
AUGUST 2022 | VOL. 65 | NO. 8 | COMMUNICATIONS OF THE ACM 83

Sampling Near
Neighbors in Search for Fairness
By Martin Aumüller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco Silvestri

DOI:10.1145/3543667

Abstract
Similarity search is a fundamental algorithmic primitive,
widely used in many computer science disciplines. Given
a set of points S and a radius parameter r > 0, the r-near
neighbor (r-NN) problem asks for a data structure that, given
any query point q, returns a point p within distance at most
r from q. In this paper, we study the r-NN problem in the
light of individual fairness and providing equal opportu-
nities: all points that are within distance r from the query
should have the same probability to be returned. The prob-
lem is of special interest in high dimensions, where Locality
Sensitive Hashing (LSH), the theoretically leading approach
to similarity search, does not provide any fairness guaran-
tee. In this work, we show that LSH-based algorithms can
be made fair, without a significant loss in efficiency. We
propose several efficient data structures for the exact and
approximate variants of the fair NN problem. Our approach
works more generally for sampling uniformly from a sub-
collection of sets of a given collection and can be used in a
few other applications. We also carried out an experimental
evaluation that highlights the inherent unfairness of exist-
ing NN data structures.

1. INTRODUCTION
In recent years, following a growing concern about the fair-
ness of algorithms and their bias toward a specific popu-
lation or feature, there has been an increasing interest in
building algorithms that achieve (appropriately defined)
fairness.14 The goal is to remove, or at least minimize, unethi-
cal behavior such as discrimination and bias in algorithmic
decision making, as nowadays, many important decisions,
such as college admissions, offering home loans, or estimat-
ing the likelihood of recidivism, rely on machine learning
algorithms. While algorithms are not inherently biased,
nevertheless, they may create it by careless design, or by
amplifying the already existing biases in the data.

There is no unique definition of fairness (see Hardt
et al.18 and references therein), but different formulations
that depend on the computational problem at hand, and on
the ethical goals we aim for. Fairness goals are often defined
in the political context of socio-technical systems and have
to be seen in an interdisciplinary spectrum covering many
fields outside computer science. In particular, research-
ers have studied both group fairness (also known as statis-
tical fairness), where demographics of the population are
preserved in the outcome,12 and individual fairness, where
the goal is to treat individuals with similar conditions simi-
larly.14 The latter concept of “equal opportunity” requires
that people who can achieve a certain advantaged outcome,
such as finishing a university degree, or paying back a loan,

A version of this paper, entitled "Fair Near Neighbor
Search via Sampling," was published in SIGMOD Record
50, 1 (Mar. 2021).

have an equal opportunity of being able to get access to it in
the first place.

Bias in the data used for training machine learning
algorithms is a monumental challenge in creating fair
algorithms. Here, we are interested in a somewhat differ-
ent problem of handling the bias introduced by the data
structures used by such algorithms. Specifically, data
structures may introduce bias in the data stored in them
and the way they answer queries, because of the way a
data is stored and how it is being accessed. It is also pos-
sible that some techniques for boosting performance,
like randomization and approximation that result in non-
deterministic behavior, add to the overall algorithmic
bias. For instance, some database indexes for fast search
might give an (unexpected) advantage to some portions of
the input data. Such a defect leads to selection bias by the
algorithms using such data structures. It is thus natural to
want data structures that do not introduce a selection bias
into the data when handling queries. To this end, imagine
a data structure that can return, as an answer to a query,
an item out of a set of acceptable answers. The purpose
is then to return uniformly a random item out of the set
of acceptable outcomes, without explicitly computing the
whole set of acceptable answers (which might be prohibi-
tively expensive).

The Near Neighbor Problem
In this work, we study similarity search and in particu-
lar the near neighbor problem from the perspective of
individual fairness. Similarity search is an important
primitive in many applications in computer science such
as machine learning, recommender systems, data min-
ing, computer vision, and many others (see e.g., Andoni
and Indyk5 for an overview). One of the most com-
mon formulations of similarity search is the r-near
neighbor (r-NN) problem, formally defined as follows.
Let (X, D) be a metric space where the distance function
D(⋅, ⋅) reflects the (dis)similarity between two data points.
Given a set S ⊆ X of n points and a radius parameter r, the
goal of the r-NN problem is to preprocess S and construct
a data structure, such that for a query point q ∈ X, one can
report a point p ∈ S, such that D (p, q) ≤ r if such a point
exists. As all the existing algorithms for the exact variant of
the problem have either space or query time that depends
exponentially on the ambient dimension of X, people have

To view the accompanying Technical Perspective,
visit doi.acm.org/10.1145/3543843 tp

http://dx.doi.org/10.1145/3543667
http://doi.acm.org/10.1145/3543843
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543667&domain=pdf&date_stamp=2022-07-21

research highlights

84 COMMUNICATIONS OF THE ACM | AUGUST 2022 | VOL. 65 | NO. 8

large, but computing the k nearest neighbors is quite
expensive if k is large. Fortunately, quickly computing
a random nearby neighbor can significantly speed up
such classification.

•	 If one wants to estimate the number of items with a
desired property within the neighborhood, then the eas-
iest way to do it is via uniform random sampling from
the neighborhood, for instance for density estimation23
or discrimination discovery in existing databases.27 This
can be seen as a special case of query sampling in data-
bases,24 where the goal is to return a random sample of
the output of a given query, for efficiently providing sta-
tistics on the query.

•	 We are interested in anonymizing the query: returning
a random near-neighbor might serve as the first line of
defense in trying to make it harder to recover the query.
Similarly, one might want to anonymize the nearest
neighbor,25 for applications where we are interested in
a “typical” data item close to the query, without identi-
fying the nearest item.

•	 Popular recommender systems based on matrix factor-
ization give recommendations by computing the inner
product similarity of a user feature vector with all item
feature vectors using some efficient similarity search
algorithm. It is common practice to recommend those
items that have the largest inner product with the user’s
vector. However, in general it is not clear that it is desir-
able to recommend the “closest” articles. Indeed, it
might be desirable to recommend articles that are on the
same topic but are not too aligned with the user feature
vector and may provide a different perspective. As
described in Adomavicius and Kwon,1 recommendations
can be made more diverse by sampling k items from a
larger top-l list of recommendations at random. Our data
structures could replace the final near neighbor search
routine employed in such systems.

To the best of our knowledge, previous results focused
on exact near neighbor sampling in the Euclidean space
up to three dimensions.2, 19, 24 Although these results might
be extended to Rd for any d > 1, they suffer from the curse of
dimensionality as the query time increases exponentially with
the dimension, making the data structures too expensive in
moderately high dimensions. These bounds are unlikely to
be significantly improved since several conditional lower
bounds show that an exponential dependency on d in query
time or space is unavoidable for exact near neighbor search.4

1.1. An example
Is a standard LSH approach really biased? As an example,
we used the MinHash LSH scheme10 to sample similar users
from the Last.FM dataset used in the HetRec challenge
(http://ir.ii.uam.es/hetrec2011). We associate each user with
their top-20 artists and use Jaccard Similarity as similarity
measure. We select one user at random as query, and repeat-
edly sample a random point from a random bucket and
keep it if its similarity is above 0.2. Figure 1 reports on the
ratio between the frequencies observed via this sampling
approach from LSH buckets against an unbiased sample.

considered the approximate variant of the problem. In the
c-approximate near neighbor (ANN) problem, the algorithm
is allowed to report a point p whose distance to the query is
at most cr if a point within distance r of the query exists, for
some prespecified constant c > 1.

Fair Near Neighbor
As detailed below, common existing data structures for
similarity search have a behavior that introduces bias in the
output. Our goal is to capture and algorithmically remove
this bias from these data structures. Our goal is to develop
a data structure for the r-near neighbor problem that pro-
vides fairness among “all the points” in the neighborhood.
That is all the points within distance r from the given query
have the same probability to be returned. We introduce
and study the fair near neighbor problem: If BS(q, r) is the
ball of input points at distance at most r from a query q,
we would like that each point in BS(q, r) is returned as near
neighbor of q with the uniform probability of 1/n(q, r)
where n(q, r) = |BS(q, r)|.

Locality Sensitive Hashing
Perhaps the most prominent approach to get an ANN data
structure is via Locality Sensitive Hashing (LSH) as pro-
posed by Indyk and Motwani,20 which leads to sublinear
query time and sub-quadratic space. In particular, for
X = Rd, by using LSH one can get a query time of nρ+o(1) and
space n1+ρ+o(1) where for the L1 distance metric ρ = 1/c,16 and
for the L2 distance metric ρ = 1/c2+oc(1).5 In the LSH frame-
work, the idea is to hash all points using several hash func-
tions that are chosen randomly, with the property that
the collision probability between two points is a decreas-
ing function of their distance. Therefore, closer points to
a query have a higher probability of falling into a bucket
being probed than far points. Thus, reporting a random
point from a random bucket computed for the query pro-
duces a distribution that is biased by the distance to the
query: closer points to the query have a higher probability
of being chosen. On the other hand, the uniformity prop-
erty required in fair NN can be trivially achieved by finding
all r-near neighbors of a query and then randomly selecting
one of them. However, this is computationally inefficient
since the query time is a function of the size of the neigh-
borhood. One contribution in this paper is the description
of much more efficient data structures that still use LSH in
a black-box way.

When Random Nearby Is Better than Nearest
The bias mentioned above toward nearer points is usually a
good property, but is not always desirable. Indeed, consider
the following scenarios:

•	 The nearest neighbor might not be the best if the
input is noisy, and the closest point might be viewed
as an unrepresentative outlier. Any point in the neigh-
borhood might be then considered to be equivalently
beneficial. This is to some extent why k-NN classifica-
tion15 is so effective in reducing the effect of noise.
Furthermore, k-NN works better in many cases if k is

AUGUST 2022 | VOL. 65 | NO. 8 | COMMUNICATIONS OF THE ACM 85

We see a large discrepancy: the higher the similarity, the
more biased the LSH is in reporting these points as near
neighbors. This would strongly affect statistics such as esti-
mating the average similarity of a neighbor.

1.2. Problem formulations
Here, we formally define the variants of the fair NN problem
that we consider. For all the constructions presented in this
article, these guarantees fail with probability at most δ for
some prespecified small δ > 0.

Definition 1 (r-NNIS or Fair NN). Let S ⊆ X be a set of n
points in a metric space (X, D). The r-near neighbor indepen-
dent sampling (r-NNIS), or simply the Fair NN problem, asks to
construct a data structure for S that for any sequence of up to n
queries q1, q2, …, qn satisfies the following properties with prob-
ability at least 1 − δ:

(I) � For each query qi, it returns a point OUTi, q i
 uniformly

sampled from BS(qi, r).
(II) � The point returned for query qi, with i > 1, is indepen-

dent of previous query results. That is, for any p ∈ BS

(qi, r) and any sequence p1, …, pi−1, we have Pr[OUTi, qi
 =

p | ∀j ∈ [i−1]: OUTj, q j
] = pj = 1/n (qi, r).

In the low-dimensional setting,2,19 the r-near neighbor
independent sampling problem is usually known as inde-
pendent range sampling (IRS) problem. Next, motivated by
applications, we define two approximate variants of the
problem that we study in this work. More precisely, we
slightly relax the fairness constraint, allowing the prob-
abilities of reporting a neighbor to be an “almost uniform”
distribution.

Definition 2 (Approximately Fair NN). Consider a set
S ⊆ X of n points in a metric space (X, D). The Approximately
Fair NN problem asks to construct a data structure for S that for
any query q, returns each point p ∈ BS(q, r) with probability µp
where µ is an approximately uniform probability distribution:

P (q, r)/(1 + ε) ≤ µp ≤ (1 + ε) P (q, r),

where P (q, r) = 1/n (q, r). We require the same independence
guarantee as in Definition 1, that is, the result for query qi must
be independent of the results for q1, …, qi−1, with i ∈ {2, …, n}.

Furthermore, similar in spirit to the behavior of ANN, we
allow the algorithm to report an almost uniform distribu-
tion from an approximate neighborhood of the query.

Definition 3 (Approximately Fair ANN). Consider a set
S ⊆ X of n points in a metric space (X, D). The Approximately
Fair ANN problem asks to construct a data structure for S that
for any query q, returns each point p ∈ S′ with probability µp
where ϕ/(1+ε) ≤ µp ≤ (1+ε)ϕ, where S′ is a point set such that
BS(q, r) ⊆ S′ ⊆ BS(q, cr), and ϕ = 1/|S′|. As before, the same
independence guarantee as in Definition 1 is needed, that is, the
result for query qi must be independent of the results for q1, …,
qi−1, with i ∈ {2, …, n}.

1.3. Our results
We propose several solutions to the different variants of the
Fair NN problem. Our solutions build upon the LSH data
structure.16 Let S (n, c) and Q(n, c) denote space and query
time, respectively, of an LSH data structure that solves the
c-ANN problem in the space (X, D).

•	 In Section 4.2, we provide a data structure for
Approximately Fair ANN that uses space S (n, c) and whose
query time is in expectation. See Lemma 8
for the exact statement.

•	 Section 4.3 shows how to solve the Fair NN problem in
expected query time and space usage
O(S (n, c) ). See Lemma 9 for the exact statement.

The dependence of our algorithms on ε in the approximate
variant is only O(log(1/ε) ). While we omitted the exact poly-
logarithmic factors in the list above, they are generally lower
for the approximate versions. Furthermore, these methods
can be embedded into existing LSH methods to achieve unbi-
ased query results in a straightforward way. On the other
hand, the exact methods will have higher logarithmic factors
and use additional data structures.

A more exhaustive presentation of our results and fur-
ther solutions for the Fair NN problem can be found in the
full version of the paper.8 Preliminary versions of our results
were published independently in Har-Peled and Mahabadi,17
Aumüller et al.9 and then jointly in Aumüller et al.7

1.4. Sampling from a sub-collection of sets
In order to obtain our results, we first study a more generic
problem in Section 2: Given a collection F of sets from a
universe of n elements, a query is a sub-collection G ⊆ F of
these sets and the goal is to sample (almost) uniformly from
the union of the sets in this sub-collection. We also show how
to modify the data structure to handle outliers in Section 3.
This is useful for LSH, as the sampling algorithm needs to
ignore such points once they are reported as a sample. This
setup allows us to derive most of the results concerning vari-
ants of Fair NN in Section 4 as corollaries from these more
abstract data structures.

5

4

3

2

1

0
0.2 0.3

Similarity

Fr
eq

ue
nc

y
ra

tio
 t

o
un

bi
as

ed

0.4 0.5

Figure 1. Bias introduced by uniform sampling from LSH buckets on
the Last.FM dataset. The task is to (repeatedly) retrieve a uniform
user among all users with similarity at least 0.2 to a fixed user. The
result is split up into four buckets by rounding down the similarity to
the first decimal. Error bars show the standard deviation. Compared
to an unbiased sample, user vectors with small similarity are
underrepresented, and users with high similarity are, by a factor of
approximately 4 on average, overrepresented.

research highlights

86 COMMUNICATIONS OF THE ACM | AUGUST 2022 | VOL. 65 | NO. 8

Some examples of applications of a data structure that pro-
vides uniform samples from a union of sets are as follows:

(A) � Given a subset A of vertices in the graph, randomly
pick (with uniform distribution) a neighbor to one of
the vertices of A. This can be used in simulating dis-
ease spread.22

(B) � As shown in this work, we use variants of the data
structure to implement Fair NN.

(C) � Uniform sampling for range searching.19, 2 Indeed,
consider a set of points, stored in a data structure for
range queries. Using the above, we can support sam-
pling from the points reported by several queries,
even if the reported answers are not disjoint.

Being unaware of any previous work on this problem, we
believe this data structure is of independent interest.

2. SAMPLING FROM A UNION OF SETS
The problem. Assume you are given a data structure that
contains a large collection F of sets of objects. In total,
there are n = |∪ F| objects. The sets in F are not necessar-
ily disjoint. The task is to preprocess the data structure,
such that given a sub-collection G ⊆ F of the sets, one can
quickly pick uniformly at random an object from the set
∪ G := ∪ A∈G A.

Naive solution. The naive solution is to take the sets under
consideration (in G), compute their union, and sample
directly from the union set ∪ G. Our purpose is to do (much)
better—in particular, the goal is to get a query time that
depends logarithmically on the total size of all the sets in G.

Parameters. The query is a family G ⊆ F, and define
m = ||G|| := ∑A∈G |A| (which should be distinguished from
g = |G| and from N = |∪ G|).

Preprocessing. For each set A ∈ F, we build a set representa-
tion such that for a given element, we can decide if the ele-
ment is in A in constant time. In addition, we assume that
each set is stored in a data structure that enables easy ran-
dom access or uniform sampling on this set (for example,
store each set in its own array).

Variants. As in Section 1.2, we consider problem variants
where sample probabilities are either exact or approximate.

2.1. Almost uniform sampling
The query is a family G ⊆ F. The degree of an element x ∈ ∪ G, is
the number of sets of G that contain it—that is, d

G
(x) = |D

G
(x)|,

where D
G
(x) = {A ∈ G | x ∈ A}. We start with an algorithm (sim-

ilar to the algorithm of Section 4 in Karp and Luby21) that
repeatedly does the following:

(I) � Picks one set from G with probabilities proportional
to their sizes. That is, a set A ∈ G is picked with prob-
ability |A|/m.

(II) � It picks an element x ∈ A uniformly at random.
(III) � Outputs x and stops with probability 1/d

G
(x). Other

wise, continues to the next iteration.
Since computing d

G
(x) exactly to be used in Step (III) is

costly, our goal is instead to simulate a process that accepts

x with probability approximately 1/d
G
(x). We start with the

process described in the following lemma.

Lemma 1. Assume we have g urns, and exactly d > 0 of them, are
non-empty. Furthermore, assume that we can check if a specific
urn is empty in constant time. Then, there is a randomized algo-
rithm, that outputs a number Y ≥ 0, such that E[Y] = 1/d. The
expected running time of the algorithm is O( g/d).

Proof. The algorithm repeatedly probes urns (uniformly at
random), until it finds a non-empty urn. Assume it found a
non-empty urn in the ith probe. The algorithm outputs the
value i/g and stops.

Setting p = d/g, and let Y be the output of the algorithm.
We have that

using the formula . The expected num-
ber of probes performed by the algorithm until it finds a
non-empty urn is 1/p = g/d, which implies that the expected
running time of the algorithm is O( g/d).� 

The natural way to deploy Lemma 1 is to run its algorithm to
get a number y and then return 1 with probability y. The prob-
lem is that y can be strictly larger than 1, which is meaning-
less for probabilities. Instead, we back-off by using the value
y/∆, for some parameter ∆. If the returned value is larger
than 1, we just treat it at zero. If the zeroing never happened,
the algorithm would return one with probability 1/(d

G
(x)∆).

The probability of success is going to be slightly smaller, but
fortunately, the loss can be made arbitrarily small by taking
∆ to be sufficiently large.

Lemma 2. There are g urns, and exactly d > 0 of them are not
empty. Furthermore, assume one can check if a specific urn
is empty in constant time. Let γ ∈ (0, 1) be a parameter. Then
one can output a number Z ≥ 0, such that Z ∈ [0, 1], and

, where ∆ = ⎡ln γ−1⎤ + 4 = Θ(log γ −1). The
expected running time of the algorithm is O( g/d). Alternatively,
the algorithm can output a bit X, such that P [X = 1] ∈ I.

Proof. We modify the algorithm of Lemma 1, so that it out-
puts i/( g∆) instead of i/g. If the algorithm does not stop in the
first g∆ + 1 iterations, then the algorithm stops and outputs
0. Observe that the probability that the algorithm fails to stop
in the first g∆ iterations, for p = d/g, is .

Let Z be the random variable that is the number output
by the algorithm. Arguing as in Lemma 1, we have that
E [Z] ≤ 1/(d∆). More precisely, we have

Easy calculations shows that

Let . We have that , where
. Furthermore, for j ≥ ∆, we have

AUGUST 2022 | VOL. 65 | NO. 8 | COMMUNICATIONS OF THE ACM 87

being an upper bound on the number of these elements in
each segment. By the initial random permutation, we have
that each segment contains at most λ = Θ( (N/k) log n) ele-
ments from ∪G with probability at least 1 − 1/n2. (Of course,
N is not known at query time.)

The query algorithm works in the following steps in
which all random choices are independent.

(A)  Set k = n, and let λ = Θ(log n), σfail = 0 and ∑ = Θ (log2 n).
(B)  Repeat the following steps until successful or k < 2:

(I) � Assume the input sequence Λ to be split into k
segments Λi of size n/k, where Λi contains the
points in ∪ F with ranks in [i ⋅ n/k, (i+1) ⋅ n/k).

(II) � Select an integer h in {0, …, k − 1} uniformly at
random (i.e., select a segment Λh);

(III) � Increment σfail. If σfail = ∑ , then set k = k/2 and σfail = 0.
(IV) � Compute λ

G,h and with probability λ
G,h/λ, declare

success.
(C) � If the previous loop ended with success, return an

element uniformly sampled among the elements in
∪ G in Λh, otherwise return ⊥.

Since each object in ∪ G has probability 1/(kλ) of being
returned in Step (C), the result is a uniform sample of ∪ G.
Note that the main iteration in Step (B) works for all values
k, but a good choice has to depend on G for the following
reasons. On the one hand, the segments should be small,
because otherwise Step (IV) will take too long. On the other
hand, they have to contain at least one element from ∪ G,
otherwise we sample many “empty” segments in Step (II).
We will see that the number k of segments should be roughly
set to N to balance the trade-off. However, the number N of
distinct elements in ∪ G is not known. Thus, we use the naive
upper bound of k = n. To compute λ

G,h efficiently, we assume
that, at construction time, the elements in each set in F are
sorted by their rank.

Lemma 4. Let N = |∪ G|, g = |G|, m = ∑X∈G |X|, and n = |∪ F|.
With probability at least 1 − 1/n2, the algorithm described
above returns an element x ∈ ∪ G according to the uniform dis-
tribution. With high probability, the algorithm has a running
time of O( g log4 n).

Proof. We start by bounding the initial failure probability
of the data structure. By a union bound, we have that the fol-
lowing two events hold simultaneously with probability at
least 1 − 1/n2:

1. � Every segment of size n/k contains no more than
λ = Θ(log n) elements from ∪ G for all k = 2i where i ∈
{1, …, log n}. Since elements are initially randomly
permuted, the claim holds with probability at least 1 −
1/(2n2) by suitably setting the constant in λ = Θ(log n).

2. � It does not happen that the algorithm reports ⊥. The
probability of this event is upper bounded by the prob-
ability p′ that no element is returned in the ∑ itera-
tions where k = 2⎡log N⎤ (the actual probability is even
lower, since an element can be returned in an itera-
tion where k > 2⎡log N⎤). By suitably setting constants in

As such, we have that

by the choice of value for ∆. This implies that E[Z] ≥ 1/(d∆)
− β ≥ 1/(d∆) − γ, as desired.

The alternative algorithm takes the output Z, and returns
1 with probability Z, and zero otherwise.� 

Lemma 3. The input is a family of sets F that one pre-
processes in linear time. Let G ⊆ F be a sub-family and let
N = |∪ G|, g = |G|, and let ε ∈ (0, 1) be a parameter. One can sam-
ple an element x ∈ ∪ G with almost uniform probability distri-
bution. Specifically, the probability p of an element to be output
is (1/N)/(1+ε) ≤ p ≤ (1+ε)(1/N). After linear time preprocessing,
the query time is O( g log( g/ε) ), in expectation, and the query
succeeds, with high probability (in g ).

Proof. The algorithm repeatedly samples an element x using
steps (I) and (II). The algorithm returns x if the algorithm of
Lemma 2, invoked with γ = (ε/g)O(1) returns 1. We have that
∆ = Θ(log( g/ε) ). Let α = 1/(d

G
(x)∆). The algorithm returns x in

this iteration with probability p, where p ∈ [α − γ, α]. Observe
that α ≥ 1/( g∆), which implies that γ  (ε/4)α, it follows that
(1/(d

G
(x)∆) )/(1 + ε) ≤ p ≤ (1 + ε)(1/(d

G
(x)∆) ), as desired. The

expected running time of each round is O( g/d
G
(x) ).

We prove the runtime analysis of the algorithm in the full
version of the paper. In short, the above argument implies
that each round, in expectation takes O(Ng/m) time, where
m = ||G||. Further, the expected number of rounds, in
expectation, will be O(∆m/N). Finally, this implies that
the expected running time of the algorithm is O( g∆) = O( g
log( g/ε) ).� 

Remark 1. The query time of Lemma 3 can be made to work
with high probability with an additional logarithmic fac-
tor. Specifically, with high probability, the query time is O( g
log( g/ε) log N).

2.2. Uniform sampling
In this section, we present a data structure that samples an
element uniformly at random from ∪ G. The data structure
uses rejection sampling as seen before but splits up all data
points using random ranks. Instead of picking an element
from a weighted sample of the sets, it will pick a random seg-
ment among these ranks and consider only elements whose
rank is in the selected range. Let Λ be the sequence of the
n = |∪ F| input elements after a random permutation; the
rank of an element is its position in Λ. We first highlight
the main idea of the query procedure.

Let k ≥ 1 be a suitable value that depends on the collec-
tion G and assume that Λ is split into k segments Λi, with
i ∈ {0, …, k − 1}. (We assume for simplicity that n and k are
powers of two.) Each segment Λi contains the n/k elements
in Λ with rank in [i ⋅ n/k, (i + 1) ⋅ n/k). We denote with λ

G,i the
number of elements from ∪ G in Λi, and with λ ≥ maxi λG,i

research highlights

88 COMMUNICATIONS OF THE ACM | AUGUST 2022 | VOL. 65 | NO. 8

Lemma 6. The input is a family of sets F that one can preprocess in
linear time. A query is a sub-family G ⊆ F, a set of outliers O, and a
parameter m

O
. With high probability, one can either:

(A)  Sample a uniform element x ∈ ∪ GO, or
(B)  Report that d

G
(O) > m

O
.

The expected query time is O( ( g + m
O 

) log4 n).

4. FINDING A FAIR NEAR NEIGHBOR
In this section, we employ the data structures developed in
the previous sections to show the results on fair near neigh-
bor search listed in Section 1.3.

First, let us briefly give some preliminaries on LSH. We
refer the reader to Har-Peled et al.16 for further details.
Throughout the section, we assume our metric space (X, D)
admits an LSH data structure.

4.1. Background on LSH
Locality Sensitive Hashing (LSH) is a common tool for solv-
ing the ANN problem and was introduced in Har-Peled et al.16

Definition 4. A distribution H over maps h: X → U, for a
suitable set U, is (r, c⋅r, p1, p2)-sensitive if the following holds
for any x, y ∈ X:

•	 if D(x, y) ≤ r, then Prh[h(x) = h(y)] ≥ p1;
•	 if D(x, y) > c ⋅ r, then Prh[h(x) = h(y)] ≤ p2.

The distribution H is an LSH family, and has quality
.

For the sake of simplicity, we assume that p2 ≤ 1/n: if p2 >
1/n, then it suffices to create a new LSH family HK obtained
by concatenating K = Θ (logp2

 (1/n)) independent and identi-
cally distributed hashing functions from H. The new family
HK is (r, cr, ,)-sensitive and ρ does not change.

The standard approach to (c, r)-ANN using LSH functions
is the following. Let D denote the data structure constructed
by LSH, and let c denote the approximation parameter of LSH.
Each D consists of L = nρ hash functions 1, …, L randomly
and uniformly selected from H. D contains L hash tables
H1, … HL: each hash table Hi contains the input set S and uses
the hash function i to split the point set into buckets. For
each query q, we iterate over the L hash tables: For any hash
function, compute i(q) and compute, using Hi, the set

	 Hi(p) = {p : p ∈ S, i(p) = i(q)}� (1)

of points in S with the same hash value; then, compute the
distance D(q, p) for each point p ∈ Hi(q). The procedure stops
as soon as a (c, r)-near point is found. It stops and returns ⊥
if there are no remaining points to check or if it found more
than 3L far points. We summarize the guarantees in the fol-
lowing lemma.16

Lemma 7. For a given query point q, let Sq = ∪ i Hi(q). Then for
any point p ∈ BS(q, r), we have that with a probability of least
1 − 1/e − 1/3, we have (i) p ∈ Sq and (ii) |Sq  BS(q, cr)| ≤ 3L, that
is, the number of outliers is at most 3L. Moreover, the expected
number of outliers in any single bucket Si,i (q) is at most 1.

λ = Θ(log n) and ∑ = Θ(log2 n), we get:

From now on assume that these events are true.
As noted earlier, each element has probability of 1/

(kλ) of being returned as output, and thus, elements are
equally likely to be sampled. Note also that the guaran-
tees are independent of the initial random permuta-
tion as soon as the two events above hold. This means
that the data structure returns a uniform sample from a
union-of-sets.

For the running time, first focus on the round where
k = 2⎡log N⎤. In this round, we carry out Θ(log2 n) iterations. In
Step (IV), λ

G,h is computed by iterating through the g sets
and collecting points using a range query on segment Λh.
Since elements in each set are sorted by their rank, the
range query can be carried out by searching for rank hn/k
using a binary search in O(log n) time and then enumer-
ating all elements with rank smaller than (h+1)n/k. This
takes time O(log n + o) for each set, where o is the output
size. Since each segment contains O(log n) elements from
∪ G with high probability, one iteration of Step (IV) takes
time O( g log n).

The time to carry out all ∑ = Θ(log2 n) iterations is thus
bounded by O( g log3 n). Observe that for all the rounds car-
ried out before, k is only larger and thus, the segments are
smaller. This means that we may multiply our upper bound
with log n, which completes the proof.� 

Using count distinct sketches to find a good choice for the
number of segments k, the running time can be decreased
to O( g log3 n); we refer to the full version8 for more details.

3. HANDLING OUTLIERS
Imagine a situation where we have a marked set of outliers O.
We are interested in sampling from ∪ GO. We assume that
the total degree of the outliers in the query is at most m

O
 for

some prespecified parameter m
O

. More precisely, we have
d
G
(O) = ∑x∈O d

G
(x) ≤ m

O
. We get the following results by run-

ning the original algorithms from the previous section and
removing outliers once we encounter them. If we encounter
more than m

O
 outliers, we report that the number of outliers

exceeds m
O

.
Running the algorithm described in Section 2.1 provides

the guarantees summarized in the following lemma.

Lemma 5. The input is a family of sets F that one can preprocess
in linear time. A query is a sub-family G ⊆ F, a set of outliers O, a
parameter m

O
, and a parameter ε ∈ (0, 1). One can either:

(A) � Sample an element x ∈ ∪ GO with an ε-approximate uni-
form distribution: specifically, the probability µx of x to
be output is ϕ/(1 + ) ≤ µx ≤ (1 + )ϕ, with ϕ = 1/|∪ GO|.

(B)  Alternatively, report that d
G
(O) > m

O
.

The expected query time is O(m
O

 + g log(n/ε) ), and the query
succeeds with high probability, where g = |G|, and n = ||F||.

Running the algorithm described in Section 2.2 and
keeping track of outliers has the following guarantees.

AUGUST 2022 | VOL. 65 | NO. 8 | COMMUNICATIONS OF THE ACM 89

•	 Uniform/uniform: Picks bucket uniformly at random
and picks a random point in bucket.

•	 Weighted/uniform: Picks bucket according to its size,
and picks uniformly random point inside bucket.

•	 Degree approximation: Picks bucket according to size,
and picks uniformly random point p inside bucket. It
approximates p’s degree (using Lemma 1) and rejects p
with probability 1 − 1/ deg′(p). This is the approach dis-
cussed in Remark 2.

•	 Optimal: Picks bucket according to size, and picks
uniformly random point p inside bucket. Then, it com-
putes p’s degree exactly and rejects p with probability 1 − 1/
deg(p). This is the approach discussed in Remark 2, but
with exact degree approximation, solving Fair NN.

Each method removes non-close points that might be
selected from the bucket. We remark that the variant
Uniform/uniform most closely resembles a standard LSH
approach. Weighted/Uniform takes the different bucket
sizes into account, but disregards the individual frequency
of a point. Thus, the output is not expected to be uniform, but
might be closer in distribution to the uniform distribution.

Output Distribution. For each query q, we compute the set of
near neighbors M(q) of q in the LSH buckets. For each sam-
pling strategy, we carry out the query 100|M(q)| times. The
sampling results give rise to a distribution µ on M(q), and
we compare this distribution to the uniform distribution
in which each point is sampled with probability 1/|M(q)|.
Figure 2 reports on the total variation distance between the
uniform distribution and the observed distribution, that
is, . As in our introductory example, we
see that uniformly picking an LSH bucket results in a heav-
ily biased distribution. Taking the size of the buckets into
account in the weighted case helps a bit, but still results in
a heavily biased distribution. Even with the easiest approxi-
mation strategy for the degree, we see an improvement and
achieve a total variation distance of around 0.08, with the
optimal algorithm achieving around 0.04.

Differences in Running Time. Compared to a naïve approach
of collecting all colliding points in the buckets and select-
ing a near neighbor at random, the methods presented here
provide a speed-up of more than two orders of magnitude
in our experiments. The fair methods based on rejection

By repeating the construction O(log n) times, we guarantee
that with high probability B(q, r) ⊆ Sq.

4.2. Approximately Fair ANN
For t = O(log n), let D1, …, Dt be data structures constructed
by LSH. Let F be the set of all buckets in all data structures,
that is, . For a query point q, con-
sider the family G of all buckets containing the query, that is,

, and thus |G| = O(L log n). Moreover, we
letO to be the set of outliers, that is, the points that are farther
than cr from q. Note that as mentioned in Lemma 7, the expected
number of outliers in each bucket of LSH is at most 1. Therefore,
by Lemma 5, we immediately get the following result.

Lemma 8. Given a set S of n points and a parameter r, we can
preprocess it such that given query q, one can report a point
p ∈ S with probability µp where ϕ/(1 + ε) ≤ µp ≤ (1+ε)ϕ, S is a
point set such that BS(q, r) ⊆ S ⊆ BS(q, cr), and ϕ = 1/|S|. The
algorithm uses space O(L log n) and its expected query time is
O(L log n log(n/ε) ).

Remark 2. By repeatedly calling the query procedure and
disregarding points at distance larger than r, the algorithm
described above solves the Approximately Fair NN Problem
(Definition 2). The probability that the algorithm succeeds in a
round is ρ = n(q, r)/n(q, cr), and as such the expected number
of rounds is 1/ρ. Thus, this approach has expected query time

.

4.3. Fair NN
We use the same setup as in the previous section and build
t = O(log n) data structures D1, …, Dt using LSH. We use the
algorithm described in Section 2.2 with all points at dis-
tance more than r from the query marked as outliers. By the
properties of the LSH and the random ranks, we expect to
see points at distance at least r. This allows us to
obtain the following results.

Lemma 9. Given a set S of n points and a parameter r, we can
preprocess it such that given a query q, one can report a point
p ∈ S with probability 1/n(q, r). The algorithm uses space
O(L log n) and has expected query time .

5. EXPERIMENTAL EVALUATION
The example provided in Section 1.1 already showed the bias
of sampling naively from the LSH buckets. In this section, we
want to consider the influence of the approximative variants
discussed here and provide a brief overview of the running
time differences. A detailed experimental evaluation can be
found in the full paper.8

For concreteness, we take the MNIST dataset of handwritten
digits available at http://yann.lecun.com/exdb/mnist/. We use
the Euclidean space LSH from Datar et al.,13 set a distance thresh-
old of 1250, and initialize the LSH with L = 100 repetitions, k = 15,
and w = 3750. These parameter settings provide a false negative
rate of around 10%. We take 50 points as queries and test the fol-
lowing four different sampling strategies on the LSH buckets:

Uniform

To
ta

l V
ar

ia
tio

n
D

is
t.

Method
Weighted UniformApprox. DegreeExact Degree0.0

0.1

0.2

0.3

Figure 2. Total variation distance of different approaches on the
MNIST dataset.

research highlights

90 COMMUNICATIONS OF THE ACM | AUGUST 2022 | VOL. 65 | NO. 8

sampling are approximately a factor of 10 slower than their
biased counterparts that just pick a (weighted) point at ran-
dom. Finally, the approximate degree sampling provides
running times that are approximately two times faster than
an exact computation of the degree.

6. CONCLUSION AND FUTURE WORK
In this paper, we have investigated a possible definition of
fairness in similarity search by connecting the notion of
“equal opportunity” to independent range sampling. An
interesting open question is to investigate the applicabil-
ity of our data structures for problems such as discrimi-
nation discovery,27 diversity in recommender systems,1
privacy preserving similarity search,26 and estimation of
kernel density.11 Moreover, it would be interesting to inves-
tigate techniques for providing incentives (that is, reverse
discrimination27) to prevent discrimination: An idea
could be to merge the data structures in this paper with
distance-sensitive hashing functions in Aumüller et al.,6
which allow to implement hashing schemes where the col-
lision probability is an (almost) arbitrary function of the
distance. Finally, the techniques presented here require
a manual trade-off between the performance of the LSH
part and the additional running time contribution from
finding the near points among the non-far points. From a
user point of view, we would much rather prefer a param-
eterless version of our data structure that finds the best
trade-off with small overhead, as discussed in Ahle et al.3
in another setting.

Acknowledgments
S. Har-Peled was partially supported by a NSF AF award CCF-
1907400. R. Pagh is part of BARC, supported by the VILLUM
Foundation grant 16582. F. Silvestri was partially supported
by PRIN Project n. 20174LF3T8 AHeAD.�

	13.	 Datar, M., Immorlica, N., Indyk, P.,
Mirrokni, V.S. Locality-sensitive
hashing scheme based on p-stable
distributions. In Proc. 20th Symposium
on Computational Geometry (SoCG)
(2004), 253–262.

	14.	 Dwork, C., Hardt, M., Pitassi, T.,
Reingold, O., Zemel, R. Fairness
through awareness. In Proc. 3rd
Innovations in Theoretical Computer
Science Conference (ITCS) (2012),
214–226.

	15.	 Everitt, B.S., Landau, S., Leese, M.
Cluster Analysis. Wiley Publishing,
2009.

	16.	 Har-Peled, S., Indyk, P., Motwani, R.
Approximate nearest neighbors:
Towards removing the curse of
dimensionality. Theory Comput 8
(2012), 321–350. Special issue in
honor of Rajeev Motwani.

	17.	 Har-Peled, S., Mahabadi, S. Near
neighbor: Who is the fairest of them
all? In Proc. 32nd Neural Info. Proc.
Sys. (NeurIPS) (2019), 13176–13187.

	18.	 Hardt, M., Price, E., Srebro, N. Equality
of opportunity in supervised learning.
In Neural Info. Proc. Sys. (NIPS)
(2016), 3315–3323.

	19.	 Hu, X., Qiao, M., Tao, Y. Independent
range sampling. In Proc. 33rd ACM
Symposium on Principles of Database
Systems (PODS) (2014), 246–255.

	20.	 Indyk, P., Motwani, R. Approximate
nearest neighbors: Towards removing
the curse of dimensionality. In Proc.
30th Annu. ACM Sympos. Theory

Comput. (STOC) (1998), 604–613.
	21.	 Karp, R.M., Luby, M. Monte-Carlo

algorithms for enumeration
and reliability problems. In 24th
Symposium on Foundations of
Computer Science (SFCS), IEEE
Computer Society, 1983, 56–64.

	22.	 Keeling, M.J., Eames, K.T. Networks
and epidemic models. J. R. Soc.
Interface 2, 4 (Sep. 2005), 295–307.

	23.	 Kung Y-H, Lin, P.-S., Kao, C.-H. An
optimal k-nearest neighbor for
density estimation. Stat. Probab. Lett
82, 10 (2012), 1786–1791.

	24.	 Olken, F., Rotem, D. Sampling from
spatial databases. Stat. Comput 5, 1
(Mar 1995), 43–57.

	25.	 Qi, Y., Atallah, M.J. Efficient privacy-
preserving k-nearest neighbor
search. In Proc. 28th International
Conference on Distributed
Computing Systems (ICDCS) (2008),
311–319.

	26.	 Riazi, M.S., Chen, B., Shrivastava, A.,
Wallach, D.S., Koushanfar, F. Sub-
linear privacy-preserving near-
neighbor search with untrusted
server on large-scale datasets.
arXiv:1612.01835 (2016).

	27.	 Thanh, B.L., Ruggieri, S., Turini, F. k-nn
as an implementation of situation
testing for discrimination discovery
and prevention. In Proc. 17th ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining
(KDD) (2011), 502–510.

Martin Aumüller (maau@itu.dk), IT
University of Copenhagen, Denmark.

Sariel Har-Peled (sariel@illinois.
edu), University of Illinois at Urbana-
Champaign, IL, USA.

Sepideh Mahabadi (mahabadi@ttic.edu),
Toyota Technological Institute at Chicago,
IL, USA.

Rasmus Pagh (pagh@di.ku.dk), BARC and
University of Copenhagen, Denmark.

Francesco Silvestri (silvestri@dei.unipd.it),
University of Padova, Italy.

References
	 1.	 Adomavicius, G., Kwon, Y.

Optimization-based approaches
for maximizing aggregate
recommendation diversity. INFORMS
J. Comput 26, 2 (2014), 351–369.

	 2.	 Afshani, P., Phillips, J.M. Independent
range sampling, revisited again. In G.
Barequet, and Y. Wang, eds. Proc. 35th
Int. Symposium on Computational
Geometry (SoCG), volume 129 of
LIPIcs (2019), 4:1–4:13.

	 3.	 Ahle, T.D., Aumüller, M., Pagh, R.
Parameter-free locality sensitive
hashing for spherical range reporting.
In Proc. 28th ACM-SIAM Symposium
on Discrete Algorithms (SODA)
(2017), 239–256.

	 4.	 Alman, J., Williams, R. Probabilistic
polynomials and hamming nearest
neighbors. In Proc. IEEE 56th Annual
Symposium on Foundations of
Computer Science (FOCS) (2015),
136–150.

	 5.	 Andoni, A., Indyk, P. Near-optimal
hashing algorithms for approximate
nearest neighbor in high dimensions.
Commun. ACM 51, 1 (2008),
117–122.

	 6.	 Aumüller, M., Christiani, T., Pagh,
R., Silvestri, F. Distance-sensitive
hashing. In Proc. 37th ACM

Symposium on Principles of Database
Systems (PODS) (2018).

	 7.	 Aumüller, M., Har-Peled, S., Mahabadi,
S., Pagh, R., Silvestri, F. Fair near
neighbor search via sampling.
SIGMOD Rec 50, 1 (2021), 42–49.

	 8.	 Aumüller, M., Har-Peled, S., Mahabadi,
S., Pagh, R., Silvestri, F. Sampling a
near neighbor in high dimensions—
Who is the fairest of them all?
to appear in ACM Transaction of
Database Systems (2022.).

	 9.	 Aumüller, M., Pagh, R., Silvestri, F. Fair
near neighbor search: Independent
range sampling in high dimensions.
In Proc. 39th ACM Symposium on
Principles of Database Systems
(PODS) (2020).

	10.	 Broder, A.Z. On the resemblance and
containment of documents. In Proc.
Compression and Complexity
of Sequences (1997), 21–29.

	11.	 Charikar, M., Siminelakis, P. Hashing-
based-estimators for kernel density
in high dimensions. In C. Umans,
ed. Proc. 58th IEEE Symposium on
Foundations of Computer Science
(FOCS) (2017), 1032–1043.

	12.	 Chouldechova, A. Fair prediction with
disparate impact: A study of bias in
recidivism prediction instruments. Big
Data 5, 2 (2017), 153–163.

© 2022 ACM 0001-0782/22/8 $15.00

