
Data-driven approach to optimize the relative density in
additive manufacturing processes

Raphael Hartner∗
Simon Zigala∗

raphael.hartner2@fh-joanneum.at
simon.zigala2@fh-joanneum.at

University of Applied Sciences FH JOANNEUM
Kapfenberg, Austria

ABSTRACT
Additive manufacturing (AM) is a modern production technology
to manufacture complex designs which are otherwise impossible
to produce with conventional production technologies. However,
the inherently large number of influential parameters, such as layer
height and extrusion rate, lead to difficulties during the ramp-up
phase for new products until the optimal parameter combination is
found. Unfortunately, conventional techniques for optimization (e.g.
finite element analysis) are resource-intensive and mostly design
specific. Additionally, even though sophisticated methods from the
domain of machine learning can be utilized as well, to the best of
our knowledge, existing research largely focuses on in-situ process
monitoring or ex post quality inspection. However, these meth-
ods do not support the selection of suitable process parameters
in advance. Thus, a combined methodology consisting of tradi-
tional aspects and machine learning is proposed. First, supposedly
influential factors are selected, a repeated factorial design of ex-
periments is conducted to generate high-quality data samples, and
the target value is measured. Second, the random forest algorithm
is utilized to determine the feature importance of each influential
factor. Third, the most relevant features are used to train several
machine learning models to predict the target quality characteristic.
Fourth, a repeated k-fold cross validation is employed to evaluate
the models, so that the best model can be selected in spite of the
small data set. This methodology was validated for the relative
density of extrusion-based AM parts. As it was shown, the best
model can reliably (R-squared of 0.92) predict the relative density
purely based on process parameters. Consequently, the resulting
model can be utilized to support an efficient ramp-up phase and
future work can focus on extending the methodology for other AM
technologies and quality characteristics.
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1 INTRODUCTION
Additive manufacturing (AM) represents a modern production tech-
nology from the group of prototyping [2], with which physical
components are generated through layer-by-layer material applica-
tion. In contrast to conventional, mostly subtractive manufacturing
technologies, such as turning, milling or drilling, no material is
removed from existing solid parts, but is usually applied without a
geometrically defined tool shape. The volume of a component is
created by iteratively joining horizontal material layers in X- and
Y-direction to form volume elements in the Z-direction. The hyper-
nym additive manufacturing combines different processes which
are based on the same manufacturing principle of layer-by-layer
material application, but which differ from one another in terms
of the specific procedure. Depending on the process type, the raw
material is either in a solid (e.g. wire, powder, films, sheets), liquid
(e.g. viscous pastes, low-viscosity liquids) or gaseous (e.g. gasified
material) aggregate state [3].

Due to selective material application, one major advantage of
AM is that components can be deliberately underfilled (relative
density < 100 %), resulting not only in weight and cost advantages,
but also in accelerated production times. However, this approach
becomes problematic in the case of mechanically stressed structural
components. Compared with their fully filled counterparts, the
resistance against external forces is much lower with a relative
density below 100 % [18]. This is particularly critical in extrusion-
based AM processes such as fused filament fabrication (FFF), since
the deposition of material is based on tool paths in the X/Y and Z
directions. Thus, as shown in Figure 1, due to the characteristics of
the FFF technology, components are either unwillingly underfilled
(deadzones) or the geometrical accuracy is negatively influenced
by deliberately overlapping the paths (over-extrusion). In case of
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Figure 1: A: Deliberate over-extrusion (left) increases the relative density, but also influences the geometrical accuracy. Maxi-
mizing dimensional accuracy is inevitably accompanied by increased dead zones (right) [4].
B: Image taken with measuring microscope shows the material dead zones on the real printing part.

the latter, the AM part is physically strengthened, whereas the
geometric properties deteriorate.

Furthermore, due to its low level of technological maturity [9],
the industrial form of AM is a challenging field of activity that
requires an extended level of know how. Nevertheless, in the area of
end-use parts, customers generally place the same requirements on
AM parts as on classically subtractively manufactured components.
Therefore, companies focused on extrusion-based AM processes
face particular challenges, since in addition to basic quality factors,
such as geometrical accuracy and surface finish, the relative density
of the component is an important quality characteristic, as it has a
significant influence on the structural integrity of a part [19].

To ensure consistent quality characteristics (e.g. relative den-
sity), traditional methods (e.g. finite element analysis or design
of experiments) are often applied. However, associated costs and
design-specific results lead to additional challenges. Apart from
these traditional methods, machine learning approaches are success-
fully applied in additive manufacturing processes during or after
the process to determine the product quality [5, 16]. Nevertheless,
instead of focusing on an in-situ quality prediction, the following
work utilizes machine learning to predict quality characteristics
during the design stage, to reduce the number of faulty processes
in advance.

Thus, the following paper proposes a method for data-driven
modeling of the relative density and is structured as follows. Section
2 elaborates on related work, in particular on traditional methods
and machine learning approaches. In section 3 the methodology is
discussed in detail, whereas section 4 describes the experimental
setup. Afterwards, the results are shown and discussed in section 5
and the paper is concluded in section 6.

2 RELATEDWORK
2.1 Conventional methods
The complex customer requirements for additively manufactured
components usually lead to extended ramp-up phases and increased
time-to-market, especially in the course of new product develop-
ments. To increase efficiency, it is typically attempted to transfer
experience from already produced components to new designs.

However, this is usually only possible to a limited extent, especially
in the case of complex parts or different materials.

In the manual trial and error approach, attempts are made to
optimize the target variables (e.g. the relative density) by manually
adjusting printing parameters. This approach requires the operator
to have a high degree of expertise in the key production factors of
the manufacturing process, the material and the 3D printer itself. In
the course of the manual trial and error approach, an extensive pilot
series is usually produced, which are accompanied by correspond-
ing time and cost expenditures [19]. To systematize the attempts
of manual trial and error, the Design of Experiments (DoE) comes
into focus. It is an effective approach for maximizing the learning
effect while consciously limiting required resources. The combi-
nation of mathematics and statistics applied to the AM process
makes it possible to determine which controllable and uncontrol-
lable manufacturing parameters are influencing the process output
[14]. In addition to an experimental approach, numerical methods
can be applied. In particular, finite element analysis (FEA) is used
for complex components. FEA represents a numerical method for
determining approximate solutions of partial differential equations.
In the course of FEA, a complex solid body, is divided into a finite
number of trivial partial bodies (= finite elements). The behavior
of these simple geometries can be calculated, which finally leads
to insights about the behavior of the entire component. FEA is
used in additive manufacturing especially for strength and defor-
mation analyses, which are implicitly also related to the density,
and even for coupled thermomechanical and thermal analyses. The
application of numerical simulation methods makes it possible to
reduce repetitive, material-intensive experiments to a minimum.
However, numerical methods usually entail significant computa-
tional efforts in addition to high complexity, which means that
simulations can sometimes take days or even weeks. This fact often
limits the applicability of FEA in the context of AM [17].

2.2 Data-driven methods
Apart from conventional methods, such as FEA or DoE, which
require extensive resources, machine learning approaches are in-
creasingly used for applications along the entire AM process, from
the design stage to post-production quality inspection [12, 19]. In
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this regard, machine learning can be generally categorized in super-
vised, unsupervised and reinforcement learning, whereas the latter
is hardly used in the context AM. Supervised learning requires
training data consisting of input variables and associated output
values (labels) to train a model which can be used to predict the
target, such as the tensile strength. On the other hand, unsuper-
vised learning does not require labeled data, but identifies patterns
within the data without a given target variable. Consequently, the
effort for labeling the data set is reduced (or avoided) at the cost of
explicit information about the target variable [19].

Therefore, a combined approach utilizes the advantages of both,
supervised and unsupervised learning. In this regard, Gobert et al.
combined OTSU thresholding (unsupervised) with convolutional
neural networks (CNN, supervised) to detect porous areas in X-ray
computed tomography (XCT) images of metallic products produced
with metal powder bed fusion technology. Even though, this acceler-
ates and improves the quality inspection of produced pieces, the ex
post approach cannot mitigate faulty products [5]. Hence, as noted
by Li et al., an ex post quality inspection leads to unnecessary waste
in terms of time andmaterial in case of detected quality issues. Thus,
they introduced an in-situ detection for surface issues, whereas
several machine learning algorithms were evaluated. Additionally,
to reduce the number of features for the model, the importance
of each feature was quantified with the random forest algorithm.
In order to reduce the costs associated with each manufactured
product, the authors relied on synthetic data for training purposes
and only validated the models with 3D-scans of actual parts [10].

On the other hand, Shevchik et al. focused on in-situ prediction
of porosity based on acoustic emissions and a CNN. The data was
collected for one manufactured cuboid during a selective laser melt-
ing process, whereas the energy density was modified during the
process. Thus, a sufficient variation of acoustic signals paired with
porosity values were generated for training and testing purposes
[15]. Similarly, Khanzadeh et al. also proposed a method for in-situ
prediction of porous areas. However, in contrast to Shevchik et al.,
melt pool images in combination with XCT were used as input
for supervised learning techniques to predict porosity [8]. These
research articles demonstrate the wide range of suitable approaches
for predicting the same properties. Moreover, the same data source,
for instance XCT images, are used for predicting different proper-
ties as well. As shown by Snow et al., layer-wise XCT images as
input for a CNN model can also be used for in-situ detection of
internal flaws and prediction of the resulting fatigue performance
[16]. However, even though these in-situ applications of machine
learning models can be used to employ repair measures during
the process [16], they are unfit to optimize process parameters in
advance. This is particularly relevant during the ramp-up phase
of new AM products, in which the optimal parameters are usually
unknown. Importantly, the input variable for the actual machine
learning model are usually limited to sensor signals during the pro-
cess and neglect the overall process parameters [11, 15, 16]. Thus,
these approaches do not make use of a priori data and cannot be
used for selecting suitable process parameters in advance.

To address these issues, Jiang et al. trained and employed a ma-
chine learning model solely based on process parameters (extrusion
rate, print speed, layer height, line distance) to predict inner-line
connections. These connections were classified into 5 categories,

ranging from gaps between neighboring lines (paths) to overlapping
lines. The resulting model is used for selecting process parameters
before the production. However, no quantitative details were pre-
sented regarding the labeling process and the prediction was purely
used as an indicator for dimensional accuracy. Moreover, only one
repetition of the experiments was performed leading to potentially
biased results [7]. Thus, even though similar factors are relevant
for the relative density investigated in this paper, additional work
is required for a comprehensive methodology.

In particular, even though, porosity was investigated in sev-
eral studies, to the best of our knowledge, the relative density of
extrusion-based AM parts was not subject to any related research.
Moreover, the majority of literature sources is focused on in-situ or
ex post quality inspection, which cannot be used to optimize the
process parameters in advance. Hence, the methodology, elaborated
in the following section, addresses these research gaps.

3 METHODOLOGY
To address the shortcomings of related work, we propose to use
DoE as a conventional method, which is usually used for individual
process optimization, to generate the data base for training a ma-
chine learning model to predict quality characteristics of AM parts
before they are produced. In contrast to individual process optimiza-
tions based on a DoE, a ML model with generic input parameters,
for instance, layer height and extrusion width, can be applied for
different designs. Thus, the remaining part of this section elaborates
on the methodological steps.

3.1 Design of Experiments
Similar to related research [7, 11], a DoE is employed to generate
the data for training and validating the machine learning models. In
this regard, four process parameters were selected for investigating
their influence on the relative density of the final part. First, the infill
pattern, such as rectilinear or conical infill paths, is investigated
due to its impact on the calculated tool paths. Second, the layer
height (or thickness) describes the height of each single layer in the
production process. Third, the extrusion width represents the line
(or path) width, which is used to calculate the number and position
of individual paths in the slicer software. This value corresponds to
line distance [7]. The layer height, extrusion width and print speed
(statically defined in this work) are used by the slicer software to
calculate the extrusion rate (material flow). However, as fourth
investigated parameter, the extrusion multiplier is used to manually
adjust this extrusion rate, so that the calculated material flow is
either decreased (multiplier < 1.0) or increased (multiplier > 1.0)
depending on the extrusion multiplier. Consequently, in the case
of a multiplier larger than 1.0, potential dead zones between the
lines are (partially) filled while leaving the number and position
of individual paths as originally calculated by the slicer software.
In addition to these process parameters, the influence of the slicer
(methodology) used to generate machine code, itself is assessed as
fifth parameter, since it is the main component which calculates
the paths and extrusion rates. Moreover, due to its layer- and path-
based build up process, the influence of the geometrical features of
the product is investigated as sixth parameter. Particularly, since the
path of individual lines is affected by the geometry (sharp corners
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or large radius) which could lead to larger or smaller gaps between
paths.

3.2 Density Measurement
These six factors including their specific boundaries and instances
(see below) are used to conduct experiments as basis for the mea-
surements. In this regard, the density of each printed part can be
measured with the Archimedes principle, whereas the part weight
is measured in air and a defined liquid, so that the density of the
product can be calculated based on the known density of the liquid
at a known temperature and the difference in weight between air
and liquid measurements.

The calculated value represents the absolute density of the cor-
responding part, which is mainly influenced by the properties of
the filament. Thus, the relative density is of greater importance to
quantitatively determine what proportion of the ideal volume of
the product is filled with material. For that purpose, the absolute
density of the input raw material (filament) must be known or mea-
sured in advance. Consequently, the relative density in this work is
calculated as follows:

RD =
Mair /Videal

ρf il
=

ρpar t

ρf il
(1)

As shown by the equation, the relative density of the part RD is
calculated in relation to the measured density of the filament ρf il .
The density of the part ρpar t is calculated with the actual weight of
the product in airMair and the ideal volume of the design Videal .
As a result, RD can be interpreted as the degree to which the ideal
volume is filled with the filament. Thus, if an overlap, as defined
by Jiang et al. [7], occurs, the RD could exceed 100 %, meaning that
the dimensional accuracy is not guaranteed.

As an alternative, the RD of the product could be calculated on
the basis of the actually measured volume (through the Archimedes
principle), which yields the degree of filled volume in relation to the
overall volume including overflows. Consequently, the RD based
on the actual volume cannot exceed 100 % and therefore, cannot be
used to infer issues regarding overflows in the production process.
Thus, the remainder of this work is focused on RD calculated based
on the ideal volume of the part.

3.3 Data Preparation and Feature Selection
Preparing the data for later usage consists of two main steps. First,
concerning categorical features, such as the slicer software, part
geometry and infill pattern, are one-hot encoded, so that the in-
formation can be properly accessed by subsequent processes. Con-
sequently, each category within the respective categorical feature
is transformed into a boolean feature indicating if this particular
category is present. Thus, a three-level categorical feature is repre-
sented with three individual boolean columns. Second, to ensure
each numerical features are equally considered in subsequent pro-
cesses, z-normalization is applied to transform each feature on the
same scale.

To determine the actual relevance for each considered parame-
ter (see above), the random forest feature importance is used. As
described by Li et al., this approach is based on the characteristic
of the random forest algorithm, which creates several uncorrelated

decision trees to train the overall ensemble model. Thus, the non-
linear importance of each feature can be calculated based on all
individual decision trees [11]. As a consequence, selecting a subset
of features simplifies the model complexity and also leads to new
insights regarding the influential factors.

3.4 Machine Learning Algorithms and
Validation

To create an adequate model for predicting the relative density
based on process parameters, several machine learning algorithms
are evaluated. First, the random forest algorithm as an ensemble
method consisting of a number of individual decision trees is used
for feature selection on the one hand and on the other hand also for
training a predictive model. Second, a decision tree model is trained
on the data to have a direct comparison of one individual tree model
and the random forest ensemble. In this regard, a decision tree is
iteratively build, so that each fork within the tree maximizes the
information gain. Interestingly, each prediction within the deci-
sion tree can be directly explained by the model, so that a user
can interpret the result in greater detail [13]. Third, a regularized
ridge regression as representative for linear models is considered.
This specific algorithm imposes a penalty on the sum of squared
coefficients, which leads to smaller coefficients and a more robust
regression [6].

The evaluation of the machine learning models is conducted
with k-fold cross validation, to reduce the bias originating from
the train-test split. Consequently, several (k) train-predict-evaluate
cycles are executed, whereas the train and test data are different for
each run ensuring that each data sample was at least once used as a
training and test sample. The final evaluation score is calculated as
the average of all individual cycles [20]. In this regard, as suggested
by Chicco et al., the R-squared error metric is used to evaluate the
machine learning models, whereas the following formula is used
for calculating the score [1]:

R2 = 1 −
∑N
i=1(y

obs
i − y

pred
i )2∑N

i=1(y
obs
i − ȳi )2

(2)

The observed (true) target values are represented by yobs and the
predicted values of the model by ypred . Additionally, ȳ denotes the
mean of observed values, whereas N indicates the number of values
for both yobs and ypred . As the formula shows, possible values for
the R-squared score range from minus infinity to 1.0, meaning a
perfect model fit.

4 EXPERIMENTAL SETUP
To train and evaluate the machine learning models an adequate data
set is required. For this purpose, a DoE is set up based on 6 influential
factors described above. Thus, each factor is associated with either a
list of options or min/max boundaries. To investigate the influence
of geometrical features, three conceptionally different products, a
cuboid (l=40 mm, w=20 mm, h=30 mm), a cylinder (h=30 mm, r=20
mm) and a cone (h=30 mm, r=20 mm), are produced. Moreover, two
slicer software solutions – Cura and Simplify – are considered for
these experiments. Since the infill pattern mainly determines the
paths of the infill, two different patterns are evaluated. On the one

60



Data-driven approach for AM process optimization ICCTA 2022, May 12–14, 2022, Vienna, Austria

Table 1: Parameters including values and boundaries for the DoE

No. Parameter Min. value Max. value Options

1 Part geometry - - Cuboid, Cylinder, Cone
2 Slicer software - - Ultimaker Cura, Simplify3D
3 Infill pattern - - rectilinear, conical paths
4 Layer height 0.05 mm 0.3 mm -
5 Extrusion width 0.6 mm 1.0 mm -
6 Extrusion multiplier 1.0 1.15 -

Table 2: One-fourth fraction experimental design for factors 2-6.

No. Slicer Infill pattern Layer height Extrusion width Extrusion multiplier

1 Simplify rectilinear 0.6 0.3 1.15
2 Simplify rectilinear 1.0 0.3 1.0
3 Simplify conical 0.6 0.05 1.15
4 Simplify conical 1.0 0.05 1.0
5 Cura rectilinear 0.6 0.05 1.0
6 Cura rectilinear 1.0 0.05 1.15
7 Cura conical 0.6 0.3 1.0
8 Cura conical 1.0 0.3 1.15

hand, a rectilinear pattern leads to layer-wise alternating diagonal
lines. On the other hand, a conical pattern fills each layer from
the outside to the inside in conical paths. These categorical factors,
in addition to the min/max values for the numerical factors are
summarized in Table 1.

Due to the high costs, in particular regarding required produc-
tion time, the number of experiments is significantly reduced with
a one-fourth fraction factorial experimental design. However, this
configuration is only used for the factors 2-6, whereas each experi-
ment is conducted for all geometries. These specifications, as shown
in Table 2, are produced three times to reduce the bias of individual
runs. As a result, the total number of experiments is reduced from
288 to 72.

The experiments are conducted on an industrial 3D-printer
(HAGE140L) with an ABS-filament from Form Futura (TitanX, di-
ameter of 1.75 mm). Since the density of the filament is not known
in detail, but is required for the calculation of the relative density,
the filament density ρf il is measured, whereas 15 samples of 5
cm each were collected from three independent filament spools.
The resulting mean density of 1.1347 g/cm3(std=0.00812) is used
for further calculations. The measurements of both, the filament
and the produced parts, are conducted with a precision balance of
Mettler Toledo. In this regard, two measurements were performed
for each product to reduce the bias of individual results.

The software implementation for preparing the data, selecting
the features, and training as well as evaluating the machine learning
models is based on Python 3.9.5 and scikit-learn 0.24.2. Additionally,
the following specification for the machine learning algorithms
were used:

• Random Forest: number of estimators=100, no limit regard-
ing the depth of individual trees

• Decision Tree: no limit regarding the tree depth

• Ridge Regression: regularization strength alpha=1.0

5 RESULTS & DISCUSSION
After the printing experiments are conducted, the weight of every
individual part is measured and the relative density is calculated.
The resulting values are used as targets in the features selection
phase. Accordingly, the six considered factors (described above)
are prepared (one-hot encoding, z-normalization) and included as
input features for the random forest training process. As a result,
the relative importance (sum of individual importance is 1.0) for
each feature is shown in Figure 2, whereas the categorical values
are included as one-hot encoded boolean features, leading to a total
of 10 explanatory variables.

As depicted by Figure 2, the extrusion multiplier is the most
influential factor for predicting the relative density. Additionally,
the extrusion width and the slicer software (Simplify, Cura) have a
notable impact on the prediction. Importantly, the significant influ-
ence of the slicer software implies that both investigated solutions
employ different slicing methodologies to generate the commands
for the printer (g-codes). However, the three remaining factors
(layer height, geometry, infill pattern) are neglectable for the rel-
ative density. As a consequence, the three most relevant factors
are considered for training the machine learning models and eval-
uation process. Only one ("Slicer - Cura") of the one-hot encoded
slicer features is included, since the boolean characteristic leads to
mutually exclusive features, meaning that only one of them can be
true for a given data entry. Thus, no information is added when
both, instead of one, one-hot encoded features are considered.

Based on a repeated 10-fold cross validation all three machine
learning models are trained on a sub-set of the experimental data
and evaluated on the remaining samples (90 % training, 10 % test).
Hence, the R-squared score is calculated for each test set, resulting
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Figure 2: Relative importance for each feature for predicting the relative density.

Table 3: Results of 10-fold cross-validation randomly repeated 10 times based on the R-squared error metric.

Algorithm Count Mean Std. Min. 25 % 50 % 75 % Max.

Random Forest 100 0.918 0.068 0.613 0.900 0.933 0.962 0.987
Decision Tree 100 0.918 0.068 0.609 0.900 0.931 0.963 0.988
Ridge Regression 100 0.442 0.316 -1.134 0.418 0.533 0.628 0.723

in 100 individual scores (10 repetitions). As shown in Table 3, the
overall mean R-squared score of 0.918 is equal for both, the random
forest and the decision tree model. Therefore, the additional com-
putational costs and complexity due to the ensemble approach of
the random forest algorithm does not lead to quantifiable improve-
ments.

The ridge model performs significantly worse with an average
score of 0.442, whereas even the maximum R-squared score of
0.72 remains below the 0.25 % quantiles of its non-linear counter-
parts (0.9), thus, implying that certain non-linear dependencies are
present within the experimental data, which cannot be represented
with a linear model. Even though the mean R-squared score for
both, the random forest and the decision tree model, indicate a
good model fit, the detailed statistical values, in particular the gap
between the minimum score (0.61) and the 25 % quantile (0.9), reveal
that some dependencies within the data are not accounted for.

6 CONCLUSION
Due to a large number of influential parameters, it is inherently
difficult to determine the optimal production parameters for addi-
tive manufacturing processes. This leads to complex dependencies
and difficulties during the ramp-up phase for new products until
the optimal parameter combination is found to ensure consistent
quality.

In particular for extrusion-based technologies, such as FFF, the
relative density is often one of themain quality characteristics. Even

though, conventional techniques, such as FEA and DoE, are used for
optimizing AM processes, theses approaches are resource-intense
and typically design-specific, so that the results are only suitable for
individual designs. In contrast to that, data-driven methods based
on generic input features, such as vibration data or layer height,
offer interesting results for large-scale applications.

Consequently, a methodology, consisting of a DoE for data gen-
eration, measuring and calculating relevant target values, feature
selection, machine learning models and cross-validation, was pro-
posed for predicting the relative density. For the DoE, six suppos-
edly influencing factors, such as geometrical features and extrusion
width, were considered and a one fourth fraction factorial test
design was performed to decrease the number of experiments. Af-
terwards, the input factors and the target values (relative density),
were utilized during the feature selection process to determine the
relative importance of each feature with the random forest algo-
rithm. It was found, that layer height, geometrical features and
infill patterns are of minor relevance for predicting the relative
density. Thus, only the extrusion width and multiplier as well as
the used slicer software were included in the training and validation
procedure for the machine learning models. In this regard, three
algorithms – random forest, decision tree and ridge regression –
were evaluated on the mean R-squared score, achieved in a 10-fold
cross-validation, which was randomly repeated 10 times.

As a result, both, the random forest and the decision tree model,
learned the non-linear dependencies within the data and proved
to be applicable with an average R-squared score of 0.92. Thus,

62



Data-driven approach for AM process optimization ICCTA 2022, May 12–14, 2022, Vienna, Austria

the proposed methodology for predicting the relative density of
extrusion-based parts was validated and is suitable to be applied
during the ramp-up phase for new designs to increase the effi-
ciency. However, some dependencies are not accounted for, since
the minimum R-squared score is 0.61 for both models, indicating
that additional work is required for training a robust model. More-
over, several future research directions are determined based on the
results of this work. On the one hand, an extension and validation
of the methodology for other quality characteristics, such as surface
roughness or warping degree, as well as other AM technologies
is necessary to create a holistic methodology for optimizing AM
processes. On the other hand, an active learning procedure, which
recommends the next best experiment for the current model status,
can reduce the number of required experiments, while retaining the
effectiveness. Additionally, the methodology for predicting the rela-
tive density can be adapted and used as an indicator for dimensional
accuracy, similar to Jiang et al. [7]. Furthermore, combining ex ante
and in-situ approaches to create an overall AM quality framework,
could increase the applicability of AM process in general.
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