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ABSTRACT

Metamorphic testing is a testing method for problems without test oracles. Integration testing allows
for detecting errors in complex systems that may not be found during the testing of their components.
In this paper, we propose a novel approach that applies metamorphic testing in integration testing.
The main idea is to develop a composite metamorphic relation for the system represented as an
acyclic graph. This relation is a logical function of metamorphic relations for the parts of the system
(vertices of the graph). It takes into account the features of the parts. Also, it can simplify the search
for failure by identifying the subsystem with error. In this paper’s theoretical part, we describe an
algorithm of relation design. Then, we apply our method to a bioinformatics system for comparative
genetic analysis of tissues using production tools. This experiment proves our method can be applied
to real-life pipelines and find errors in them.

Keywords Software testing · metamorphic testing · integration testing · composite metamorphic relations ·
bioinformatics software testing

1 Introduction

Nowadays, the number of components in scientific software is overgrowing. Pipes-and-filters (pipelines) are a
widespread architectural style that integrates functional components into large systems. Pipelines are essential for many
bioinformatics, machine learning, and computer vision applications. Unfortunately, they are hard to test because of
their complexity. Although individual pipeline components are usually well tested in isolation, the integration testing of
the whole pipeline may reveal unexpected errors.

Metamorphic testing is a popular method to test scientific software when test oracle is not readily available Chen et al.
(2018). They also provide an easy automatization, as metamorphic relations allow for a more straightforward way to
generate test sequences. Metamorphic testing can be combined with other methods and approaches. Application of
metamorphic testing to integration testing has been studied in Chan et al. (2005).

Bioinformatics systems analyse big amounts of data with high precision. Even single-nucleotide mutation could be a
reason for diseases such as cancer and Alzheimer’s disease. So, the accuracy of genome analysis should be as high as
possible. That is why it is important to test bioinformatics systems properly.

In this paper, we propose a novel method that benefits from the advantages of metamorphic relations in integration
testing. First, we describe a mathematical model of the system and develop an algorithm to construct composite
metamorphic relations from the relations for the system components. Then, we apply our method to a bioinformatics
pipeline for mutation detection. Experiments proved our method to be viable and capable of detecting errors.

This paper outlines as follows. In section 2, we study applications of metamorphic testing and approaches to combine
metamorphic relations. Then in section 3, we describe the proposed method. Next, in section 4, we apply it to the

ar
X

iv
:2

30
5.

00
88

8v
1 

 [
cs

.S
E

] 
 1

 M
ay

 2
02

3

https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000


Composite metamorphic relations for integration testing A PREPRINT

bioinformatics pipeline. After that in section 5 we discuss other possible applications and generalizations of our
approach. Finally, section 6 concludes the paper.

2 Background and related work

Software system for scientific analysis usually contains many components. Instruments for different steps of processing
are often implemented by different authors. Pipes-and-filters is a popular architectural style for data processing because
they easily combine those instruments into a complex system.

Examples of pipelines can be found among the bioinformatics systems, for example, in the mutation analysis. It is a
popular area in bioinformatics, which can be applied for choosing cancer therapy.

A mutation is an alteration in the nucleotide (base pair) sequence caused by different factors. Mutations can be somatic
or germline. Somatic mutations are not inherited from parents and not passed to offspring. Germline mutation in the
reproductive cells appears as a constitutional mutation in offspring. Also, mutations can be large-scale and small-scale.
The term "indel" uses to refer to small insertions and deletions. Small-scale indels up to 50 base pairs are called
microindels.

A typical bioinformatics pipeline consists of aligners and analyzing tools (variant callers, estimators of genes copy
number, different tools for statistics calculation). A pipeline can contain dozens of such tools. Each component can be
tested with metamorphic relations. However, integration testing is also required.

The main idea of metamorphic testing is to determine the presence of so-called metamorphic relations between all the
inputs and outputs of the program. Those relations allow validating the program if the correct answers for each test are
unknown. That automates the testing process and helps to generate large test sets. Metamorphic testing can be applied
to autonomous driving systems, graph searching algorithms, search systems, query languages, and many others Chen
et al. (2018). Chan et al. Chan et al. (2005) used metamorphic relations and checkpoints for integration testing. Tang
et al. Tang et al. (2017) and Giannoulatou et al. Giannoulatou et al. (2014) applied metamorphic testing to popular
bioinformatics tools. Troup et al. Troup et al. (2016) tested the cloud-based bioinformatics pipeline, but they consider
the system in general.

It is possible to generate new metamorphic relations based on already known ones Zhou et al. (2012); Chen et al. (2018).
As Liu et al. (2012) sows, the composition (complex function) of metamorphic relations can be more effective than
individual relations by themselves. One way to create a new metamorphic relation is to use genetic algorithms Xiang
et al. (2019). Following these ideas, we propose the method of combining metamorphic relations for integration testing.

3 Proposed method

Let us denote xi as a set of program inputs, f(xi) as a set of program’s outputs on the test i. The metamorphic for this
program can be represented as

R(x1, x2, . . . , xn, f(x1), f(x2), . . . , f(xn)) −→ {0, 1}, (1)

where n ≥ 2 is the total number of test inputs. We consider that a relation R (1) is defined on dom(R).

If {x1, x2, . . . , xn} ∈ dom(R), then R = 1 means that no errors were detected by the relation (true relation), and
R = 0 means that there is an error (false relation). Outside dom(R) the behavior of R (1) is undefined.

We consider that a software system can be represented by directed acyclic graph, in which vertices correspond to
individual software components and edges denote data exchanges between them. Let xi,j,k denote input 1 ≤ j ≤ m
for vertex i on test k. Than fl,i,k is output l of vertex i on test k (fl,i,k = fi(xi,1,k, . . . , xi,ei,k)l). xi,j,k can either be
output of a component or input of the whole system, fi,j,k be input of a component or output of the system. We also
denote x ⊆ {xi,j,k} and f(x) ⊆ {fi,j,k}.
We define the metamorphic relation for such system as a function

R(x1, x2, . . . , xn, f(x1), f(x2), . . . , f(xn)) =

R(x1,1,1, . . . , xe1,1,1, . . . , xev,v,1, . . . , xev,v,n,

f1,1,1, . . . , fr1,1,1, . . . , frv,v,1, . . . , frv,v,n, ) −→ {0, 1},
(2)

where v is the number of vertices in the graph, ei is the number of input edges and ri is the number of output edges of i
vertex, n is the number of tests.
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3.1 Composite metamorphic relations

We define composite metamorphic relation as a boolean function C of metamorphic relations Ri,j (1) of components of
complex system:

C(R1,1, R1,2, . . . , R1,m1
, . . . , Ri,j , . . . , Rv,mv

) −→ {0, 1} (3)
where i = 1, . . . , v is an index of a component (vertex in graph), j = 1, . . . ,mi is an index of individual metamorphic
relation for the vertex i, mi is a number of chosen relations for this component. We calculate metamorphic relations for
each vertex Ri,j and then compute C (3). C is a metamorphic relation for the whole system (2).

We define a subsystem as a subgraph that contains a subset V ⊆ {1, 2, . . . , v} of vertices and all existing edges between
them. Then the function

L(R1,1, . . . , R1,m1
, . . . , Ri,j , . . . , Rv,mv

) = L

{
1, vk /∈ V

Ri,j , vk ∈ V
−→ {0, 1} (4)

is a composite metamorphic relation for the subsystem.

If the relation is false for some vertex, then an error occurred either in it or in one of the vertices with a directed path to
this vertex. That allows us to narrow down the search to a subsystem that contains the vertex. In this way, subsystems
also could be tested using the same metamorphic relations as the whole system.

3.2 Derivation of composite metamorphic relations

For a system represented as an acyclic directed graph we present an algorithm of deriving composite metamorphic
relations (3) from metamorphic relations of the components (vertices).

Let us consider relations A, B, R (1) for the system f with set of inputs x. We define the function def(z) that is false
if z is not known (or undefined) during the system execution and true if z is known. Then, we define the following
functions:

DEF (R, x) =

{
True, x /∈ dom(R)

R(x), x ∈ dom(R)
(5)

INDEF (R, x) =

{
True, ¬def(R(x))

False, def(R(x))
(6)

A(x)∪̂B(x) =


A(x), x /∈ dom(B)

B(x), x /∈ dom(A)

A(x) ∪B(x), x ∈ dom(A) ∩ dom(B)

(7)

A(x)∩̂B(x) =


A(x), x /∈ dom(B))

B(x), x /∈ dom(A)

A(x) ∩B(x), x ∈ dom(A) ∩ dom(B)

(8)

A(x)⊕̂B(x) =


A(x), x /∈ dom(B)

B(x), x /∈ dom(A)

A(x)⊕B(x), x ∈ dom(A) ∩ dom(B)

(9)

Functions A∩̂B, A∩̂B and A⊕̂B have domains dom(A) ∪ dom(B).

Then, we propose an algorithm.

Input. Software system represented as an acyclic directed graph. Sets of metamorphic relations Si = {Ri,j},
1 ≤ j ≤ mi for each vertex i.

Output. Composite metamorphic relations (3) and their domains.

1. For each vertex, define set S′i of possible relations as a extension of Si. Choose two relations A and B
from Si. Define relations A ∪ B, A ∩ B, A∪̂B, A∩̂B. Choose some of them that seem to be effective or
easy-implemented and add them to S′i. Do not add those with empty domains. Then, choose a new relation C
from Si and repeat the operation of combining with every element of S′i. Repeat for every relation in Si and
replace Si with S′i.
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2. Some relations in Si can be undefined during the execution. In this case, replace relation Ri,j with relation
DEF (Ri,j). If conditions when Ri,j is not defined are known, divide Ri,j into relations R′i,j , dom(R′i,j) ⊂
dom(Ri,j), and INDEF (Ri,j) with the domain dom(Ri,j)/dom(R′i,j). Add both to Si and remove Ri,j .

3. For each vertex, choose single metamorphic relation Ri,j ∈ Si. Let us name this set U . There can be many
such sets.

4. For each set of relations Uk, replace Ri,j with DEF (Ri,j) if vertex with relation Ri,j uses the output of the
vertex with DEF or INDEF relation.

5. Construct a complex metamorphic relation C (3) for each set step by step. In the beginning, C0 is a constant
true.

• If vertex i does not use the outputs of other vertices, or is the only one that uses the outputs of another
single vertex b, then Ct := Ct−1 ∩Ri.

• If many vertices use outputs of vertex b, define all possible functions of relations of these vertices with
operations ∪̂, ∩̂, ∪ and ∩ (like in step 1). Choose one derived relation A and define Ct = Ct−1 ∩A. If
there is another suitable relation B, duplicate the current set U ′ = U and define C ′t = Ct−1 ∩B for it.

6. If there are such vertices b1, b2, ..., bn that has the same inputs and outputs, and only one of them is computed
during the test case (they are different execution branches),
(a) use operations ∪̂, ∩̂, ⊕̂, ∪, ∩ and ⊕ to combine relations of these vertices into a single relation;
(b) or use these relations individually to acquire different composite metamorphic relations C1, ..., Cn and

then combine these relations with the operations ∪̂, ∩̂, ⊕̂, ∪, ∩ and ⊕ to get final composite metamorphic
relation C.

7. Choose composite relations with non-empty domains. If there are no such relations, choose other individual
relations for the components or other sets of relations for the system (step 3) and repeat steps 4-7.

3.3 Illustrative example

Let us demonstrate our algorithm on an example model of image detection system shown at Fig. 1. It contains a cat
detector, a dog detector with a pre-detector, and a normalizer, which is a piecewise linear function. Dog detector
executes only when the output of pre-detector is True.

3.3.1 Three-component example

We consider this system with and without a pre-detector for better understanding.

Let us start with the system without a pre-detector.

The normalizer is a piecewise linear function. It preserves the equivalence relation between pixels. If we add a cat to
the picture without interaction with other animals, the cat detector should find all the animals it detected before and a
new one. The same is for a dog detector if we add a dog to the picture.

Let us provide formal metamorphic relations for individual components on a pair of images (a, b). The normalizer
transforms those images into (a′, b′), than dog detector captures the dogs on those images as a set of bounding boxes
(Bd(a

′), Bd(b
′)) and cat detector do the same for cats – (Bc(a

′), Bc(b
′)).

(N) if there are equal pixels on a and b the same pixels should be equal on a′ and b′.
(K) If b derives from a by adding a cat without interaction with other animals dom(K), the detector should find on b

all the cats it found on a, and a new one.
(D) If b derives from a by adding a dog without interaction with other animals dom(D), the detector should find on b

all the dogs it found on a, and a new one.

As we can see, K is always false on dom(D), and D is always false for dom(K). So we can extent relations K and D
with K∗ and D∗.

(K*) If b derives from a by adding a cat without interaction with other animals dom(K), the detector should find on b
all the cats it found on a and a new one (K). If b derives from a by adding a dog without interaction with other
animals dom(D), the detector should find on b all the cats it found on a and not find the new ones.

(D*) If b derives from a by adding a dog without interaction with other animals dom(D), the detector should find on b
all the dogs it found on a, and a new one. If b derives from a by adding a cat without interaction with other
animals dom(K), the detector should find on b all the dogs it found on a and not find the new ones.

4
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Figure 1: System for illustrative example.

We construct composite relations for both sets (N,K,D) and (N,K∗, D∗) to analyze more possible cases.

In the beginning, the composite relation C0 is always true. Then C1 = N because N is an input vertex. K and D
use its outputs. Their domains do not intersect, so we can use functions K∪̂D and K∩̂D (that should be equal in this
particular case). Thus, we get relation C = C2 = N ∩ (K∪̂D). For the other set, we can use functions K∗ ∪D∗ and
K∗ ∩D∗ because their domains are the same. Thus, we get relations C∗ ∈ {N ∩ (K∗ ∪D∗), N ∩ (K∗ ∩D∗)}.
Having established those relations, we can propose the test sequence generating rule. We can use pairs of images (a, b),
if b is a copy of a that contains one additional cat or dog.

3.3.2 Four-component example

Now let us move to a little bit more complex system shown at Fig. 1 that uses a pre-detector. Pre-detector has two
different states - True and False. So we have execution branching, as shown in step 6. Let us consider that if True
branch is taken the metamorphic relation P holds, and if false branch is taken the relation is Q.

If we chose to combine relations for the pre-detector according to step 6.a, we can deduce relations C = N ∩ (P ∪
Q) ∩ (K∪̂D) and C = N ∩ (P ∪Q) ∩ (K∩̂D).

If we chose to consider the system in different states according to step 6.b, we can derive many relations like
C1 = N ∩ ((P ∩ (K∪̂D) ∪ (Q ∩ (K∪̂INDEF (D))), C2 = N ∩ ((P ∩ (K∩̂D) ∪ (Q ∩ (K∩̂INDEF (D))),
C3 = N∩((P∩(K∪̂D)⊕(Q∩(K∪̂INDEF (D))). The relation C4 = N∩((P∩(K∩̂D)⊕(Q∩(K∩̂INDEF (D)))
seem to be the most strict.

Implementation of all described relations may be cumbersome because it is necessary to add animals without intersec-
tions.

4 Application to a genetic analysis system

Now let us derive composite metamorphic relations for a bioinformatics pipeline system. The experiment aims at
answering the following research questions.

RQ1. Is it possible to derive and implement composite relations for the real-life system?

RQ2. Is it possible to detect failures using them?

4.1 Composite metamorphic relation

We chose a system for comparative genetic analysis of normal and tumor tissues. Such systems can contain several
dozens of tools. We selected a subsystem that includes read aligner BWA Li (2013), variant caller Strelka2 Kim et al.
(2018), supporting utility for statistics calculation Sequenza-utils Favero et al. (2015) and some auxiliary formatting
tools. We represent it as a directed graph shown at Fig.2.

Input for this system is a standard reference genome and a pair of normal and tumor files in FASTQ formats. These files
contain reads get with the sequencer and their parameters. BWA calculates a possible position of every read on the
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Figure 2: System under test.

reference genome. Then, Strelka2-somatic searches for somatic microindels, Strelka2-germline searches for germline
microindels, Sequenza-utils calculates statistics for copy number estimation. Strelka2-germline can process any FASTQ
file, so it executes twice (on normal and tumor files) for better testing.

Let us follow the algorithm we describe in Section 3.2. The first step is to determine individual metamorphic relations
for every vertex (pipeline component). We use (x1, ..., xn) to denote inputs of each component and f(x1), ..., f(xn) to
denote corresponding outputs for one test case.

BWA (BWA). If files xi, 1 ≤ i ≤ n, contain mapped reads, all the outputs f(xi) should not be empty.

Strelka2 (Si, GTi, GNi). If xi and xi+1 are two input files correspond i and i + 1 genomes, and i + 1 genome is
obtained from i by adding independent mutations, then Strelka2 should find all the previous insertions and
maybe new ones f(xi) ⊆ f(xi+1).

Strelka2 (Sd, GTd, GNd). If xi and xi+1 are two input files correspond i and i + 1 genomes, and i + 1 genome is
obtained from i by adding independent mutations, then Strelka2 should find all the previous deletions and
maybe new ones f(xi) ⊆ f(xi+1).

Sequenza (SU ). If xi and xi+1 are two input files correspond i and i+ 1 genomes, and i+ 1 genome was obtained
from i by adding independent mutations, and Sequenza evaluates some of them by some metric, then those
evaluations should reflect the changes correctly f(xi) ≤ f(xi+1) or f(xi) ≥ f(xi+1) depending on the
specific metric.

We define set of individual relations for functional parts of Strelka2. GT denotes Strelka2-germline(tumor), GN denotes
Strelka2-germline(normal). We use relations GTi ∩GNi and GTd ∩GNd. Also, S denotes Strelka2-somatic(normal,
tumor).

Mutations can be present in both normal and tumor samples or only in a tumor sample, thus they could be somatic or
germline. They can not be germline and somatic at the same time, so we implemented the additional condition Add
(10) for microindels.

fgermline(tumor) = fgermline(normal)⊕ fsomatic(normal, tumor) (10)

The next step is to define the domain of composite relation for sets (BWA, SU, Si, GNi, GTi) and
(BWA, SU, Sd, GNd, GTd). Firstly, Ci,1 = BWA and Cd,1 = BWA. Three tools use BWA output. We choose
relations Si ∩ (GTi ∩GNi) ∩ SU and Sd ∩ (GTd ∩GNd) ∩ SU . So,

Ci := (BWA ∩ Si ∩ (GTi ∩GNi) ∩ SU) ∩Add,Cd := (BWA ∩ Sd ∩ (GTd ∩GNd) ∩ SU) ∩Add (11)

Generated input files are based on biological genomes stored in files and represent normal and tumor tissues. We can
use all possible inputs to test BWA if they are generated for genomes similar to the reference. However, from these
possible inputs, we can only use ones with sequentially added independent mutations to test Strelka2 and Sequenza. So,
they are appropriate inputs for the system and the domain for the composite relations.

6
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4.2 Experiment configuration

We implement the proposed composite relation described in Section 4.2. Our generator shown at Fig. 3 creates tests in
two steps. First, it generates a configuration file that describes all mutations used in this test. It generates mutations
randomly and uniformly with parameters described in the Table 1. Then generator sequentially selects subsets of
mutations and composes a configuration file for each test input. After that, it adds mutations into the reference genome
and uses an instrument InSilicoSeq to generate data. Every test series contained 9 inputs.

Figure 3: The pipeline of the computational experiment. Test cases were composed by generator, then InSilicoSeq
emulated sequencing process, and BWA, Strelka2, and Sequenza-utils analyzed produced data.

Instrument InSilicoSeq generates data according to the probabilistic error model. This model emulates a real sequencing
process which is very complicated. Generated reads can cover the genome non-uniformly and do not cover some
random parts. Also, reads which cover ends of the genome are noisier. So, generated data often violate the relations.
Thus, we test if the proposed relations can detect failures.

We generate two test groups. We add microindels-insertions in the first and microindels-deletions in the second, and
we add large-scale insertions in both of them. We implement large-scale insertions as sequential duplications of the
genome segment. All test cases are constructed according to the composite relation.

We use Carsonella ruddii genome Riley et al. (2017) for the experiment. We divide it into disjoint segments and place
microindels and large-scale insertions into them. Each segment contains mutations of one type to avoid interactions.
We add germline mutations to both normal and tumor genomes and add somatic mutations to the tumor genome only.

We checked relations for the Strelka2 according to the values of the POS, REF, ALT columns in the output VCF file.
We considered each file as a set of tuples (POS, REF, ALT), each tuple represents a mutation.

We use number of detected failures as a metric

failures(i) =

n∑
j=1

I(output(i, j) 6⊆ output(i, j + 1)

ni − 1
, (12)

where output(i, j) is an j test output for i test case, ni is the number of test inputs in i test case. This metric shows
how many mutations can be not found during the subsequent test execution.

Table 1: Execution parameters

Parameter value Parameter value
Indel probability 0.0005 Copynumber probability 0.001
Minimum indel size 1 Maximum indel size 50
Minimum duplication size 5000 Maximum duplication size 10000

We check Sequenza-utils outputs visually. If the alteration appears on a certain position in a certain test, it should be
present in the same position in all the remaining tests in this set. An example is shown at Fig. 4. For this purpose, we
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considered the output value

depth_ratio(position) =
N(tumor)

N(normal)
(13)

where N(tumor), N(normal) are the number of reads that cover the considered position in the file with data for a
normal sample and a tumor sample, respectively. If we place a duplication of some part of the genome, depth_ratio
grows.

4.3 Results

Tables 2 and 3 present the results of our experiment. Table 2 represents the number of failed test cases and the
number of violated individual metamorphic relations being parts of the composite ones (BWA means BWA, SU
means Sequenza-utils,GT means Strelka2 - germline (tumor), GN means Strelka2 - germline (normal), S means
Strelka2-somatic(normal, tumor), Add means additional relation (10).

The experiment shows that all the composite relations are false. The input data contain errors because it is generated
according to the sequencing model with noise. That means that the proposed composite relations are effective for error
detection. According to Table 2, the composite relations seem to be more effective than the individual ones.

Table 2: The number of failed test cases for different experiment configurations, and the number of failed checks of
individual relations in the composite one.

Failed tests BWA SU GT GN S Add
Ci 1.0 0.0 0.0 1.0 0.75 0.13 1.0
Cd 1.0 0.0 0.0 0.88 0.88 0.25 1.0

Figure 4 contains a visualization of test outputs. Pictures a) and b) represent mutations found with Strelka2-germline: a)
in normal genome compared to the reference, b) in tumor genome compared to the reference. Picture c) represents
somatic mutations found with Strelka2-somatic. Picture d) represents copy number statistic. On a)-c) points represent
indels coordinates on the reference genome. On d) spikes of the statistic mean found duplications. According to the
proposed relations and corresponding generation of test sequences, if the mutation appears in a test, it should appear in
all the remaining tests in the sequence. There are some red points in the picture a) which violate the relation. Appendix
A contains more examples of false relations.

That confirms all the research questions.

Table 3 represents detected failures metric (12). The results mean that proposed metamorphic relations for components
are not always true. The degree of violating relations is different for the instruments. Also, the additional condition
Add seems to be more effective than other relations.

Table 3: Metric (12) for different experiment configurations.

Configuration GT GN S Add
Microinsertions 0.33 0.24 0.014 0.46
Microdeletions 0.35 0.32 0.028 0.47

4.4 Threats to validity

The main internal threat to validity is wrong assumptions about bioinformatics tools and misinterpretation of their
outputs. Another issue is that bioinformatics models are mostly probabilistic and usually have an acceptable error level.
So, proposed metamorphic relations may not be suitable, for real-life testing. That is the direction of future work.

5 Discussion and future work

The proposed method combines metamorphic-unit and integration testing during the test execution. Integration testing
often checks the most crucial system connections and compatibilities. Our approach can help to validate the inner
system properties and structures. Also, it can help to minimize the number of executions and automatize integration
testing.

8
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Figure 4: Visualization of experiment results.

For better testing automatization, it is necessary to develop novel methods for detecting potential metamorphic
relations for components and composite relations for the whole system. There can be complex relations between many
components that may not be connected directly, like an additional condition Add (10).

Besides the pipelines, there are many other complex software systems in real-life applications, which should also be
well-tested. So, an important issue is to develop integration testing methods for them. Moreover, it may be fruitful to
combine metamorphic testing with other approaches.

The proposed method is focused on the relations between system components’ inputs and outputs. However, it may also
be helpful to check relations between the system states and inner parameters. For example, if the system contains a
database, we can check its structure including schemas and data consistency during the execution.

A significant problem is not just to detect metamorphic relations but to select the most effective ones. So, the
development of selection methods is a perspective and challenging area of research, as it seems to be complicated for
huge systems with many different components.

Sometimes, composite relations may be cumbersome to construct and implement: systems can contain unstable
or mutable components; the system structure can change during the execution, for example, if a system uses code-
generation. The possible way is to calculate the metamorphic relations implicitly, for example, use asserts or checkpoints
in the code.

Of course, another interesting issue is the automatic construction of the composite metamorphic relations. For example,
it can be convenient for testers to acquire test cases from the formal text description of the system. Model-checking,
analysis of specifications, and some machine learning techniques may solve this problem.
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6 Conclusion

In this paper, we propose a novel approach for deriving composite metamorphic relations for a complex software system
from relations of individual components. We implemented a composite metamorphic relation in practice to detect
failures and tested a bioinformatics system. Our approach can be useful for testing scientific pipelines.

The composite relation allows checking many metamorphic relations with one test case. They can save time and
resources. Proposed relations helped us detect and correct fails in experiment source code. Also, they were easily
automated and useful to indicate misinterpretations and misunderstandings.

Whereas in this paper, we focus on exact relation, the scientific systems may employ stochastic algorithms and allow for
an appropriate error margin. Extension of the proposed approach to such relation could be a direction of future research.
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Figure 5: Examples of false relations.

In the picture a), red points and crosses represent microindels that violate the individual relation GNi.

In picture b), the spike of the statistic appears in only one test output.
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