
FDLS: A Deep Learning Approach to ProductionQuality,
Controllable, and Retargetable Facial Performances

Wan-Duo Kurt Ma
Weta Digital + Unity

Wellington, New Zealand
kma@wetafx.co.nz

Muhammad Ghifary∗
Weta Digital

Wellington, New Zealand
mghifary@gmail.com

J.P. Lewis†
Weta Digital

Wellington, New Zealand
noisebrain@gmail.com

Byungkuk Choi
Weta Digital + Unity

Seoul, Korea
bchoi@wetafx.co.nz

Haekwang Eom
Weta Digital + Unity

Seoul, Korea
heom@wetafx.co.nz

ABSTRACT
Visual effects commonly requires both the creation of realistic syn-
thetic humans as well as retargeting actors’ performances to hu-
manoid characters such as aliens and monsters. Achieving the
expressive performances demanded in entertainment requires ma-
nipulating complex models with hundreds of parameters. Full cre-
ative control requires the freedom to make edits at any stage of
the production, which prohibits the use of a fully automatic “black
box” solution with uninterpretable parameters. On the other hand,
producing realistic animation with these sophisticated models is
difficult and laborious.
This paper describes FDLS (Facial Deep Learning Solver 1), which is
Weta Digital’s solution to these challenges. FDLS adopts a coarse-to-
fine and human-in-the-loop strategy, allowing a solved performance
to be verified and (if needed) edited at several stages in the solving
process. To train FDLS, we first transform the raw motion-captured
data into robust graph features. The feature extraction algorithms
were devised after carefully observing the artists’ interpretation of
the 3d facial landmarks. Secondly, based on the observation that the
artists typically finalize the jaw pass animation before proceeding
to finer detail, we solve for the jaw motion first and predict fine
expressions with region-based networks conditioned on the jaw po-
sition. Finally, artists can optionally invoke a non-linear finetuning
process on top of the FDLS solution to follow the motion-captured
virtual markers as closely as possible. FDLS supports editing if
needed to improve the results of the deep learning solution and it
can handle small daily changes in the actor’s face shape.
FDLS permits reliable and production-quality performance solving
with minimal training and little or no manual effort in many cases,
while also allowing the solve to be guided and edited in unusual
and difficult cases. The system has been under development for
several years and has been used in major movies.

∗currently with PT. Bank Rakyat Indonesia (Persero), Tbk.
†currently with NVIDIA Research
1https://www.youtube.com/watch?v=39W4eGjMFiA

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in The Digital
Production Symposium (DigiPro ’22), August 7, 2022, Vancouver, BC, Canada, https:
//doi.org/10.1145/3543664.3543672.

CCS CONCEPTS
• Computing methodologies→ Animation.

KEYWORDS
Facial animation, Deep learning, Motion capture, Optimization

ACM Reference Format:
Wan-DuoKurtMa,MuhammadGhifary, J.P. Lewis, ByungkukChoi, andHaek-
wang Eom. 2022. FDLS: A Deep Learning Approach to Production Quality,
Controllable, and Retargetable Facial Performances. In The Digital Produc-
tion Symposium (DigiPro ’22), August 7, 2022, Vancouver, BC, Canada. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3543664.3543672

1 INTRODUCTION

Figure 1: Facial Deep Learning Solve (FDLS) is an animator
oriented tool system for solving facial animation given mo-
tion captured sparse marker set and limited training data.

Digital characters representing either humans or creatures are ubiq-
uitous in the film and video game industries. Creating believable
performances with these characters is one of the grand challenges
of computer graphics. Realistic digital characters are often animated
using performances captured from actors, as this allows the char-
acters to inherit the “personality” of selected actors. On the other
hand, performance capture presents its own difficulties arising from
the complexity of the models, the limited amounts of data available
(to retain fidelity to a particular actor’s performance of a particular
character, it may not be possible to use data from other actors, nor

ar
X

iv
:2

30
9.

14
89

7v
1

 [
cs

.C
V

]
 2

6
Se

p
20

23

https://orcid.org/1234-5678-9012-3456
https://orcid.org/1234-5678-9012
https://www.youtube.com/watch?v=39W4eGjMFiA
https://doi.org/10.1145/3543664.3543672
https://doi.org/10.1145/3543664.3543672
https://doi.org/10.1145/3543664.3543672

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada Ma et al.

even from the same actor performing a different character), and the
need to potentially edit the resulting performances.

This paper describes FDLS, Weta Digital’s solution to this chal-
lenge. FDLS has been in development since 2016 and has been used
on movies such as Gemini Man 2. Our system has the following
assumptions and requirements:

• Production quality, with high and verifiable accuracy. For
example we assume that an actor’s face shape may change
slightly across days, and account for this. A stereo or mono
head-mounted camera (HMC) with virtual (painted) markers
is used in order to allow simultaneous capture of the head
and body motion, since marker-free tracking methods are
considered to not yet be sufficiently accurate.

• Perceptual evaluation is used (as is commonly the case in
image quality assessment as well [Zhang et al. 2018]), with
guidance provided by the VFX supervisor.

• Editable and retargetable results. Editing is needed to
retain full creative control. A closed “black box” solver is not
suitable because the supervisor may require that the perfor-
mance be edited for various reasons. The actor’s performance
often needs to be re-targeted to other characters, such as
humanoid aliens and monsters. Occasionally a particular ex-
pression may not be conveyed correctly on a character with
very different proportions (e.g. a dragon). FDLS excels at post
editing on rig (aka puppet) parameters such as FACS (Facial
Action Coding System) action units [Ekman and Friesen
1978].

• We target expert animators rather than casual or novice
users, while greatly reducing the effort needed to manipulate
complex facial models,

• The ability to handle a rig with nonlinear effects, including
intermediate and corrective blendshapes [Osipa 2010] and
additional deformers e.g. for handling collisions between the
lips.

• As mentioned above, we assume limited training data
relative to the massive datasets commonly used to train
deep neural networks. To address this issue we introduce
strong inductive biases byway of specifically designed vertex
graph features, that better capture the facial expression while
remaining insensitive to irrelevant factors.

• We require performance capture that has been stabilized to
remove rigid motion of the skull [Beeler and Bradley 2014;
Lamarre et al. 2018]. We use a stereo or mono head-mounted
camera, however the use of a head-mounted camera is not
itself sufficient for stabilization since the camera may slip or
the actor’s scalp may move with respect to the skull.

This paper describes the "face solving" component of an overall
character pipeline. Other components such as modeling, rigging,
adaptation of the rig to specific actors [Ma et al. 2016; Seol et al.
2016], tracking, stabilization, muscle simulation, and rendering are
separate topics not covered here.

The primary contributions of this paper are:

2Gemini Man VFX Breakdown - Junior | Weta Digital: “All of this was to ensure
we captured the youthfulness, not just the likeness, of a 23-year-old Will Smith.”
https://www.youtube.com/watch?v=V1lTuNLuIO8

• A presentation of the motivation and design decisions for
Weta Digital’s Facial Deep Learning Solver (FDLS) system, a
novel multi-stage face solving approach for production qual-
ity performance-driven facial animation using deep neural
networks.

• Graph features that allow accurate animation solving with
limited training data.

• A nonlinear post-finetuning method conditioned on jaw an-
imation to allow better matching of some difficult face ex-
pressions.

• A method to accommodate the changes in the marker layout
or actor’s face shape without requiring re-training of the
network.

2 RELATEDWORK
The literature on facial performance capture dates from [Williams
1990] and is too large to fully review, for example [Zollhöfer et al.
2018] primarily targets the subset of monocular and optimization-
based approaches yet contains more than 200 references. We will
focus on methods that using deep learning as well as those that
give professional quality and editable results, while providing a few
pointers to other literature. Broader surveys of facial performance
capture and related areas include [Klehm et al. 2015; Tagliasacchi
et al. 2016; Zollhöfer et al. 2018].

Computer vision research often targets fully automatic approaches
that produce non-editable representations such as dense meshes
or uninterpretable (e.g. PCA) parameters. [Blanz and Vetter 1999]
introduced the morphable model approach in which scanned facial
geometry and texture are approximated with PCA linear subspaces.
This approach has been extended in a large body of research over
the past two decades [Egger et al. 2020]. Performance capture of
dense facial meshes usually requires complex camera setups [Bhat
et al. 2013; Bradley et al. 2010; Fyffe et al. 2015] and multi-view
stereo or photogrammetric reconstruction [Furukawa and Ponce
2009; Fyffe et al. 2015; Zhang et al. 2004]. Other research introduces
algorithms for specific facial regions such as the lips [Garrido et al.
2016] and eyelids [Bermano et al. 2015].

Real-time tracking and re-targeting from monocular RGB video
has seen widespread use in face “filters” for video conferencing
systems. While these methods have impressive ease of use and ro-
bustness, they do not offer verifiable accuracy and may not capture
fine facial detail, as well as being prone to errors from significant
lighting changes and occlusions. See [Zollhöfer et al. 2018] for a re-
cent survey of the literature in this area. Higher quality markerless
capture has also been demonstrated recently [Disney 2022], albeit
under constrained viewing and lighting conditions that would pre-
vent simultaneous capture of facial and body performances. Though
there are differences in opinion, some believe that such simulta-
neous capture is essential to capture natural correlations between
face and body motion.

The facial animation solvers used in visual effects production and
games often use physical or virtual (painted) markers as input, due
to accuracy requirements and reliability of marker-based systems
[Bickel et al. 2007; Huang et al. 2011]. However, these approaches
have less ability to capture fine detail in complex regions of the face,
in particular around the lips. One of the accommodations in these

https://www.youtube.com/watch?v=V1lTuNLuIO8

FDLS: A Deep Learning Approach to ProductionQuality, Controllable, and Retargetable Facial Performances DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

marker-driven methods is to add additional information extracted
from the captured footage. For instance, [Bhat et al. 2013] adds
separately tracked contours of the lips and eyelid to the solver’s
input.

Keyframe animation is widely used as it allows artists to specify
intuitively understandable parameters at a subset of frames, and
then interpolate these parameters to the remaining frames using
(for example) Catmull-Rom [Li and Deng 2008] or B-spline [Choe
et al. 2001] curves. On the other hand, keyframe animation is quite
laborious, and various techniques have been proposed to speed up
the artist’s workflow. For example [Seol et al. 2011] introduced a
successive refinement scheme in which large motions (e.g. the jaw)
are solved before the fine details. Temporal animation editing has
been developed in several directions, includings gradient-domain
space-time editing[Seol et al. 2012] and systems that allow interac-
tive tuning of the solution using nonlinear regression with radial
basis function networks [Seol and Cozens 2019; Seol and Lewis
2014]. Intuitive user guidance in the form of 2D sketches has been
used for generating plausible lip corrections [Dinev et al. 2018],
guiding blendshape models [Cetinaslan et al. 2015] and doing space-
time editing of general animation [Choi et al. 2016]. [Berson et al.
2019, 2020] use a learning based approach to perform temporal
animation editing.

Performance capture systems developed in production settings
target high quality and (in most cases) editable rig representations.
[Smith et al. 2017] demonstrates high-quality blendshape solving
using an optimization approach. Convolutional neural networks
have been employed to regress directly from video to dense meshes
[Laine et al. 2017]. [Moser et al. 2018] describes a production-proven
system for regressing 3D marker positions. In addition to this re-
search, there are several commercial systems that address aspects
of professional performance capture, including DI4D, Dynamixyz,
Synthesia, Medusa, and Imagemetrics [Various 2022].

“Deepfake” systems have recently been applied to face replace-
ment for stunt doubles [Seymour 2022]. In these systems an autoen-
coder with separate decoders for the actor and stunt double is used
to learn a shared latent space, allowing the double’s performance
to be decoded using the actor’s likeness. In this stunt double appli-
cation the resolution limitations of current neural rendering is not
a limiting issue, since the view of the stunt generally includes the
full body and perhaps the surround (thus the face is a smaller part
of the whole image), and there may be motion blur as well. On the
other hand, neural rendering approaches currently struggle with
producing “hero” shots where the face occupies most of a 2K or
4K image, and they are also not suited for scenarios where artist
editing is sometimes required. [Moser et al. 2021; Serra et al. 2022]
avoid the resolution issue by using a deepfake approach only to
bridge the domain gap between CG and real input images, allowing
a regression from input images to PCA model coefficients to be
trained with synthetic data.

In summary, there is a large body of research on facial perfor-
mance capture, including both fully automatic neural approaches,
and approaches that target editable high quality performance cap-
ture using classic methods. However, there is relatively little exist-
ing research on deep learning methods that target artist-in-the-loop,
editable, and high-quality performance capture suitable for high-
resolution (2K or 4K) “hero” facial shots [Seymour 2019].

3 HYBRID METHOD FOR FACIAL
ANIMATION CAPTURE

We focus on solving performance-driven facial animation problems
with blendshape models, i.e., inferring the blendshape weights ŵ
such that the corresponding blendshape expressionmatches the cap-
tured actor’s performance. Specifically, we denote a face model by
𝑔 : W → X, whereW ⊆ R𝐷 is the blendshape weight space and
X ⊆ R3𝑛 is the face expression space, each element of which is the𝑛
vertices with the coordinates vectorized as [𝑥1, 𝑦1, 𝑧1, . . . , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛].
Correspondingly, each blendshape is given by a vector b𝑘 ∈ R3𝑛 .
In the linear case a blendshape model in the "delta" formulation is:

𝑔(w) = b0 +
𝐷∑︁
𝑘=1

𝑤𝑘 (b𝑘 − b0) = b0 + Bw, (1)

where 𝑤𝑘 are the blendshape weights (typically 0 ≤ 𝑤𝑘 ≤ 1), b0
corresponds to the neutral shape, and B ∈ R3𝑛×𝐷 contains the
"delta" blendshape targets b𝑘 − b0.

Let us define a distance measure M : X × X → R. Given a
captured actor expression at a particular frame x ∈ X , we seek ŵ
such that M(𝑔(ŵ), x) is small. In our case, 𝑔(w) and x represent
sparse markers attached on either the face puppet or the real actor’s
face. In general, we can frame the problem either as a face matching
problem or a regression problem.

Matching approach. A prevalent approach to solving the blend-
shape weights is to frame it as a face matching optimization problem
[Choe et al. 2001]. Choosing Euclidean distance as M(·, ·) and set-
ting 𝑔(w) as in (1), we can express the problem as the following
optimization:

ŵ := argmin
w

∥b0 + Bw − x∥22 s.t. 0 ⪯ w ⪯ 1, (2)

which is a constrained quadratic programming (QP) problem. The
solution can be obtained by applying a standard QP solver run on
each frame [Boyd and Vandenberghe 2004; Fascione et al. 2017].

Learning-based approach. Instead of solving the face matching
problem by optimization, one can also apply a regression approach
to inferring the blendshape weights ŵ from the captured expression
x through a multivariate regression function 𝑓𝜃 : X → W.

The regression function is often decomposed as 𝑓 = ℎ ◦𝜙 , where
we call 𝜙 : X → H the feature extractor and ℎ : H → W the
regressor. A machine learning technique can identify the function
𝑓
𝜃
given a set of labeled examples D = {(x(𝑖)𝑣 ,w(𝑖)

𝑣)}𝑁
𝑖=1 [Vapnik

1998]. This trained regressor is expected to predict valid blendshape
weights given the previously unseen captured expression x𝑢 , i.e.,
ŵ𝑢 = 𝑓

𝜃
(x𝑢), such that the 3d model expression 𝑔(ŵ𝑢) is correctly

generated.

Nonlinear rig. For simplicity, the preceding description presents
the matching and learning-based approaches in terms of a linear
blendshape model. Our blendshape puppets incorporate natural
non-linear expressions, for example using in-between and correc-
tive shapes [Osipa 2010; Seo et al. 2011]. In addition, the overall
puppet consists of a large deformation chain with numerous tweaks,
deformers and skin clusters applied on top of the blendshape sys-
tem.

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada Ma et al.

A full description of the puppet is outside the scope of this
paper. The details of the puppet are not needed to understand the
application of the learning and matching approaches, however: the
learning-based approach captures the puppets’s behavior (including
nonlinearities) since the puppet itself is used to produce training
data (Section 4.1). For the matching approach, rather than seek a
global optimum, our optimization fine-tunes a local linear subset
of parameters that are selected by the artist (see Hybrid approach,
next, and Section 4.5).

Hybrid approach. In FDLS, we apply the learning-based approach
as the main animation solver, specifically using deep learning re-
gression [He et al. 2016], followed by the matching approach to
fine-tune some facial parameters. This hybrid approach has two
main advantages. First, the main animation solving is reduced to the
forward pass of the network 𝑓𝜃 , which is time-efficient. Second, the
forward pass provides an initialization for the nonlinear matching
optimization that is in the neighborhood of the correct local mini-
mum and is close to the desired solution, resulting in temporally
consistent and efficient fine tuning to generate high-fidelity final
animations. In the actual implementation, FDLS comprises several
components to enable the human-in-the-loop solving process. These
are fully elaborated in the next section.

4 THE COMPLETE FDLS PIPELINE
As shown in Fig. 2, the end-to-end FDLS pipeline consists of two
main stages: i) the development stage, and ii) the operation stage.
This partitioning forms a human-in-the-loop MLOps lifecycle in
Weta Digital’s production that ensures reproducibility, testability,
andmaintainability of our deep learning system. In the development
stage, data preparation steps are performed, including synthetic
data generation (Section 4.1), salient sample selection (Section 4.2),
feature engineering (Section 4.3), and training the deep learning
models (Section 4.4). The animation solving happens in the opera-
tion stage, which makes use of the trained deep learning models as
the main solvers complemented by a few other techniques: shape
alignment with anchor poses (Section 4.4) and fine-tuning optimiza-
tion (Section 4.5).

4.1 Synthetic Data Generation and
Augmentation

The training data for FDLS are in the form of 3d virtual markers cre-
ated from the actor’s facial landmarks of his/her neutral expression
using photogrammetry – we call these "neutral markers" through-
out the paper for brevity. We then attach the neutral markers to
the corresponding actor’s blendshape puppet and synthetically
generate the training markers driven by the puppet motion x(𝑖)𝑣 =

𝑔(w(𝑖)
𝑣) forming a set of training tuplesD = {(x(𝑖)𝑣 ,w(𝑖)

𝑣)}𝑁
𝑖=1. Note

that the training blendshape weightsw(𝑖) are designed and selected
by animation experts, typically containing both FACS and some
actor-specific expressions. Since the training markers are driven
by the puppet, the training data thus implicitly includes nonlinear
effects from the puppet without requiring a differentiable chain of
deformations.

Additionally, we also utilize a data augmentation or oversam-
pling technique to further increase the variation of the synthetic

markers x𝑣 and therefore avoid overfitting of the trained deep learn-
ing models. This is achieved by randomly injecting Gaussian noise
in the original markers x𝑒 = x𝑣+N(0, Σ). We empirically determine
the covariance Σ by analyzing the jitter of the tracked markers, for
instance, a marker at the nose bridge has less variance than those
on the chin region. This can produce a significant quality gain in
the solved animations.

4.2 Salient Training Sample Selection
As is mentioned in Section 4.1, the training data for FDLS can be
flexibly generated with various combinations of simple “one-hot”
single action unit FACS expressions (producing a minimum viable
solution) and more complex and realistic data from various sources
such as dynamic scans of the actor, previously animated or solved
performances, etc.

While we generally expect that more realistic and complex train-
ing data should result in better performance, counterintuitively
we observed that this is not always the case. We found that the
root cause is data imbalance – for example, some solved perfor-
mances may consist mostly of a neutral expression. This issue can
be avoided if the additional training examples are carefully selected
by the animators, but manually selecting from amongmany training
expressions is laborious.

To simultaneously encourage data diversity and salience, we
introduce a salient sample selection technique to automatically re-
move redundant examples from the training set. This eliminates the
need for tedious manual sample selection. We reduce the number
of training examples from 𝑁 to 𝑀 < 𝑁 by sequentially applying
the following sample selection rule

𝑠𝑖 =
1
𝑁

©­«
𝑁∑︁
𝑗=1

𝑘 (x(𝑖) , x(𝑗))ª®¬ < 𝜎, (3)

where 𝑠𝑖 ∈ {0, 1} is a binary variable indicating whether the shape
𝑖 is selected, 𝜎 is a tunable threshold, and 𝑘 : X × X → [0, 1] is the
similarity measure. In the extreme case, this salient sample selection
picks only a single datapoint from the datasetD if it containsmostly
similar expressions according to Eq. (3), e.g., neutral non-dialogue
expressions. We choose an exponential Radial Basis Function (RBF)
[Broomhead and Lowe 1988] representing 𝑘 (·, ·) which provides
a good set of salient shapes due to its effectiveness in capturing
similarities in a non-linear feature space.

4.3 Feature Engineering
Solving animation using solely sparse marker coordinates x =

[m1, . . . ,m𝑛], where m𝑖 ∈ R3 to represent faces has its own limita-
tions (e.g., [Seol et al. 2016]). Sparse markers are less informative
than the full face representation (e.g., facial depth from LiDAR),
and it is not possible to fully characterize certain facial expressions
using only marker coordinates.

To partially address this and simultaneously help with the limited
amount of training data available in this domain, we developed
several graph features to increase the information richness of the
input representations, thereby inducing robust and highly accurate
deep learning solves.

In the initial enthusiasm following the success of [Krizhevsky
et al. 2012], it was argued that features emerging from neural net

FDLS: A Deep Learning Approach to ProductionQuality, Controllable, and Retargetable Facial Performances DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

j

puppet

Data Preparation

Development Stage

ML Training

ResN
et

Animation solving

ResN
et

Done?

Operation stage

no

yes
A B

D

C F

E

training data jaw
jawpass solved re!ned

animation neutral marker set unseen marker set marker feature A method/step

Figure 2: The Facial Deep Learning Solver (FDLS) comprises three main stages: data preparation, training and solving, where
the letters denote: (A) salient sample selection (Section 4.2); (B) feature engineering (Section 4.3); (C) jaw kinematics conditional
training (Section 4.4.1); (D) shape alignment (Section 4.4.2); (E) finetuning (Section 4.5); (F) anchor poses (Section 4.4.2).

training should outperformmanually designed features aka "feature
engineering". While this is arguably true especially in computer
vision and natural language processing domains, engineered fea-
tures continue to be used in state-of-the-art deep learning – the
positional encoding in transformers and Fourier/positional encod-
ing that distinguishes NeRF [Mildenhall et al. 2020] are prominent
examples. In practice, the need for engineered features can be justi-
fied when it is impractical to search across a sufficient variety of
architectures to find those that result in ideal features, or to impose
an inductive bias in cases where "correct" features might not be
discovered due to limited data – as is often the case in visual effects!

Pairwise distances Pairwise directions Delta from neutral

neutral expression

Figure 3: FDLS graph features. From left to right: pairwise
distance, pairwise directions, delta from neural to the target
expression.

FDLS benefits from carefully engineered features extracted from
the marker coordinates. Fig. 3 illustrates the variants of the feature
extractor 𝜙 : X → H that we design as part of the learning-based
approach (recall Section 3). These are described next.

Pairwise distance. The pairwise distance features 𝝓dist ∈ R𝑛2
are

a feature vector, whose values represent the Euclidean distances
over all possible combinations of two marker coordinates in the
input representation {m𝑖 }𝑛𝑖=1. The 𝑘-th element of the pairwise
distance feature 𝜙dist

𝑘
∈ R is given by 𝜙dist

𝑘
=

m𝑖 −m𝑗

2 .

Pairwise direction. The pairwise direction features 𝝓dir ∈ R3𝑛2

are a collection of the directional vectors from one coordinate to
another. This gives complementary information to eliminate the
inherent ambiguity in 𝝓dist. For instance, the Euclidean distance
of two particular coordinates between different expressions, e.g.
neutral and smiling, could be indistinguishable due to symmetry.

Analogous to the pairwise distance computation, the 𝑘-th coor-
dinate 𝝓dir

𝑘
∈ R3 is computed as 𝝓dir

𝑘
= (𝜙dist

𝑘
)−1 (m𝑖 −m𝑗) . Note

that the pairwise distance and direction features are both invariant
to small slippage of the head camera.

Delta pose. Lastly, we define the delta pose features 𝝓delta ∈ R3𝑛 ,
which are the coordinate differences between a particular face
expression and its neutral pose. These features are invariant to the
global displacement of the marker coordinates and have become
a common representation used in traditional blendshape systems
in the graphics community [Lewis et al. 2014]. Given the specific
expression x and the corresponding neutral pose x0, the delta pose
feature vector 𝝓delta ∈ R3𝑛 is calculated as 𝝓delta = x − x0.

The complete set of input features for FDLS is the concatenation
of these three features, i.e., 𝝓 = [𝝓dist, 𝝓dir, 𝝓delta] ∈ H . Intuitively,
these features are a graph-like representation of facial expressions
that contains not only the positional information but also pairwise
relationships over the marker coordinates. These features can be
directly applied in our region-based training by extracting the fea-
tures only in a specific face region, as will be shown later. Graph
features have been used in concurrent work such as [Qi et al. 2017].
Our use is somewhat distinguished in that we intentionally do not
introduce convolution. The translational equivariance of convo-
lution is appropriate for recognition of general point clouds (for
example an edge may appear at any location) however the features
of a canonically positioned face are in relatively fixed locations and
we seek only to capture changes due to expression.

4.4 Region-based Training and Solving
The deep learning regression 𝑓𝜃 defined in Section 3 is the core of
FDLS. In its implementation, we define seven deep residual net-
works, each responsible for a particular face region containing
a subset of the sparse markers. We denote the face regions by
𝑅 ∈ {upper-face, lower-face, jaw, lips, cheek, eye-lids, eyeballs}. The
marker subset is selected according to the semantic meaning of the
face region, but a marker on the nose bridge is always included
regardless of the region to insure sufficiently diverse and spatially
supported features. Each face region is also linked only to a subset
of blendshape weights or channels that are relevant to that region.
In other words, we train {𝑓𝜃𝑟 : X𝑟 → W𝑟 ;∀𝑟 ∈ 𝑅}.

Solving with the trained deep learning models is straightforward,
i.e., we simply run the forward pass ŵ𝑟 = 𝑓

𝜃𝑟
(x𝑟) for each face

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada Ma et al.

region on a per frame basis. The full solved weights are the con-
catenation of {ŵ𝑟 }𝑟 ∈𝑅 , which we refer to as the raw animation –
later this will be used as the basis for editing or fine-tuning. As
described next, a substantial improvement in the quality of the
raw animation is obtained by extending the forward pass with two
additional techniques.

Residual blocks yjaw ∈ ℝ3

Jaw-cond networkRegular network

Residual blocks

Figure 4: The network 𝑓
𝜃𝑟
(x𝑟) for a regular face region (left)

and a jaw-conditioned network 𝑓
𝜃𝑙
(x𝑙 ; ŵjaw) (right).

4.4.1 Jaw Kinematics Conditional Training. Jaw kinematics plays
an important role in affecting the shape and expressions of the face,
especially the lower half [Yang et al. 2019]. For instance, one can
have different smiling expressions under different jaw conditions
(open, close, sideway movement, etc). In other words, the effect
of face muscle activations controlling the lips and cheeks strongly
depend on the jaw position.

For this reason, in our pipeline the jaw motions are established
before solving other regions. FDLS supports the artist in this process
by providing a regression specifically for the jaw position. Specifi-
cally, we denote the jaw activation weights by wjaw ∈ R𝑧 where
in our production face models, normally 𝑧 = 3, namely, jawOpen,
jawThrust, and jawSideways. The jaw motions ŵjaw are obtained
from computing 𝑓

𝜃jaw
(xjaw) and are used in the following regions

𝑙 ∈ {lower-face, lips, cheek}. We solve the animation by evaluating
𝑓
𝜃𝑙
(x𝑙 ; ŵjaw), which is trained by the risk minimization:

𝜃𝑙 := argmin
𝜃𝑙

1
𝑁

𝑁∑︁
𝑖=1

ℓ

(
𝑓𝜃𝑙 (x

(𝑖)
𝑙

;w(𝑖)
jaw),w

(𝑖)
𝑙

)
, (4)

where ℓ : W𝑥W → R is the standard regression loss function.
Note the use of wjaw (the groundtruth jaw motion) in the training,
versus ŵjaw.

As we can see the solved jaw weight vector ŵjaw is part of the
inputs to the deep learning model 𝑓𝜃𝑙 . However, due to its low
dimensionality, we embed it as additional nodes in a hidden layer
after the series of deep residual blocks rather than as part of the
input layer, as shown in Fig. 4.

4.4.2 Shape Alignment with Anchor Poses. In real productions last-
ing several days or more, the positions of markers on a single actor’s
face may shift over time. There are several reasons for this. First,
although the landmarks are painted using a perforated mask and
their relative positions do not change, the mask may be placed in
slightly different positions on different days. Second, the accuracy
of the tracked and 3d-reconstructed markers can be inconsistent
across different shots, depending on their complexity. Lastly, the
actor may slightly gain or lose weight. These changes can introduce
a small shape mismatch between the puppet-snapped markers and
the performance-captured markers.

m(i)
a

m̂(i)
a

d(i)
a

Figure 5: Shape alignment using an anchor pose. The green
and red circles represent the puppet-snapped markers and
the performance-captured markers, respectively.

To mitigate this problem, we introduce a simple shape align-
ment method that can be performed directly by an animator before
(re)running the deep learning solver 𝑓

𝜃
(·). The basic idea is to first

calculate the offsets between the synthetic markers and the shot-
captured markers producing an anchor pose, i.e., a hand-picked
expression at a particular frame in a shot, and then propagate the
offsets to displace the other face markers within the entire frame
range. Specifically, suppose that we have a performance shot with
𝑇 frames and an anchor pose at frame 𝑎 is chosen. The artist then
sets the anchor weights w𝑎 such that 𝑔(w𝑎) portrays the desirable
anchor pose. The shape alignment is executed as follows:

d𝑎 = x𝑎 − 𝑔(w𝑎),
x̃𝑓 = x𝑓 − q𝑓 𝑎 ⊙ d𝑎, 𝑓 ∈ {1, ...,𝑇 }, (5)

where d𝑎 are the marker offsets and q𝑓 𝑎 ∝ exp (−∥x𝑎 − x𝑓 ∥22)
denotes the weighting factors of the alignment by calculating the
pose similarity. After this we can rerun the deep learning solver
𝑤̃ = 𝑓

𝜃
(x̃𝑓),∀𝑓 = {1, . . . ,𝑇 } without retraining to produce a more

accurate animation. Note that this shape alignment process can be
done iteratively by choosing a few other anchor poses as needed –
for the first anchor pose, all elements of q are set to one.

4.5 Fine-tuning Optimization
Editing can optionally be performed once the raw animation has
been solved by the deep learning model ŵ𝑢 = 𝑓

𝜃
(x𝑢). In cases with

unusual expressions, we sometime see a small discrepancy between
the solved expression of the actor puppet 𝑔(ŵ𝑢) and the actual
captured expression x𝑢 , mainly because the shape x𝑢 has not been
well represented in the training dataset for constructing 𝑓

𝜃
. The

artists can simply adjust the solved weights (most of the time only
a few channels are needed) to get more accurate expressions.

To make the aforementioned process more scalable, we provide
a fine-tuning optimization as a post-processing step in FDLS. It
essentially further minimizes the error ∥𝑔(ŵ𝑢) − x𝑢 ∥2. We run
the minimization by solving the face matching problem in Eq. (2),
in which the deep learning solved weights are set as the starting
point for a minimization using the L-BFGS algorithm as the opti-
mizer [Liu and Nocedal 1989]. We found this provides better results
than starting the minimization from zero or a random point. Note
that we also form a restricted blendshape basis (matrix B in Eq.(2))
that only includes artist-selected degrees of freedom to be finetuned
while the remaining weights remain frozen.

With this implementation, we provide the artists with flexible
options such as choosing only a specific frame range, partially

FDLS: A Deep Learning Approach to ProductionQuality, Controllable, and Retargetable Facial Performances DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

Figure 6: FDLS workspace and GUI. The system is imple-
mented using the commercial Maya API [Autodesk, Inc.
2019].

selecting the face markers as objects of comparison, and selecting
only a few blendshape weights to be finetuned. This makes the
fine-tuning optimization an interactive tool as part of an overall
editing flow to efficiently finalize high quality animations.

5 EXPERIMENTS
In this section we review the end-to-end FDLS pipeline and present
the main results as well as ablation tests. While the use case shown
here is for a specific actor and a single shot performance, the work-
flow is generic for any actor and performance capture.

Next we describe the implementation details of the FDLS training
and solving stages as depicted in Fig. 2.

5.1 Training
As described in Section 4.1, we synthetically manufacture the train-
ing data in the form of a series of sparse markers by assigning
animation weights to the blendshape channels. In the FDLS train-
ing, two types of training animations are utilized: “one-hot” FACS
expressions and the range of motion (ROM) of an actor.

The one-hot FACS animation has individual FACS expressions
such as jaw drop (AU26) and lip corner puller (AU12) at successive
frames, thus representing the full extent of the blendshape basis.

By using only the one-hot FACS training animation, we can
already construct a minimum viable solver before more advanced
training animation is available.

The ROM captures the motion of the specific actor. This is more
realistic than the one-hot animation, as some people have difficulty
activating individual muscles in isolation. One can think of the
FACS-based animation as determining the range and extremes of
individual muscles, while the ROM provides information about
their distribution, for example, what muscle combinations actually
occur and do not occur for the particular actor. In addition, the
ROM allows an expert artist to specify exactly which blendshape
weights contribute to an expression, thus guiding the solver to
disambiguate cases where nearly (but not exactly) identical marker
positions can be produced with different weight configurations.

5.2 Solving
Fig. 6 shows the FDLS workspace and GUI. Note that we do not
require the artist to specify any parameters to perform solving, thus
the tool is convenient to use without significant artist training. Our

users have reported that FDLS system takes only about one week
to train a new animator, which boosts the production speed.

After the workspace has been setup (Fig. 6), FDLS allows the
artist to pick a neutral-ish frame as an anchor frame (Section 4.4.2),
and correct the jaw animation given the raw jaw solve, then run the
jaw-conditioned networks (Section 4.4.1). After raw solve, one or
more additional anchor poses can be added to refine the projected
markers. Finally, the post-finetuning optimizes the face conditioned
on jaw channels to match the performance markers.

Fig. 7(a) shows a complex FDLS solve that illustrates most as-
pects of the system. The top row depicts the raw solved expressions
induced by the region-based models {𝑓𝜃𝑟 (·)}𝑟 ∈𝑅 after shape align-
ment using one neutral-ish frame. The middle row displays the
solved expressions with shape alignment using the additional an-
chor pose highlighted in red followed by finetuning. This shows
a substantial improvement in that the result is close to the final
desired expressions (bottom).

Fig. 7(b) compares the performance of post-finetuning versus the
raw solve, with or without an anchor pose at the marked frame. The
minimization ensures the RMSE loss value decreases (e.g., curves A
and B), however the error remains high across frames in this case.
By adding one anchor pose at around frame 55 (shown in (a) with
the red box), the error is globally decreased with no further effort.

Fig. 7(c) shows the results of salient frame selection by varying
the threshold 𝜎 in (3). Specifically, it compares the test performance
with 𝜎 = 0.1, 𝜎 = 0.3, 𝜎 = 0.5, and the full dataset, corresponding to
using 50%, 66%, 83% and 100% of the original dataset, respectively.
One can see that the network trained with data selected using
𝜎 = 0.3 (orange) has better performance than the others, including
the network trained with the full dataset (red).

Many performances include a certain amount of repeated in-
formation, for instance, in some performances a large percentage
of the frames show a mostly neutral expression. The experiment
in Fig. 7(c) provides evidence of an important point, which is that
the solve actually improves when this redundant data is removed.
However, a limitation of this approach is that the 𝜎 must be empiri-
cally tuned for the particular dataset. If 𝜎 is set to an extreme (e.g.,
𝜎 = 0.1) or moderate value (e.g., 𝜎 = 0.5) it may give poor results.

6 CONCLUSION AND FUTUREWORK
This paper presents a human-in-the-loop deep learning based ap-
proach to facial animation solving. The FDLS system is a pioneering
application of deep learning to facial solving in movie production.
It was initiated in 2016 and has seen ongoing development and im-
provement since then. It presents a simple and light-weight training
and solving pipeline to our artists. The approach is suitable for driv-
ing sophisticated and non-linear blendshape rigs with hundreds of
parameters. FDLS produces production quality results while requir-
ing limited training data and artist effort. The design trade-offs and
several specific features of the system are guided by consideration
of artist practice and differ from other published work.

The graph features have proven successful at allowing accurate
solves with limited training data. The quality of the intermediate
solution can be verified and adjusted if needed following both
the jaw estimation and prior to the post fine-tuning, and since
FDLS produces interpretable parameters, the freedom to do further

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada Ma et al.

(a) FDLS main result

(b) Anchor pose performance

(c) Salient sample performance

Figure 7: A complex FDLS solve example. (a) raw solve with shape alignment from a single neutral-ish frame (top), finetune with
the additional anchor pose outlined in red (middle), and the final manual edits from artist on top of the FDLS solve (bottom).
(b) and (c) are the RMSE performance of ablation experiments at the frame marked with star with/without an anchor pose and
finetuning, and on the salient data selection, respectively. Note that the RMSE generally includes an irreducible offset due to
slight mismatch between the actor and puppet virtual marker positions.

editing on the final solution is fully preserved. The anchor pose
mechanism allows the network to adapt to slight changes in both
the marker positions and the actor’s face shape without re-training.

In our experience animators can learn to use the system in ap-
proximately a week and a large majority of shots require little or
no human editing. While we could cherry pick results to provide
an “objective” characterization of the production performance, in
all honesty such a characterization is almost meaningless. This
is due to wide variety of different performance and retargeting
situations, the different ways that FDLS can be used, the quality
of training data, choice of anchor poses, and other factors, and
particularly because of the ultimate perceptual evaluation of the
results. Instead, we highlight that FDLS succeeds as a system that
can be employed in all these scenarios – from fully automatic solves
to extremely challenging shots that require iterative solution and
evolving guidance from a supervisor.

One of the disadvantages of using a sparse marker set is the
ambiguity of the lip positions in certain expressions. In the future
we would like to enhance the solver with additional information
such the lip contours or LIDAR depth.

ACKNOWLEDGMENTS
We thank Joe Letteri, Marco Revelant, Luca Fascione, Dejan Mom-
cilovic, Stephen Cullingford, Stuart Adcock, Allison Orr, David
Luke, Millie Maier, Andrew Moffat, Kenneth Gimpelson, Nivedita
Goswami, and Zhicheng Ye for supporting this project. Moreover,
we appreciate the anonymous reviewers for their suggestions.

REFERENCES
Autodesk, Inc. 2019. Maya. https://autodesk.com/maya
Thabo Beeler and Derek Bradley. 2014. Rigid Stabilization of Facial Expressions. ACM

Trans. Graph. 33, 4 (2014), 44:1–44:9.
Amit Bermano, Thabo Beeler, Yeara Kozlov, Derek Bradley, Bernd Bickel, and Markus

Gross. 2015. Detailed Spatio-Temporal Reconstruction of Eyelids. ACM Trans.
Graph. 34, 4, Article 44 (jul 2015).

Eloïse Berson, Catherine Soladié, Vincent Barrielle, and Nicolas Stoiber. 2019. A Robust
Interactive Facial Animation Editing System. Motion, Interaction and Games (Oct
2019).

Eloïse Berson, Catherine Soladié, and Nicolas Stoiber. 2020. Intuitive Facial Animation
Editing Based On A Generative RNN Framework. Computer Graphics Forum 39, 8
(Nov 2020), 241–251.

Kiran S. Bhat, Rony Goldenthal, Yuting Ye, Ronald Mallet, and Michael Koperwas.
2013. High Fidelity Facial Animation Capture and Retargeting with Contours.
In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (Anaheim, California) (SCA ’13). Association for Computing Machinery,
New York, NY, USA, 7–14.

Bernd Bickel, Mario Botsch, Roland Angst, Wojciech Matusik, Miguel Otaduy,
Hanspeter Pfister, and Markus Gross. 2007. Multi-Scale Capture of Facial Geometry
and Motion. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH
’07). Association for Computing Machinery, 33–es.

Volker Blanz and Thomas Vetter. 1999. A Morphable Model for the Synthesis of 3D
Faces. In Proceedings of the 26th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co.,
USA, 187–194.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press.

Derek Bradley, Wolfgang Heidrich, Tiberiu Popa, and Alla Sheffer. 2010. High Resolu-
tion Passive Facial Performance Capture. ACM Trans. Graph. 29, 4 (2010).

D.S. Broomhead and D. Lowe. 1988. Multivariable Functional Interpolation and Adap-
tive Networks. Complex Systems 2 (1988), 321–355.

Ozan Cetinaslan, Verónica Orvalho, and J.P. Lewis. 2015. Sketch-Based Controllers for
Blendshape Facial Animation. In Eurographics. 25–28.

Byoungwon Choe, Hanook Lee, and Hyeong seok Ko. 2001. Performance-Driven
Muscle-Based Facial Animation. The Journal of Visualization and Computer Anima-
tion 12 (2001), 67–79.

https://autodesk.com/maya

FDLS: A Deep Learning Approach to ProductionQuality, Controllable, and Retargetable Facial Performances DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

Byungkuk Choi, Roger Blanco i Ribera, J.P. Lewis, Yeongho Seol, Seokpyo Hong,
Haegwang Eom, Sunjin Jung, and Jun-yong Noh. 2016. SketchiMo: sketch-based
motion editing for articulated characters. ACM Trans. Graph. 35, 4 (2016), 146:1–
146:12.

Dimitar Dinev, Thabo Beeler, Derek Bradley, Moritz Bächer, Hongyi Xu, and Ladislav
Kavan. 2018. User-Guided Lip Correction for Facial Performance Capture. Computer
Graphics Forum 37 (2018).

Disney. 2022. Anyma. https://studios.disneyresearch.com/anyma
Bernhard Egger,WilliamA. P. Smith, Ayush Tewari, StefanieWuhrer, Michael Zollhöfer,

Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani,
Christian Theobalt, Volker Blanz, and Thomas Vetter. 2020. 3D Morphable Face
Models - Past, Present, and Future. ACM Trans. Graph. 39, 5 (2020), 157:1–157:38.

Paul Ekman and Wallace V Friesen. 1978. Facial action coding system. Environmental
Psychology & Nonverbal Behavior (1978).

Luca Fascione, J.P. Lewis, and Iain Matthews. 2017. FACETS Sci-Tech Academy Award.
http://oscars.org.

Yasutaka Furukawa and Jean Ponce. 2009. Dense 3D motion capture for human faces.
IEEE Conference on Computer Vision and Pattern Recognition (Jun 2009).

Graham Fyffe, Andrew Jones, Oleg Alexander, Ryosuke Ichikari, and Paul Debevec.
2015. Driving High-Resolution Facial Scans with Video Performance Capture. ACM
Trans. Graph. 34, 1, Article 8 (2015).

Pablo Garrido, Michael Zollhöfer, Chenglei Wu, Derek Bradley, Patrick Pérez, Thabo
Beeler, and Christian Theobalt. 2016. Corrective 3D Reconstruction of Lips from
Monocular Video. ACM Trans. Graph. 35, 6, Article 219 (2016).

KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 770–778.

Haoda Huang, Jinxiang Chai, Xin Tong, and Hsiang-Tao Wu. 2011. Leveraging Motion
Capture and 3D Scanning for High-Fidelity Facial Performance Acquisition. In
ACM SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH
’11). Association for Computing Machinery, New York, NY, USA, Article 74.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations (ICLR).

Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery, Bernd
Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent Advances in Facial Ap-
pearance Capture. Comput. Graph. Forum 34, 2 (2015), 709–733.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classification
with Deep Convolutional Neural Networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing Systems - Volume 1 (Lake Tahoe,
Nevada) (NIPS’12). Curran Associates Inc., Red Hook, NY, USA, 1097–1105.

Samuli Laine, Tero Karras, Timo Aila, Antti Herva, Shunsuke Saito, Ronald Yu, Hao
Li, and Jaakko Lehtinen. 2017. Production-level facial performance capture using
deep convolutional neural networks. In Proceedings of the ACM SIGGRAPH / Eu-
rographics Symposium on Computer Animation, Los Angeles, CA, USA, July 28-30,
2017, Joseph Teran, Changxi Zheng, Stephen N. Spencer, Bernhard Thomaszewski,
and KangKang Yin (Eds.). Eurographics Association / ACM, 10:1–10:10.

Mathieu Lamarre, J.P. Lewis, and Etienne Danvoye. 2018. Face Stabilization by Mode
Pursuit for Avatar Construction in the Universe. In 2018 International Conference
on Image and Vision Computing, IVCNZ 2018. IEEE, 1–6.

J. P. Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng.
2014. Practice and Theory of Blendshape Facial Models. In Eurographics 2014 - State
of the Art Reports, S. Lefebvre and M. Spagnuolo (Eds.).

Qing Li and Zhigang Deng. 2008. Orthogonal-Blendshape-Based Editing System for
Facial Motion Capture Data. IEEE Comput. Graph. Appl. 28, 6 (nov 2008), 76–82.

Dong C. Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large
scale optimization. Mathematical Programming 45, 1 (01 Aug 1989), 503–528.

Wan-Chun Ma, Mathieu Lamarre, Etienne Danvoye, Chongyang Ma, Manny Ko, Javier
von der Pahlen, and Cyrus A. Wilson. 2016. Semantically-aware blendshape rigs
from facial performance measurements. In SIGGRAPH ASIA 2016, Macao, December
5-8, 2016 - Technical Briefs, Johannes Kopf and Phillip Chi-Wing Fu (Eds.). ACM, 3.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In ECCV.

Lucio Moser, Chinyu Chien, Mark Williams, Jose Serra, Darren Hendler, and Doug
Roble. 2021. Semi-Supervised Video-Driven Facial Animation Transfer for Produc-
tion. ACM Trans. Graph. 40, 6, Article 222 (dec 2021), 18 pages.

Lucio Moser, Mark Williams, Darren Hendler, and Doug Roble. 2018. High-Quality,
Cost-Effective Facial Motion Capture Pipeline with 3D Regression. In ACM SIG-
GRAPH 2018 Talks (Vancouver, British Columbia, Canada) (SIGGRAPH ’18). 2 pages.

Jason Osipa. 2010. Stop Staring: Facial Modeling and Animation Done Right, 3rd Ed.
Sybex.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 5099–5108.

Jaewoo Seo, Geoffrey Irving, J.P. Lewis, and Junyong Noh. 2011. Compression and
direct manipulation of complex blendshape models. ACM Trans. Graph. 30, 6,
Article 164 (Dec. 2011), 164:1–164:10 pages.

Yeongho Seol and Michael Cozens. 2019. Interactive editing of performance-based
facial animation. In SIGGRAPH Asia 2019 Technical Briefs, SA 2019, Brisbane, QLD,
Australia, November 17-20, 2019. ACM, 61–64.

Yeongho Seol, J.P. Lewis, Jaewoo Seo, Byungkuk Choi, Ken Anjyo, and Junyong Noh.
2012. Spacetime expression cloning for blendshapes. ACM Trans. Graph. 31, 2,
Article 14 (April 2012), 14:1–14:12 pages.

Yeongho Seol and J. P. Lewis. 2014. Tuning Facial Animation in a Mocap Pipeline. In
ACM SIGGRAPH 2014 Talks (Vancouver, Canada) (SIGGRAPH ’14). Association for
Computing Machinery, New York, NY, USA, Article 13, 1 pages.

Yeongho Seol, Wan-Chun Ma, and J. P. Lewis. 2016. Creating an Actor-Specific Facial
Rig from Performance Capture. In Proceedings of the 2016 Symposium on Digital Pro-
duction (Anaheim, California) (DigiPro ’16). Association for Computing Machinery,
New York, NY, USA, 13–17.

Yeongho Seol, Jaewoo Seo, Paul Hyunjin Kim, John P. Lewis, and Junyong Noh. 2011.
Artist friendly facial animation retargeting. ACM Trans. Graph. 30, 6 (2011), 162.

Jose Serra, Mark Williams, and Lucio Moser. 2022. Accelerating Facial Motion Capture
with Video-Driven Animation Transfer. In ACM SIGGRAPH 2022 Talks (Vancouver,
BC, Canada) (SIGGRAPH ’22). Association for Computing Machinery, New York,
NY, USA, Article 19, 2 pages.

Mike Seymour. 2019. Face it Will: Gemini Man. https://www.fxguide.com/fxfeatured/
face-it-will-gemini-man

Mike Seymour. 2022. Deep Dive on Wētā FX Face Fabrication System. https://www.
fxguide.com/fxfeatured/deep-dive-on-weta-fx-face-fabrication-system

Alex Smith, Sven Pohle, Wan-ChunMa, ChongyangMa, Xian-ChunWu, Yanbing Chen,
Etienne Danvoye, Jorge Jimenez, Sanjit Patel, Mike Sanders, and Cyrus A. Wilson.
2017. Emotion challenge: building a new photoreal facial performance pipeline
for games. In Proc. ACM SIGGRAPH Digital Production Symposium, Christopher
Horvath, Cary B. Phillips, Andrew Pearce, Corban Gossett, and Stephen N. Spencer
(Eds.). ACM, 8:1–8:2.

Andrea Tagliasacchi, Sofien Bouaziz, Mark Pauly, and Hao Li. 2016. Modern techniques
and applications for real-time non-rigid registration. In SIGGRAPH ASIA 2016,
Macao, December 5-8, 2016 - Courses. 11:1–11:25.

Vladimir Vapnik. 1998. Statistical learning theory. Wiley.
Various 2022. Commercial performance capture systems:. https://di4d.com, https:

//www.dynamixyz.com, https://www.synthesia.io, https://studios.disneyresearch.
com/medusa, https://image-metrics.com.

Lance Williams. 1990. Performance-Driven Facial Animation. SIGGRAPH Comput.
Graph. 24, 4 (sep 1990), 235–242.

Wenwu Yang, Nathan Marshak, Daniel Sýkora, Srikumar Ramalingam, and Ladislav
Kavan. 2019. Building anatomically realistic jaw kinematics model from data. The
Visual Computer 35, 6-8 (2019), 1105–1118.

Li Zhang, Noah Snavely, Brian Curless, and Steven M. Seitz. 2004. Spacetime Faces:
High Resolution Capture for Modeling and Animation. ACM Trans. Graph. 23, 3
(aug 2004), 548–558.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.

M. Zollhöfer, J. Thies, P. Garrido, D. Bradley, T. Beeler, P. Pérez, M. Stamminger, M.
Nießner, and C. Theobalt. 2018. State of the Art on Monocular 3D Face Reconstruc-
tion, Tracking, and Applications. Computer Graphics Forum 37, 2 (2018), 523–550.

https://studios.disneyresearch.com/anyma
http://oscars.org
https://www.fxguide.com/fxfeatured/face-it-will-gemini-man
https://www.fxguide.com/fxfeatured/face-it-will-gemini-man
https://www.fxguide.com/fxfeatured/deep-dive-on-weta-fx-face-fabrication-system
https://www.fxguide.com/fxfeatured/deep-dive-on-weta-fx-face-fabrication-system
https://di4d.com
https://www.dynamixyz.com
https://www.dynamixyz.com
https://www.synthesia.io
https://studios.disneyresearch.com/medusa
https://studios.disneyresearch.com/medusa
https://image-metrics.com

DigiPro ’22, August 7, 2022, Vancouver, BC, Canada Ma et al.

FDLS: Supplementary Material

7 DATA ACQUISITION
The data acquisition step is crucial to generate the FDLS training
tuples D = {(x(𝑖)𝑣 ,w(𝑖)

𝑣)}𝑁
𝑖=1. It uses the following three compo-

nents: neutral markers, the facial puppet, and facial motion (aka
blendshape weights).

The neutral markers are created in a motion capture session by
triangulating from images of the actor’s neutral expression cap-
tured through multiple cameras. To make the static neutral markers
animatable, we project each marker on the facial puppet.

The facial motion is created by the artist and comprises FACS
expressions and range of motion (ROM). The FACS motion contains
about 500 frames. This includes linear interpolation of the one-hot
controls, yielding nonlinear motion of the corresponding synthetic
markers. The range of motion (ROM) generally has about 2000
frames of phoneme and dialogue clips. In addition, the artist can
add the animations of previously approved shots to enhance the
diversity of the training set.

We use Autodesk Maya [Autodesk, Inc. 2019] to generate the
synthetic markers for the training tuples. Artist-created animations
are applied to the facial controller attributes to drive the facial
puppet. The performance of the generating process is about 5 frames
per secondwith anAMDRyzen Threadripper PRO 3995WX 64-Core
CPU and Quadro RTX A5000 24GB graphics card.

8 ARCHITECTURE AND TRAINING SETUP
The FDLS training is performed offline in our production envi-
ronment. We use the Adam optimizer [Kingma and Ba 2015] to
train the neural networks for each facial region. The region-specific
hyper-parameters are given in the following table:

Region network hyperparameters
Group lr dp bs #ep l2 time
lower-face 1e-4 0.01 64 450 1e-5 20m
upper-face 5e-4 0.01 64 300 1e-5 15m
cheek 1e-4 0.01 64 300 1e-5 15m
eyelids 2e-4 0.0 64 300 1e-5 10m
eyeball 1e-4 0.0 64 250 1e-5 5m
jaw 1e-4 0.01 64 300 1e-5 15m
lips 1e-4 0.01 64 450 1e-5 20m

The learning rate, dropout, batch size, epochs, L2-norm coeffi-
cient and training time are denoted as lr, dp, bs, ep, l2, time, respec-
tively. We highlight that the 3d eye marker set shown in Fig. 8 is
constructed by ray-casting from the upper camera center through
the 2d tracked eye markers in the dewarped head camera footage.
The intersection between the ray and the face puppet determines
the 3d eye marker. We find that the projected eye marker set is
relatively more stable than other regions, thus we remove dropout
in training the eyelids and eyeball.

The next table shows the per-region network architectures:

Region network architectures
Group feature rb

dim
#rb jaw

cond?
lower-face dist-delta 800 3 ✓
upper-face dist-dir 300 3
cheek dist-delta 500 2 ✓
eyelids dist-dir 300 2
eyeball dist-dir 150 2
jaw dir-delta 800 2
lips dir 600 3 ✓

All the neural networks are fully-connected ResNets [?], each with
an input layer followedwith a varied number of residual blocks (#rb)
finally followed by layers to match target dimensions. Furthermore,
the jaw kinematic conditioning values are concatenated to the first
hidden layer following a series of residual blocks.

9 FACIAL REGION DEFINITIONS
Controls per region. The following table shows the FACS con-
trols (i.e. blendshape weights or channels) for each face region. The
face puppet in our paper is constructed with symmetrically split
channel configuration, for instance, cheekRaiserR and cheekRaiserL
represent the right and left-side cheekRaiser respectively. In the
table we list the generic (not split) name for brevity.

FACS controls used per facial region
upper-face cheek lower-face lips
innerBrowRaiser cheekRaiser incisivus lipPuckerer
outerBrowRaiser noseWrinkler lipRaiser lipFunneler
procerus cheekPuff lipDepressor lipTightener
browLowerer noseDepressor chinRaiser innerOO

nasolabialFurrow lipPressor outerOO
lidTightener incisivus
squint

“OO” denotes the orbicularis oris muscle. These remaining regions
were omitted from the table due to limited space: jaw: jawOpen,
jawSideway, jawThrust. eyeball: eyeLeftRight, eyeUpDown. eyelids:
eyeClose.

Markers per region. Fig. 8 shows the marker selection for each
facial region.

Notice that although upper-face/cheek and lower-face/lips have
the same marker set, the features of each group are different and
thus the neural network training behaves differently. The “lips”
group especially benefits from the pairwise direction feature as the
depth information is particularly important in this region.

FDLS: A Deep Learning Approach to ProductionQuality, Controllable, and Retargetable Facial Performances DigiPro ’22, August 7, 2022, Vancouver, BC, Canada

eyeball eyelid upper-face cheek

jaw lower-face lips

Figure 8: The per-region marker groups.

	Abstract
	1 Introduction
	2 Related work
	3 Hybrid Method for Facial Animation Capture
	4 The Complete FDLS Pipeline
	4.1 Synthetic Data Generation and Augmentation
	4.2 Salient Training Sample Selection
	4.3 Feature Engineering
	4.4 Region-based Training and Solving
	4.5 Fine-tuning Optimization

	5 Experiments
	5.1 Training
	5.2 Solving

	6 Conclusion and future work
	Acknowledgments
	References
	7 Data Acquisition
	8 Architecture and Training Setup
	9 Facial Region Definitions

