
CSAIL2019 Crypto-Puzzle Solver Architecture
Sergey Gribok

sergey.gribok@intel.com
Intel Corporation

US

Bogdan Pasca
bogdan.pasca@intel.com

Intel Corporation
France

Martin Langhammer
martin.langhammer@intel.com

Intel Corporation
UK

ABSTRACT
The CSAIL2019 time-lock puzzle is an unsolved cryptographic chal-
lenge introduced by Ron Rivest in 2019, replacing the solved LCS35
puzzle. Solving these types of puzzles requires large amounts of
intrinsically sequential computations (𝑖 .𝑒 . computations which can-
not be parallelized), with each iteration performing a very large
(3072-bit in the case of CSAIL2019) modular multiplication opera-
tion. The complexity of each iteration is several times greater than
known FPGA implementations, and the number of iterations has
been increased by about 1000x compared to LCS35. Because of the
high complexity of this new puzzle, a number of intermediate, or
milestone versions of the puzzle have been specified.

In this paper, we present an FPGA architecture for the CSAIL2019
solver, which we implement on a medium-sized Intel Agilex de-
vice. We develop a new multi-cycle modular multiplication method,
which is flexible and can fit on a wide variety of sizes of current
FPGAs. We also demonstrate a new approach for improving the
fitting and timing closure of large, chip-filling arithmetic designs.
We used the solver to compute the first 21 out of the 28 milestone
solutions of the puzzle, which are the first reported results for this
problem.

CCS CONCEPTS
• Hardware→ Arithmetic and datapath circuits; Hardware
accelerators; Datapath optimization; Error detection and error
correction.

KEYWORDS
iterative modular multiplier, modular exponentiation, low-latency,
FPGA, CSAIL2019 puzzle
ACM Reference Format:
Sergey Gribok, Bogdan Pasca, and Martin Langhammer. 2023. CSAIL2019
Crypto-Puzzle Solver Architecture. In Proceedings of the 2023 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’23),
February 12–14, 2023, Monterey, CA, USA.ACM,NewYork, NY, USA, 11 pages.
https://doi.org/10.1145/3543622.3573184

1 INTRODUCTION
This paper presents an FPGA-based architecture for a solver of the
CSAIL2019 crypto-puzzle [1]. The CSAIL2019 puzzle is a "refreshed"

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9417-8/23/02. . . $15.00
https://doi.org/10.1145/3543622.3573184

version of LCS35 crypto-puzzle [2] published in 1999. This area
of work is no longer just an academic exercise, but relevant to
current industry requirements with the increasing importance of
blockchain.

The stated problem is the compute of 22
𝑡
mod 𝑁 for specified

values of 𝑡 and 𝑁 . LCS35 defines 𝑡 = 79685186856218, and 𝑁 is
2048 bits in length. The original estimate was that LCS35 would
need 35 CPU years to solve, assuming that the yearly milestone
(i.e. intermediate) value would be transferred to the latest CPU
technology available. In 2019, Bernard Fabrot solved LCS35 using
3 years of continuous CPU run-time [3]. Shorter thereafter, the
Cryptophage team used an FPGA to solve the puzzle in only 2
months [4].

The CSAIL2019 puzzle defines 𝑡 = 256 = 72057594037927936
which is nearly 1000 times larger than LCS35. The word size of
𝑁 is now 3072-bit, which is 1.5 times greater than LCS35, so each
iteration is about 2.25x more computationally demanding than
before. If we attempted to solve CSAIL2019 with a design that had
the same compute capability as the Cryptophage approach and
hardware, we could expect a runtime of about 375 years. While the
full puzzle requires a solution for 𝑡 = 256, CSAIL is also interested
in solutions for 𝑡 = 2𝑘 for 56/2 ≤ 𝑘 < 56. These intermediate
solutions are called "milestone versions of the puzzle".

These types of puzzles cannot be parallelized. Each modular mul-
tiplication follows the completion of the previous one. The only
way to accelerate the solution is to run a single instance faster. In
this paper we will show a multi-cycle implementation. A larger
FPGA, with more DSP Blocks, could potentially reduce the latency
by about 10x. The later architectures with newer process technolo-
gies that could provide this level of density would likely run faster,
although this would be offset by the much increased combinatorial
delay through the single core. Likewise, we could not spread this
problem out over multiple FPGAs, as the inter-chip communication
times would significantly increase the combinatorial delay through
one modular multiply.

We make the following contributions in this paper:

• We show some modified approaches to high precision mod-
ular multiplication which can be used to implement a more
efficient FPGA solution.

• We show a multi-cycle implementation which can also map
to more modest sized FPGAs, and also develop a left-to-right
calculation where we can perform the multiplication and
reduction steps at the same time.

• We introduce a robust error checking mechanism to indepen-
dently verify running results of a long computation run. We
show how this can be used to safely overclock large complex
systems such as the CSAIL2019 solver.

• We describe the directed internal pipelining of a large com-
binatorial circuit to improve fitting and timing closure.

197

https://doi.org/10.1145/3543622.3573184
https://doi.org/10.1145/3543622.3573184
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573184&domain=pdf&date_stamp=2023-02-12

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sergey Gribok, Bogdan Pasca, & Martin Langhammer

In this paper, we use the term latency to denote the total time
from the input to output of a circuit, independently of how many
clock cycles are taken.

2 PRIORWORK
The current interest in high-performance large precision modular
multiplication in FPGAs is driven by blockchain, with VDF (variable
delay functions) as a key motivation. One inflection point was
around the VDF Alliance Contest of 2019 [5], which was initiated
shortly after the Cryptophage solution of LCS35 was disclosed.

The breakthrough that made this level of modular multiplication
performance possible in FPGAs is due to Ozturk [6], which we will
explore in more detail later in this section.

The VDF Alliance FPGA contest was the computation of 𝑥2
𝑡

mod 𝑁 with 𝑡 = 233 and 𝑁 = 1024 bits. Each iteration is therefore
about an order of magnitude smaller than the modular multiplica-
tion used by CSAIL2019. Moreover, the number of iterations is also
significantly smaller. The FPGA target was the Amazon F1 card
[7], which used Xilinx Virtex Ultrascale+ VU9P devices [8]. These
devices contain 1182K 6-LUTs and 6840 DSP (DSP48E2) blocks [9].
Each DSP Block can support a 27x18 multiplier instance, with the
ability to cascade and sum multiple DSP Blocks together. The VDF
competition was held in 2 rounds, with the winner [10] of the first
round performing each modular squaring in 28.6ns. The second
round of the contest was run, with the goal of improving on the
latencies of the successful architectures of the first round. Pear-
son [11] was the winner again, with the latency of each iteration
reduced to 25.2 ns.

A third round was run, in order to find the fastest solution that
was not based on Ozturk’s method. This round was won by Ben
Devlin [12] using a Montgomery multiplier based approach [13].
Performance was approximately half the speed of the Ozturk multi-
plier, at 46ns. Devlin also reported that he investigated and rejected
the other non-Ozturk approaches suggested by the VDF contest,
such as Chinese Remainder Theorem [14] (no reason given) and
Barrett’s reduction [15] (because of the impact of the final adjust-
ment subtractor, presumably as it requires a full carry propagation
as opposed to the redundant bit value of the Ozturk method). De-
vlin also investigated alternate multiplier constructions, such as
Toom-Cook, Karatsuba [16], and Booth’s recoding [17], but stated
that these were not suitable, without explanation. (We will analyze
the effect of the Karasuba approach in detail later in this section).
This round also solicited algorithms in addition to implementation.
The winner of this section described nested reductions in a RNS
(Residue Number System) [18].

Both Montgomery and Barrett’s approaches have been previ-
ously used in building high-precision FPGA modular multipliers.
The smaller resources counts of earlier FPGA devices is the reason
that most of the previously reported designs are based on folded
(multi-cycle or resource shared) architectures. Devlin’s architec-
ture is also multi-cycle, but uses predictive branching to improve
throughput (i.e. reduce the overall number of cycles required). Be-
fore the advent of VDF, where latency is the most important metric,
resource reduction, especially of DSP Blocks, appeared to be the
key goal. As an example, an earlier Montgomery multiplier [19]
used 3 iterations of a 4 level Karatusba decomposition to perform

a 256-bit modular multiply. This design used 81 18x18 multipliers
- we can compare this to Devlin’s design, which has a 16x higher
arithmetic complexity (1024-bit v.s. 256-bit), but a 28x increase in
multiplier count. Iterative Mongomery-style modular multipliers of
up to 1024 bits are also studied in [20] for FPGA devices. Barrett’s
method requires even deeper pipelining. One recent design [21]
distributed six 48-bit multipliers over the calculation of a 512-bit
modular multiplication. This calculation needed 79 cycles.

A large modular multiplier based on an updated Barrett’s ap-
proach was recently reported [22]. We will analyse this design,
because it reports details on different combinations of multi-radix
Karatsuba decomposition, FPGA mapping, and analysis of Barrett’s
algorithm; all of these were mentioned by Devlin, so we can now
examine why the latest approaches used for VDF-type calculations
(long iterations of modular exponentiations) are better.

If we look at the history of large multiplier implementations
in FPGAs [23] [24] [25] [26] we can see that Karatsuba methods
feature prominently. Latency (or more usually, pipeline depth) will
generally not be a consideration, but rather the reduction in the
number of resources, especially DSP Blocks.

Barrett’s algorithm requires three chained multiplications: an
initial full multiplication, followed by two multiplications to create
an approximate estimate of the modular value. A fine adjustment
then takes place to calculate the exact result. The two multipliers in
the estimation phase do not have to be full multipliers; we need the
MSB bits from one of them and the LSB bits from the other, which
means that we do not have to construct the full parallel multipliers
for this. The reported method used a looser error bound to reduce
the required accuracy of two of the three multiplier operations (𝑖 .𝑒 .
allowing a multi-bit error in both of the subset multipliers) in the
algorithm, thereby reducing DSP and logic resource requirements.
Although the Karatsuba decomposition still requires that we need
to generate all of the partial products, we do not need to sum all
of the combinations of partial products together, which saves a
significant amount of soft logic. Of perhaps greater impact is the
simplification of the place and route problem.

The aggregate cost of the modified Barretts approach is 255K
ALMs, 1183 DSP Blocks, and requires 143 cycles per modular mul-
tiplication. A key point is that this is the depth of the modular
multiplier - once the pipeline is full, a new result can be output
per clock cycle. However, a VDF function depends on round-trip
latency, not the number of modular multiplications per unit time.
The 500MHz performance is realized on the older Stratix 10 [27]
FPGA. It is likely that there would be a 35% increase in performance
if recompiled into the newer Agilex [28] family. We can therefore
estimate the expected 1Kb squaring time at 212ns. We can now
compare the three approaches: Ozturk, predictive Montgomery,
and modified Barretts, as shown in Table 1.

We need to look at this data with many qualifiers. We have es-
timated the performance improvement of Barrett’s design when
ported to a newer and faster FPGA. We treat the cost and capa-
bility of the Xilinx/AMD and Altera/Intel devices for soft logic
and DSP resources the same, although there are differences. While
the Ozturk and Montgomery architectures have been optimized
for squaring (which cuts the resource usage approximately in half
compared to a full multiplication), Barrett’s architecture uses a full
AxB multiplication. If Barrett’s design were optimized for squaring,

198

CSAIL2019 Crypto-Puzzle Solver Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Table 1: Performance of 1024-bit Modular Multiplication
Methods.

Architecture LUTs DSP latency (ns)
Ozturk 464K 2212 25.2

Montgomery 201K 2272 46.0
Barrett 255K 1183 est. 212

the area reduction would not be as high, as the squaring tuning
would only apply to the first multiplier. A 20% area reduction of
the three-multiplier system would be more likely in this case.

One of Devlin’s goals was to implement a design that fits into
one of the SLRs [29] of the VU9P to improve timing closure. A
SLR is an FPGA die, and multiple SLRs are combined using an
interposer to create a larger FPGA device. Crossing SLR boundaries
reduces performance because of the interface latency. In contrast,
the Pearson design is spread out over the entire FPGA. This may
become more significant as we try to support the much larger (3072-
bit vs. 1024-bit) word size for CSAIL2019. None of these designs
report routing stress, which will become more pronounced for this
new puzzle, as the arithmetic complexity of each iteration increases
by roughly an order of magnitude.

At the 1024-bit word size, we can see that the Ozturk method is
clearly the winner when the important metric is latency. Efficiency
only becomes an issue if it prevents the design from running in
a single FPGA, although with the approximately 9x increase in
multiplier size, we can see this is a possibility. We have a number of
ways to manage this. First, we will explore high performance multi-
cycle approaches, which may fit into current FPGAs more readily.
Secondly, we need to find more efficient ways of implementing the
Ozturk algorithm. DSP blocks are intrinsically more efficient than
soft logic, as the functionality is already in ASIC form. This gives
us a strong motivation to restate the Ozturk approach from a table
based to arithmetic based reduction operation.

Finally, it is important to remember that although the Ozturk
approach is the best for round-trip latency, a modified Barrett’s
design is still both the most efficient (least number of resources
per computation) and fastest for throughput, for example if many
independent RSA cryptographic operations we run simultaneously,
but the latency is many times that of the Ozturk or predictive
Montgomery methods.

3 BACKGROUND
In this section we briefly present the techniques behind current
FPGA modular multiplication methods. We start with a review of
the Ozturk approach, and then present a newer method [30] that
uses the embedded FPGA DSP resources for a more efficient and
higher performance result. In the next section, we will further de-
velop the DSP based approach into an efficient multi-cycle version.

3.1 Integer Multiplication
The large integer multiplication is implemented as a polynomial
multiplication. The inputs 𝐴 and 𝐵 are unsigned integers repre-
sented in polynomial form as 𝑑 + 1 radix 𝑅 = 2𝑤+1 digits. The
polynomial is constructed with a 1 bit overlap between consecutive

𝑎4 𝑎2 𝑎0𝐴

𝐴 = 𝑎4𝑥
4 + 𝑎3𝑥3 + 𝑎2𝑥2 + 𝑎1𝑥1 + 𝑎0𝑥0

𝑤

𝑎1𝑎3

𝑤 + 1

Figure 1: Integer viewed as a degree-𝑑 polynomial with over-
lapping coefficients leading to a redundant representation.

digits. This feature allows reducing modular reduction latency - as
it will be made clear in this section.

𝐴 =

𝑑∑︁
𝑖=0

𝑏𝑖2𝑤𝑖 , 𝐵 =

𝑑∑︁
𝑖=0

𝑏𝑖2𝑤𝑖

From the radix-𝑅 digit notation the polynomial notation (𝑥 = 2𝑤)
follows naturally:

𝐴(𝑥) =
𝑑∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 , 𝐵(𝑥) =

𝑑∑︁
𝑖=0

𝑏𝑖𝑥
𝑖 .

Here 𝑎𝑖 , 𝑏𝑖 are the coefficients of the polynomials, and corre-
spond to the radix-𝑅 digits from the original representation. This is
highlighted in Figure 1.

The product 𝑃 of two degree 𝑑 polynomials 𝐴 and 𝐵 is a degree
2𝑑 polynomial. Figure 2 highlights the partial-products for 𝑑 = 3.
The subproducts 𝑎𝑖𝑏 𝑗 are 2𝑤 +2 bits wide values, and can be written
in terms of two𝑤-bit values and one 2-bit value (𝑃H

𝑖, 𝑗
):

𝑎𝑖𝑏 𝑗 = 𝑃𝑖 𝑗

= 𝑃H𝑖, 𝑗2
2𝑤 + 𝑃M𝑖, 𝑗2

𝑤 + 𝑃L𝑖, 𝑗 .
Knowing that 𝑥 = 2𝑤 , the subproduct alignments are such that:
• 𝑃H

𝑖, 𝑗
overlaps over 𝑃M

𝑘,𝑙
where 𝑘 + 𝑙 = 𝑖 + 𝑗 + 1,

• 𝑃M
𝑖, 𝑗

overlaps over 𝑃L
𝑘,𝑙

where 𝑘 + 𝑙 = 𝑖 + 𝑗 + 1,
• 𝑃H

𝑖, 𝑗
overlaps over 𝑃L

𝑘,𝑙
where 𝑘 + 𝑙 = 𝑖 + 𝑗 + 2.

These alignments can be observed in Figure 2. The columns of
sub-products sections aligned at weights 2𝑤𝑖 correspond to non-
evaluated sums that, when evaluated, correspond to coefficients
of the output polynomial. Therefore, each column is summed to-
gether (columns have between 1 and 10 subproduct components),
to generate intermediary coefficients 𝐷𝑖 , with widths ranging from
𝑤 bits (for 𝐷0) to𝑤 + 4 bits (for 𝐷4).

𝐷𝑘 =
∑︁

𝑖+𝑗+2=𝑘
𝑃𝐻𝑖,𝑗 +

∑︁
𝑖+𝑗+1=𝑘

𝑃𝑀𝑖,𝑗 +
∑︁
𝑖+𝑗=𝑘

𝑃𝐿𝑖,𝑗

A set of 𝑤-bit wide additions aligned on the column outputs,
are used for creating modified polynomial coefficients such that
their maximum widths does not exceed 𝑤 + 1 bits. These short
adders sum the lower𝑤 bits of 𝐷𝑖 (𝐷𝑖 mod 2𝑤) with the bits having
weights larger than 2𝑤 from 𝐷𝑖−1 (𝐷𝑖−1 ≫ 𝑤). This propagation
is only required for 𝑖 ≥ 2, as for 𝑖 = 0 the subproduct column has
only one term.

𝐶𝑖 = (𝐷𝑖 mod 2𝑤) + (𝐷𝑖−1 ≫ 𝑤), 𝑖 ∈ [2, 2𝑑 + 2]
This level of adders is depicted on the the bottom of Figure 2.

199

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sergey Gribok, Bogdan Pasca, & Martin Langhammer

b2

b1

b0

×

a2

a1

a0

a3

b3

p00M

p10M

+

p00Lp01L

p10L

p01M

p02L

p11L

p20L

p02M

p11M

p20M

p03L

p12L

p21L

p30L

p03M

p12M

p21M

p30M

p13L

p22L

p31L

p13M

p22M

p31M

p23L

p32L

p23M

p32M

p33L

p33M

p00H

p10H

p01H

p02H

p11H

p20H

p03H

p12H

p21H

p30H

p13H

p22H

p31H

p23H

p32H

p33H

D0

D1

D2

D3

D4

D5

D6

D7

D8
+

C0

C1

C2

C3

C4

C5

C6

C7

C8

++++ + + +

ww+1

Figure 2: Subproduct alignments, column-based summations
and short carry-propagation stage for a degree-3 polynomial
multiplication corresponding to 4-digit radix 𝑅 inputs

C2

C1

C0

+

C3

C4

C5

C6

C7

C8

ROM

ROM

ROM

ROM

ROM

ROM

S0

S1

S2
+

Z1

Z0Z2

Z3

Figure 3: Polynomial reduction, resulting in a 𝑑 + 1-degree
polynomial

Finally, the product 𝑃 can be written in polynomial form:

𝑃 =

2𝑑+2∑︁
𝑖=0

𝐶𝑖𝑥
𝑖 ,

with 𝐶𝑖 holding on 2𝑤+1 bits.

3.2 Modular Reduction
The second part of the modular multiplication involves reducing 𝑃
(mod 𝑁):

𝑀 = 𝑃 mod 𝑁,

where 𝑃 is the polynomial previously generated on the output of
the multiplier.

In the context of modular exponentiation we do not require an
exact (non-reducible)𝑀 , but rather any equivalent𝑀 is sufficient,
as long as it meets a number of properties. One of these is that it’s
easy to obtain, another is that the output has the same form as the
inputs of the polynomial multiplication.

The following identity is used for obtaining𝑀 :

𝐴 + 𝐵 mod 𝑁 ≡ (𝐴 mod 𝑁) + (𝐵 mod 𝑁)
≡ ((𝐴 mod 𝑁) + 𝐵) mod 𝑁

Note that with respect to the degree 𝑑 of the input polynomials
𝐴 and 𝐵, the degree of the modulus 𝑁 is 𝑑 − 1.

We split 𝑃 in two parts:

𝑃 =

2𝑑+2∑︁
𝑖=𝑑

𝐶𝑖𝑥
𝑖 +

𝑑−1∑︁
𝑖=0

𝐶𝑖𝑥
𝑖

Next, the high part is composed of 𝑑 + 3 radix 2𝑤+1 coefficients.
For each coefficient and for a constant value of 𝑁 , the reduced value
mod 𝑁 can be pre-computed and tabulated:

𝑀𝑖 = 𝐶𝑖𝑥
𝑖 mod 𝑁, 𝑖 ∈ [𝑑, 2𝑑 + 2] .

Additionally, each𝑀𝑖 can be viewed as a degree-𝑑 polynomial,
with coefficients𝑀𝑖, 𝑗 radix 2𝑤 digits. This allows for the following
rewrite:

𝑀 =

𝑑−1∑︁
𝑖=0

©«𝐶𝑖 +
2𝑑+2∑︁
𝑗=𝑑

𝑀𝑗,𝑖
ª®¬𝑥𝑖 mod 𝑁 .

This results again in column-based summations, as shown in
Figure 3.

A final reduction consisting of 𝑑 −2 parallel𝑤-bit adders (similar
to the structure at the bottom of Figure 2 for the case of integer
multiplier) is implemented in order to obtain𝑤 + 1-bit wide coeffi-
cients for the output polynomial. This is shown on the bottom of
Figure 3.

Note that the previous reduction phase produces an output that
is in redundant form. An alternative implementation based on a
full-width adder would produce an output in standard form (non-
overlapping coefficients). This would have a higher area (associated
to pipelining) and longer latency (≈ (𝑑 − 1)x higher for a ripple-
carry adder implementation). Fortunately, this is not required since
the polynomial multiplier described in Section 3.1 is designed to
accept coefficients in this redundant form. Moreover, the 𝑤 + 1
bitwidth used for coefficient radix 𝑅 selected to match the DSP
Block multiplier size. For instance Intel FPGA devices contain 27-
bit multipliers making𝑤 = 26 a good choice.

3.3 Multiplicative Reduction
The lookup-based reduction combinedwith the redundant polynomial-
based multiplication is a significant improvement for low-latency
modular multiplication in FPGAs. Nonetheless, tackling very large
word sizes exposes a significant limitation of the approach – as
the partial reduction values𝑀 are stored in LUTs, the amount of
logic required to store the tables can become prohibitively large
(Section 4.2 presents a resource estimation in the context of the

200

CSAIL2019 Crypto-Puzzle Solver Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

C7

Z0Z1Z2

C6 C5 C2 C1 C0

×

+

×

×

C4 C3C8

×

Z3Z4

X8mod N

X7mod N

X6mod N

X5mod N

Figure 4: Simplified diagram showing the use DSP blocks for
performing modular reduction in polynomial form.

CSAIL2019 3072-bit multiplier size). In addition to high logic uti-
lization, place and route will also become an increasingly difficult
problem as multiplier sizes increase. The partial reduction terms
𝑀𝑗,𝑖 need to be summed with the result of the multiplicative ex-
pansion (𝐶𝑖), with many long wires inevitably being necessary for
routing operands to the corresponding adder trees.

A recent solution presented in [30] reduces the lookup table
reduction cost (and alleviates some of the routing problems) by
implementing a multiplier-based reduction (therefore replacing the
LUTs in Ozturk’s algorithm with DSP Blocks).

The DSP-based solution is based on the following rewrite:

𝑀𝑖 = 𝐶𝑖 (𝑥𝑖 mod 𝑁), 𝑖 ∈ [𝑑 + 2, 2𝑑 + 2] .

Here (𝑥𝑖 mod 𝑁) is a constant (for constant N), and can therefore
be pre-computed. Then𝑀𝑖 is calculated by simply multiplying 𝐶𝑖
by that constant. That could be done by using a layer of DSP blocks
as shown on Figure 4. Note that 𝑀𝑖 is now 𝑤 + 1 bits wider than
𝑁 . To account for this, the input polynomial degree needs to be
increased by 1.

The multiplicative modular-reduction scheme presented here
significantly reduces the number adder tree terms compared to the
lookup-based solution, therefore reducing the overall latency of the
implementation as showed in [30].

4 CSAIL2019 SOLVER ARCHITECTURE
4.1 Iterative Modular Multiplication
CSAIL2019 uses a much larger value of 𝑁 (3072-bit) compared to
VDF (1024-bit) or LCS35 (2048-bit). A fully parallel [6] [30] 𝑁 -bit
modular squaring operation does not fit into even the largest FPGAs
available today.

An iterative approach saves FPGA area, but it also increases la-
tency, and therefore reduces overall design performance. A straight-
forward iterative modular multiplication mapping uses an iterative
multiplication block followed by an iterative modular reduction
block. The overall operation latency is therefore a sum of the mul-
tiplication latency and the modular reduction latency.

In order to reduce latency, we have developed an optimized
iterative modular multiplication algorithm where the iterative mul-
tiplication and the iterative modular reduction operate in parallel,
with a 1-cycle offset. The first modular reduction iteration operating
on a partial multiplication result starts immediately after the first

Algorithm 1: Iterative Multiplication mod N

Input: 𝐴 = {𝐴𝑛−1, · · · , 𝐴0}
Input: 𝐵 = {𝐵𝑛−1, · · · , 𝐵0}
Output: 𝑍 = {𝑍𝑛−1, · · · , 𝑍0}
Variable:𝑀 = {𝑀𝑛−1, · · · , 𝑀0} = 0
Variable: 𝑆 = {𝑆𝑛−1, · · · , 𝑆0} = 0
Variable: 𝑃 = {𝑃𝑛, · · · , 𝑃0}
for 𝑖 from 𝑛 − 1 to 0 do
𝑃 = 𝐴𝐵𝑖 + (𝑀 ≪ (𝑊 /𝑛))
𝑀 = {𝑃𝑛−1, · · · , 𝑃0}
𝑆 = 𝑆 + (𝑃𝑛2𝑊 +𝑖𝑊 /𝑛 mod 𝑁)

end for
𝑍 = 𝑆 + (𝑀 mod 𝑁);

multiplication iteration. Consequently, the overall modular multipli-
cation latency is only one modular reduction iteration latency more
than latency of a regular (non-modular) iterative multiplication.

The multi-cycle high-level modular multiplication approach is
shown in Algorithm 1. The𝑊 -bit wide inputs 𝐴 and 𝐵 are subdi-
vided into 𝑛 limbs each. On every iteration (loop index 𝑖 is decre-
mented from 𝑛 − 1 down to 0) 𝐴 is multiplied by 𝐵𝑖 by means of
a rectangular multiplier, to produce an 𝑛 + 1 limb product. The
lower 𝑛 limbs of the product are stored in variable𝑀 to use in the
next iteration. The upper limb of that product (𝑃𝑛) is sent to the
multiplier-based modular reduction circuit where it reduced mod-
ulo 𝑁 . The reduced value is then fed into the running accumulator
𝑆 . Upon completion of the loop one modular reduction is required
in order to reduce𝑀 mod 𝑁 , before constructing the final result 𝑍 .

Using this algorithm we can calculate (𝐴𝐵 mod 𝑁) in 𝑛+1 cycles
(assuming multiplication and reduction each take 1 cycle) using
𝑛 times fewer resources when compared with a fully parallel im-
plementation. Note that in order to be able to start the modular
reduction on cycle 2 we need to perform the multiplication start-
ing with the most significant limb of 𝐵 – which corresponds to a
left-to-right approach – as opposed to the classical (pen-and-paper)
approach which is right-to-left.

4.2 Hardware Architecture and FPGA Mapping
The hardware implementation of this algorithm contains two main
modules: the iterative modular multiplier and a customizedmodular
reduction, as shown in Figure 5.

The iterative multiplier operates on polynomials 𝐴 and 𝐵 of
degree 120 (121 terms) - with 𝑥 corresponding to 226 and coefficient
radix 𝑅 = 227 (denoted by [121x27] in Figure 5). This allows for
integer inputs of up to 3146 = 26 · 121 bits to be represented. This
bit-width is sufficient to handle the 3072 + 32 = 3104 bit 𝑁 ′ (the
additional 32 bits are required for the error detection mechanism
described in Section 4.3). Note that due to the redundant polynomial
representation (1-bit overlap between consecutive coefficients), the
total number of bits used to manipulate the polynomials is 27 ·121 =
3267.

The polynomial 𝐵 is split into 8 limbs, with each limb having 16
coefficients (most significant limb has only the 9 least significant
coefficients populated, with the rest tied to zero). The Polynomial
Multiplication component multiplies iteratively 𝐴 by the limbs of

201

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sergey Gribok, Bogdan Pasca, & Martin Langhammer

n−1P

n−1P

A

Polynomial Multiplier

B

<<

[16x27]

Limb

MSB Limb

[121x27]

[138x27]

[17x27]

Bi

Pn ,...,P0

[17x27]
msb

Polynomial Adder <<

Modular

[121x27] [120x27]

S

[121x27]

[121x27]

Polynomial Adder

[121x27]

BA

Polynomial Multiplication

[121x27] [121x27]

[121x27]

[121x27]

[121x27]

Modular
Reduction

DSP−based LUT−based

start

shift (16)

shift (16)

[137x27]

Reduction
0

Modular Reduction

Figure 5: High-level architecture of the iterative modular
multiplier used for the CSAIL2019 puzzle

𝐵, starting from the most significant one, as previously explained
in Algorithm 1. For the first iteration the product flows through
the polynomial adder unaltered and gets split into an upper part
𝑃𝑛 and a lower part {𝑃𝑛−1, ..., 𝑃0}. Subsequent iterations recirculate
the aligned low part ({𝑃𝑛−1, ..., 𝑃0} ≪ 16) back on the second input
of the adder, to be summed with the next partial product 𝐴𝐵𝑖−1.

For each iteration, the high part of the sum 𝑃𝑛 is propagated to
the Modular Reduction component. The DSP-based modular reduc-
tion outputs a 121-coefficient result that is fed into the polynomial
accumulator 𝑆 . On the last iteration, all but the most significant
bit of the most significant limb of {𝑃𝑛−1, ..., 𝑃0} also gets added into
𝑆 . The most significant bit of 𝑃𝑛−1 is passed through a LUT-based
modular reduction, and gets added in to 𝑆 as well. The 3120-bit
range offered by the 121-coefficient polynomials ensures that at the
output of the DSP-based modular reduction no overflow can hap-
pen in the most significant coefficient by summing up 17 3104-bit
terms. Even considering the 8 iterations required for performing
the full modular multiplication would not grow the most significant
limb contribution above 3111 bits, which is lower than 3120.

Focusing on the modular reduction component, the standard Oz-
turk modular multiplication [6] implements the modular reduction
using an array of ROMs, as shown in Figure 3. The multiplicative re-
duction method [30] (Figure 4) instead uses an array of DSP blocks
configured as multipliers by constants. However, neither of these

A7

Z0Z1Z2

A6 A5 A2 A1 A0

×

+

×

×

A4 A3A8

×

Z3Z4

ROM

ROM

ROM

ROM

State

Figure 6: Iterative modular reduction using ROMs

approaches can be directly applied to the iterative modular reduc-
tion design because the relative weight of the 𝑃𝑛 term changes with
every iteration - thus changing the value that needs to be reduced.

The Ozturk multiplier therefore offers minimal savings in an
iterative implementation, because all values outside of the 𝑁 bit
range still need to be tabulated. Both the expansion in multiplier
and reduction tree are smaller, but most of the logic is in the ROM
tables. The total amount of storage is unchanged. The ROM cost
for the 3072-bit case (CSAIL2019 bitwidth) can be calculated easily.
We split the out of band expansion into 6 bit segments, with each
segment containing a 3072-bit modulus value. We therefore have
512 ROMs of 3K LUTs each, or over 1.5M 6LUTs. This is as much
logic as some of the largest FPGAs available, and in itself will
create a structure that will be difficult to place and route. As a
comparison, this calculation shows that the 1024-bit modulus of
the VDF Alliance competition would require about 175K 6 LUTs,
which appears correct in the context of the reported solution size
of 464K 6 LUTs [11].

We have a similar problem for themultiplicative reductionmethod
- every iteration needs a different constant. The difference is that
the cost of tabulation is much less, and in one case can also be
absorbed by the FPGA DSP Blocks themselves. The read address
for the table is the index of the current iteration (see Figure 6).

Here the “State” register contains the current iteration index
and is used to select the correct constant from the ROMs for every
iteration. In some FPGAs [31], a built-in coefficient storage (which
was originally designed to support multi-channel FIR filters [32])
can be repurposed for the 𝐶𝑖 storage. These internal ROMs are 8
elements deep; as long as the number of iterations per modular
multiplication does not exceed 8, we are able to absorb the entire
coefficient storage into these embedded blocks. The cost of soft
logic for this method is therefore zero - as opposed to 1.5M LUT6
using the tabular reduction case. In contrast, it is also possible to
map our iterative ROM tables to soft logic, at the cost of 14 half-
ALMs per DSP block. One table would be required per DSP Block
in the reduction section, or about an additional 27K ALMs.

4.3 Error detection
For very long running computations - such as those required to
unlock this puzzle - it is very important to be able to detect errors
early on. If an error goes undetected then all computations per-
formed after the error (which may amount to many years worth

202

CSAIL2019 Crypto-Puzzle Solver Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Algorithm 2: Error detection

Const: 𝑃 // prime that generates maximum cycle
Const: 𝐿 = (𝑃 − 3)/2 // P cycle length
Input: 𝑋 // Current result modulo 𝑁 ′ = 𝑁𝑃
Input: 𝐾 // Current index
Variable: 𝑋 ′ = 𝑋 mod 𝑃
Variable: 𝐾 ′ = (𝐾 mod 𝐿) + 𝐿
Variable: 𝑇 = 2
for 𝑖 from 1 to 𝐾 ′ do
𝑇 = 𝑇 2 mod 𝑃

end for
Return 𝑇 == 𝑋 ′;

of compute) will be useless. The error-detection mechanism needs
to be combined with a checkpointing mechanism. At regular time
intervals intermediary results are checked using the error-detection
mechanism. If no errors are detected then the results are stored
offline as a valid system state (checkpoint).

Having an error-detection mechanism in place, we can safely
overclock the hardware (run it using a clock frequency larger than
what is reported by the Quartus Timing Analyzer), and rely on the
error detection mechanism to catch errors caused by overclocking.
In the unlikely event of an error, the system will only need to revert
to a starting point (checkpoint state) several minutes old. This is
insignificant in the case of what can amount to multi-month or
multi-years runs.

To be able to detect an error we use the following approach:
instead of performing calculations modulo 𝑁 , we perform calcu-
lations modulo 𝑁 ′ = 𝑁𝑃 , where 𝑃 = 4294963787 is a 32-bit prime
that produces the longest possible cycle (see [33]) 𝐿 = (𝑃 − 3)/2 =
2147481892. Converting of a value modulo 𝑁 ′ into a value modulo
𝑁 simply requires taking the remainder modulo 𝑁 of that value.
Operating mod 𝑁 ′ provides a way to check for errors in the calcu-
lations at any moment in time. The process involves comparing the
result modulo 𝑃 with the expected value as shown in Algorithm 2.
Note that 𝐾 in Algorithm 2 represents the total number of modular
multiplications (squarings) done so far. We reported our method to
the CSAIL team to check that it was correct [34].

Running the error detection algorithm takes just a couple of sec-
onds on a CPU. A probability of an undetected error is 1/2147481892
which is extremely small.

4.4 Directed Pipelining
Recent designs for large modular multiplication [6][30] contain
a datapath organized as a “simple loop” as shown on Figure 7(a).
Adding additional clock stages into a simple loop architecture does
not improve the overall speed of computations. Even though the
additional pipeline stage allows the computations to run at a higher
clock frequency, the trade-off is that it also increases the number
of clock cycles to go through the loop, marginally reducing the
overall performance - in our case loop completion latency. We see
this trade-off in recently reported designs. Some of these designs
[3][4] use just 1 or 2 clock cycles per iteration, and therefore contain
very deep un-pipelined datapaths with very slow clock frequencies
(20-40 MHz). If the designs are pipelined slightly deeper, the clock

(a) Simple Loop (b) Loop with inner
loops

(c) Pipelined loop
with inner loops

Figure 7: Loop Construction Development

frequency increases, but this is almost perfectly offset by the in-
crease in number of cycles per iteration, again with a iteration rate
of 40MHz [11].

We now describe an improved way to introduce pipelining into
a selected class of very deep combinatorial designs for FPGAs. We
use the iterative modular multiplier architecture from Figure 5 as
a working example. A high-level view of the loop organization of
this design is shown in Figure 7(b). The design is organized as a
nested two-level loop structure. Both inner loops iterate 8 times
(synchronously) to produce a modular multiplication result while
the outer loop iterates over the modular multiplication 𝑡 = 256
times to complete the modular exponentiation. The total time to
finalize the modular exponentiation therefore equals 256𝑇 , where
𝑇 denotes the time to complete one modular multiplication.

Denote by 𝑋 the inner loop iteration count (the execution stays
in the inner loop for 𝑋 = 8 clock cycles), while completing one
iteration of the outer loop takes an additional𝑌 iterations. The total
number of clock cycles per iteration is therefore 𝑋 + 𝑌 . Adding
an extra pipeline stage into the outer loop (𝑌 → 𝑌 + 1) increases
the total number of clock cycles per iteration by 1 (𝑋 + 𝑌 → 𝑋 +
𝑌 + 1). The relative increase in clock cycles required to compute
one modular multiplication (outer loop) can be expressed as 𝐶1 =
(𝑋 + 𝑌 + 1)/(𝑋 + 𝑌).

Adding the additional pipelining stage in the outer loop, would
decrease the maximum logic depth by a coefficient 𝐶2 = (𝑌 + 1)/𝑌
(assuming that the pipeline stages are distributed evenly). Since𝐶1 <
𝐶2, the overall design performance will increase if the logic depth in
the inner loop is smaller than the outer loop logic depth. Therefore,
we can improve the overall performance by adding pipeline stages
into an outer loop until the outer loop maximum logic depth will
match the inner loop logic depth as shown on Figure 7(c).

Figure 8 shows an example for 𝑋 = 8 where by increasing the
pipeline depth of the outer loop from𝑌 = 2 to𝑌 = 3 the critical path
delay (which was assumed to be in the outer loop) has decreased
by one third, from 3 period units to 2 period units. Consequently,
the total delay of the deeper pipelined design has decreased from
30 to 22 period units.

203

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sergey Gribok, Bogdan Pasca, & Martin Langhammer

start

X+Y+1=8+3

X+Y=8+2

clk period 3

clk period 3

30 period units

22 period units

8 period units

Figure 8: Directed Pipelining Example

n−1P

[17x27]

Pn 0

[17x27]
msb

<<

Modular

[121x27]

[121x27]

Modular
Reduction

shift (16)

[137x27]

Reduction
0

Modular Reduction

Polynomial Adder

[138x27]

A

Polynomial Multiplier

B

<<

[16x27]

Limb

MSB Limb

[121x27]

Bi

BA

Polynomial Multiplication

[121x27] [121x27]

[121x27]

[121x27]

start

shift (16)

[121x27]

S

[121x27] [120x27]

Polynomial Adder Tree

Polynomial Adder

DSP−based LUT−based

[121x27]

Polynomial Adder Tree

,...,Pn−1P

Figure 9: Pipelined iterative modular multiplier

We applied this approach to the two-level loop datapath shown
in Figure 9. A total of 9 additional pipeline stages were added to
the outer loop, bringing the overall number of pipeline stages to
12. Since the accumulation loops (inner loops) run for 8 cycles,
the overall number of clock cycles per iteration (of the outer loop)
is 12+8-1 = 19. The maximum logic depth of the pipelined design
corresponds to 2 consecutive adders which is the minimum possible
depth of the accumulation loop.

Table 2: Resource Report

Hierarchy ALM ALM (%) DSP DSPs (%)
Solver 161269 33 3891 86

Multiplcation 72256 15 1936 43
Reduction 82240 18 1955 43

5 RESULTS AND DISCUSSION
5.1 Implementation
We implemented the solver using an Intel Agilex F-Series FPGA
Development Kit [35] based on AGFB014R24A2E3VR0 FPGA device,
as this was the most recent FPGA available to us in a development
board form. This is a mid-size, slowest-speedgrade (-3) Agilex de-
vice and therefore motivates our development of an area-efficient
solution. In terms of frequency, we are confident that switching to
a faster-speedgrade device (-1) can improve frequency by another
20%. Although this device has less than half the logic of the Xilinx
VU9 devices on the Amazon F1 instances (as used by the VDF Al-
liance competition and the Cryptophage LCS35 solution), our DSP
based method is very logic efficient as we do not need any soft logic
for the coefficient storage. The number of DSP resources of our
selected Agilex device is also much lower than the VU9 device (4510
vs. 6840), but the Agilex DSP Blocks can support 27x27 multipliers
directly, which is 50% more arithmetically dense than the individual
Xilinx VU9 DSP Blocks (which support 27x18 multipliers) for this
application.

Our goal was to create a regularly placed design. In this version,
we achieved this by a combination of explicit (placing DSP blocks
in column groups) and implicit (the directed pipelining method
introduced in the earlier section) methods. We did not use any logic
floorplanning, but rather let the DSP placement drive the place and
route of the solver. Table 2 presents the total resource utilization of
our proposed solver, combined with a resource breakdown for our
two main units. An additional 6573 ALMs and 14 M20K memory
blocks - not reported in the table are needed to construct the en-
tire solver implementation. The presented architecture is using a
350MHz clock. As it can be observed from the table, our proposed
solver balances well the resources between the multiplication and
reduction components (both ALMs and DSPs). This can also be ob-
served from the floorplan shown in Figure 10, where the multiplier
is shown in purple and the modular reduction in red.

5.2 Power Analysis and Performance
Comparison

We measured the actual dynamic power of our FPGA to be 32W.
We also ran the Agilex Power Analyzer [36] tool for comparison.
The default settings estimated the dynamic power consumption
at 13.1W. In our experience, the default setting are not correct for
arithmetically dense designs, as the default toggle rate of 12.5% is
too low. At a 50% toggle rate, the tool returned 28.7W, which is in
line with our measured value. This understanding is important, as
the reported (but only simulated) VDF Alliance contest result power
numbers are likely incorrect. Devlin reports [12] that his design
consumes 4.9W and the Pearson design 18.3W (both numbers from
the Xilinx Power Estimator Tool). We ran the reported area for

204

CSAIL2019 Crypto-Puzzle Solver Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Figure 10: Multiplier and Reduction Modules

Table 3: Power Efficiency Analysis

Parameter Ours Devlin Pearson
Bits 3072 1024 1024

Latency 54ns 46ns 25.2ns
Normalized Latency 6ns 46ns 25.2ns

Normalized Performance 7.7 1 1.8
Power 𝑒𝑠𝑡 . 28.7W 12.0W 65W

Power Efficiency 3.2 1 0.32

Devlin’s design through the Power Estimator [37] and obtained
similar numbers. Like the Intel tool, Xilinx default toggle rates
are 12.5%. Again, we believe that the correct toggle rates for these
applications is 50%, which would approximately quadruple the
estimated power consumption reported.

We normalized the performance (latency/(bits2/1024)) to obtain
a comparison of the arithmetic efficiency of all three approaches
and divided by the estimated power (all at 50% toggle rate) for
the efficiency. The results are shown in Table 3. Our approach has
several times the arithmetic efficiency (normalized latency) of the
next nearest method, and also significantly better power efficiency.
As with our earlier latency comparison, we need to apply some
caution. We need to discount our efficiency somewhat, as the Agilex
devices are on 10nm FinFET, and the VU9P devices use 16nm FinFET.
Our multiplier reduction also requires more DSP Blocks, although
for a VDF application the latency metric greatly outweighs cost or
power considerations.

Table 4: Solver Milestone Status

Milestone Runtime Obtained Status
𝑡 = 228 14.57s Feb 23, 2022 Done
𝑡 = 229 29.14s Feb 23, 2022 Done
𝑡 = 230 58.29s Feb 23, 2022 Done
𝑡 = 231 1.94m Feb 23, 2022 Done
𝑡 = 232 3.89m Feb 23, 2022 Done
𝑡 = 233 7.77m Feb 23, 2022 Done
𝑡 = 234 15.54m Feb 23, 2022 Done
𝑡 = 235 31.09m Feb 23, 2022 Done
𝑡 = 236 1.04h Feb 23, 2022 Done
𝑡 = 237 2.07h Feb 23, 2022 Done
𝑡 = 238 4.14h Feb 24, 2022 Done
𝑡 = 239 8.29h Feb 24, 2022 Done
𝑡 = 240 16.58h Feb 27, 2022 Done
𝑡 = 241 1.38d Feb 28, 2022 Done
𝑡 = 242 2.76d Mar 2, 2022 Done
𝑡 = 243 5.53d Mar 7, 2022 Done
𝑡 = 244 11.05d Mar 14, 2022 Done
𝑡 = 245 22.11d Mar 25, 2022 Done
𝑡 = 246 44.21d Apr 15, 2022 Done
𝑡 = 247 88.43d May 31, 2022 Done
𝑡 = 248 176.85d Aug 26, 2022 Done
𝑡 = 249 𝑒𝑠𝑡 . 353.71d In progress
𝑡 = 250 𝑒𝑠𝑡 . 1.94y not started
𝑡 = 251 𝑒𝑠𝑡 . 3.87y not started
𝑡 = 252 𝑒𝑠𝑡 . 7.75y not started
𝑡 = 253 𝑒𝑠𝑡 . 15.49y not started
𝑡 = 254 𝑒𝑠𝑡 . 30.99y not started
𝑡 = 255 𝑒𝑠𝑡 . 61.98y not started
𝑡 = 256 𝑒𝑠𝑡 . 123.95y not started

5.3 Solver
The solver started running in February 2022, and in the first 6
months found 21 milestone solutions (from 𝑡 = 228 to 𝑡 = 248) of
the puzzle. The solver is using a 350MHz clock with one modular
squaring operation taking 19 clock cycles, which gives 54 nanosec-
onds per squaring operation. The actual runtimes for completed
milestones and estimated run times for future milestones, together
with the completion date of the achieved milestones are given in
Table 4.

We have reported our results to the MIT CSAIL team. Our mile-
stone solutions have been recorded and are at the top of the leader-
board [34] [38].

As it can be observed from Table 4, the performance of the pre-
sented solver is not sufficient to fully solve the puzzle before the
deadline in 2033. Solving the puzzle requires roughly one order of
magnitude improvement in performance (loop latency) to meet the
deadline. Nonetheless, we hope that our work will inspire more
FPGA researchers to the problem, and will serve as a base architec-
ture to solve other time-locked puzzles with future generations of
FPGAs and more architectural improvements.

To meet the deadline of the CSAIL2019 puzzle, we need a 10x im-
provement - in other words, our 54ns iteration time must reduce to

205

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Sergey Gribok, Bogdan Pasca, & Martin Langhammer

5.4ns. Our current architecture uses an 8-iteration modular multipli-
cation, which is first driven by the number of resources (principally
the 4150 DSP Blocks) on the mid-size device we are using. Larger
FPGAs are currently available [39], with over 12K DSP Blocks on
some of the larger devices. This same FPGA family (Agilex) also
has members with 3x the DSP Blocks. Although this would not
evenly divide into our iteration granularity, we can also investigate
a mixed (multiplicative and table based) approach. As both types
of reduction calculations remap portions of values that are outside
the 𝑁 modulus width back into that space, they will be compatible
with each other. We are using a relatively small amount of soft logic
compared to the amount of DSP, so it is likely that a reasonably
routable solution could be realized. One caveat is that reducing the
number of iterations would increase the critical path, especially in
the summation of the partial product columns (comprising both
the multiplication and reduction portions of the implementation),
which may impact the operating frequency negatively.

6 FUTUREWORK
We believe that the clock rate of our solver implementation can
be improved. We are currently overclocking the FPGA for this
application by 10% and we are confident that it is possible to push
this even further. Given that the design has a low logic usage and
almost no memory blocks, the power consumption is lower than it
is typically for a full-chip design of this size. We know that we are
not near the thermal limits of this device, and we also have a robust
error checking method to continuously verify our results. There are
several different possibilities to further develop overclocking: both
tuning the existing methods as well as developing new ones. We
believe that we can boost the operating frequency by 25% over the
Quartus reported value by monitoring power (which will increase
with increased frequency, thereby increasing temperature, and in
turn reducing our thermal margin). The power based performance
optimization will be a slowly varying parameter. The continued
correct operation of the circuit can be monitored by our error
checking methodology.

We have also identified possible data-based clocking improve-
ments, which we may be able to apply on an iteration by iteration
basis.

The combination of using larger existing devices and both the
slowly and quickly varying clock rates will likely not achieve a 10x
increase in performance, although a 5x-6x improvement is possible.

7 CONCLUSIONS
In this paper we have analysed the CSAIL2019 problem and com-
pared the computational scale of the problem with known ap-
proaches of solving it. It appears that a standard CPU is well out of
running, and the current FPGA methods will have difficulty scaling.

We have described a new FPGA based algorithm that shifts the
computation from tables to DSP Blocks, which allows for a higher
density solution, with higher throughput and more predicable tim-
ing closure. This also reduces the routing problem for soft logic,
allowing more scalability with higher performance. We then de-
veloped a multi-cycle implementation using FIR filter coefficient
storage, which lets us directly calculate milestone solutions of the
puzzle even using modest-sized FPGAs. We have also introduced a

new way of pipelining large systems, which when combined with
a modest level of embedded feature placement, creates a regular
placement for a complex design, with repeatable and predictable
performance. This allows for modifications to the design to be made
with a high degree of confidence in the new FPGA fitting.

As part of our discussion on FPGA performance, we have de-
scribed how we can confidently run the design somewhat faster
than the reported timing closure, and how this might be applicable
to many other types of designs.

We have compared normalized metrics of our architecture to
similar designs used in the VDF Alliance contest, and found that our
approach (which uses methods such as the multiplicative reduction,
as well as a left-to-right multiplication calculation that allows a
simultaneous multiplication expansion and reduction operation),
provides significantly better arithmetic and power efficiencies. More
importantly for VDF applications, our method will provide the
lowest overall latency, and is also scalable to larger bit widths.

Finally, we look to the future. While the performance and com-
putation density of our new work is a significant improvement over
previously reported work, the presented design will not meet the
full CSAIL2019 puzzle solving deadline. We may, however, be able
to get close, assuming that we can continue to develop more ways
of increasing performance, either by improving our implementa-
tion parallelism, our frequency tuning, or a combination of both.
In any case, the CSAIL2019 puzzle is a very challenging problem
for FPGAs.

REFERENCES
[1] “Description of the CSAIL2019 Time Capsule Crypto-Puzzle,” https://people.csail.

mit.edu/rivest/pubs/Riv19f.new-puzzle.txt, accessed: 2022-08-15.
[2] “Description of the LCS35 Time Capsule Crypto-Puzzle,” http://people.csail.mit.

edu/rivest/pubs/Riv99b.lcs35-puzzle-description.txt, accessed: 2022-08-15.
[3] “Programmers Solve MITs 20-year-old Cryptographic Puzzle,” https://www.csail.

mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle, ac-
cessed: 2022-09-14.

[4] https://www.supranational.net/, accessed: 2022-09-14.
[5] “VDF Alliance FPGA competition,” https://supranational.atlassian.net/wiki/

spaces/VA/pages/36569208/FPGA+Competition, accessed: 2021-06-14.
[6] E. Öztürk, “Design and implementation of a low-latency modular multiplication

algorithm,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67,
no. 6, pp. 1902–1911, 2020.

[7] “Amazon EC2 F1 instances,” https://aws.amazon.com/ec2/instance-types/f1/, ac-
cessed: 2022-09-14.

[8] “Virtex UltraScale+ product tables,” https://www.xilinx.com/products/silicon-
devices/fpga/virtex-ultrascale-plus.html, accessed: 2022-09-14.

[9] “UltraScale Architecture DSP Slice,” https://docs.xilinx.com/v/u/en-US/ug579-
ultrascale-dsp, 2021-08-30.

[10] “VDF Alliance FPGA competition round 1 results and announcements,” https:
//www.vdfalliance.org/news/fpga-competition-round-1-results, 2019-10-31.

[11] “Pearson round 2,” https://github.com/supranational/vdf-fpga-round2-results/
tree/master/eric_pearson_2, accessed: 2022-09-14.

[12] https://blog.janestreet.com/really_low_latency_multipliers_and_
cryptographic_puzzles, 2020-06-22.

[13] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics
of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[14] D. J. Bernstein, Jonathan, and P. Sorenson, “Modular exponentiation via the
explicit Chinese Remainder Theorem,” pp. 443–454, 2007.

[15] P. Barrett, “Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard Digital Signal Processor,” in Advances in Cryptology —
CRYPTO’ 86, A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
1987, pp. 311–323.

[16] A. Karatsuba and Y. Ofman, “Multiplication of multidigit numbers on automata,”
USSR Academy of Sciences, vol. 145, pp. 293–294, 1962.

[17] A. D. Booth, “A signed binary multiplication technique,” The Quarterly Journal of
Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–240, 1951. [Online].
Available: +http://dx.doi.org/10.1093/qjmam/4.2.236

206

https://people.csail.mit.edu/rivest/pubs/Riv19f.new-puzzle.txt
https://people.csail.mit.edu/rivest/pubs/Riv19f.new-puzzle.txt
http://people.csail.mit.edu/rivest/pubs/Riv99b.lcs35-puzzle-description.txt
http://people.csail.mit.edu/rivest/pubs/Riv99b.lcs35-puzzle-description.txt
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://www.csail.mit.edu/news/programmers-solve-mits-20-year-old-cryptographic-puzzle
https://www.supranational.net/
https://supranational.atlassian.net/wiki/spaces/VA/pages/36569208/FPGA+Competition
https://supranational.atlassian.net/wiki/spaces/VA/pages/36569208/FPGA+Competition
https://aws.amazon.com/ec2/instance-types/f1/
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://docs.xilinx.com/v/u/en-US/ug579-ultrascale-dsp
https://www.vdfalliance.org/news/fpga-competition-round-1-results
https://www.vdfalliance.org/news/fpga-competition-round-1-results
https://github.com/supranational/vdf-fpga-round2-results/tree/master/eric_pearson_2
https://github.com/supranational/vdf-fpga-round2-results/tree/master/eric_pearson_2
 https://blog.janestreet.com/really_low_latency_multipliers_and_cryptographic_puzzles
 https://blog.janestreet.com/really_low_latency_multipliers_and_cryptographic_puzzles
+ http://dx.doi.org/10.1093/qjmam/4.2.236

CSAIL2019 Crypto-Puzzle Solver Architecture FPGA ’23, February 12–14, 2023, Monterey, CA, USA

[18] https://github.com/supranational/vdf-fpga-round3-results/tree/master/papers,
2020-01-30.

[19] Y. Gong and S. Li, “High-throughput FPGA implementation of 256-bit Mont-
gomery modular multiplier,” in 2010 Second International Workshop on Education
Technology and Computer Science, vol. 3, March 2010, pp. 173–176.

[20] M. Morales-Sandoval and A. Diaz-Perez, “Scalable GF(p) Montgomery multiplier
based on a digit-digit computation approach,” IET Computers Digital Techniques,
vol. 10, no. 3, pp. 102–109, 2016.

[21] E. Ozcan and S. S. Erdem, “A high performance full-word Barrett multiplier
designed for FPGAs with DSP resources,” in 2019 15th Conference on Ph.D Research
in Microelectronics and Electronics (PRIME), July 2019, pp. 73–76.

[22] M. Langhammer and B. Pasca, “Efficient FPGA modular multiplication
implementation,” in FPGA ’21: The 2021 ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Virtual Event, USA, February 28 - March 2, 2021,
L. Shannon and M. Adler, Eds. ACM, 2021, pp. 217–223. [Online]. Available:
https://doi.org/10.1145/3431920.3439306

[23] F. de Dinechin and B. Pasca, “Large multipliers with fewer DSP blocks,” in Inter-
national Conference on Field Programmable Logic and Applications. IEEE, aug
2009.

[24] M. Kumm, O. Gustafsson, F. de Dinechin, J. Kappauf, and P. Zipf, “Karatsuba
with rectangular multipliers for FPGAs,” in 25th IEEE Symposium on Computer
Arithmetic, ARITH 2018, Amherst, MA, USA, June 25-27, 2018. IEEE, 2018, pp.
13–20. [Online]. Available: https://doi.org/10.1109/ARITH.2018.8464809

[25] E. Vitali, D. Gadioli, F. Ferrandi, and G. Palermo, “Parametric throughput oriented
large integer multipliers for high level synthesis,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2021, pp. 38–41.

[26] M. Langhammer and B. Pasca, “Folded integer multiplication for FPGAs,”
in FPGA ’21: The 2021 ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, Virtual Event, USA, February 28 - March 2, 2021,
L. Shannon and M. Adler, Eds. ACM, 2021, pp. 160–170. [Online]. Available:
https://doi.org/10.1145/3431920.3439299

[27] Intel Stratix®10 GX/SX Device Overview, 2018, https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-
overview.pdf.

[28] J. Chromczak, M. Wheeler, C. Chiasson, D. How, M. Langhammer, T. Vanderhoek,
G. Zgheib, and I. Ganusov, “Architectural enhancements in Intel® Agilex™
FPGAs,” in FPGA ’20: The 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Seaside, CA, USA, February 23-25, 2020,
S. Neuendorffer and L. Shannon, Eds. ACM, 2020, pp. 140–149. [Online].
Available: https://doi.org/10.1145/3373087.3375308

[29] “UltraFast design methodology guide for Xilinx FPGAs and SoCs,” https:
//docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/Super-
Logic-Region-SLR, 2021-11-19.

[30] M. Langhammer, S. Gribok, and B. Pasca, “Low-latency modular exponentiation
for FPGAs,” IEEE 30th Annual International Symposium on Field-Programmable
Custom Computing Machines, 2022.

[31] Intel Agilex Variable Precision DSP Blocks User Guide, 2019, https://www.intel.
com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-
dsp.pdf.

[32] Intel® Stratix® 10 Variable Precision DSP Blocks User Guide, https://www.
intel.com/content/dam/support/us/en/programmable/support-resources/bulk-
container/pdfs/literature/hb/stratix-10/archives/ug-s10-dsp-18-1.pdf, 2018,
2018-09-24.

[33] “The On-Line Encyclopedia of Integer Sequences: sequence A141305,” https:
//oeis.org/A141305, accessed: 2022-08-16.

[34] R. Rivest, Personal communication - April 2022.
[35] Intel® Agilex™ F-Series FPGA Development Kit, https://www.terasic.com.tw/cgi-

bin/page/archive.pl?Language=English&CategoryNo=142&No=1262, 2022, ac-
cessed: 2022-09-14.

[36] Intel® Agilex™ Power Analyser, https://www.intel.com/content/www/us/en/
support/programmable/support-resources/power/pow-powerplay.html, 2022, ac-
cessed: 2022-09-14.

[37] Xilinx Power Estimator User Guide, https://docs.xilinx.com/r/en-US/ug440, 2022-
04-06.

[38] R. Rivest, personal communication - May 2022.
[39] Intel Agilex F-Series FPGA and SoC Product Table, 2019, https://www.intel.

com/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-f-
series-product-table.pdf.

207

https://github.com/supranational/vdf-fpga-round3-results/tree/master/papers
https://doi.org/10.1145/3431920.3439306
https://doi.org/10.1109/ARITH.2018.8464809
https://doi.org/10.1145/3431920.3439299
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://doi.org/10.1145/3373087.3375308
https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/Super-Logic-Region-SLR
https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/Super-Logic-Region-SLR
https://docs.xilinx.com/r/2021.2-English/ug949-vivado-design-methodology/Super-Logic-Region-SLR
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/agilex/ug-ag-dsp.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/hb/stratix-10/archives/ug-s10-dsp-18-1.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/hb/stratix-10/archives/ug-s10-dsp-18-1.pdf
https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/pdfs/literature/hb/stratix-10/archives/ug-s10-dsp-18-1.pdf
https://oeis.org/A141305
https://oeis.org/A141305
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=142&No=1262
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=142&No=1262
https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/pow-powerplay.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/pow-powerplay.html
https://docs.xilinx.com/r/en-US/ug440
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-f-series-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-f-series-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/intel-agilex-f-series-product-table.pdf

	Abstract
	1 Introduction
	2 Prior Work
	3 Background
	3.1 Integer Multiplication
	3.2 Modular Reduction
	3.3 Multiplicative Reduction

	4 CSAIL2019 Solver Architecture
	4.1 Iterative Modular Multiplication
	4.2 Hardware Architecture and FPGA Mapping
	4.3 Error detection
	4.4 Directed Pipelining

	5 Results and Discussion
	5.1 Implementation
	5.2 Power Analysis and Performance Comparison
	5.3 Solver

	6 Future work
	7 Conclusions
	References

