
A Caching and Streaming Framework for Multimedia
Shantanu Paknikar
Wipro Technologies
72, Electronic City,
Bangalore 560001

+91-80- 3464851

shantanu.paknikar
@wipro.com

Mohan Kankanhalli
School of Computing
National University of

Singapore
Kent Ridge,
Singapore

(65) 874-6597

mohan@comp.nus.
edu.sg

K.R.Ramakrishnan
Department of

Electrical
Engineering

Indian Institute of
Science, Bangalore

+91-80-3092441
krr@ee.iisc.ernet.in

S.H.Srinivasan
Department of

Computer Science
University of
California,

San Diego

shs@cs.ucsd.edu

Lek Heng Ngoh
Kent Ridge Digital

Labs
21 Heng Mui Keng

Terrace

Singapore 119613

Ihn@krdl.org.sg

ABSTRACT
In this paper, we explore the convergence of the caching and
streaming technologies for Internet multimedia. The paper
describes a design for a streaming and caching architecture to be
deployed on broadband networks. The basis of the work is the
proposed Internet standard, Real Time Streaming Protocol
(RTSP), likely to be the de-facto standard for web-based A/V
caching and streaming, in the near future. The proxies are all
managed by an 'intelligent Agent' or 'Broker' - this has been
designed as an enhanced RTSP proxy server that maintains the
state information that is so essential in streaming of media data.
In addition, all the caching algorithms run on the broker. Having
an intelligent agent or broker ensures that the 'simple' caching
servers can be easily embedded into the network. However,
RTSP does not have the right model for doing broker based
streaming/caching architecture. The work reported here is an
attempt to contribute towards that end.

Keywords
Caching, Streaming, Proxies, Broker, Layered coding,
Replacement Policy, Hit Ratio, Quality Hit Ratio.

1. INTRODUCTION
High-speed local area networks (LANs) are now being widely
deployed all over the world. Users on such LANs usually access
the Internet (the web) through a proxy server, which also caches,
or stores a copy of, popular objects on the local disk(s). The
advantages of web caching have been discussed in a number of
papers; these have been listed in [1]. If a media file is being
retrieved, the download delay can be minimized by means of the
streaming paradigm, in which a media file is played out while it
is being received over the network. For an introduction to
streaming, refer [1].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
arc not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM Multimedia 2000 Los Angeles CA USA
Copyright ACM 2000 1-58113-198-4/00/10...$5.00

We envisage the future of the World-Wide-Web as one involving
a large number of streaming transfers of A/V content. Most such
transfers would take place with the streaming data passing
through one or more of the transparent proxy servers caching the
streaming data as it passes through. Effective Web caching
techniques will be critical for the successful deployment of
streaming multimedia services over the World-Wide-Web. This
should be obvious, because of the huge latencies involved, and
the requirements of real time play out. However, existing web
proxy caching systems have been designed for web pages (HTML
documents). Such systems need to be modified for retrieval of
streaming A/V data.

In this paper, we describe the design of a media caching
framework in which the local broadband network has a number
of co-operating caching servers for A/V content, all managed by
an 'Intelligent Agent' or 'Broker' . We believe that such a system
will use the proposed Internet Standard, Real Time Streaming
Protocol (RTSP) in place of the Hypertext Transfer Protocol
(HTFP), to implement the streaming of the media data. Thus, not
only the server and clients, but the caching proxy servers too,
will all ' talk' RTSP. Information on RTSP is available in [2].
This paper describes a framework for the working of such a
distributed caching and streaming system. Earlier web caching
concepts and algorithms have been modified for the proposed
framework. Several novel issues have been identified, and new
approaches to tackle them have been proposed.

2 . P R O P O S E D A R C H I T E C T U R E 1
The architecture consists of a high-speed local network, which
contains a number of caching proxy servers. One of these
functions as the broker or central controlling agent and the others
act as sibling caching .proxies. The broker is an enhanced RTSP
proxy server, and performs the standard caching functions as
well as handling the streaming issues. All client requests are
transparently routed through the broker. The broker maintains
the state information that is so important in all the RTSP
sessions. Having an intelligent agent or broker ensures that we
can embed the 'simple' caching servers into the network.
Another new feature of the proposed architecture is that a server

t This architecture has been earlier described in [7]. The work
reported here is a collaborative effort with the author of [7],
and is to be incorporated into that framework.

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F354384.354397&domain=pdf&date_stamp=2000-10-30

is allowed to source the content into the caches ahead of any
client requests. Thus, the source may not be on-line all the time
but its content can always be assumed available and hosted in
one or more of the caching proxy servers. Besides being used for
the obvious purpose of load balancing, the sibling caching proxy
servers are individual RTSP proxies in their own right. This
enables the broker to transfer control to them efficiently
whenever needed. For example, in case of a sibling 'hit ', the
broker can send an RTSP REDIRECT control command to the
client with a pointer to the appropriate caching proxy, which has
the clip. The streaming would then take place in an RTSP
session from the caching proxy to the client. The sibling proxies
do not communicate with each other, it is the broker which

manages all the interactions.

As a representative case of caching of multimedia objects, we
consider video object caching. We also show how our system can
be optimized for the caching of scalably encoded or layered video
objects. Such objects will have a 'base' layer containing essential
information, and one or more 'enhanced' layers containing higher
level information. We believe that the framework described in
this paper will take advantage of layered coding when the
number of layers is between 5 and 10. Such coding schemes have
already been proposed [3], [10]. We use RTSP as the basis of our
work here as we believe that it is likely to be the de-facto
standard for web-based A/V streaming. However, RTSP does not
have the right model for doing broker based streaming/caching
architecture. Our work is an attempt to contribute towards that
end. Additionally, our work is probably applicable to the
manipulation of non-live video clips only.

[' ' S I B L I N G I , ~ d ~ ~ SIBLING [

, , \ ~ BROKER ~ 1 ~ / '

[SIB"N ' S'B''N I
i \ / I

• /

z g
CLIENT GROUP

Figure 1. The proposed caching and streaming architecture.
The initial interaction is always through the broker. The
broker may transfer control to the siblings. The dashed lines
indicate that a regular RTSP session can exist between a
sibling and a member of the client group.

3. PROPOSALS
3 .1 The Auxiliary Cache
As described by the architecture in section 2, the media caching
system will be distributed over the broker and it 's siblings. The
main cache will be a single logical entity physically spread over

the disks of the broker and it 's siblings. The broker will need to
carry out the indexing and retrieval of the information distributed
across the proxy servers in an efficient manner. To aid the broker
in this task, we use a data structure containing only the
information related to the cached objects. We call this the
'auxiliary cache', and it is located on the broker (in memory).
The idea is adapted from [6]. The auxiliary cache aids the broker
in indexing the entries, and allows it to locate the required A/V
clip easily. Its use ensures that the broker needs to access the
disk caches only for the actual data writing tasks.

3.2 Replacement Policies
The 'weight' of the clip is a measure of its relative importance as
compared to the other clips. Thus, higher the weight, lower
should be the probability of the clip being replaced. The standard
replacement policies are Least Recently Used (LRU) and Least
Frequently Used (LFU) policies. In LRU, the weight is inversely
proportional to the time since the last access of the object. In
LFU, the weight is directly proportional to the number of times
the object is accessed. We also have policy based on the size of
the objects (SIZE), in which the weight is proportional to the size
of the clip raised to some exponent. The value of the exponent
determines whether the policy is biased towards smaller or larger
objects, as explained in the last portion of this section. In
addition, we have a policy called l.FU_admin, which is the LFU
policy combined with an admission control policy. [Section 3.4]
Finally, we experiment with a hybrid policy (HYBRID) proposed
in [9], and compare the results with the standard policies. In the
hybrid policy, the weight w is computed as

w = F I S ' R '

where F is the number of times the clip is accessed (frequency),
S is the size of the clip (size) and R is the time since the last
access for the clip (recency). The three exponents f, r, and s are
chosen by trial and error. The value for f should be a positive
number, meaning that more frequently accessed objects are more
likely to be cached. The value of r should be a negative number,
such that more recent objects (i.e. those with a smaller value of
R) are more likely to be cached. The value of s can be either
positive or negative. A positive value would favor caching large
objects over small ones. If recency is determined to be more
important than frequency, the absolute value of the exponent r
should be greater than that of the exponent f.

3.3 New Replacement Policies
The framework proposed takes advantage of clips that are
scalably encoded into layers to provide a better Quality-of-
Service (QOS) to the clients. The typical number of layers could
be between five and ten. Layers higher up (upper enhancement
layers) in general, will contain less important information as
compared to the lower layers, including the base layer. For the
replacement policy, we propose a new layered approach: The
system caches d ip layers as separate objects. These are sorted
according to their weights, as computed below:

w, = w (1)
n

where wt is the weight of the layer, w is the weight of the clip,

14

and n is the number of the layer (for the base layer, n = 1). The
layers are then successively deleted in decreasing order of their
weights until enough space is created for the incoming object.
Thus, the highest (least significant) layer of the lowest weight
object is deleted first. This policy ensures that the caching
system is very robust to transients in the workload, because clips
will be deleted from the cache gradually rather than at once. This
will increase the chances of at least the base layer of clips being
present on the caching system. Clips could also be admitted into
the cache one layer at a time, however our experiments [5.2]
show that the best results are obtained when the entire incoming
object is cached.

3.4 Admission Control
The idea of having admission control is that a clip should be
cached only provided it can offset the loss of the clip(s) it
replaces. This will make the caching scheme less sensitive to
transients in the workload. The outcome of the admission control
is either positive or negative. We use the algorithm proposed in
[6]. This algorithm checks whether the incoming clip has greater
weight than the least weight clip already cached, and has size
less than the least weight clip. The result is positive if both
conditions are satisfied. A detailed explanation may be found in
[11.

3.5 A novel Performance Metric
The system uses the standard performance metrics of 'Hit Ratio'
and 'Byte Hit Ratio', defined in several papers [1]. In addition,
we now propose a new performance metric, which we call the
Quality hit Ratio.

3.5.1 Quality Hit Ratio
The proposed proxy caching system is designed to handle layered
video clips in addition to standard non-layered ones. Therefore,
we cannot do with performance metrics as simple as Hit Ratio
and Byte Hit Ratio, because they do not reflect on the quality of
the video clip that is being returned to the client. In general,
more the number of layers of a clip present on the cache, better
the quality. Whenever a request for an object is received, the
broker converts it to a request for the necessary layer(s) and
forwards the request to the source. Whenever a new object
(layer) comes into the cache, older objects must be purged from
it. We have proposed in section 3.3 that the purging of
unnecessary objects be done on a layer by layer basis. Thus, at
equilibrium, the system is made up of a number of stored objects,
which may or may not have all of their layers present. A cache
'hit ' for such a system would occur whenever at least one layer
of the requested object is present on the cache.

The system performance will then be reflected not only by a high
Hit Ratio; but also by the quality of the objects being returned to
the clients; that is the quality of the hits. A high quality hit
implies that almost all layers of that object are present, because a
larger number of layers ensure better quality for users. Thus, we
state that:

"Not only should any such system maximize the probability of a
Hit, but it should also simultaneously maximize the probability
of the Hit being of as high quality as possible".

We therefore introduce the twin concepts of quality hit and
quality hit ratio. We define the quality hit as a number between
0 and 1 indicating how many out of the total number of layers of
that object, are present on the cache. A quality hit of 1 implies
that all layers of that object are present. Correspondingly, a
quality hit of 0 implies a cache 'miss ' . (That is, not even the base
layer is present).

Ensuring that at least the base layers of the most popular objects
are stored on the system maximizes the hit ratio. Now, if as
many layers of the cached objects as possible are stored, the
quality of these hits is maximized. Finally, we define the Quality
Hit Ratio as

u ni

H
where H is the total number of hits, L is the total number of
layers for each object, and ni is the number of layers present for
object L

3.6 Simultaneous Request Polic~
Standard caching proxies deal with small objects. For any
object, the session between the proxy and the client lasts for a
very short time. Thus, staggered requests for the same object can
be easily dealt with. By staggered requests we mean that a new
client requests an object while that is being served to another
client from the source. In this case, the proxy can either ask the
client to wait until the present object is cached, or start a
separate session with the source for the new client.

However, the above approach will be highly inefficient when the
proxy is streaming A/V content to the client. This is because
each session in this case will last for a much longer time, and the
cost associated with setting up a new connection to the source
would be quite high. We propose a new approach, which we call
the simultaneous request policy, for the case of clients requesting
the same clip at staggered intervals. In particular, the proposed
scheme takes advantage of the bandwidth mismatch between the
local network and the external link to give each successive client
(after the first) a slightly better Quality of Service. The
bandwidth mismatch is such that the bandwidth between the
broker and the client Bbc is greater than or less than the
bandwidth between the broker and the source, Bs~. Thus
B~ = k(Bsb)
Where k is any positive real number. For campus networks and
corporate intranets, k > 1 as the local network is much faster
than the external link. In this case, consider the case when a
client is being streamed a clip from the external link, through the
broker. The bit rate available to the client is limited by the bit
rate on the external link, Bs~. Let the file size of the clip be
denoted by FILE_SIZE. Also, the broker caches the clip as it
passes through to the client - this is the 'cut-through' caching
concept explained in the RTSP draft. Let the portion of the clip
cached at time t be denoted by AVAIL_VIDEO. Now, if at this
time t, another client requests the same clip, it is possible to

z 'Standard' web objects include html files, small inline images,
etc. which have sizes of the order of a few KB.

15

serve the clip to him at a speed k(Bsb). The value for k can be
shown to be [1]

FILE _ SIZE
k <

(FILE _ SIZE - AVAIL _VIDEO)

The second client can thus avail of a higher bit rate and a better
QOS.

4. IMPLEMENTATION DETAILS
The caching algorithms have been simulated using C. The
simulation is driven by a 'trace file', a log file of an actual proxy
cache showing the access pattern of requests for some period.
What we really need is a trace f i le showing the RTSP requests,
however such a trace f i le is not yet available anywhere. Instead,
we use trace files of H T r P requests taken from two proxy servers
in lISt. A justification for using these traces is given in the next
section. All the experiments are performed in some 'window
size.' This is essentially how far back into the trace files to look.
For a particular cache size, after the cache is full, the algorithms
will stabilize (in terms of hit ratio or any other performance
metric) after some time. For the cache sizes and clip sizes that
we have used in our experiments, we have found that a window
size of 30,000 to 40,000 requests is enough to study the cache
behavior.

4.1 Justification of the traces used
The trace-driven simulation approach is the standard one in web
caching experiments. For media clips, trace files of this nature
are not yet available anywhere, as a proxy caching system
exclusively for streaming of A N clips has not yet been
implemented, to the best of our knowledge. Given this situation,
we use H'ITP traces as the inputs to our simulation. We believe
that to some extent, the H T I P traces will reflect user access
patterns for media clips too, provided the local network is a
broadband one. A justification for this is presented below.

The broker receives requests for A N clips from a number of
clients. For our problem, these A N clips will invariably be
embedded objects in web pages. Even if they are independent
presentations, the user will invariably be ' led' to them through a
l ink from some web page. The justifications are:
* RTSP has been designed for the web and is a proposed

lnternet standard.
• It is likely that web pages of the near future might have tags,

which point to an RTSP URL instead of an HTrP URL.
• RTSP will not replace H'I'TP totally. In fact, they will

coexist. HTFP servers will continue to serve web pages as
always. If the web page has a link to a media resource, the
client request for that resource is transferred by the H'I ' rP
server to the RTSP (media) server. From that point
onwards, the client interacts with the RTSP server.

We therefore believe that an overwhelming majority of requests
to RTSP servers will be a result of 'transfer of control' from
H T I P servers, and a negligible number of requests will be direct
requests. Thus, there will be a 'mapping' of HTYP requests to
RTSP requests. Thus, if a web page is very popular, then it is
quite likely that a clip(s) to which there is a link on that page is

also very popular. This is valid considering the three points
mentioned above.

The above means that the request distributions for RTSP, that is
the user access patterns should be similar to those for HTIP. The
differences will be in the mean object size, the standard
deviation, and the minimum and maximum object size. In any
case, these factors do not influence the performance of the newly
proposed layered caching policies [5.2] - they only help
determine the maximum cache size necessary for the system to
reach equilibrium.

Generating the access patterns has the difficulty that we still do
not know what will be the request distribution. In the absence of
such data, it appears that using the HTTP patterns is the best
option available. An important point is that the only condition for
the newly proposed caching algorithms to work well is that the
accesses follow a z i p f - like distribution 3. It is well known that
HTrP trace f les follow a zipf-like distribution [8].

4.2 Analysis of the input trace file
It is important to know the nature of the trace data (the access
patterns) used for the simulation. We plot the user access
patterns as a rank v/s frequency diagram (the zipf distribution)
where the most popular or most frequently accessed document
has rank 1. The frequency versus rank plot for the trace file
under consideration is shown below.

400 --
350 m
300 .

~250 I 200
150
100 ,

0 i

RANK

[~ trace

Figure 2. Frequency versus Rank plot for the trace file,
indicating object popularity

Similar plots have been obtained for other trace files 4. The plots
confirm the general observations that a few objects are accessed
extremely often, while a large number of objects are accessed

relatively infrequently.

3 Video-On-Demand literature such as [11] suggests that the
popularity of video objects can be modeled using the well-
known zipf distribution.

4 These have not been included because of space constraints.

16

5. RESULTS
5.1 Modified Replacement P o l i c i e s
The standard caching policies that have been compared are Least
Recently Used (LRU), Least Frequently Used (LFU), Size
(SIZE), LFU with admission control (LFU_adm) and a hybrid
policy (HYBRID) based on LFU, LRU and SIZE [1], [9]. The
comparisons are made on the basis of hit ratio and byte hit ratio.
In all cases except LFU_adm, the incoming object is always
cached. This is to take into account the recency factor, as the
incoming object is the most recent. The results are shown in
figure 3.

It is interesting to note that the LFU policy outperforms the LRU
policy in all the tests, suggesting that for proxy caching,
frequency is of greater significance than recency. Also, the
importance of the clip size cannot be discounted. Possibly, the
best algorithm would be one that would take into account all
three factors. The HYBRID policy serves this purpose, and
outperforms the others as shown below.

40

30
25

o 20 ..~,, .~.. .~
:~ 15-1

"~ lO 4 ~.-
5 q

1 " 1 ~ i i i i

393 3145 12582

3a

¢. LRU

LFU

..... -,~ LFU_adm

---'-X SIZE

+ HY BRID

cache s ize (MB)

3 0 -

2 5 -

2 0 -

°~'~ 15 - / , ~
o
:~ 1 0 -

5 -

0 -- i i , , i i

393

3b

¢ LRU

.... ~ LFU

LFU_adm

....... ~ SIZE

HY B RID

3145 12582

cache s ize (MB)

Figure 3. Performance comparison of modified replacement
policies with a) hit ratio and b) byte hit ratio plotted against
cache size

Our experiments show that the optimum values of the parameters
of the HYBRID policy are r = 0, f = 2 and s = -1.5. Thus, the r
exponent must be set to 0 for best results. We thus conclude that
frequency and size are major factors that determine which objects
should be purged from the cache. The incoming object is always
cached, and it is here that the temporal locality or recency of
requests comes into play. Thus, the object that is admitted into
the cache is the incoming one (since there is a high probability
that it will be requested again soon). However, the object(s) that
is (are) purged from the cache are those with the least weight as
determined by the respective replacement policy. Another
observation is that byte hit ratio is usually smaller than standard
hit ratio. We speculate that this is so because the most profitably
cached objects are small ones 5. We also see that the admission
control does not improve the performance. The possible reason is
this. The incoming object is the most recent object. If the
admission control result is negative, this object is prevented from
coming into the cache. Thus, if the traces exhibit the property of
recency, then the system performance could deteriorate. Since
this is the case in our experiments, it is likely that the traces have
some degree of recency.

An important observation from the results is if hit ratio is the
performance metric to be maximized, then the HYBRID policy is
the best, as shown in the first plot. However, as can be seen from
the second plot, the byte-hit ratio is maximized for the LFU
policy.

5.2 Layered Replacement Policies
Based on the layered replacement approach mentioned earlier
[3.3], we introduce two new layered caching policies: Object-in-
Layer-Out (OILO), and Layer-in-Layer-Out (LILO). We compare
these with the standard approach used in web caching, which we
call Object-in-Object-Out (OIOO). These three policies are then
combined with the standard ones [5.1], to give new policies.

Table 1. Layered Replacement Policies

Policy Incoming Object Outgoing Object

OIOO FULL CLIP FULL CLIP

OILO FULL CLIP LAYER

LILO LAYER LAYER

In general, whenever the broker in our layered caching system
receives a request for a video clip, either a full or partial HIT (or
a full or partial MISS) may occur. Here, a 'full' hit implies that
all layers are present. In case of a partial HIT, the broker
translates the request into one for the 'missing' layer(s) and
forwards it up to the source. Now, in a non-layered caching
system, the objects stored are complete clips. However, in our
type of a layered video caching system, the objects stored by the
broker are layers of the clips, not the clips themselves.

5 A frequency versus size plot confirms this for HTrP traces.
Whether this is true for RTSP traces remains to be seen.

17

This point is important because, in the first case, for a given
cache size, the system's maximum capacity will be to store some
N objects. However, in the second case, for the same cache size,
the system's maximum capacity will be to store k*N objects,
where (J/~v)*clip_size is the size of the base layer. Thus, we

would expect that for a layered video caching system, the hit
ratio for a given cache size would be higher, but the quality hit
ratio would be lower. (A 'non-layered' caching system would
have a quality-hit ratio of 1).

The implications of the new and simple concept of 'Quality hit
ratio' that we have proposed, are worthy of notice. Assuming that
clips are available in layered form, a simple paradigm shift in the
manner of their retrieval, storage, and removal from the caching
system results in the following distinct benefits.

Retrieving one layer at each object request results in an implicit
form of admission control. Initially, only one layer is retrieved,
the other layers are successively retrieved provided the clip is
requested often enough. The layered retrieval increases the
probability of providing streaming access to the clip, since the
individual layers will require a lower bit-rate as compared with
the full clip. Another point to be noted is that retrieving one layer
at a time instead of the whole clip results in better load balancing
of the external Bsb link - a larger number of requests can
simultaneously handled.

Secondly, the hit ratio goes up. This is because, it is possible to
tune the system to result in a Quality hit ratio of close to 100%
while showing a significant improvement in hit ratio. Again, this
is possible mainly because of the fact that some clips are much
more likely to be accessed than other ones. It would then be
possible to select a 'popularity' threshold above which clips are
cached at full quality (all layers) and below which the quality
degrades with decreasing clip popularity. (Fewer and fewer
layers of the clip are stored). In our simulated system, no such
'threshold' is selected - the system dynamically purges the least
significant layers of the least weight objects until enough space is
created for the incoming layer.

The plots in figure 4 show the results obtained with the LRU
policy. We see that for the hit ratio and byte hit ratio, the I.,1LO
scheme outperforms the other two, while having a mean Quality
Hit ratio of 89%. Future work would involve minimizing this
tradeoff between lowering of the Quality hit ratio and raising of
the hit ratio and byte hit ratio.

The plots in figure 5 show the results for the LFU policy. As far
as the hit ratio is concerned, the two layered schemes give a
much better performance than the OIOO non-layered one. A
comparison of the two layered schemes indicates that the hit
ratios are roughly the same for both. However, the byte hit ratio
in case of LILO is much more than that in case of OILO. In
addition, the Quality hit ratio is much higher in case of OILO
than in case of L1LO. This suggests that a choice between the
two layered schemes can be made in the following way. For the
LFU policy, to maximize the byte hit ratio; we must use the LILO
policy whereas to maximize the Quality hit ratio we must use the
OILO policy.

30 .

20 :::: ::!:.

i 16 .-. i:: d~(,.~-~l

lO

: t r x
, , , , ,

393 1572 6291 12582

c a c h e size (MB)

4 a

LRU LILO

LF:IU_OLO

• ..::i::.... LF~.J_OIOO

2 0

1 8

16

14

12
10

8

6

J
F

i i

3 9 3 1572 6291 1 2 5 8 2

c a c h e s i z e (MB)

4 b

¢ LRU_LILO
:--~--- LRU_OLO

....... ::~::---.'.--LRLI O[OO

1 0 0 ~:~. e.~ ~..~ ~ ~.~ ~ ~:~

9 8

9 6

~ 94
~ 92

90

86
8,t
82 , , ,

393 1572 6291 12582

c a c h e size (MB)

4 c

¢ LRU_LILO

LRU_OILO

..... ::i..... LRU_OIOO

Figure 4. The plots above show the results obtained for the
LRU based layered caching schemes, for the metrics hit
ratio (4a), byte hit ratio (4b) and quality hit ratio (4c).

The plots in figure 6 show the results obtained for the HYBRID
policy. The general behavior is similar to the previous two plots.

Across the four sets of plots, the highest hit ratio is 38.8%, for
the HYBRID_LIIX) scheme. The highest byte hit ratio is 24.6%
for the LFU_OIOO scheme. Between the two layered schemes,
the highest byte hit ratio is 21.6% for the LFU_I.,ILO scheme.

18

ff only hit ratio was the criterion, then HYBRID_OILO appears
to be the best scheme overall, with hit ratios almost the same as

and with a Quality hit ratio of almost 100%. However, if
byte hit ratio is the criterion, then the LFU 0100 scheme is the
best.

,-'-'-'~ ' ~;a 3o.
25.

2 0

'~ 1 5 :$...--
• . , - " " : : i : "

10,

5,

0 ~ t ' ' ' ,

393 1572 6291 12582

cache size (MB)

LFU ULO

- = = LFU_OLO

I -.-::i..... LFU 0100

30 ...

25

20

15

10

5

0

• .,, ..:: i::

i i i i i

3 9 3 1572 6291 12582
cache size (MB)

LRJ_LILO

--- ~--- LFU OLO

... :;::--- LFU 0100

1 0 2 . . - . -~ . - 1
100 t "$: ::i:: :.!::::!.. ,::i.. ::!::

92 / 4 ~ = .

393 1572 6291 12582

cache size (MB)

5c

• LFU_LLO

--t~--- LFU OLO

• .. ::..... LFU_OIO0

y=

45

4 0 -

3 5 -

3 0 -

2 5 -

2 0 -

1 5 -

1 0 -

5 -

0 ~

3 9 3

• ..:.:..
..:, / " "
,,:.:.

I I I I 1

1 5 7 2 6291 1 2 5 8 2

cache size (MB)

6a

HYBRID LILO

= ~--= HYBRID OILO

.... : i i i : HYBRID_OIOO

2 5 -

2 0 -
A

o 1 5

1 0

"0 5 -

• ..::.
• . . : :~ :~"""

O I I 1 I I I

3 9 3 1 5 7 2 6 2 9 1 1 2 5 8 2

cache size (MB)

6b

¢ HY BRID_LILO

.... ~ HYBRID_OILO

.......... z : : -HY BRID_OIOO

1 0 5 .

1 0 0 ..

o 9 5

O 8 5 -

80

3 9 3

I

1 5 7 2 6291 1 2 5 8 2

cache size (MB)

6c

HYBRID_LILO

- ~ - HY BRID_OILO

.... :ii~: HYBRID_OIOO

Figure 6. The plots above show the results obtained for the
HYBRID based layered caching schemes, for the metrics
hit ratio (6a), byte hit ratio (6b) and quality hit ratio (6c).

Figure 5. The plots above show the results obtained for the
LFU based layered caching schemes, for the metrics hit
ratio (Sa), byte hit ratio (Sb) and quality hit ratio (5c).

19

6. CONCLUSIONS
In this paper, we have proposed a new caching and streaming
framework for multimedia objects. The framework has a broker-
based architecture and uses the proposed Internet Standard Real
Time Streaming Protocol (RTSP). The problem and the area of
research itself being a novel one, we hope that the work reported
in here proves to be of great value in the near future. It is hoped
that the proposed design of a broker based caching and streaming
architecture for multimedia will serve as a generic framework.
Among the important conclusions drawn through the experiments
is that a hybrid caching policy based on frequency, size and
recency usually gives the best results. We have also seen that the
novel layered replacement approach proposed gives better results
than standard object-based replacement schemes. The novel
performance metric, Quality Hit Ratio appears to be adequate as
a measure for the evaluation of the new layered caching policies.

It appears that caching and streaming are henceforth going to be
the major factors influencing the successful deployment of
Internet Multimedia systems. However, the convergence of these
two technologies is a recent development and has thrown up a
number of new challenges. Our work here addresses some of the
issues. However, many remain unresolved, and thus open a large
number of areas for future work.

The design of the caching and streaming architecture is already
in place. The system performance has also been verified through
simulation. Therefore, the next logical step in this direction is
the implementation of the proposed architecture in an actual
network scenario. Also, the integration of the proposed
framework into a multicast scenario is extremely important, as
multicast is one of the essential technologies of Internet
Multimedia. A 'layered multicast' approach needs to be
investigated. Stream control issues, particularly related to layered
video and RTSP, must be looked into. It is important to add
functionality to RTSP to implement 'trick modes' such as FF,
REW, etc.

As the Quality hit ratio goes closer and closer to 1, the hit ratio
and byte hit ratio drop. This tradeoff between the raising of the
Quality hit ratio and lowering of the hit ratio and byte hit ratio
needs to be minimized.

Since we are dealing with streaming media, a thorough
investigation into QOS related issues, is necessary. This problem
involves 3 party QOS negotiation with three cases possible. One,
the broker simply 'relays' the requested QOS parameters upward
to the source. Two, the broker 'maps' the requested QOS
parameters to a new set based on the external resources
available. Three, the broker acts as the source itself (this is in
case of a cache 'hit') and responds to the request.

Among other issues that require further research, is the
generation of the 'sum clip'. The broker must be able to
combine the layers already present with the incoming layer(s)
without introducing additional latency. The layered encoding
scheme being used will have to provide for this. Secondly, an
investigation into the feasibility and advantages, if any, of video
interpolation and transcoding schemes is also required. These are

possible additional functions of the broker. Thirdly, a
performance comparison between a single broker-based
architecture and a multiple broker-based architecture is needed.
Finally, if possible, a trace file of accesses to a media server
(audio or video) should be used instead of the HTI'P file. This
will make the results of the trace driven simulation much more
realistic.

7. REFERENCES
[1] S. Paknik_ar. "A Caching and Streaming Framework

for Multimedia". Masters thesis, IISc, Bangalore,
December 1999.

[2] H. Schulzrinne, et al. "Real Time Streaming Protocol
(RTSP)." Proposed Internet Standard, RFC 2326,
April 1998.

[3] S. McCanne. "Scalable Compression and Transmission of
Internet Multicast Video." Ph.D. Thesis, University of
California, Berkeley, December 1996

[4] M. Abrams, et al. "Caching Proxies: Limitations and
Potentials." Fourth International World Wide Web
Conference, Boston, 1995.

[5] S. Williams, et al. "Removal Policies in Network
Caches for World Wide Web Documents."
Proceedings of the ACM SIGCOMM, 1996.

[6] Aggarwal, et al. "On Caching Policies for Web
Objects." IBM research report RC 20619 11/08/96

[7] L.H.Ngoh, et al. "A Multicast Connection
Management Solution for Wired and Wireless ATM
Networks", IEEE Communications Magazine, Vol.
35, No. 11, pp. 52-59, Nov 1997.

[8] P. Cao, et al. "Web Caching and Zipf-like
Distributions: Evidence and Implications," IEEE
lnfocom, 1999.

[9] D. Wessels. "Intelligent Caching of World-Wide-Web
Objects." MS Thesis, University of Colorado, 1995.

[10] A. Swan, S. Mccane and L. Rowe, "Layered
Transmission and Caching for the Multicast Session
Directory Service", Proc. Sixth ACM Multimedia
Conference, Bristol, Sep 1998.

[11] S. Carter and D. long, "Improving Bandwidth
Efficiency of Video-On-Demand Servers", Computer
Networks 31 (1999) 111-123.

20

