarized

in Table 5. Table 5: Specifications of the platforms

Platform
CPU GPU0 GPU1 FPGA

Intel Xeon NVIDIA NVIDIA Xilinx

Gold 5120 RTX 3090 RTX A6000 Alveo U250

Technology Intel 14 nm Samsung 8 nm Samsung 8 nm TSMC 16 nm

Frequency 2.20 GHz 1695 MHz 1410 MHz 230 MHz

Peak Device Performance 14.9 GFLOPS 35.6 TFLOPS 38.71 TFLOPS 0.6 TFLOPS

Device Internal Memory 19.25 MB L3 Cache 6 MB L2 Cache 6 MB L2 Cache 54 MB

External Memory Bandwidth 107.3 GB/s 936.2 GB/s 768 GB/s 77 GB/s

We evaluate our work against mode-specific CSF format[9],

mode-specific COO format[11], mode-agnostic HiCOO format[12]

on both CPU and GPU platforms. We also evaluate the ALTO

format [5] on the CPU. For the COO format, we use the library

ParTI[11]. HiCOO is the required input parameter block size for its
partitioning scheme, similar to the shard size in our proposed work.

Similar to literature [5, 12], we use a block size of 128 to evaluate

the performance of HiCOO. We ran OpenMP-enabled HiCOO CPU

implementation using all the CPU threads. We evaluate the perfor-

mance of mode-specific CSF formats using TACO[9]. We optimize

the TACO code to our target CPU and GPU platforms using their

command-line tool[9].

5.2 Overall Performance
Following the baselines[5, 12], we set the tensor rank (𝑅) as 16.

The interval size (𝐼 ) is set to the same size as the output matrix

buffer size, which is determined during optimizing the accelerator.

We also keep the shard size equal to the tensor buffer size. Our

experiments are conducted on the actual FPGA hardware. The

tensor format generation is a one-time preprocessing step. As in

the baselines[9, 12], we do not include the tensor generation time

in the overall execution time.

Figure 4 displays the total execution time while computing

spMTTKRP along all the modes. Our work is the only implementa-

tion that delivers consistent performance across all the modes of the

datasets. Our work achieves an average of 8.8× and 3.8× speedup

compared with the baseline CPU and GPU implementations. Table

6 summarizes the average speedup of each baseline and our work

compared to COO-CPU[11].

We observe that LBNL generates a large number of intermediate

values. Therefore, baselines that hold intermediate data in the exter-

nal memory have to load and store intermediate data several times

while computing a single row of the output factor matrix. Since our

approach avoids partial outputs being stored in the external mem-

ory, it reduces the communication time between the FPGA and its

external memory. LBNL also has limited data reuse while accessing

the rows of input factor matrices. Our cache system exploits the

data reuse of the input factor matrices of LBNL better than the other

datasets. This leads to a significant execution time reduction for

the LBNL dataset compared with the rest of the benchmarks. When

executing PATENT, the OS kills ALTO, TACO CPU, and all GPU

implementations because the data generated during compute time

does not fit in the device external memory. The selected devices

did not have sufficient external memory to hold the intermediate

values generated during the execution time of PATENT for our

baselines.

5.3 Impact of Tensor Remapping

Figure 6: (a) Number of intermediate elements avoided being
transferred to FPGA external memory by tensor remapping
vs. total tensor elements remapped, (b) Cache-hit ratio while
accessing rows of input factormatrices, (c) Tensor remapping
time over total memory access time

The proposed parallel algorithm, FLYPAR (Algorithm 3), avoids

intermediate values being transferred to the FPGA external memory

at the additional cost of tensor remapping. Note that it introduces

additional data transfers during on-the-fly tensor remapping. Fig-

ure 6 (a) shows a comparison between the amount of remapped

tensor elements transferred to the FPGA external memory and the

amount of data transfers (to the FPGA external memory) avoided

by combining the intermediate values inside the FPGA internal

memory for every super-shard. Our results indicate that FLYCOO

267



FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sasindu Wijeratne, Ta-Yang Wang, Rajgopal Kannan, & Viktor Prasanna

Table 6: Comparison of baselines on their targeted platforms and this work
Tensor Formats FLYCOO ALTO HiCOO HiCOO HiCOO TACO TACO TACO COO COO COO

FPGA CPU CPU GPU0 GPU1 CPU GPU0 GPU1 CPU GPU0 GPU1

Speedup (over COO-CPU) 18.0 3.9 2.2 4.4 9.2 1.0 0.5 1.90 1.0 4.2 7.8

Device Peak Bandwidth (GB/s) 77 107.3 107.3 936.2 768 107.3 936.2 768 107.3 936.2 768

Device Peak Performance (TFLOPS) 0.60 0.0149 0.0149 35.6 38.71 0.0149 35.6 38.71 0.0149 35.6 38.71

with FLYPAR reduces the FPGA external memory traffic by 9.2× on
average. Figure 6 (b) shows the cache hit rate while accessing input

factor matrices. It confirms that FLYCOO significantly increases

data reuse. Figure 6 (c) compares the total tensor remapping time

with the time spent on the rest of the memory accesses. The results

show that even though the input factor matrices are cached in the

FPGA, the tensor remapping cost is still insignificant compared

with the rest of the memory access cost.

5.4 Impact of Memory Controller

Figure 7: (a) Improvement of proposed MC in execution time,
(b) Number of pipeline stalls wrt. total number of pipeline
requests, (c) Sustained MC bandwidth

We compare our proposedmemory controller (MC[cache +DMA])

with 2 other alternative memory controller designs, namely cache-

only (MC[cache only]) and DMA-only (MC[DMA only]) memory

controllers. As the name implies, MC[cache only] uses only caches.

The DMA in our proposed MC[cache + DMA] is replaced by a cache

of the same size. Similarly, MC[DMA only] replaces the caches in

the original design with a DMA of the same size. A comparison of

the total execution time for each dataset is shown in Figure 7 (a).

The datasets with higher data locality while loading input factor

matrices show significant execution time reduction with MC[cache

+ DMA] compared with MC[DMA only]. Replacing DMAs with

caches hinders bulk data transfers when loading, storing, and remap-

ping shards. As a result, MC[cache only] takes longer to perform the

above memory operations than MC[cache + DMA]. With MC[cache

+ DMA], total execution time is improved by 4.5x and 5.8x compared

with MC[cache only] and MC[DMA only].

Figure 7 (b) shows the total number of pipeline stalls in the

system compared with the total number of operations executed

by all the pipelines. Due to irregular external memory access to

the input factor matrices, NELL-1 has a significant percentage of

pipeline stalls. The rest of the datasets has less than 25% pipeline

stalls during computing spMTTKRP on all modes.

Figure 7 (c) shows the sustained memory controller bandwidth

while executing spMTTKRP. The memory controller bandwidth

is defined as the total amount of data communicated between PEs

and memory controllers over the total spMTTKRP execution time

for each input tensor. Our memory controller achieves sustained

memory controller bandwidth that is more than twice the peak

DRAM bandwidth.

5.5 Impact of Rank of the Factor Matrices
In this section, we evaluate the impact of the rank (𝑅) of the factor

matrices on total execution time. We alter 𝑅 to 8, 16, and 32 as

they are the most common sizes used in tensor decomposition

applications [2, 15, 18, 22]. Results from PMS (see Section 5.1.5)

suggest that we can use the same accelerator parameters listed in

Table 3 by adjusting the interval size of the tensor format.

Figure 8: Impact of rank (R)

Figure 8 shows

the total execu-

tion time for dif-

ferent datasets over

𝑅 = 8, 16 and

32. With increas-

ing R, the number

of elements in a

row in output in-

terval and input

factor matrices in-

creases. It leads to

the following 2 important observations: (1) as𝑅 increases, the caches

need multiple cache-line requests to load a single row of factor ma-

trices, and (2) as 𝑅 decreases, multiple neighboring rows of factor

matrices can fit in a single cache line. In the case of 𝑅 = 8, the contri-

bution of each subsequent factor matrix row to the computation is

very low even if multiple neighboring factor matrices are loaded in

one cache line load. Hence we can not observe a significant reduc-

tion in total execution time. When 𝑅 = 16, a single cache line request

loads a single row of the input factor matrix. On the other hand,

when 𝑅 = 32, a single input factor matrix row occupies multiple

cache lines. Hence a cache miss on a single input factor matrix row

results in multiple cache line misses.

6 CONCLUSION AND FUTUREWORK
We proposed the FLYCOO format to reduce the total memory ac-

cess time on FPGA. The on-the-fly tensor remapping supported by

FLYCOO avoids storing intermediate values in the external memory.

Using FLYCOO and the proposed FPGA accelerator, we outperform

existing benchmarks on a variety of real-world sparse tensors.

In the future, we plan to parallelize the preprocessing algorithm

for the tensor format generation. The algorithmic optimizations

discussed in Section 4 can be adapted to general purpose hardware

such as CPU and GPU. Using our proposed algorithmic optimiza-

tions, CPU and GPU can accelerate spMTTKRP by efficiently using

their limited internal cache and external memory bandwidth.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation (NSF)

under grants OAC-2209563, CNS-2009057 and in part by DEVCOM

Army Research Lab (ARL) under ARL-USC collaborative grant

DIRA-ECI:DEC21-CI-037.

268



Accelerating Sparse MTTKRP for Tensor Decomposition on FPGA FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] Alfred V Aho and John E Hopcroft. 1974. The design and analysis of computer

algorithms. (1974).

[2] Zhiyu Cheng, Baopu Li, Yanwen Fan, and Yingze Bao. 2020. A novel rank selection

scheme in tensor ring decomposition based on reinforcement learning for deep

neural networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 3292–3296.

[3] Sofia Fernandes, Hadi Fanaee-T, and João Gama. 2020. Tensor decomposition

for analysing time-evolving social networks: An overview. Artificial Intelligence
Review (2020), 1–26.

[4] Ronald L. Graham. 1969. Bounds on multiprocessing timing anomalies. SIAM
journal on Applied Mathematics 17, 2 (1969), 416–429.

[5] Ahmed E. Helal, Jan Laukemann, Fabio Checconi, Jesmin Jahan Tithi, Teresa

Ranadive, Fabrizio Petrini, and Jeewhan Choi. 2021. ALTO: Adaptive Linearized

Storage of Sparse Tensors. In Proceedings of the ACM International Conference on
Supercomputing (Virtual Event, USA) (ICS ’21). Association for Computing Ma-

chinery, New York, NY, USA, 404–416. https://doi.org/10.1145/3447818.3461703

[6] David Hong, Tamara G. Kolda, and Jed A. Duersch. 2020. Generalized Canonical

Polyadic Tensor Decomposition. SIAM Rev. 62, 1 (2020), 133–163. https://doi.

org/10.1137/18M1203626 arXiv:https://doi.org/10.1137/18M1203626

[7] Intel. 2022. External Memory Interfaces Intel Arria 10 FPGA IP User

Guide. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/

literature/ug/ug-20115.pdf. Online; accessed 29 January 2022.

[8] Oguz Kaya and Bora Uçar. 2015. Scalable sparse tensor decompositions in dis-

tributed memory systems. In SC’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, 1–11.

[9] Fredrik Kjolstad, Stephen Chou, David Lugato, Shoaib Kamil, and Saman Ama-

rasinghe. 2017. Taco: A tool to generate tensor algebra kernels. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 943–948.

[10] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.

[11] Jiajia Li, Yuchen Ma, and Richard Vuduc. 2018. ParTI! : A Parallel Tensor Infras-

tructure for multicore CPUs and GPUs. http://parti-project.org Last updated:

Jan 2020.

[12] Jiajia Li, Jimeng Sun, and Richard Vuduc. 2018. HiCOO: Hierarchical Storage of

Sparse Tensors. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. 238–252. https://doi.org/10.1109/SC.2018.00022

[13] Jiajia Li, Bora Uçar, Ümit V Çatalyürek, Jimeng Sun, Kevin Barker, and Richard

Vuduc. 2019. Efficient and effective sparse tensor reordering. In Proceedings of
the ACM International Conference on Supercomputing. 227–237.

[14] Jiajia Li, Bora Uçar, Ümit V. Çatalyürek, Jimeng Sun, Kevin Barker, and Richard

Vuduc. 2019. Efficient and Effective Sparse Tensor Reordering. In Proceedings
of the ACM International Conference on Supercomputing (Phoenix, Arizona) (ICS
’19). Association for Computing Machinery, New York, NY, USA, 227–237. https:

//doi.org/10.1145/3330345.3330366

[15] Marco Mondelli and Andrea Montanari. 2019. On the connection between

learning two-layer neural networks and tensor decomposition. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics. PMLR, 1051–1060.

[16] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Prasant Singh Rawat, Sriram

Krishnamoorthy, and P. Sadayappan. 2019. An Efficient Mixed-Mode Represen-

tation of Sparse Tensors. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)
(SC ’19). Association for Computing Machinery, New York, NY, USA, Article 49,

25 pages. https://doi.org/10.1145/3295500.3356216

[17] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P. Sa-

dayappan. 2019. Load-Balanced Sparse MTTKRP on GPUs. In 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS). 123–133.
https://doi.org/10.1109/IPDPS.2019.00023

[18] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evan-

gelos E. Papalexakis, and Christos Faloutsos. 2017. Tensor Decomposition for

Signal Processing and Machine Learning. IEEE Transactions on Signal Processing
65, 13 (2017), 3551–3582. https://doi.org/10.1109/TSP.2017.2690524

[19] Shaden Smith, Jee W. Choi, Jiajia Li, Richard Vuduc, Jongsoo Park, Xing Liu, and

George Karypis. 2017. FROSTT: The Formidable Repository of Open Sparse Tensors
and Tools. http://frostt.io/

[20] Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.

2015. SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication. In

2015 IEEE International Parallel and Distributed Processing Symposium. 61–70.

https://doi.org/10.1109/IPDPS.2015.27

[21] Nitish Srivastava, Hanchen Jin, Shaden Smith, Hongbo Rong, David Albonesi, and

Zhiru Zhang. 2020. Tensaurus: A Versatile Accelerator for Mixed Sparse-Dense

Tensor Computations. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 689–702. https://doi.org/10.1109/HPCA47549.

2020.00062

[22] Fuxi Wen, Hing Cheung So, and Henk Wymeersch. 2020. Tensor decomposition-

based beamspace esprit algorithm for multidimensional harmonic retrieval. In

ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 4572–4576.

[23] Sasindu Wijeratne, Rajgopal Kannan, and Viktor Prasanna. 2021. Reconfigurable

Low-latency Memory System for Sparse Matricized Tensor Times Khatri-Rao

Product on FPGA. In 2021 IEEE High Performance Extreme Computing Conference
(HPEC). 1–7. https://doi.org/10.1109/HPEC49654.2021.9622851

[24] Xilinx. 2022. Alveo U250 Data Center Accelerator Card. https://www.xilinx.com/

products/boards-and-kits/alveo/u250.html. Online; accessed 29 January 2022.

[25] Xilinx. 2022. UltraFast Design Methodology Guide for Xilinx FPGAs

and SoCs. https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-

methodology/. Online; accessed 1 August 2022.

[26] Xilinx. 2022. UltraScale Architecture-Based FPGAs Memory IP v1.4.

https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_

memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf. Online; accessed 29 January

2022.

[27] Xilinx. 2022. Vivado Design Suite User Guide. https://docs.xilinx.com/v/u/2018.2-

English/ug910-vivado-getting-started. Online; accessed 29 January 2022.

269

https://doi.org/10.1145/3447818.3461703
https://doi.org/10.1137/18M1203626
https://doi.org/10.1137/18M1203626
https://arxiv.org/abs/https://doi.org/10.1137/18M1203626
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/ literature/ug/ug-20115.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/ literature/ug/ug-20115.pdf
http://parti-project.org
https://doi.org/10.1109/SC.2018.00022
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3330345.3330366
https://doi.org/10.1145/3295500.3356216
https://doi.org/10.1109/IPDPS.2019.00023
https://doi.org/10.1109/TSP.2017.2690524
http://frostt.io/
https://doi.org/10.1109/IPDPS.2015.27
https://doi.org/10.1109/HPCA47549.2020.00062
https://doi.org/10.1109/HPCA47549.2020.00062
https://doi.org/10.1109/HPEC49654.2021.9622851
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/
https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ultrascale_memory_ip/v1_4/pg150-ultrascale-memory-ip.pdf
https://docs.xilinx.com/v/u/2018.2-English/ug910-vivado-getting-started
https://docs.xilinx.com/v/u/2018.2-English/ug910-vivado-getting-started

	Abstract
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Tensor Decomposition

	3 Related Work
	4 Accelerator Design
	4.1 Target Platform
	4.2 Hypergraph Representation of Tensors
	4.3 Tensor Format
	4.4 Parallel Algorithm
	4.5 FPGA Design
	4.6 Load balancing
	4.7 Tensor Remapping
	4.8 Super-shard Scheduling

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Impact of Tensor Remapping
	5.4 Impact of Memory Controller
	5.5 Impact of Rank of the Factor Matrices

	6 Conclusion and Future Work
	Acknowledgments
	References



