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Abstract
Similarity search is a fundamental algorithmic primitive, 
widely used in many computer science disciplines. Given 
a set of points S and a radius parameter r > 0, the r-near 
neighbor (r-NN) problem asks for a data structure that, given 
any query point q, returns a point p within distance at most 
r  from q. In this paper, we study the r-NN problem in the 
light of individual fairness and providing equal opportu-
nities: all points that are within distance r from the query 
should have the same probability to be returned. The prob-
lem is of special interest in high dimensions, where Locality 
Sensitive Hashing (LSH), the theoretically leading approach 
to similarity search, does not provide any fairness guaran-
tee. In this work, we show that LSH-based algorithms can 
be made fair, without a significant loss in efficiency. We 
propose several efficient data structures for the exact and 
approximate variants of the fair NN problem. Our approach 
works more generally for sampling uniformly from a sub-
collection of sets of a given collection and can be used in a 
few other applications. We also carried out an experimental 
evaluation that highlights the inherent unfairness of exist-
ing NN data structures.

1. INTRODUCTION
In recent years, following a growing concern about the fair-
ness of algorithms and their bias toward a specific popu-
lation or feature, there has been an increasing interest in 
building algorithms that achieve (appropriately defined) 
fairness.14 The goal is to remove, or at least minimize, unethi-
cal behavior such as discrimination and bias in algorithmic 
decision making, as nowadays, many important decisions, 
such as college admissions, offering home loans, or estimat-
ing the likelihood of recidivism, rely on machine learning 
algorithms. While algorithms are not inherently biased, 
nevertheless, they may create it by careless design, or by 
amplifying the already existing biases in the data.

There is no unique definition of fairness (see Hardt 
et al.18 and references therein), but different formulations 
that depend on the computational problem at hand, and on 
the ethical goals we aim for. Fairness goals are often defined 
in the political context of socio-technical systems and have 
to be seen in an interdisciplinary spectrum covering many 
fields outside computer science. In particular, research-
ers have studied both group fairness (also known as statis-
tical fairness), where demographics of the population are 
preserved in the outcome,12 and individual fairness, where 
the goal is to treat individuals with similar conditions simi-
larly.14 The latter concept of “equal opportunity” requires 
that people who can achieve a certain advantaged outcome, 
such as finishing a university degree, or paying back a loan, 

A version of this paper, entitled "Fair Near Neighbor 
Search via Sampling," was published in SIGMOD Record 
50, 1 (Mar. 2021).

have an equal opportunity of being able to get access to it in 
the first place.

Bias in the data used for training machine learning 
algorithms is a monumental challenge in creating fair 
algorithms. Here, we are interested in a somewhat differ-
ent problem of handling the bias introduced by the data 
structures used by such algorithms. Specifically, data 
structures may introduce bias in the data stored in them 
and the way they answer queries, because of the way a 
data is stored and how it is being accessed. It is also pos-
sible that some techniques for boosting performance, 
like randomization and approximation that result in non-
deterministic behavior, add to the overall algorithmic 
bias. For instance, some database indexes for fast search 
might give an (unexpected) advantage to some portions of 
the input data. Such a defect leads to selection bias by the 
algorithms using such data structures. It is thus natural to 
want data structures that do not introduce a selection bias 
into the data when handling queries. To this end, imagine 
a data structure that can return, as an answer to a query, 
an item out of a set of acceptable answers. The purpose 
is then to return uniformly a random item out of the set 
of acceptable outcomes, without explicitly computing the 
whole set of acceptable answers (which might be prohibi-
tively expensive).

The Near Neighbor Problem
In this work, we study similarity search and in particu-
lar the near neighbor problem from the perspective of 
individual fairness. Similarity search is an important 
primitive in many applications in computer science such 
as machine learning, recommender systems, data min-
ing, computer vision, and many others (see e.g., Andoni 
and Indyk5 for an overview). One of the most com-
mon formulations of similarity search is the r-near 
neighbor (r-NN) problem, formally defined as follows.  
Let (X, D) be a metric space where the distance function 
D(⋅, ⋅) reflects the (dis)similarity between two data points. 
Given a set S ⊆ X of n points and a radius parameter r, the 
goal of the r-NN problem is to preprocess S and construct 
a data structure, such that for a query point q ∈ X, one can 
report a point p ∈ S, such that D (p, q) ≤ r if such a point 
exists. As all the existing algorithms for the exact variant of 
the problem have either space or query time that depends 
exponentially on the ambient dimension of X, people have 
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large, but computing the k nearest neighbors is quite 
expensive if k is large. Fortunately, quickly computing 
a random nearby neighbor can significantly speed up 
such classification.

•	 If one wants to estimate the number of items with a 
desired property within the neighborhood, then the eas-
iest way to do it is via uniform random sampling from 
the neighborhood, for instance for density estimation23 
or discrimination discovery in existing databases.27 This 
can be seen as a special case of query sampling in data-
bases,24 where the goal is to return a random sample of 
the output of a given query, for efficiently providing sta-
tistics on the query.

•	 We are interested in anonymizing the query: returning 
a random near-neighbor might serve as the first line of 
defense in trying to make it harder to recover the query. 
Similarly, one might want to anonymize the nearest 
neighbor,25 for applications where we are interested in 
a “typical” data item close to the query, without identi-
fying the nearest item.

•	 Popular recommender systems based on matrix factor-
ization give recommendations by computing the inner 
product similarity of a user feature vector with all item 
feature vectors using some efficient similarity search 
algorithm. It is common practice to recommend those 
items that have the largest inner product with the user’s 
vector. However, in general it is not clear that it is desir-
able to recommend the “closest” articles. Indeed, it 
might be desirable to recommend articles that are on the 
same topic but are not too aligned with the user feature 
vector and may provide a different perspective. As 
described in Adomavicius and Kwon,1 recommendations 
can be made more diverse by sampling k items from a 
larger top-l list of recommendations at random. Our data 
structures could replace the final near neighbor search 
routine employed in such systems.

To the best of our knowledge, previous results focused 
on exact near neighbor sampling in the Euclidean space 
up to three dimensions.2, 19, 24 Although these results might 
be extended to Rd for any d > 1, they suffer from the curse of 
dimensionality as the query time increases exponentially with 
the dimension, making the data structures too expensive in 
moderately high dimensions. These bounds are unlikely to 
be significantly improved since several conditional lower 
bounds show that an exponential dependency on d in query 
time or space is unavoidable for exact near neighbor search.4

1.1. An example
Is a standard LSH approach really biased? As an example, 
we used the MinHash LSH scheme10 to sample similar users 
from the Last.FM dataset used in the HetRec challenge 
(http://ir.ii.uam.es/hetrec2011). We associate each user with 
their top-20 artists and use Jaccard Similarity as similarity 
measure. We select one user at random as query, and repeat-
edly sample a random point from a random bucket and 
keep it if its similarity is above 0.2. Figure 1 reports on the 
ratio between the frequencies observed via this sampling 
approach from LSH buckets against an unbiased sample.  

considered the approximate variant of the problem. In the 
c-approximate near neighbor (ANN) problem, the algorithm 
is allowed to report a point p whose distance to the query is 
at most cr if a point within distance r of the query exists, for 
some prespecified constant c > 1.

Fair Near Neighbor
As detailed below, common existing data structures for 
similarity search have a behavior that introduces bias in the 
output. Our goal is to capture and algorithmically remove 
this bias from these data structures. Our goal is to develop 
a data structure for the r-near neighbor problem that pro-
vides fairness among “all the points” in the neighborhood. 
That is all the points within distance r from the given query 
have the same probability to be returned. We introduce 
and study the fair near neighbor problem: If BS(q, r) is the 
ball of input points at distance at most r from a query q, 
we would like that each point in BS(q, r) is returned as near 
neighbor of q with the uniform probability of 1/n(q, r)  
where n(q, r) = |BS(q, r)|.

Locality Sensitive Hashing
Perhaps the most prominent approach to get an ANN data 
structure is via Locality Sensitive Hashing (LSH) as pro-
posed by Indyk and Motwani,20 which leads to sublinear 
query time and sub-quadratic space. In particular, for 
X = Rd, by using LSH one can get a query time of nρ+o(1) and 
space n1+ρ+o(1) where for the L1 distance metric ρ = 1/c,16 and 
for the L2 distance metric ρ = 1/c2+oc(1).5 In the LSH frame-
work, the idea is to hash all points using several hash func-
tions that are chosen randomly, with the property that 
the collision probability between two points is a decreas-
ing function of their distance. Therefore, closer points to 
a query have a higher probability of falling into a bucket 
being probed than far points. Thus, reporting a random 
point from a random bucket computed for the query pro-
duces a distribution that is biased by the distance to the 
query: closer points to the query have a higher probability 
of being chosen. On the other hand, the uniformity prop-
erty required in fair NN can be trivially achieved by finding 
all r-near neighbors of a query and then randomly selecting 
one of them. However, this is computationally inefficient 
since the query time is a function of the size of the neigh-
borhood. One contribution in this paper is the description 
of much more efficient data structures that still use LSH in 
a black-box way.

When Random Nearby Is Better than Nearest
The bias mentioned above toward nearer points is usually a 
good property, but is not always desirable. Indeed, consider 
the following scenarios:

•	 The nearest neighbor might not be the best if the 
input is noisy, and the closest point might be viewed 
as an unrepresentative outlier. Any point in the neigh-
borhood might be then considered to be equivalently 
beneficial. This is to some extent why k-NN classifica-
tion15 is so effective in reducing the effect of noise. 
Furthermore, k-NN works better in many cases if k is 
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We see a large discrepancy: the higher the similarity, the 
more biased the LSH is in reporting these points as near 
neighbors. This would strongly affect statistics such as esti-
mating the average similarity of a neighbor.

1.2. Problem formulations
Here, we formally define the variants of the fair NN problem 
that we consider. For all the constructions presented in this 
article, these guarantees fail with probability at most δ for 
some prespecified small δ > 0.

Definition 1 (r-NNIS or Fair NN). Let S ⊆ X be a set of n 
points in a metric space (X, D). The r-near neighbor indepen-
dent sampling (r-NNIS), or simply the Fair NN problem, asks to 
construct a data structure for S that for any sequence of up to n 
queries q1, q2, …, qn satisfies the following properties with prob-
ability at least 1 − δ:

(I) � For each query qi, it returns a point OUTi, q i
 uniformly 

sampled from BS(qi, r).
(II) � The point returned for query qi, with i > 1, is indepen-

dent of previous query results. That is, for any p ∈ BS 

(qi, r) and any sequence p1, …, pi−1, we have Pr[OUTi, qi
 = 

p | ∀j ∈ [i−1]: OUTj, q j
] = pj = 1/n (qi, r).

In the low-dimensional setting,2,19 the r-near neighbor 
independent sampling problem is usually known as inde-
pendent range sampling (IRS) problem. Next, motivated by 
applications, we define two approximate variants of the 
problem that we study in this work. More precisely, we 
slightly relax the fairness constraint, allowing the prob-
abilities of reporting a neighbor to be an “almost uniform” 
distribution.

Definition 2 (Approximately Fair NN). Consider a set  
S ⊆ X of n points in a metric space (X, D). The Approximately 
Fair NN problem asks to construct a data structure for S that for 
any query q, returns each point p ∈ BS(q, r) with probability µp 
where µ is an approximately uniform probability distribution:

P (q, r)/(1 + ε) ≤ µp ≤ (1 + ε) P (q, r),

where P (q, r) = 1/n (q, r). We require the same independence 
guarantee as in Definition 1, that is, the result for query qi must 
be independent of the results for q1, …, qi−1, with i ∈ {2, …, n}.

Furthermore, similar in spirit to the behavior of ANN, we 
allow the algorithm to report an almost uniform distribu-
tion from an approximate neighborhood of the query.

Definition 3 (Approximately Fair ANN). Consider a set  
S ⊆ X of n points in a metric space (X, D). The Approximately 
Fair ANN problem asks to construct a data structure for S that 
for any query q, returns each point p ∈ S′ with probability µp 
where ϕ/(1+ε) ≤ µp ≤ (1+ε)ϕ, where S′ is a point set such that 
BS(q, r) ⊆ S′ ⊆ BS(q, cr), and ϕ = 1/|S′|. As before, the same 
independence guarantee as in Definition 1 is needed, that is, the 
result for query qi must be independent of the results for q1, …, 
qi−1, with i ∈ {2, …, n}.

1.3. Our results
We propose several solutions to the different variants of the 
Fair NN problem. Our solutions build upon the LSH data 
structure.16 Let S (n, c) and Q(n, c) denote space and query 
time, respectively, of an LSH data structure that solves the 
c-ANN problem in the space (X, D).

•	 In Section 4.2, we provide a data structure for 
Approximately Fair ANN that uses space S (n, c) and whose 
query time is  in expectation. See Lemma 8 
for the exact statement.

•	 Section 4.3 shows how to solve the Fair NN problem in  
expected query time  and space usage 
O(S (n, c) ). See Lemma 9 for the exact statement.

The dependence of our algorithms on ε in the approximate 
variant is only O(log(1/ε) ). While we omitted the exact poly-
logarithmic factors in the list above, they are generally lower 
for the approximate versions. Furthermore, these methods 
can be embedded into existing LSH methods to achieve unbi-
ased query results in a straightforward way. On the other 
hand, the exact methods will have higher logarithmic factors 
and use additional data structures.

A more exhaustive presentation of our results and fur-
ther solutions for the Fair NN problem can be found in the 
full version of the paper.8 Preliminary versions of our results 
were published independently in Har-Peled and Mahabadi,17 
Aumüller et al.9 and then jointly in Aumüller et al.7

1.4. Sampling from a sub-collection of sets
In order to obtain our results, we first study a more generic 
problem in Section 2: Given a collection F of sets from a 
universe of n elements, a query is a sub-collection G ⊆ F of 
these sets and the goal is to sample (almost) uniformly from 
the union of the sets in this sub-collection. We also show how 
to modify the data structure to handle outliers in Section 3. 
This is useful for LSH, as the sampling algorithm needs to 
ignore such points once they are reported as a sample. This 
setup allows us to derive most of the results concerning vari-
ants of Fair NN in Section 4 as corollaries from these more 
abstract data structures.
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Figure 1. Bias introduced by uniform sampling from LSH buckets on 
the Last.FM dataset. The task is to (repeatedly) retrieve a uniform 
user among all users with similarity at least 0.2 to a fixed user. The 
result is split up into four buckets by rounding down the similarity to 
the first decimal. Error bars show the standard deviation. Compared 
to an unbiased sample, user vectors with small similarity are 
underrepresented, and users with high similarity are, by a factor of 
approximately 4 on average, overrepresented.
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Some examples of applications of a data structure that pro-
vides uniform samples from a union of sets are as follows:

(A) � Given a subset A of vertices in the graph, randomly 
pick (with uniform distribution) a neighbor to one of 
the vertices of A. This can be used in simulating dis-
ease spread.22

(B) � As shown in this work, we use variants of the data 
structure to implement Fair NN.

(C) � Uniform sampling for range searching.19, 2 Indeed, 
consider a set of points, stored in a data structure for 
range queries. Using the above, we can support sam-
pling from the points reported by several queries, 
even if the reported answers are not disjoint.

Being unaware of any previous work on this problem, we 
believe this data structure is of independent interest.

2. SAMPLING FROM A UNION OF SETS
The problem. Assume you are given a data structure that 
contains a large collection F of sets of objects. In total, 
there are n = |∪ F| objects. The sets in F are not necessar-
ily disjoint. The task is to preprocess the data structure, 
such that given a sub-collection G ⊆ F of the sets, one can 
quickly pick uniformly at random an object from the set 
∪ G := ∪ A∈G A.

Naive solution. The naive solution is to take the sets under 
consideration (in G), compute their union, and sample 
directly from the union set ∪ G. Our purpose is to do (much) 
better—in particular, the goal is to get a query time that 
depends logarithmically on the total size of all the sets in G.

Parameters. The query is a family G ⊆ F, and define  
m = ||G|| := ∑A∈G |A| (which should be distinguished from  
g = |G| and from N = |∪ G|).

Preprocessing. For each set A ∈ F, we build a set representa-
tion such that for a given element, we can decide if the ele-
ment is in A in constant time. In addition, we assume that 
each set is stored in a data structure that enables easy ran-
dom access or uniform sampling on this set (for example, 
store each set in its own array).

Variants. As in Section 1.2, we consider problem variants 
where sample probabilities are either exact or approximate.

2.1. Almost uniform sampling
The query is a family G ⊆ F. The degree of an element x ∈ ∪ G, is 
the number of sets of G that contain it—that is, d

G
(x) = |D

G
(x)|, 

where D
G
(x) = {A ∈ G | x ∈ A}. We start with an algorithm (sim-

ilar to the algorithm of Section 4 in Karp and Luby21) that 
repeatedly does the following:

(I) � Picks one set from G with probabilities proportional 
to their sizes. That is, a set A ∈ G is picked with prob-
ability |A|/m.

(II) � It picks an element x ∈ A uniformly at random.
(III) � Outputs x and stops with probability 1/d

G
(x). Other

wise, continues to the next iteration.
Since computing d

G
(x) exactly to be used in Step (III) is 

costly, our goal is instead to simulate a process that accepts 

x with probability approximately 1/d
G
(x). We start with the 

process described in the following lemma.

Lemma 1. Assume we have g urns, and exactly d > 0 of them, are 
non-empty. Furthermore, assume that we can check if a specific 
urn is empty in constant time. Then, there is a randomized algo-
rithm, that outputs a number Y ≥ 0, such that E[Y] = 1/d. The 
expected running time of the algorithm is O( g/d).

Proof. The algorithm repeatedly probes urns (uniformly at 
random), until it finds a non-empty urn. Assume it found a 
non-empty urn in the ith probe. The algorithm outputs the 
value i/g and stops.

Setting p = d/g, and let Y be the output of the algorithm. 
We have that

using the formula . The expected num-
ber of probes performed by the algorithm until it finds a 
non-empty urn is 1/p = g/d, which implies that the expected 
running time of the algorithm is O( g/d).� 

The natural way to deploy Lemma 1 is to run its algorithm to 
get a number y and then return 1 with probability y. The prob-
lem is that y can be strictly larger than 1, which is meaning-
less for probabilities. Instead, we back-off by using the value 
y/∆, for some parameter ∆. If the returned value is larger 
than 1, we just treat it at zero. If the zeroing never happened, 
the algorithm would return one with probability 1/(d

G
(x)∆). 

The probability of success is going to be slightly smaller, but 
fortunately, the loss can be made arbitrarily small by taking 
∆ to be sufficiently large.

Lemma 2. There are g urns, and exactly d > 0 of them are not 
empty. Furthermore, assume one can check if a specific urn 
is empty in constant time. Let γ ∈ (0, 1) be a parameter. Then 
one can output a number Z ≥ 0, such that Z ∈ [0, 1], and 

, where ∆ = ⎡ln γ−1⎤ + 4 = Θ(log γ −1). The 
expected running time of the algorithm is O( g/d). Alternatively, 
the algorithm can output a bit X, such that P [X = 1] ∈ I.

Proof. We modify the algorithm of Lemma 1, so that it out-
puts i/( g∆) instead of i/g. If the algorithm does not stop in the 
first g∆ + 1 iterations, then the algorithm stops and outputs 
0. Observe that the probability that the algorithm fails to stop 
in the first g∆ iterations, for p = d/g, is .

Let Z be the random variable that is the number output 
by the algorithm. Arguing as in Lemma 1, we have that 
E [Z] ≤ 1/(d∆). More precisely, we have

Easy calculations shows that

Let . We have that , where 
. Furthermore, for j ≥ ∆, we have
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being an upper bound on the number of these elements in 
each segment. By the initial random permutation, we have 
that each segment contains at most λ = Θ( (N/k) log n) ele-
ments from ∪G with probability at least 1 − 1/n2. (Of course, 
N is not known at query time.)

The query algorithm works in the following steps in 
which all random choices are independent.

(A)  Set k = n, and let λ = Θ(log n), σfail = 0 and ∑ = Θ (log2 n).
(B)  Repeat the following steps until successful or k < 2:

(I) � Assume the input sequence Λ to be split into k 
segments Λi of size n/k, where Λi contains the 
points in ∪ F with ranks in [i ⋅ n/k, (i+1) ⋅ n/k).

(II) � Select an integer h in {0, …, k − 1} uniformly at 
random (i.e., select a segment Λh);

(III) � Increment σfail. If σfail = ∑ , then set k = k/2 and σfail = 0.
(IV) � Compute λ

G,h and with probability λ
G,h/λ, declare 

success.
(C) � If the previous loop ended with success, return an 

element uniformly sampled among the elements in 
∪ G in Λh, otherwise return ⊥.

Since each object in ∪ G has probability 1/(kλ) of being 
returned in Step (C), the result is a uniform sample of ∪ G. 
Note that the main iteration in Step (B) works for all values 
k, but a good choice has to depend on G for the following 
reasons. On the one hand, the segments should be small, 
because otherwise Step (IV) will take too long. On the other 
hand, they have to contain at least one element from ∪ G, 
otherwise we sample many “empty” segments in Step (II). 
We will see that the number k of segments should be roughly 
set to N to balance the trade-off. However, the number N of 
distinct elements in ∪ G is not known. Thus, we use the naive 
upper bound of k = n. To compute λ

G,h efficiently, we assume 
that, at construction time, the elements in each set in F are 
sorted by their rank.

Lemma 4. Let N = |∪ G|, g = |G|, m = ∑X∈G |X|, and n = |∪ F|. 
With probability at least 1 − 1/n2, the algorithm described 
above returns an element x ∈ ∪ G according to the uniform dis-
tribution. With high probability, the algorithm has a running 
time of O( g log4 n).

Proof. We start by bounding the initial failure probability 
of the data structure. By a union bound, we have that the fol-
lowing two events hold simultaneously with probability at 
least 1 − 1/n2:

1. � Every segment of size n/k contains no more than  
λ = Θ(log n) elements from ∪ G for all k = 2i where i ∈ 
{1, …, log n}. Since elements are initially randomly 
permuted, the claim holds with probability at least 1 − 
1/(2n2) by suitably setting the constant in λ = Θ(log n).

2. � It does not happen that the algorithm reports ⊥. The 
probability of this event is upper bounded by the prob-
ability p′ that no element is returned in the ∑ itera-
tions where k = 2⎡log N⎤ (the actual probability is even 
lower, since an element can be returned in an itera-
tion where k > 2⎡log N⎤). By suitably setting constants in  

As such, we have that

by the choice of value for ∆. This implies that E[Z] ≥ 1/(d∆) 
− β ≥ 1/(d∆) − γ, as desired.

The alternative algorithm takes the output Z, and returns 
1 with probability Z, and zero otherwise.� 

Lemma 3. The input is a family of sets F that one pre-
processes in linear time. Let G ⊆ F be a sub-family and let  
N = |∪ G|, g = |G|, and let ε ∈ (0, 1) be a parameter. One can sam-
ple an element x ∈ ∪ G with almost uniform probability distri-
bution. Specifically, the probability p of an element to be output 
is (1/N)/(1+ε) ≤ p ≤ (1+ε)(1/N). After linear time preprocessing, 
the query time is O( g log( g/ε) ), in expectation, and the query 
succeeds, with high probability (in g ).

Proof. The algorithm repeatedly samples an element x using 
steps (I) and (II). The algorithm returns x if the algorithm of 
Lemma 2, invoked with γ = (ε/g)O(1) returns 1. We have that  
∆ = Θ(log( g/ε) ). Let α = 1/(d

G
(x)∆). The algorithm returns x in 

this iteration with probability p, where p ∈ [α − γ, α]. Observe 
that α ≥ 1/( g∆), which implies that γ  (ε/4)α, it follows that 
(1/(d

G
(x)∆) )/(1 + ε) ≤ p ≤ (1 + ε)(1/(d

G
(x)∆) ), as desired. The 

expected running time of each round is O( g/d
G
(x) ).

We prove the runtime analysis of the algorithm in the full 
version of the paper. In short, the above argument implies 
that each round, in expectation takes O(Ng/m) time, where  
m = ||G||. Further, the expected number of rounds, in 
expectation, will be O(∆m/N). Finally, this implies that 
the expected running time of the algorithm is O( g∆) = O( g 
log( g/ε) ).� 

Remark 1. The query time of Lemma 3 can be made to work 
with high probability with an additional logarithmic fac-
tor. Specifically, with high probability, the query time is O( g 
log( g/ε) log N).

2.2. Uniform sampling
In this section, we present a data structure that samples an 
element uniformly at random from ∪ G. The data structure 
uses rejection sampling as seen before but splits up all data 
points using random ranks. Instead of picking an element 
from a weighted sample of the sets, it will pick a random seg-
ment among these ranks and consider only elements whose 
rank is in the selected range. Let Λ be the sequence of the  
n = |∪ F| input elements after a random permutation; the 
rank of an element is its position in Λ. We first highlight 
the main idea of the query procedure.

Let k ≥ 1 be a suitable value that depends on the collec-
tion G and assume that Λ is split into k segments Λi, with  
i ∈ {0, …, k − 1}. (We assume for simplicity that n and k are 
powers of two.) Each segment Λi contains the n/k elements 
in Λ with rank in [i ⋅ n/k, (i + 1) ⋅ n/k). We denote with λ

G,i the 
number of elements from ∪ G in Λi, and with λ ≥ maxi λG,i 
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Lemma 6. The input is a family of sets F that one can preprocess in 
linear time. A query is a sub-family G ⊆ F, a set of outliers O, and a 
parameter m

O
. With high probability, one can either:

(A)  Sample a uniform element x ∈ ∪ GO, or
(B)  Report that d

G
(O) > m

O
.

The expected query time is O( ( g + m
O 

) log4 n).

4. FINDING A FAIR NEAR NEIGHBOR
In this section, we employ the data structures developed in 
the previous sections to show the results on fair near neigh-
bor search listed in Section 1.3.

First, let us briefly give some preliminaries on LSH. We 
refer the reader to Har-Peled et al.16 for further details. 
Throughout the section, we assume our metric space (X, D) 
admits an LSH data structure.

4.1. Background on LSH
Locality Sensitive Hashing (LSH) is a common tool for solv-
ing the ANN problem and was introduced in Har-Peled et al.16

Definition 4. A distribution H over maps h: X → U, for a 
suitable set U, is (r, c⋅r, p1, p2)-sensitive if the following holds 
for any x, y ∈ X:

•	 if D(x, y) ≤ r, then Prh[h(x) = h(y)] ≥ p1;
•	 if D(x, y) > c ⋅ r, then Prh[h(x) = h(y)] ≤ p2.

The distribution H is an LSH family, and has quality 
.

For the sake of simplicity, we assume that p2 ≤ 1/n: if p2 > 
1/n, then it suffices to create a new LSH family HK obtained 
by concatenating  K = Θ (logp2

 (1/n)) independent and identi-
cally distributed hashing functions from H. The new family 
HK is (r, cr, , )-sensitive and ρ does not change.

The standard approach to (c, r)-ANN using LSH functions 
is the following. Let D denote the data structure constructed 
by LSH, and let c denote the approximation parameter of LSH. 
Each D consists of L = nρ hash functions 1, …, L randomly 
and uniformly selected from H. D contains L hash tables 
H1, … HL: each hash table Hi contains the input set S and uses 
the hash function i to split the point set into buckets. For 
each query q, we iterate over the L hash tables: For any hash 
function, compute i(q) and compute, using Hi, the set

	 Hi(p) = {p : p ∈ S, i(p) = i(q)}� (1)

of points in S with the same hash value; then, compute the 
distance D(q, p) for each point p ∈ Hi(q). The procedure stops 
as soon as a (c, r)-near point is found. It stops and returns ⊥ 
if there are no remaining points to check or if it found more 
than 3L far points. We summarize the guarantees in the fol-
lowing lemma.16

Lemma 7. For a given query point q, let Sq = ∪ i Hi(q). Then for 
any point p ∈ BS(q, r), we have that with a probability of least 
1 − 1/e − 1/3, we have (i) p ∈ Sq and (ii) |Sq  BS(q, cr)| ≤ 3L, that 
is, the number of outliers is at most 3L. Moreover, the expected 
number of outliers in any single bucket Si,i (q) is at most 1.

λ = Θ(log n) and ∑ = Θ(log2 n), we get:

From now on assume that these events are true.
As noted earlier, each element has probability of 1/

(kλ) of being returned as output, and thus, elements are 
equally likely to be sampled. Note also that the guaran-
tees are independent of the initial random permuta-
tion as soon as the two events above hold. This means 
that the data structure returns a uniform sample from a 
union-of-sets.

For the running time, first focus on the round where 
k = 2⎡log N⎤. In this round, we carry out Θ(log2 n) iterations. In 
Step (IV), λ

G,h is computed by iterating through the g sets 
and collecting points using a range query on segment Λh. 
Since elements in each set are sorted by their rank, the 
range query can be carried out by searching for rank hn/k 
using a binary search in O(log n) time and then enumer-
ating all elements with rank smaller than (h+1)n/k. This 
takes time O(log n + o) for each set, where o is the output 
size. Since each segment contains O(log n) elements from 
∪ G with high probability, one iteration of Step (IV) takes 
time O( g log n).

The time to carry out all ∑ = Θ(log2 n) iterations is thus 
bounded by O( g log3 n). Observe that for all the rounds car-
ried out before, k is only larger and thus, the segments are 
smaller. This means that we may multiply our upper bound 
with log n, which completes the proof.� 

Using count distinct sketches to find a good choice for the 
number of segments k, the running time can be decreased 
to O( g log3 n); we refer to the full version8 for more details.

3. HANDLING OUTLIERS
Imagine a situation where we have a marked set of outliers O. 
We are interested in sampling from ∪ GO. We assume that 
the total degree of the outliers in the query is at most m

O
 for 

some prespecified parameter m
O

. More precisely, we have 
d
G
(O) = ∑x∈O d

G
(x) ≤ m

O
. We get the following results by run-

ning the original algorithms from the previous section and 
removing outliers once we encounter them. If we encounter 
more than m

O
 outliers, we report that the number of outliers 

exceeds m
O

.
Running the algorithm described in Section 2.1 provides 

the guarantees summarized in the following lemma.

Lemma 5. The input is a family of sets F that one can preprocess 
in linear time. A query is a sub-family G ⊆ F, a set of outliers O, a 
parameter m

O
, and a parameter ε ∈ (0, 1). One can either:

(A) � Sample an element x ∈ ∪ GO with an ε-approximate uni-
form distribution: specifically, the probability µx of x to 
be output is ϕ/(1 + ) ≤ µx ≤ (1 + )ϕ, with ϕ = 1/|∪ GO|.

(B)  Alternatively, report that d
G
(O) > m

O
.

The expected query time is O(m
O

 + g log(n/ε) ), and the query 
succeeds with high probability, where g = |G|, and n = ||F||.

Running the algorithm described in Section 2.2 and 
keeping track of outliers has the following guarantees.
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•	 Uniform/uniform: Picks bucket uniformly at random 
and picks a random point in bucket.

•	 Weighted/uniform: Picks bucket according to its size, 
and picks uniformly random point inside bucket.

•	 Degree approximation: Picks bucket according to size, 
and picks uniformly random point p inside bucket. It 
approximates p’s degree (using Lemma 1) and rejects p 
with probability 1 − 1/ deg′(p). This is the approach dis-
cussed in Remark 2.

•	 Optimal: Picks bucket according to size, and picks 
uniformly random point p inside bucket. Then, it com-
putes p’s degree exactly and rejects p with probability 1 − 1/ 
deg(p). This is the approach discussed in Remark 2, but 
with exact degree approximation, solving Fair NN.

Each method removes non-close points that might be 
selected from the bucket. We remark that the variant 
Uniform/uniform most closely resembles a standard LSH 
approach. Weighted/Uniform takes the different bucket 
sizes into account, but disregards the individual frequency 
of a point. Thus, the output is not expected to be uniform, but 
might be closer in distribution to the uniform distribution.

Output Distribution. For each query q, we compute the set of 
near neighbors M(q) of q in the LSH buckets. For each sam-
pling strategy, we carry out the query 100|M(q)| times. The 
sampling results give rise to a distribution µ on M(q), and 
we compare this distribution to the uniform distribution 
in which each point is sampled with probability 1/|M(q)|. 
Figure 2 reports on the total variation distance between the 
uniform distribution and the observed distribution, that 
is, . As in our introductory example, we 
see that uniformly picking an LSH bucket results in a heav-
ily biased distribution. Taking the size of the buckets into 
account in the weighted case helps a bit, but still results in 
a heavily biased distribution. Even with the easiest approxi-
mation strategy for the degree, we see an improvement and 
achieve a total variation distance of around 0.08, with the 
optimal algorithm achieving around 0.04.

Differences in Running Time. Compared to a naïve approach 
of collecting all colliding points in the buckets and select-
ing a near neighbor at random, the methods presented here 
provide a speed-up of more than two orders of magnitude 
in our experiments. The fair methods based on rejection 

By repeating the construction O(log n) times, we guarantee 
that with high probability B(q, r) ⊆ Sq.

4.2. Approximately Fair ANN
For t = O(log n), let D1, …, Dt be data structures constructed 
by LSH. Let F be the set of all buckets in all data structures, 
that is, . For a query point q, con-
sider the family G of all buckets containing the query, that is, 

, and thus |G| = O(L log n). Moreover, we 
letO to be the set of outliers, that is, the points that are farther 
than cr from q. Note that as mentioned in Lemma 7, the expected 
number of outliers in each bucket of LSH is at most 1. Therefore, 
by Lemma 5, we immediately get the following result.

Lemma 8. Given a set S of n points and a parameter r, we can 
preprocess it such that given query q, one can report a point  
p ∈ S with probability µp where ϕ/(1 + ε) ≤ µp ≤ (1+ε)ϕ, S is a 
point set such that BS(q, r) ⊆ S ⊆ BS(q, cr), and ϕ = 1/|S|. The 
algorithm uses space O(L log n) and its expected query time is 
O(L log n log(n/ε) ).

Remark 2. By repeatedly calling the query procedure and 
disregarding points at distance larger than r, the algorithm 
described above solves the Approximately Fair NN Problem 
(Definition 2). The probability that the algorithm succeeds in a 
round is ρ = n(q, r)/n(q, cr), and as such the expected number 
of rounds is 1/ρ. Thus, this approach has expected query time 

.

4.3. Fair NN
We use the same setup as in the previous section and build  
t = O(log n) data structures D1, …, Dt using LSH. We use the 
algorithm described in Section 2.2 with all points at dis-
tance more than r from the query marked as outliers. By the 
properties of the LSH and the random ranks, we expect to 
see  points at distance at least r. This allows us to 
obtain the following results.

Lemma 9. Given a set S of n points and a parameter r, we can 
preprocess it such that given a query q, one can report a point  
p ∈ S with probability 1/n(q, r). The algorithm uses space  
O(L log n) and has expected query time .

5. EXPERIMENTAL EVALUATION
The example provided in Section 1.1 already showed the bias 
of sampling naively from the LSH buckets. In this section, we 
want to consider the influence of the approximative variants 
discussed here and provide a brief overview of the running 
time differences. A detailed experimental evaluation can be 
found in the full paper.8

For concreteness, we take the MNIST dataset of handwritten 
digits available at http://yann.lecun.com/exdb/mnist/. We use 
the Euclidean space LSH from Datar et al.,13 set a distance thresh-
old of 1250, and initialize the LSH with L = 100 repetitions, k = 15, 
and w = 3750. These parameter settings provide a false negative 
rate of around 10%. We take 50 points as queries and test the fol-
lowing four different sampling strategies on the LSH buckets:
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Figure 2. Total variation distance of different approaches on the 
MNIST dataset.
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sampling are approximately a factor of 10 slower than their 
biased counterparts that just pick a (weighted) point at ran-
dom. Finally, the approximate degree sampling provides 
running times that are approximately two times faster than 
an exact computation of the degree.

6. CONCLUSION AND FUTURE WORK
In this paper, we have investigated a possible definition of 
fairness in similarity search by connecting the notion of 
“equal opportunity” to independent range sampling. An 
interesting open question is to investigate the applicabil-
ity of our data structures for problems such as discrimi-
nation discovery,27 diversity in recommender systems,1 
privacy preserving similarity search,26 and estimation of 
kernel density.11 Moreover, it would be interesting to inves-
tigate techniques for providing incentives (that is, reverse 
discrimination27) to prevent discrimination: An idea 
could be to merge the data structures in this paper with 
distance-sensitive hashing functions in Aumüller et al.,6 
which allow to implement hashing schemes where the col-
lision probability is an (almost) arbitrary function of the 
distance. Finally, the techniques presented here require 
a manual trade-off between the performance of the LSH 
part and the additional running time contribution from 
finding the near points among the non-far points. From a 
user point of view, we would much rather prefer a param-
eterless version of our data structure that finds the best 
trade-off with small overhead, as discussed in Ahle et al.3 
in another setting.
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