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ABSTRACT 
In this paper, we explore the convergence of the caching and 
streaming technologies for Internet multimedia. The paper 
describes a design for a streaming and caching architecture to be 
deployed on broadband networks. The basis of the work is the 
proposed Internet standard, Real Time Streaming Protocol 
(RTSP), likely to be the de-facto standard for web-based A/V 
caching and streaming, in the near future. The proxies are all 
managed by an 'intelligent Agent' or 'Broker' - this has been 
designed as an enhanced RTSP proxy server that maintains the 
state information that is so essential in streaming of media data. 
In addition, all the caching algorithms run on the broker. Having 
an intelligent agent or broker ensures that the 'simple'  caching 
servers can be easily embedded into the network. However, 
RTSP does not have the right model for doing broker based 
streaming/caching architecture. The work reported here is an 
attempt to contribute towards that end. 

Keywords 
Caching, Streaming, Proxies, Broker, Layered coding, 
Replacement Policy, Hit Ratio, Quality Hit Ratio. 

1. INTRODUCTION 
High-speed local area networks (LANs) are now being widely 
deployed all over the world. Users on such LANs usually access 
the Internet (the web) through a proxy server, which also caches, 
or stores a copy of, popular objects on the local disk(s). The 
advantages of web caching have been discussed in a number of 
papers; these have been listed in [1]. If a media file is being 
retrieved, the download delay can be minimized by means of the 
streaming paradigm, in which a media file is played out while it 
is being received over the network. For an introduction to 
streaming, refer [1]. 
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We envisage the future of the World-Wide-Web as one involving 
a large number of streaming transfers of A/V content. Most such 
transfers would take place with the streaming data passing 
through one or more of the transparent proxy servers caching the 
streaming data as it passes through. Effective Web caching 
techniques will be critical for the successful deployment of 
streaming multimedia services over the World-Wide-Web. This 
should be obvious, because of the huge latencies involved, and 
the requirements of real time play out. However, existing web 
proxy caching systems have been designed for web pages (HTML 
documents). Such systems need to be modified for retrieval of 
streaming A/V data. 

In this paper, we describe the design of a media caching 
framework in which the local broadband network has a number 
of co-operating caching servers for A/V content, all managed by 
an 'Intelligent Agent' or 'Broker' .  We believe that such a system 
will use the proposed Internet Standard, Real Time Streaming 
Protocol (RTSP) in place of the Hypertext Transfer Protocol 
(HTFP), to implement the streaming of the media data. Thus, not 
only the server and clients, but the caching proxy servers too, 
will all ' talk'  RTSP. Information on RTSP is available in [2]. 
This paper describes a framework for the working of such a 
distributed caching and streaming system. Earlier web caching 
concepts and algorithms have been modified for the proposed 
framework. Several novel issues have been identified, and new 
approaches to tackle them have been proposed. 

2 .  P R O P O S E D  A R C H I T E C T U R E  1 
The architecture consists of a high-speed local network, which 
contains a number of caching proxy servers. One of these 
functions as the broker or central controlling agent and the others 
act as sibling caching .proxies. The broker is an enhanced RTSP 
proxy server, and performs the standard caching functions as 
well as handling the streaming issues. All client requests are 
transparently routed through the broker. The broker maintains 
the state information that is so important in all the RTSP 
sessions. Having an intelligent agent or broker ensures that we 
can embed the 'simple'  caching servers into the network. 
Another new feature of the proposed architecture is that a server 

t This architecture has been earlier described in [7]. The work 
reported here is a collaborative effort with the author of [7], 
and is to be incorporated into that framework. 

13 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F354384.354397&domain=pdf&date_stamp=2000-10-30


is allowed to source the content into the caches ahead of any 
client requests. Thus, the source may not be on-line all the time 
but its content can always be assumed available and hosted in 
one or more of the caching proxy servers. Besides being used for 
the obvious purpose of load balancing, the sibling caching proxy 
servers are individual RTSP proxies in their own right. This 
enables the broker to transfer control to them efficiently 
whenever needed. For example, in case of a sibling 'hit ', the 
broker can send an RTSP REDIRECT control command to the 
client with a pointer to the appropriate caching proxy, which has 
the clip. The streaming would then take place in an RTSP 
session from the caching proxy to the client. The sibling proxies 
do not communicate with each other, it is the broker which 

manages all the interactions. 

As a representative case of caching of multimedia objects, we 
consider video object caching. We also show how our system can 
be optimized for the caching of scalably encoded or layered video 
objects. Such objects will have a 'base' layer containing essential 
information, and one or more 'enhanced' layers containing higher 
level information. We believe that the framework described in 
this paper will take advantage of layered coding when the 
number of layers is between 5 and 10. Such coding schemes have 
already been proposed [3], [10]. We use RTSP as the basis of our 
work here as we believe that it is likely to be the de-facto 
standard for web-based A/V streaming. However, RTSP does not 
have the right model for doing broker based streaming/caching 
architecture. Our work is an attempt to contribute towards that 
end. Additionally, our work is probably applicable to the 
manipulation of non-live video clips only. 

[' ' S I B L I N G I , ~ d  ~ ~ SIBLING [ 

, , \  ~ BROKER ~ 1 ~ / '  

[ SIB"N  ' S'B''N  I 
i \ / I 

• / 

z g 
CLIENT GROUP 

Figure 1. The proposed caching and streaming architecture. 
The initial interaction is always through the broker. The 
broker may transfer control to the siblings. The dashed lines 
indicate that a regular RTSP session can exist between a 
sibling and a member of the client group. 

3. PROPOSALS 
3 .1  The Auxiliary Cache 
As described by the architecture in section 2, the media caching 
system will be distributed over the broker and it 's siblings. The 
main cache will be a single logical entity physically spread over 

the disks of the broker and it 's  siblings. The broker will need to 
carry out the indexing and retrieval of the information distributed 
across the proxy servers in an efficient manner. To aid the broker 
in this task, we use a data structure containing only the 
information related to the cached objects. We call this the 
'auxiliary cache', and it is located on the broker (in memory). 
The idea is adapted from [6]. The auxiliary cache aids the broker 
in indexing the entries, and allows it to locate the required A/V 
clip easily. Its use ensures that the broker needs to access the 
disk caches only for the actual data writing tasks. 

3.2 Replacement Policies 
The 'weight' of the clip is a measure of its relative importance as 
compared to the other clips. Thus, higher the weight, lower 
should be the probability of the clip being replaced. The standard 
replacement policies are Least Recently Used (LRU) and Least 
Frequently Used (LFU) policies. In LRU, the weight is inversely 
proportional to the time since the last access of the object. In 
LFU, the weight is directly proportional to the number of times 
the object is accessed. We also have policy based on the size of 
the objects (SIZE), in which the weight is proportional to the size 
of the clip raised to some exponent. The value of the exponent 
determines whether the policy is biased towards smaller or larger 
objects, as explained in the last portion of this section. In 
addition, we have a policy called l.FU_admin, which is the LFU 
policy combined with an admission control policy. [Section 3.4] 
Finally, we experiment with a hybrid policy (HYBRID) proposed 
in [9], and compare the results with the standard policies. In the 
hybrid policy, the weight w is computed as 

w = F I S ' R  ' 

where F is the number of times the clip is accessed (frequency), 
S is the size of the clip (size) and R is the time since the last 
access for the clip (recency). The three exponents f, r, and s are 
chosen by trial and error. The value for f should be a positive 
number, meaning that more frequently accessed objects are more 
likely to be cached. The value of r should be a negative number, 
such that more recent objects (i.e. those with a smaller value of 
R) are more likely to be cached. The value of s can be either 
positive or negative. A positive value would favor caching large 
objects over small ones. If recency is determined to be more 
important than frequency, the absolute value of the exponent r 
should be greater than that of the exponent f. 

3.3 New Replacement Policies 
The framework proposed takes advantage of clips that are 
scalably encoded into layers to provide a better Quality-of- 
Service (QOS) to the clients. The typical number of layers could 
be between five and ten. Layers higher up (upper enhancement 
layers) in general, will contain less important information as 
compared to the lower layers, including the base layer. For the 
replacement policy, we propose a new layered approach: The 
system caches d ip  layers as separate objects. These are sorted 
according to their weights, as computed below: 

w, = w ( 1 )  
n 

where wt is the weight of the layer, w is the weight of the clip, 
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and n is the number of the layer (for the base layer, n = 1). The 
layers are then successively deleted in decreasing order of their 
weights until enough space is created for the incoming object. 
Thus, the highest (least significant) layer of the lowest weight 
object is deleted first. This policy ensures that the caching 
system is very robust to transients in the workload, because clips 
will be deleted from the cache gradually rather than at once. This 
will increase the chances of at least the base layer of clips being 
present on the caching system. Clips could also be admitted into 
the cache one layer at a time, however our experiments [5.2] 
show that the best results are obtained when the entire incoming 
object is cached. 

3.4 Admission Control 
The idea of having admission control is that a clip should be 
cached only provided it can offset the loss of the clip(s) it 
replaces. This will make the caching scheme less sensitive to 
transients in the workload. The outcome of the admission control 
is either positive or negative. We use the algorithm proposed in 
[6]. This algorithm checks whether the incoming clip has greater 
weight than the least weight clip already cached, and has size 
less than the least weight clip. The result is positive if both 
conditions are satisfied. A detailed explanation may be found in 
[11. 

3.5 A novel Performance Metric 
The system uses the standard performance metrics of 'Hit Ratio' 
and 'Byte Hit Ratio', defined in several papers [1]. In addition, 
we now propose a new performance metric, which we call the 
Quality hit Ratio. 

3.5.1 Quality Hit  Ratio 
The proposed proxy caching system is designed to handle layered 
video clips in addition to standard non-layered ones. Therefore, 
we cannot do with performance metrics as simple as Hit Ratio 
and Byte Hit Ratio, because they do not reflect on the quality of 
the video clip that is being returned to the client. In general, 
more the number of layers of a clip present on the cache, better 
the quality. Whenever a request for an object is received, the 
broker converts it to a request for the necessary layer(s) and 
forwards the request to the source. Whenever a new object 
(layer) comes into the cache, older objects must be purged from 
it. We have proposed in section 3.3 that the purging of 
unnecessary objects be done on a layer by layer basis. Thus, at 
equilibrium, the system is made up of a number of stored objects, 
which may or may not have all of their layers present. A cache 
'hit '  for such a system would occur whenever at least one layer 
of the requested object is present on the cache. 

The system performance will then be reflected not only by a high 
Hit Ratio; but also by the quality of the objects being returned to 
the clients; that is the quality of the hits. A high quality hit 
implies that almost all layers of that object are present, because a 
larger number of layers ensure better quality for users. Thus, we 
state that: 

"Not only should any such system maximize the probability of a 
Hit, but it should also simultaneously maximize the probability 
of the Hit being of as high quality as possible". 

We therefore introduce the twin concepts of quality hit and 
quality hit ratio. We define the quality hit as a number between 
0 and 1 indicating how many out of the total number of layers of 
that object, are present on the cache. A quality hit of 1 implies 
that all layers of that object are present. Correspondingly, a 
quality hit of 0 implies a cache 'miss ' .  (That is, not even the base 
layer is present). 

Ensuring that at least the base layers of the most popular objects 
are stored on the system maximizes the hit ratio. Now, if as 
many layers of the cached objects as possible are stored, the 
quality of these hits is maximized. Finally, we define the Quality 
Hit Ratio as 

u ni 

H 
where H is the total number of hits, L is the total number of 
layers for each object, and ni is the number of layers present for 
object L 

3.6 Simultaneous Request Polic~ 
Standard caching proxies deal with small objects. For any 
object, the session between the proxy and the client lasts for a 
very short time. Thus, staggered requests for the same object can 
be easily dealt with. By staggered requests we mean that a new 
client requests an object while that is being served to another 
client from the source. In this case, the proxy can either ask the 
client to wait until the present object is cached, or start a 
separate session with the source for the new client. 

However, the above approach will be highly inefficient when the 
proxy is streaming A/V content to the client. This is because 
each session in this case will last for a much longer time, and the 
cost associated with setting up a new connection to the source 
would be quite high. We propose a new approach, which we call 
the simultaneous request policy, for the case of clients requesting 
the same clip at staggered intervals. In particular, the proposed 
scheme takes advantage of the bandwidth mismatch between the 
local network and the external link to give each successive client 
(after the first) a slightly better Quality of Service. The 
bandwidth mismatch is such that the bandwidth between the 
broker and the client Bbc is greater than or less than the 
bandwidth between the broker and the source, Bs~. Thus 
B~ = k(Bsb) 
Where k is any positive real number. For campus networks and 
corporate intranets, k > 1 as the local network is much faster 
than the external link. In this case, consider the case when a 
client is being streamed a clip from the external link, through the 
broker. The bit rate available to the client is limited by the bit 
rate on the external link, Bs~. Let the file size of the clip be 
denoted by FILE_SIZE. Also, the broker caches the clip as it 
passes through to the client - this is the 'cut-through' caching 
concept explained in the RTSP draft. Let the portion of the clip 
cached at time t be denoted by AVAIL_VIDEO. Now, if at this 
time t, another client requests the same clip, it is possible to 

z 'Standard' web objects include html files, small inline images, 
etc. which have sizes of the order of a few KB. 
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serve the clip to him at a speed k(Bsb). The value for k can be 
shown to be [1] 

FILE _ SIZE 
k <  

(FILE _ SIZE - AVAIL _VIDEO ) 

The second client can thus avail of a higher bit rate and a better 
QOS. 

4. IMPLEMENTATION DETAILS 
The caching algorithms have been simulated using C. The 
simulation is driven by a 'trace file', a log file of an actual proxy 
cache showing the access pattern of requests for some period. 
What we really need is a trace f i le showing the RTSP requests, 
however such a trace f i le  is not yet available anywhere. Instead, 
we use trace files of H T r P  requests taken from two proxy servers 
in lISt. A justification for using these traces is given in the next 
section. All the experiments are performed in some 'window 
size.' This is essentially how far back into the trace files to look. 
For a particular cache size, after the cache is full, the algorithms 
will stabilize (in terms of hit ratio or any other performance 
metric) after some time. For the cache sizes and clip sizes that 
we have used in our experiments, we have found that a window 
size of 30,000 to 40,000 requests is enough to study the cache 
behavior. 

4.1 Justification of  the traces used 
The trace-driven simulation approach is the standard one in web 
caching experiments. For media clips, trace files of this nature 
are not yet available anywhere, as a proxy caching system 
exclusively for streaming of A N  clips has not yet been 
implemented, to the best of our knowledge. Given this situation, 
we use H'ITP traces as the inputs to our simulation. We believe 
that to some extent, the H T I P  traces will reflect user access 
patterns for media clips too, provided the local network is a 
broadband one. A justification for this is presented below. 

The broker receives requests for A N  clips from a number of 
clients. For our problem, these A N  clips will invariably be 
embedded objects in web pages. Even if they are independent 
presentations, the user will invariably be ' led'  to them through a 
l ink from some web page. The justifications are: 
* RTSP has been designed for the web and is a proposed 

lnternet standard. 
• It is likely that web pages of the near future might have tags, 

which point to an RTSP URL instead of an HTrP  URL. 
• RTSP will not replace H'I'TP totally. In fact, they will 

coexist. HTFP servers will continue to serve web pages as 
always. If the web page has a link to a media resource, the 
client request for that resource is transferred by the H'I ' rP 
server to the RTSP (media) server. From that point 
onwards, the client interacts with the RTSP server. 

We therefore believe that an overwhelming majority of requests 
to RTSP servers will be a result of 'transfer of control' from 
H T I P  servers, and a negligible number of requests will be direct 
requests. Thus, there will be a 'mapping' of HTYP requests to 
RTSP requests. Thus, if a web page is very popular, then it is 
quite likely that a clip(s) to which there is a link on that page is 

also very popular. This is valid considering the three points 
mentioned above. 

The above means that the request distributions for RTSP, that is 
the user access patterns should be similar to those for HTIP.  The 
differences will be in the mean object size, the standard 
deviation, and the minimum and maximum object size. In any 
case, these factors do not influence the performance of the newly 
proposed layered caching policies [5.2] - they only help 
determine the maximum cache size necessary for the system to 
reach equilibrium. 

Generating the access patterns has the difficulty that we still do 
not know what will be the request distribution. In the absence of 
such data, it appears that using the HTTP patterns is the best 
option available. An important point is that the only condition for 
the newly proposed caching algorithms to work well is that the 
accesses follow a z i p f -  like distribution 3. It is well known that 
HTrP  trace f les  follow a zipf-like distribution [8]. 

4.2 Analysis of  the input trace file 
It is important to know the nature of the trace data (the access 
patterns) used for the simulation. We plot the user access 
patterns as a rank v/s frequency diagram (the zipf distribution) 
where the most popular or most frequently accessed document 
has rank 1. The frequency versus rank plot for the trace file 
under consideration is shown below. 

400 -- 
350 m 
300 . 

~250 I 200 
150 
100 , 

0 i 
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[ ~  trace 

Figure 2. Frequency versus Rank  plot for the trace file, 
indicating object popularity 

Similar plots have been obtained for other trace files 4. The plots 
confirm the general observations that a few objects are accessed 
extremely often, while a large number of objects are accessed 

relatively infrequently. 

3 Video-On-Demand literature such as [11] suggests that the 
popularity of video objects can be modeled using the well- 
known zipf  distribution. 

4 These have not been included because of space constraints. 
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5. RESULTS 
5.1 Modified Replacement P o l i c i e s  
The standard caching policies that have been compared are Least 
Recently Used (LRU), Least Frequently Used (LFU), Size 
(SIZE), LFU with admission control (LFU_adm) and a hybrid 
policy (HYBRID) based on LFU, LRU and SIZE [1], [9]. The 
comparisons are made on the basis of hit ratio and byte hit ratio. 
In all cases except LFU_adm, the incoming object is always 
cached. This is to take into account the recency factor, as the 
incoming object is the most recent. The results are shown in 
figure 3. 

It is interesting to note that the LFU policy outperforms the LRU 
policy in all the tests, suggesting that for proxy caching, 
frequency is of greater significance than recency. Also, the 
importance of the clip size cannot be discounted. Possibly, the 
best algorithm would be one that would take into account all 
three factors. The HYBRID policy serves this purpose, and 
outperforms the others as shown below. 
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Figure 3. Performance comparison of modified replacement 
policies with a) hit ratio and b) byte hit ratio plotted against 
cache size 

Our experiments show that the optimum values of the parameters 
of the HYBRID policy are r = 0, f = 2 and s = -1.5. Thus, the r 
exponent must be set to 0 for best results. We thus conclude that 
frequency and size are major factors that determine which objects 
should be purged from the cache. The incoming object is always 
cached, and it is here that the temporal locality or recency of 
requests comes into play. Thus, the object that is admitted into 
the cache is the incoming one (since there is a high probability 
that it will be requested again soon). However, the object(s) that 
is (are) purged from the cache are those with the least weight as 
determined by the respective replacement policy. Another 
observation is that byte hit ratio is usually smaller than standard 
hit ratio. We speculate that this is so because the most profitably 
cached objects are small ones 5. We also see that the admission 
control does not improve the performance. The possible reason is 
this. The incoming object is the most recent object. If the 
admission control result is negative, this object is prevented from 
coming into the cache. Thus, if the traces exhibit the property of 
recency, then the system performance could deteriorate. Since 
this is the case in our experiments, it is likely that the traces have 
some degree of recency. 

An important observation from the results is if hit ratio is the 
performance metric to be maximized, then the HYBRID policy is 
the best, as shown in the first plot. However, as can be seen from 
the second plot, the byte-hit ratio is maximized for the LFU 
policy. 

5.2 Layered Replacement Policies 
Based on the layered replacement approach mentioned earlier 
[3.3], we introduce two new layered caching policies: Object-in- 
Layer-Out (OILO), and Layer-in-Layer-Out (LILO). We compare 
these with the standard approach used in web caching, which we 
call Object-in-Object-Out (OIOO). These three policies are then 
combined with the standard ones [5.1], to give new policies. 

Table 1. Layered Replacement Policies 

Policy Incoming Object Outgoing Object 

OIOO FULL CLIP FULL CLIP 

OILO FULL CLIP LAYER 

LILO LAYER LAYER 

In general, whenever the broker in our layered caching system 
receives a request for a video clip, either a full or partial HIT (or 
a full or partial MISS) may occur. Here, a 'full' hit implies that 
all layers are present. In case of a partial HIT, the broker 
translates the request into one for the 'missing' layer(s) and 
forwards it up to the source. Now, in a non-layered caching 
system, the objects stored are complete clips. However, in our 
type of a layered video caching system, the objects stored by the 
broker are layers of the clips, not the clips themselves. 

5 A frequency versus size plot confirms this for HTrP traces. 
Whether this is true for RTSP traces remains to be seen. 
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This point is important because, in the first case, for a given 
cache size, the system's maximum capacity will be to store some 
N objects. However, in the second case, for the same cache size, 
the system's maximum capacity will be to store k*N objects, 
where (J/~v)*clip_size is the size of the base layer. Thus, we 

would expect that for a layered video caching system, the hit 
ratio for a given cache size would be higher, but the quality hit 
ratio would be lower. (A 'non-layered' caching system would 
have a quality-hit ratio of 1). 

The implications of the new and simple concept of 'Quality hit 
ratio' that we have proposed, are worthy of notice. Assuming that 
clips are available in layered form, a simple paradigm shift in the 
manner of their retrieval, storage, and removal from the caching 
system results in the following distinct benefits. 

Retrieving one layer at each object request results in an implicit 
form of admission control. Initially, only one layer is retrieved, 
the other layers are successively retrieved provided the clip is 
requested often enough. The layered retrieval increases the 
probability of providing streaming access to the clip, since the 
individual layers will require a lower bit-rate as compared with 
the full clip. Another point to be noted is that retrieving one layer 
at a time instead of the whole clip results in better load balancing 
of the external Bsb link - a larger number of requests can 
simultaneously handled. 

Secondly, the hit ratio goes up. This is because, it is possible to 
tune the system to result in a Quality hit ratio of close to 100% 
while showing a significant improvement in hit ratio. Again, this 
is possible mainly because of the fact that some clips are much 
more likely to be accessed than other ones. It would then be 
possible to select a 'popularity' threshold above which clips are 
cached at full quality (all layers) and below which the quality 
degrades with decreasing clip popularity. (Fewer and fewer 
layers of the clip are stored). In our simulated system, no such 
'threshold' is selected - the system dynamically purges the least 
significant layers of the least weight objects until enough space is 
created for the incoming layer. 

The plots in figure 4 show the results obtained with the LRU 
policy. We see that for the hit ratio and byte hit ratio, the I.,1LO 
scheme outperforms the other two, while having a mean Quality 
Hit ratio of 89%. Future work would involve minimizing this 
tradeoff between lowering of the Quality hit ratio and raising of 
the hit ratio and byte hit ratio. 

The plots in figure 5 show the results for the LFU policy. As far 
as the hit ratio is concerned, the two layered schemes give a 
much better performance than the OIOO non-layered one. A 
comparison of the two layered schemes indicates that the hit 
ratios are roughly the same for both. However, the byte hit ratio 
in case of LILO is much more than that in case of OILO. In 
addition, the Quality hit ratio is much higher in case of OILO 
than in case of L1LO. This suggests that a choice between the 
two layered schemes can be made in the following way. For the 
LFU policy, to maximize the byte hit ratio; we must use the LILO 
policy whereas to maximize the Quality hit ratio we must use the 
OILO policy. 
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Figure 4. The plots above show the results obtained for the 
LRU based layered caching schemes, for the metrics hit 
ratio (4a), byte hit ratio (4b) and quality hit ratio (4c). 

The plots in figure 6 show the results obtained for the HYBRID 
policy. The general behavior is similar to the previous two plots. 

Across the four sets of plots, the highest hit ratio is 38.8%, for 
the HYBRID_LIIX) scheme. The highest byte hit ratio is 24.6% 
for the LFU_OIOO scheme. Between the two layered schemes, 
the highest byte hit ratio is 21.6% for the LFU_I.,ILO scheme. 
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ff only hit ratio was the criterion, then HYBRID_OILO appears 
to be the best scheme overall, with hit ratios almost the same as 

and with a Quality hit ratio of almost 100%. However, if 
byte hit ratio is the criterion, then the LFU 0100  scheme is the 
best. 
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Figure 6. The plots above show the results obtained for the 
HYBRID based layered caching schemes, for the metrics 
hit ratio (6a), byte hit ratio (6b) and quality hit ratio (6c). 

Figure 5. The plots above show the results obtained for the 
LFU based layered caching schemes, for the metrics hit 
ratio (Sa), byte hit ratio (Sb) and quality hit ratio (5c). 
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6. CONCLUSIONS 
In this paper, we have proposed a new caching and streaming 
framework for multimedia objects. The framework has a broker- 
based architecture and uses the proposed Internet Standard Real 
Time Streaming Protocol (RTSP). The problem and the area of 
research itself being a novel one, we hope that the work reported 
in here proves to be of great value in the near future. It is hoped 
that the proposed design of a broker based caching and streaming 
architecture for multimedia will serve as a generic framework. 
Among the important conclusions drawn through the experiments 
is that a hybrid caching policy based on frequency, size and 
recency usually gives the best results. We have also seen that the 
novel layered replacement approach proposed gives better results 
than standard object-based replacement schemes. The novel 
performance metric, Quality Hit Ratio appears to be adequate as 
a measure for the evaluation of the new layered caching policies. 

It appears that caching and streaming are henceforth going to be 
the major factors influencing the successful deployment of 
Internet Multimedia systems. However, the convergence of these 
two technologies is a recent development and has thrown up a 
number of new challenges. Our work here addresses some of the 
issues. However, many remain unresolved, and thus open a large 
number of areas for future work. 

The design of the caching and streaming architecture is already 
in place. The system performance has also been verified through 
simulation. Therefore, the next logical step in this direction is 
the implementation of the proposed architecture in an actual 
network scenario. Also, the integration of the proposed 
framework into a multicast scenario is extremely important, as 
multicast is one of the essential technologies of Internet 
Multimedia. A 'layered multicast' approach needs to be 
investigated. Stream control issues, particularly related to layered 
video and RTSP, must be looked into. It is important to add 
functionality to RTSP to implement 'trick modes' such as FF, 
REW, etc. 

As the Quality hit ratio goes closer and closer to 1, the hit ratio 
and byte hit ratio drop. This tradeoff between the raising of the 
Quality hit ratio and lowering of the hit ratio and byte hit ratio 
needs to be minimized. 

Since we are dealing with streaming media, a thorough 
investigation into QOS related issues, is necessary. This problem 
involves 3 party QOS negotiation with three cases possible. One, 
the broker simply 'relays' the requested QOS parameters upward 
to the source. Two, the broker 'maps' the requested QOS 
parameters to a new set based on the external resources 
available. Three, the broker acts as the source itself (this is in 
case of a cache 'hit') and responds to the request. 

Among other issues that require further research, is the 
generation of the 'sum clip'. The broker must be able to 
combine the layers already present with the incoming layer(s) 
without introducing additional latency. The layered encoding 
scheme being used will have to provide for this. Secondly, an 
investigation into the feasibility and advantages, if any, of video 
interpolation and transcoding schemes is also required. These are 

possible additional functions of the broker. Thirdly, a 
performance comparison between a single broker-based 
architecture and a multiple broker-based architecture is needed. 
Finally, if possible, a trace file of accesses to a media server 
(audio or video) should be used instead of the HTI'P file. This 
will make the results of the trace driven simulation much more 
realistic. 
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