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ABSTRACT
Vehicle Routing Problems (VRP) are of significant practical impor-
tance for many logistic applications, including disposal of waste.
Many methods, mostly heuristics, have been proposed for (approx-
imately) solving such problems. In this article, we explore a class
of physically inspired approaches, which can be interpreted in an
electrostatic or a thermal framework.

First, the approaches are been formulated in the continuum,
where molecular dynamics methods are available. While the ap-
proach works in principle, it faces several problems (like orbits
arising from angular momentum conservation) and thus is likely
to be not very efficient. Therefore, we study a similar setup on a
graph, where most of these problems do not arise in the first place.
We compare results of agent-based simulations with results ob-
tained with Simulated Annealing, as one of the standard heuristic
approaches to the VRP.

While, in a first test, the well-established Simulated Annealing
method performs better than the proposed method, the results are
not far off, and in special situation (in particular for very large
systems) the latter may actually be preferable.
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1 INTRODUCTION
1.1 The Vehicle Routing Problem
The Travelling Salesman Problem (TSP) is a famous problem of
combinatorial optimization. Finding the optimal round trip con-
necting N cities, visiting each city exactly once, has a computa-
tional complexity of O ((N − 1)!), which quickly defies brute-force
approaches.

Heuristic approaches, including Simulated Annealing [9], Tabu
search [3, 4] and genetic algorithms, however, have been success-
fully applied to this problem and typically yield satisfying (though
not necessarily optimal) solutions with moderate computational
effort [14]. The generalization of the TSP is the Vehicle Routing
Problem (VRP) [1]. The VRP pursues the same goal but, with the dif-
ference that several routes are allowed to cover all cities. Moreover,
each city has a certain demand of goods which must be fulfilled.

Problems of this type also arise in the field of waste disposal, and
realistic setups have been studied by the authors in cooperation
with pink robin gmbh, which offers a waste disposal service for
construction sites on www.wastebox.biz. Due to various constraints
like desired time windows, service times, capacity of the vehicles,
dependency of possible disposal sites on the type of waste, special
restrictions for dangerous wastes, this is an extremely complex
problem.

For the current article, the problem is radically simplified to the
task of picking up some goods at sources and delivering them to
sinks (dumps), without further constraints.

1.2 Physical Analogies
In many cases, optimization problems can be solved by invoking
analogies from physics, with Simulated Annealing and Simulated
Tempering being particularly successful examples for this [2]. Often,
magnetic analogies are used, and important models from computa-
tional intelligence has turned out to be equivalent to established
physical models for magnetism. For example, Hopfield networks are
equivalent to the Ising model for zero temperature [6, 10]. Also the
VRP can be approached by using magnetic analogies [7, 8]. There
are, however, physically inspired approaches from other fields that
might be used for solving versions of the transport problem.

• Electrostatic model: In this picture, the sources are modelled
by static positive charges, the sinks by static negative ones.
Transport vehicles are treated as negatively charged when
empty (thus being attracted by the sources and repelled by
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the sinks) and positively charged when loaded (attracted by
sinks and repelled by sources).
• Thermal model: Here, the sources are interpreted as heat
sources (with source strength proportional to the remaining
load) and the sinks as heat sinks. Transport vehicles are
heat-seeking when empty and heat-avoiding when loaded.
In contrast to the electrostatic model, there is no interaction
between individual trucks.

Both models are to be supplemented with forces confining the
vehicles to some finite space and can be enhanced with additional
forces, as it will be discussed in Sec. 2.2.

1.3 Structure of the Article
After the introduction given in Sec. 1, we discuss the physical
foundations in Sec. 2.1 and the continuous electrostatic problem in
Sec. 2.2. The general translation to a network model is discussed in
Sec. 3.1, the model implementation in Sec. 3.2. Simulation results
and a comparison to a Simulated Annealing approach are given
in Sec. 3.3. The article concludes with summary, conclusions and
outlook, given in Sec. 5.

2 CONTINUOUS SETUP
2.1 Physical Foundations
Poisson’s equation that governs the electrostatic potential Φ in the
presence of a charge density ϱel,

∆Φ(x) = −
ϱel(x)

ε
(1)

is an elliptic partial differential equation (PDE) and formally equiv-
alent to the static limit t →∞ of the heat equation for temperature
T in the presence of fixed heat sources/sinks with density ϱth

∆T (x , t) −
1
a

∂T (x , t)

∂t
= −

ϱth(x)

a cvol
, (2)

with ε , a and cvol denoting material-dependent constants (electro-
static permittivity, thermal diffusivity and volumetric heat capacity).
∆ denotes the Laplace operator, i.e. the rotationally invariant gener-
alization of the second derivative. AssumingM fixed point charges
Qi at positions pi and N mobile charges qj at positions x j = x j (t)
yields a charge density

ϱel(x , t) =
M∑
i=1

Qi δ (x − pi ) +
N∑
j=1

qj δ
(
x − x j

)
, (3)

formally written that way using the Dirac delta functional δ . The
resulting potential for D = 3 dimensions is given by

Φ(x , t) =
1

4π ε

M∑
i=1

Qi
∥x − pi ∥

+
1

4π ε

N∑
j=1

qj

x − x j

 (4)

and the corresponding electrostatic force on the kth vehicle is given
by

F (k )el =
qk
4π ε

©­«
M∑
i=1

Qi
xk − pi

∥xk − pi ∥
3 +

N∑
j,k

qj
xk − x j

xk − x j

3 ª®¬ (5)

In general, in D dimensions one finds a power law F ∝

xk − x j

−D (xk − x j ) for the force stemming from a single charge

at position x j , corresponding to the geometric dilution.1 Such a
simple analytic form for the resulting force is not available for the
time-dependent thermal setup described by (2). This formulation,
however, is well-suited for treatment on a network, as discussed in
Sec. 3.

2.2 Continuous Electrostatic Problem
The setup of a simulation essentially based on (5) is straightforward
and can make use of well-established methods from classical molec-
ular dynamics simulations, e.g. use of velocity-verlet or leap-frog
algorithms [11], [13, Ch. 7].

In addition to the electric forces, boundary forces have to be
introduced to confine the moving particles to a region close to the
charges. The most obvious choice for this is a harmonic oscillator
potential, which leads to linearly rising forces,

Fharm,i (x) = −k (xi−xright,i )Θ(xi−xright,i )−k (xi−xleft,i )Θ(xleft,i−xi ),
(6)

written with the Heaviside step function Θ, a spring constant k > 0
and with [xleft,i , xright,i ] as the main interval for the coordinate xi .

2.3 Extensions and Modification
The basic setup given by (5) and (6) can be extended or modified in
several ways:
• Since the objective is not a realistic physical description of a
system, the exponents of forces could be generalized. Also a
cutoff distance could be introduced (which is common for
rapidly decaying potentials like Lenard-Jones [11, Sec. 2.2],
but is usually not applicable to the physical modelling of the
long-range Coulomb interaction).
• An artificial increase of the “radiative power” of a positive
charge that has not been visited for a while can help to
attract negative charges. This becomes particularly relevant
if a positive charge (source) is surrounded and thus screened
by several static negative charges (sinks).
• Frictional forces can be introduced. A standard way is New-
tonian friction

Ffric(v) = −γ ∥v ∥ v, (7)

which can be modified to set in component-wise only above
some threshold velocity vlim,

Ffric,i (v) = −γ (∥v ∥ −vlim)
2 Θ(∥v ∥ −vlim)

vi
∥v ∥
. (8)

• Small stochastic forces, modelling the effect of a heat bath,
can by useful by eliminating situations, where a truck is
stuck in an unstable equilibrium. By introducing such forces,
however, determinism is lost, and a statistical analysis of
several simulation runs is needed in order to make sound
statements about the quality of the approach.

2.4 Preliminary Impressions
Simulation studies show that in general the straightforward electro-
static method is not very efficient in solving the VRP. In particular,
the setup is often “too physical”, i.e. angular momentum effects
1Note that this is obtained in an instantaneous approximation. In general, moving
charges would require the treatment of retardation effects. This effect, however, is
negligible for velocities far smaller than the speed of light.
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Figure 1: Screenshot of a typical simulation run, showing
also one of the typical orbits that can form in the pro-
cess. Sources are positively charged, sinks negatively, while
trucks can be either. For the trucks, the trajectories of the
last few timesteps are shown aswell. For this simulation run,
only for low friction forces and a moderate increase of ra-
diative power, as described in Sec. 2.3 have been used. The
size of the positive charges is enlarged proportional to this
increase.

create orbits, which in turn prevent a mobile charge from reaching
a static attractive charge. Such a case is shown in Fig. 1.

This effect can be largely eliminated by sufficiently strong fric-
tional forces like (7) or (8) for small values of vlim). Too much
friction, however, slows down the whole process; thus, some bal-
ance has to be found. The increase of radiative power, while often
useful, can also lead to situations where the positive charges exert
repulsive forces too strong to be overcome by attraction. In this
case, the positively charged trucks are pushed into the boundary
regions and are unable to ever reach the sinks an unload.

Hyperparameter tuning is expected to yield a viable, maybe even
efficient method for the continuum. This line of research, however
is still work in progress, thus we will not further elaborate on
this in the current article. Instead we move to the – in general
more relevant – setup on a discrete network, where most of these
problems do not exist in the first place.

3 SETUP ON A DISCRETE NETWORK
3.1 General Considerations
The thermal version of the model is composed of nodes that act
as heat sources, nodes that act as heat sinks, intermediate nodes
and links, through which the heat flows according to the Fourier
law. Each node is characterized by source and sink fluxes ÛQin and
ÛQout and the thermal storage capacityCi The thermal energy (very
roughly the “heat”, more precisely the enthalpy)Hi stored at a node
i is governed by the differential equation

dHi
dt
= ÛQin,i − ÛQout,i −

∑
j ∈Γ(i)

ÛQi→j (9)

where Γ(i) denotes the set of all neighbours of i .
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Figure 2: Heat flow in an exemplary network: Temperatures
T1 = T+ and T5 = T6 = T− are held fixed (by implicitly as-
suming source and sink heat flows ÛQin,i and ÛQout,i ) while the
other temperatures Ti are calculated from the thermal en-
ergy Hi according to eq. (10). The temperature differences
result in heat flows ÛQi→j = ÛQ j←i , determined by eq. (11),
which in turn can change the energy content and thus the
temperature of intermediate nodes.

The temperature at the node is given by

Ti = T (Hi ) = T0 +
Hi
Ci

(10)

with T (H =0) = T0, an arbitrary, but universal offset. Thermal
flow through a link i → j with length ℓi, j , connecting nodes with
temperatures Ti and Tj , is given by

ÛQi→j = −
1
R

∆Ti, j

ℓi, j
with ∆Ti, j = Ti −Tj , (11)

where R is a resistance parameter. In the thermal context one has
R = 1

λA with the thermal conductivity λ and the section area A
(assumed to be constant).

If no node is permitted to act both as source and sink (as it is
reasonable for application to the transport problem), the situation
can by simplified by making input and output flows implicit, as-
suming all source nodes to have a constant temperature T+ and
all sink nodes a constant temperature T− with T− < T+ (heat bath
approach). All intermediate nodes i will than assume some temper-
ature Ti which fulfills T− < Ti < T+. This is illustrated graphically
in Fig. 2.

In the context of transport, the resistance R in eq. (11) can be
interpreted as the reciprocal average traffic velocity vi→j ,

ÛQi→j = −vi→j
∆Ti, j

ℓi, j
= −
ℓi, j

ti→j

∆Ti, j

ℓi, j
= −

∆Ti, j

ti→j
. (12)

Assuming symmetry, ti→j = tj→i =: ti, j , the heat flow is char-
acterized only by the temperature difference ∆Ti, j between the
connected nodes and the time ti, j needed to travel the link or –
assuming all travel velocities to be equal –, simply the link length
ℓi, j .

In this case, at node i , the heat-seeking particles move in the
direction of steepest ascent, i.e. choose as next node j the one which
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maximizes the directional temperature derivative
∆T

∆ℓ
=
Tj −Ti

ℓi, j
(13)

and heat-avoiding particles choose the node that minimizes it. At
sources or sinks, the particles load or unload and consequently
change their characteristics. Assuming a static situation, any ascent
or descent route will end after a finite number of steps at a source
or sink, since no local extrema can occur. If sources are removed
by the loading process, temporary local maxima can form, but will
be eventually eliminated again by the resulting heat flows.

When only considering the static limit, the system essentially
is reduced to a set of (typically sparse) linear equations for the
temperatures at the nodes. This system can be solved directly, but
also – somehow better suited to an agent-based approach – itera-
tively by repeatedly re-determining node temperatures as weighted
sum of the neighbour temperatures. As an example, for the simple
system depicted in Fig. 2, one obtains a partially decoupled system
of equations (

1
ℓ1,2
+

1
ℓ2,5

)
T2 =

T+
ℓ1,2
+

T−
ℓ2,5

(14)(
1
ℓ1,3
+

1
ℓ3,4
+

1
ℓ3,5
+

1
ℓ3,6

)
T3 −

1
ℓ3,4

T4 =
T+
ℓ1,3
+

(
1
ℓ3,5
+

1
ℓ3,6

)
T−

(15)

−
T3
ℓ3,4
+

(
1
ℓ3,4
+

1
ℓ4,6

)
T4 =

T−
ℓ4,6
. (16)

3.2 The Model
The model is implemented in NetLogo, a widely used agent-based
software [15, 16]. The Interface of the model can be seen in Fig. 3.
An agent-based Simulated Annealing algorithm was additionally
implemented in NetLogo to be able to evaluate the performance
and the results of the physical inspired model. To ensure a valid
comparison between those two models, a separate file was created
which generates the road network.

3.2.1 Initialization of the road network: The road network consist
of undirected links representing the streets and “turtles” (agents),
which represent the places. Further, a variable was introduced
to define the number of links this node adds to the network. To
make the network as realistic as possible, each link is assigned a
driving-duration which acts as a weight. These driving dura-
tions are calculated with a normal distribution, where mean and
standard deviation can be set manually, with non-positive values
being rejected.2

In addition, trucks, dumps and containers, which are represented
by turtles, were randomly distributed over the places in the network.
Moreover, it is ensured that trucks and dumps are not assigned to
the same place. The nw extension [15] has been used to save the
created network with the dependencies between turtles and links.

3.2.2 Setup: In terms of a diffusion process in the previously cre-
ated road network, places with containers and dumps and places
without them are assigned a temperature. Each place with a con-
tainer or a dump gets a constant temperature which can be adjusted.
2A more consistent approach would be to draw the durations from a gamma distribu-
tion, but for practical tests, this makes little difference for the resulting problems.

The other places obtain their temperature according to equation (13)
and (14)-(16). The excerpt of the NetLogo code for the calculation
of the temperatures is:
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and (14)-(16). The excerpt of the NetLogo code for the calculation
of the temperatures is:
ask places with [ not any? dumps-here and not any? containers-here ][

let actual-location one-of places-on self
ask places with [ link-neighbor? actual-location ][

set neighbor-temperature (temperature - [ temperature ]
of actual-location) / [ driving-duration ] of street
([ who ] of one-of places-on self) ([ who ] of actual-location)

]
set temperature-temp sum [ neighbor-temperature ] of places with
[ link-neighbor? one-of places-on myself ]
/ sum [ reciprocal-driving-time ] of places with
[ link-neighbor? one-of places-on myself ]

]
ask places with [ not any? dumps-here and not any? containers-here ][

set temperature temperature-temp
]

For each truck the attribute loaded? is set to false indicating that
all trucks are empty at the beginning of the simulation. Additional
lines of code are introduced for traceability and the debugging
process.

3.2.3 Go Procedure: The goal is to navigate the trucks to the con-
tainers and dumps based on the temperature distribution in the
network. The direction of the truck is determined by the tempera-
tures in neighbouring places. If a container is assigned to the truck
(i.e. if loaded? is true), the next node is the one with the minimum
temperature. If, however, the truck is empty (i.e. loaded? is false),
it will move towards the maximum temperature. The calculation
of the respective temperatures, in the adjacent places is based on
the formula (13), where li, j describes the driving-duration of the
links. This step is enabled by the following lines of code:
let actual-location one-of places-on self
move-to max-one-of places with [ link-neighbor? actual-location]
[ (temperature - [ temperature ] of actual-location) / [ driving-duration ]

of link-with actual-location ]
]

After each time step, a new diffusion process is started to adapt
the temperature. When a loaded truck arrives at a dump, the
loaded? status is set to false. Similarly, when an unloaded truck
arrives at a container place the loaded? status is set to true. As
soon as all containers have been picked up and the vehicles are no
longer loaded, the algorithm stops.

3.2.4 Simulated Annealing Algorithm. In the first step, a route with
the starting point is initialized for each vehicle. Based on this in-
formation the container places and the corresponding dump places
is added to the route of the nearest truck. In the go procedure,
randomly chosen containers from randomly chosen trucks are ex-
changed to improve the solution. The temperature is reduced expo-
nentially, T → qT with a cooling-rate q ∈ (0, 1).

3.2.5 Simulation Comparison. To enable a fair comparison, both
models are loaded in the initialization model with the Level Space
extension [5]. The respective parameters in the two separate mod-
els are set in the initial model and can therefore be passed on with
the Level Space extension. This method ensures the centrally set-
ting of all parameters, which provides the basis for application of
Behaviour Space framework (integrated in NetLogo).

3.3 Simulation Results and Comparison
For a sound comparison of the two models, two different simula-
tions (settings I and II) have been carried out:

For each truck the attribute loaded? is set to false indicating
that all trucks are empty at the beginning of the simulation. Addi-
tional lines of code are introduced for traceability and the debugging
process.

3.2.3 Go Procedure: The goal is to navigate the trucks to the con-
tainers and dumps based on the temperature distribution in the
network. The direction of the truck is determined by the tempera-
tures in neighbouring places. If a container is assigned to the truck
(i.e. if loaded? is true), the next node is the one with the minimum
temperature. If, however, the truck is empty (i.e. loaded? is false),
it will move towards the maximum temperature. The calculation
of the respective temperatures, in the adjacent places is based on
the formula (13), where li, j describes the driving-duration of the
links. This step is enabled by the following lines of code:
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maximizes the directional temperature derivative
∆T

∆ℓ
=
Tj −Ti

ℓi, j
(13)

and heat-avoiding particles choose the node that minimizes it. At
sources or sinks, the particles load or unload and consequently
change their characteristics. Assuming a static situation, any ascent
or descent route will end after a finite number of steps at a source
or sink, since no local extrema can occur. If sources are removed
by the loading process, temporary local maxima can form, but will
be eventually eliminated again by the resulting heat flows.

When only considering the static limit, the system essentially
is reduced to a set of (typically sparse) linear equations for the
temperatures at the nodes. This system can be solved directly, but
also – somehow better suited to an agent-based approach – itera-
tively by repeatedly re-determining node temperatures as weighted
sum of the neighbour temperatures. As an example, for the simple
system depicted in Fig. 2, one obtains a partially decoupled system
of equations (

1
ℓ1,2
+

1
ℓ2,5

)
T2 =

T+
ℓ1,2
+

T−
ℓ2,5

(14)(
1
ℓ1,3
+

1
ℓ3,4
+

1
ℓ3,5
+

1
ℓ3,6

)
T3 −

1
ℓ3,4

T4 =
T+
ℓ1,3
+

(
1
ℓ3,5
+

1
ℓ3,6

)
T−

(15)

−
T3
ℓ3,4
+

(
1
ℓ3,4
+

1
ℓ4,6

)
T4 =

T−
ℓ4,6
. (16)

3.2 The Model
The model is implemented in NetLogo, a widely used agent-based
software [15, 16]. The Interface of the model can be seen in Fig. 3.
An agent-based Simulated Annealing algorithm was additionally
implemented in NetLogo to be able to evaluate the performance
and the results of the physical inspired model. To ensure a valid
comparison between those two models, a separate file was created
which generates the road network.

3.2.1 Initialization of the road network: The road network consist
of undirected links representing the streets and “turtles” (agents),
which represent the places. Further, a variable was introduced
to define the number of links this node adds to the network. To
make the network as realistic as possible, each link is assigned a
driving-duration which acts as a weight. These driving dura-
tions are calculated with a normal distribution, where mean and
standard deviation can be set manually, with non-positive values
being rejected.2

In addition, trucks, dumps and containers, which are represented
by turtles, were randomly distributed over the places in the network.
Moreover, it is ensured that trucks and dumps are not assigned to
the same place. The nw extension [15] has been used to save the
created network with the dependencies between turtles and links.

3.2.2 Setup: In terms of a diffusion process in the previously cre-
ated road network, places with containers and dumps and places
without them are assigned a temperature. Each place with a con-
tainer or a dump gets a constant temperature which can be adjusted.
2A more consistent approach would be to draw the durations from a gamma distribu-
tion, but for practical tests, this makes little difference for the resulting problems.

The other places obtain their temperature according to equation (13)
and (14)-(16). The excerpt of the NetLogo code for the calculation
of the temperatures is:
ask places with [ not any? dumps-here and not any? containers-here ][

let actual-location one-of places-on self
ask places with [ link-neighbor? actual-location ][

set neighbor-temperature (temperature - [ temperature ]
of actual-location) / [ driving-duration ] of street
([ who ] of one-of places-on self) ([ who ] of actual-location)

]
set temperature-temp sum [ neighbor-temperature ] of places with
[ link-neighbor? one-of places-on myself ]
/ sum [ reciprocal-driving-time ] of places with
[ link-neighbor? one-of places-on myself ]

]
ask places with [ not any? dumps-here and not any? containers-here ][

set temperature temperature-temp
]

For each truck the attribute loaded? is set to false indicating that
all trucks are empty at the beginning of the simulation. Additional
lines of code are introduced for traceability and the debugging
process.

3.2.3 Go Procedure: The goal is to navigate the trucks to the con-
tainers and dumps based on the temperature distribution in the
network. The direction of the truck is determined by the tempera-
tures in neighbouring places. If a container is assigned to the truck
(i.e. if loaded? is true), the next node is the one with the minimum
temperature. If, however, the truck is empty (i.e. loaded? is false),
it will move towards the maximum temperature. The calculation
of the respective temperatures, in the adjacent places is based on
the formula (13), where li, j describes the driving-duration of the
links. This step is enabled by the following lines of code:
let actual-location one-of places-on self
move-to max-one-of places with [ link-neighbor? actual-location]
[ (temperature - [ temperature ] of actual-location) / [ driving-duration ]

of link-with actual-location ]
]

After each time step, a new diffusion process is started to adapt
the temperature. When a loaded truck arrives at a dump, the
loaded? status is set to false. Similarly, when an unloaded truck
arrives at a container place the loaded? status is set to true. As
soon as all containers have been picked up and the vehicles are no
longer loaded, the algorithm stops.

3.2.4 Simulated Annealing Algorithm. In the first step, a route with
the starting point is initialized for each vehicle. Based on this in-
formation the container places and the corresponding dump places
is added to the route of the nearest truck. In the go procedure,
randomly chosen containers from randomly chosen trucks are ex-
changed to improve the solution. The temperature is reduced expo-
nentially, T → qT with a cooling-rate q ∈ (0, 1).

3.2.5 Simulation Comparison. To enable a fair comparison, both
models are loaded in the initialization model with the Level Space
extension [5]. The respective parameters in the two separate mod-
els are set in the initial model and can therefore be passed on with
the Level Space extension. This method ensures the centrally set-
ting of all parameters, which provides the basis for application of
Behaviour Space framework (integrated in NetLogo).

3.3 Simulation Results and Comparison
For a sound comparison of the two models, two different simula-
tions (settings I and II) have been carried out:

After each time step, a new diffusion process is started to adapt
the temperature. When a loaded truck arrives at a dump, the
loaded? status is set to false. Similarly, when an unloaded truck
arrives at a container place the loaded? status is set to true. As
soon as all containers have been picked up and the vehicles are no
longer loaded, the algorithm stops.

3.2.4 Simulated Annealing Algorithm. In the first step, a route with
the starting point is initialized for each vehicle. Based on this in-
formation the container places and the corresponding dump places
is added to the route of the nearest truck. In the go procedure,
randomly chosen containers from randomly chosen trucks are ex-
changed to improve the solution. The temperature is reduced expo-
nentially, T → qT with a cooling-rate q ∈ (0, 1).

3.2.5 Simulation Comparison. To enable a fair comparison, both
models are loaded in the initialization model with the Level Space
extension [5]. The respective parameters in the two separate mod-
els are set in the initial model and can therefore be passed on with
the Level Space extension. This method ensures the centrally set-
ting of all parameters, which provides the basis for application of
Behaviour Space framework (integrated in NetLogo).
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Figure 3: Interface of the NetLogo model

Table 1: Network parameter setting for the first simulation

number-of-places 155
streets-outgoing-degree 3
driving-duration-of-streets-mean 74
driving-duration-of-streets-sd 84
density-of-dumps 0.03
number-of-containers 50
number-of-trucks 5

3.3 Simulation Results and Comparison
For a sound comparison of the twomodels, two different simulations
(settings I and II) have been carried out:

3.3.1 Simulation Setting I. The first setting includes 1000 files
which were generated with the same network structure and similar
dump places but with different container and truck places. The
parameters for the problem setting are given in Tab. 1.

The simulation runs for the physically inspired model were
carried out in advance and confirmed the expected indepen-
dence of the results from the parameters temperature-dump and
temperature-container (since those parameters only define the
scale and can be changed by linear transformations without affect-
ing the core algorithm). Thus fixed values for these parameters have
been used in all subsequent runs. The model has been executed

ten times for each base file (with different random locations for
trucks and containers), which resulted in 10 000 runs in total. In
order to have a sound basis for comparison, all combinations of the
parameter values

init-temperature ∈ {1 000, 3 000}, cooling-rate ∈ {0.98, 0.99}

have been tested for Simulated Annealing. As with the first model,
for each parameter combination, ten simulation runs have been
carried out, which resulted in 80 000 runs.

3.3.2 Simulation Results I. Of all parameter combinations tried,
the best simulation results for the Simulated Annealing algo-
rithm have been obtained with init-temperature= 3 000 and
cooling-rate= 0.99, with iterations= 1 000. These results were
used for the comparison. On average, the Simulated Annealing
algorithm performed 15% better than the physically inspired model.
In Fig. 4 the results are shown using a boxplot diagram.

3.3.3 Simulation Setting II. The second simulation setting deals
with a fixed road network and locally fixed dumps. In both algo-
rithms, containers and trucks are allocated randomly. To ensure
comparability with the above results, 5 trucks and 50 containers
were used in this setting. Furthermore, the best parameter setting
from the Simulated Annealing algorithm was used. This was done
10 000 times for both algorithms to get a statement in regards to
robustness.
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Figure 5: Comparison of the simulation re-
sults of setting II

3.3.4 Simulation Results II. On average, the costs of the physically
inspired model were roughly 15 000. In contrast, Simulated Anneal-
ing performed significantly better and obtained an average cost of
roughly 11 500, i.e. the results are roughly 30% better. This is also
depicted in Fig. 5.

Comparing the execution times, the Simulated Annealing algorithm
needs on average 0.4512 seconds and the physically inspired model
needs 1.5614 seconds. An Intel(R) Core(TM) i7 − 97000K CPU (3.6
GHz, 32 GB RAM) with Windows 10 Version 1903, 64−Bit was used
to perform the simulations.

4 COMPLEXITY AND SCALING PROPERTIES
A major advantage of the approach proposed in Sec. 3 is that it is
strictly local and thus has favorable scaling properties. In order to
show this, we consider a generic graph composed of v vertices and
e edges (links), which containsm sources andm sinks. The average
degree of the graph is given by davg = 2e

v . On this graph, ntr trucks
move.

In each update step, ntr davg difference quotients have to be
calculated on average to determine the movement of the trucks. The
diffusion process, which simulates the heat flow, requiresnrepv davg
operations, with some small nrep ∈ N. Thus, the cost for one update
step is

O((ntr + nrepv)davg) ≡ O(v davg) ≡ O(e), (17)

since nrep is a constant and typically we have ntr ≪ v .
Thus, the computational effort per step only scales linearly

with the number of edges. This is in contrast to standard ap-
proaches like a greedy search, which would require to solve a
shortest-distance problem, e.g. by Dijkstra’s algorithm, see [12,
Sec. 4.4], for all pairs of sources and sinks, which requires an initial
effort of O

(
m2 (e +v logv)

)
and, in dynamic setups, additional

O (m (e +v logv)) operations each time a source is depleted and
replaced by a random new one.

For Simulated Annealing, studied as a benchmark in Sec. 3.3, the
scaling properties are usually good, but typically a slower annealing
process is required to obtain reliable results also for a larger number
of trucks and of sources/sinks (while the number of edges is hardly
relevant). Thus, the physically inspired method can be expected
to be advantageous for setups on moderately sized graphs with a
comparatively large number of sources/sinks and trucks.

5 SUMMARY, CONCLUSIONS AND OUTLOOK
We have implemented and tested a physically inspired method for
solving a specific type of VRP. While the approach has performed
somehow worse than using the well-established Simulated Anneal-
ing method, the results are not far off (15% and 30% longer routes
for the specific setups).

In addition, only a rather static problem has been examined. In
the case of a dynamic and/or stochastic formulation of the problem,
with additional containers being introduced in the course of the
simulation, the physically inspired model may gain better results
than Simulated Annealing.

Also, as discussed in Sec. 4, for special setups (moderately sized
graphs with a comparatively large number of sources/sinks and
trucks) the physically inspired model may be advantageous. To
obtain a deeper insights into such use cases, further investigations
are required, including also comparisons with other approaches,
e.g. from Ant-Colony optimization [17].

The same holds true for the continuous problem. While the elec-
trostatic approach is not expected to outperform elaborate methods
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of global optimization, it might be tuned to perform better than
greedy methods, while at the same time, providing rather attractive
scaling properties, at least if cut-off distances for the forces are
introduced.
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