
AUGUST 2022 | VOL. 65 | NO. 8 | COMMUNICATIONS OF THE ACM 91

instead. Extensions leverage the FPGA
programmability, for example to sup-
port three-operand operations.

hXDP is implemented as a stand-
alone logical module for an FPGA,
which means it can be added or re-
moved from an FPGA-NIC design. With
resource efficiency as a goal, hXDP
consumes just 10% of the FPGA logic
resources, on a mid-range FPGA, and
less than 4% of its memory. This leaves
enough resources for other accelera-
tors to coincide within the same NIC,
as hoped.

hXDP’s performance is superior to
some high-end CPUs, while running at
10% of the CPU frequency. Moreover,
the packet forwarding latency is an or-
der of magnitude lower than using a
CPU and lower than a comparable SoC-
based NIC.

Given that hXDP achieves per-
formance superior to CPUs for real-
world network intensive applications,
such as a firewall or a load-balancer,
while at the same time freeing CPU re-
sources, it is easy to see why this work
is so interesting. The authors explore
venues for further improvements,
such as a multicore design and using
larger memories. Combined with mi-
gration to ASIC or higher-end FPGA,
further performance gains are almost
guaranteed.

The world of smart NICs is rapidly
developing, with giants such as Intel
and NVIDIA introducing new solu-
tions that combine standard SoC ar-
chitecture, programmable pipelines,
and accelerators. It would be fascinat-
ing to look at this work in retrospect
10 years from now and see what has
prevailed: ease of programming and
use, raw performance, or perhaps a
mix of both?	

Noa Zilberman is an associate professor and leads the
Computing Infrastructure Group in the Department of
Engineering Science at the University of Oxford, U.K.

Copyright held by author.

F O R A V E R Y long time, the network was
considered the slow part of a system.
Even today, our CPU is running at
clock speeds of several GHz, while our
home network is likely to still run at
tens to hundreds of megabits per sec-
ond. This, however, is far from being
the case in the wired systems world.
Network switches process tens of tera-
bits every second, and many network
interface cards (NICs) have one or
more 100G ports. Suddenly, the CPU
is slow in comparison with the rate of
data arriving from the network.

Unsurprisingly, solutions to bridg-
ing the performance gap between
the CPU and the network are either
software or hardware based. In the
following paper, the authors offer an
interesting solution: taking a soft-
ware-based solution (Linux’s eXpress
Data Path—XDP) and offloading it
to the hardware (Field Programma-
ble Gate Arrays—FPGA). In that, it
achieves the best of both worlds: ease
of adoption and use, combined with
performance benefits.

XDP provides a safe execution en-
vironment for programmable packet
processing, while running within the
kernel. This is in contrast with some
other solutions, such as DPDK, which
use kernel bypass. Running within
the kernel provides mechanisms for
application isolation and security, as
well as better manageability. XDP runs
its programs within eBPF virtual ma-
chines, with programs written in (re-
stricted) C and compiled to eBPF.

The NIC is an ideal target for pack-
et processing offloading: it is located
between the network and the CPU,
can achieve high packet processing
rate, and—more importantly—it can
free up cycles on the CPU. This type
of a NIC is often referred to as a smart
NIC. Smart NICs based on FPGA are
considered more flexible than other
types of smart NICs and can support
a range of bespoke accelerator ar-
chitectures. However, programming

FPGAs requires expertise, and packet
processing solutions tend to consume
significant resources on the FPGA.
While existing solutions simplify
FPGA development and use high-level
programming languages, they tend to
limit the functionality available to the
user, limit the performance, or con-
sume significant hardware resources.

The solution suggested in the pa-
per, termed hXDP, focuses on two
goals: being able to run XDP pro-
grams efficiently on FPGA-based NICs,
and consuming as little hardware
resources as possible.

By using XDP, the authors free pro-
grammers from learning new program-
ming languages, design paradigms or
hardware architectures, and enable us-
ing a well-known programming model.
By minimizing hardware resource con-
sumption, the authors enable using
the NIC for more than just packet pro-
cessing, namely for application specif-
ic accelerators.

It is also interesting to note the
non-goals of hXDP. First, hXDP does
not try to outperform the packet pro-
cessing rate of previous NIC-based
works. Instead, it focuses on provid-
ing same or better performance than
running on a CPU. This distinction
enables adopting an execution model
that requires a fixed amount of hard-
ware resources.

A second non-goal is providing a
transparent offloading solution to the
FPGA-NIC. Programmers should still
be aware that their XDP program will
be running on a NIC, but they main-
tain the XDP programming model as
in Linux.

Through careful work, the authors
provide interesting insights into the
XDP instruction set, which saves re-
sources and optimizes hXDP’s com-
piler. To that end, the authors both
reduce and extend the instruction set.
The reduction comes from eliminating
instructions for kernel verifier checks
and using cheaper hardware checks

Technical Perspective
hXDP: Light and Efficient
Packet Processing Offload
By Noa Zilberman

To view the accompanying paper,
visit doi.acm.org/10.1145/3543668 rh

DOI:10.1145/3543844

http://doi.acm.org/10.1145/3543668
http://dx.doi.org/10.1145/3543844
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543844&domain=pdf&date_stamp=2022-07-21

