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ABSTRACT 
User behaviors on an e-commerce app not only contain diferent 
kinds of feedback on items but also sometimes imply the cognitive 
clue of the user’s decision-making. For understanding the psycho-
logical procedure behind user decisions, we present the behavior 
path and propose to match the user’s current behavior path with his-
torical behavior paths to predict user behaviors on the app. Further, 
we design a deep neural network for behavior path matching and 
solve three difculties in modeling behavior paths: sparsity, noise 
interference, and accurate matching of behavior paths. In particular, 
we leverage contrastive learning to augment user behavior paths, 
provide behavior path self-activation to alleviate the efect of noise, 
and adopt a two-level matching mechanism to identify the most 
appropriate candidate. Our model shows excellent performance 
on two real-world datasets, outperforming state-of-the-art CTR 
models. Moreover, our model has been deployed on the Meituan 
food delivery platform and has accumulated 1.6% improvement in 
CTR and 1.8% improvement in advertising revenue. 

CCS CONCEPTS 
• Information systems → Recommender systems. 
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1 INTRODUCTION 
Meituan Takeout APP is an app for catering and retail. Through the 
app, users can browse and choose the POIs (Points Of Interest, such 
as restaurants, food stores, and cafes) and place orders for food that 
will be fast delivered to users. The app is expected to understand 
the psychology behind user decisions and push relevant candidates 
to users, thus increasing the Click-Through Rate (CTR) and further 
transaction volume and advertising revenue. 

We note that user behaviors on an app are an important manifes-
tation of the user’s decision-making psychology. However, although 
some existing models for CTR prediction have analyzed user behav-
iors, from the perspective of long sequences or multiple kinds of 
behaviors, they adopt the point-to-point activation of the candidate 
and individual behavior in the historical behavior sequence, with-
out taking into consideration the infuence of sequential behaviors 
which contain the user decision-making trail. Therefore, for the 
behavior of clicking a target POI, we view the user’s sequential 
behaviors before that, including browsing the POIs, placing an or-
der and etc., as a behavior path. By observing the historical data 
on Meituan Takeout APP, we fnd that there is a close correlation 
between the behavior path and the click behavior. 

The above observations motivate us to develop a model that 
performs the behavior path matching to predict the user’s next 
click. The core idea is to learn latent factors related to decision-
making psychology from the user behavior paths for generating 
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their embeddings. Having in hand the embeddings from behavior 
paths, the model will perform the matching between historical 
behavior paths and the current behavior path and estimate the 
CTRs of candidates. 

However, it is challenging to model user behavior paths, because 
there exist three difculties: the sparsity of behavior paths, the 
interference of noise in behavior paths, and the exact matching 
between behavior paths. Firstly, for a single user, the interactions 
between the user and the app are not much, which leads to the 
difculty in capturing all behavior patterns of the user. For dealing 
with the sparsity of behavior paths, we leverage contrastive learn-
ing to augment the positives of user behavior paths and optimize 
the learning of the user behavior paths. Secondly, there is a lot of 
noise in the user behavior paths. For example, a user clicks on a POI 
due to its attractive cover but immediately returns as soon as the 
user feels he/she does not like it. Such behavior actually becomes 
the noise in the path. For reducing the impact of noise, we build a 
dynamic activation network to focus on several main behaviors of 
the path. Compared to equally treating all the behaviors in a path, 
the dynamic activation is more efective and efcient, since some 
behaviors do have a more obvious efect on subsequent behaviors. 
Finally, we propose a two-level matching mechanism. In the frst 
level, for the current path, we calculate the activation weight of 
each historical behavior path and then choose the top-k most sim-
ilar historical paths. In the second level, given the candidate and 
the chosen paths, we calculate the activation weights of the click 
behaviors which follow the chosen paths for CTR prediction. 

Our main contributions are summarized as follows. 

• We are the frst to introduce user behavior path matching into the 
industrial CTR prediction. We identify the challenges of modeling 
behavior paths, i.e., the sparsity, noise, and matching problems 
of behavior paths. 

• We propose a Deep Behavior Path Matching Network (DBPMaN) 
to predict CTRs, which augments behavior paths, provides be-
havior path self-activation, and performs a two-level matching 
(at the level of behavior paths frst and then at the level of click 
behaviors) for CTR prediction. 

• We conduct ofine experiments on two real-world datasets of 
diferent scales and the online A/B test in Meituan advertising. 
The experimental results show DBPMaN is efective and achieves 
state-of-the-art performance. 

2 RELATED WORK 
CTR prediction, as a kernel part of the recommender system, has 
been a hot topic concerned by industry and academia [8, 18]. 

The classic solution to CTR prediction is to learn feature in-
teractions, where DeepFM [6], xDeepFM [9], and ONN [17] are 
early representative deep neural network models and CAN [1] has 
the state-of-the-art performance among current open source CTR 
models. 

Recently, sequential behavior modeling becomes a new driving 
force for CTR prediction. The granularity of modeled behaviors 
ranges from the single behavior (e.g., DIN [21]) to multiple kinds 
of behaviors (e.g., FeedRec [15]), from short sequences (e.g., DIEN 
[20], DSIN [5]) to ultra-long sequences (e.g., MIMN [11], SIM [12], 
ETA [2]). These models aim to capture user interests [5, 19–21] or 

intention [4] and often adopt the point-to-point activation method, 
whose input only contains a single kind of behaviors such as click, 
to estimate the tendency of user interests/intention towards can-
didates from a probabilistic perspective. They are proven to have 
continued to improve the accuracy of CTR prediction. In addition, 
with the great success of Transformer [14] in the feld of NLP, it has 
been introduced into recommender systems to achieve diferent 
recall tasks [7, 13] or CTR predication tasks [3]. 

Compared to the above work, our work emphasizes behavior 
paths that imply the decision-making signs and employs behavior 
paths as the evidence base of CTR prediction. 

3 OUR MODEL 

3.1 Overview 
Firstly, we give the following defnitions used in the paper. 
Defnition 1. (User Behavior Sequence) Let U denote a user 
set. For the user � ∈ U, his/her behavior sequence is composed 
of his/her behaviors, sorted by occurrence time and denoted by 
� = [�1, ..., �� , ..., �� ], where �� is the �-th behavior and T is the 
length of the behavior sequence. In our scenario, this sequence 
includes user behaviors during the past year. Each behavior includes 
the ID of the interacted item, the behavior type, the interval between 
the occurrence time and the current time and the relative position 
in the sequence, etc. In our scenario, there exist three behavior 
types: click, impression, and order. 
Defnition 2. (User Click Sequence) In the user behavior se-
quence � , there exist a large number of click behaviors. Thus we 
can form a click sequence �� from � : �� = [�� 1, ..., ��

� , ..., ��
� ], where � 

denotes the length of the click sequence. 
Defnition 3. (User Behavior Path) For the �-th click behavior 
�� in �� , let �� (� ) denote the corresponding behavior in the be-
�
havior sequence � , where �(�) denotes the position in � where the 
�-th click behavior occurs. Then, the user behavior path with re-
spect to the click behavior �

�
� , denoted by �� , is the subsequence 

[�� (� )−� , ..., �� (� )−2, �� (� )−1] in � , where � is the preset length of 
the behavior path. 

From the defnition of the user behavior path, we can obviously 
fnd that the click behavior and the behavior path are one-to-one 
correspondence. Fig. 1 gives an example of user behavior paths. In 
the historical user behavior sequence, there are three user behavior 
paths whose length is preset to 3: one w.r.t. �4, one w.r.t. �7, and 
one w.r.t. �11. 

 Historical User Behavior Sequence 

impression

click

order

candidatecandidate

   - behavior path     - behavior path     - behavior path 

 current  behavior path 

Figure 1: Example of user behavior paths where �=3. 

Defnition 4. (Behavior Path Sequence) For all click behaviors 
in � , we can obtain their corresponding behavior paths, respectively, 
thus forming a behavior path sequence � = [�1, ..., �� , ..., �� ], where 
�� is the user behavior path w.r.t. the click behavior �� 

� . 
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Figure 2: Structure of DBPMaN. (1) PEM enhances the path 
representations. (2) PMM matches the paths. (3) PAM aug-
ments the paths. 

Aiming at the CTR prediction task, we setup the DBPMaN model 
that has the following composition, structure and process. 

DBPMaN consists of an embedding layer and three modules, i.e., 
Path Enhancing Module (PEM), Path Matching Module (PMM), and 
Path Augmenting Module (PAM), whose structure is shown in Fig. 
2. 

DBPMaN takes multiple features as input, where the chosen 
features are from 1) item profle, including item ID and its side 
information (e.g., category, location, rating, etc.); 2) user profle, 
including user ID and his/her side information (e.g., age, gender, city, 
etc.); 3) behaviors in the user behavior sequence. These features are 
fed into the embedding layer. For all features, we can obtain their 
embeddings by looking up the embedding tables. Then, we use sum 
pooling on diferent kinds of features to calculate the embedding 
of user behavior sequence s = [e1, ..., e� , ..., e� ] , user embedding 

�� e� and the embedding of candidate item e . 
The behaviors in a user behavior path tend to contribute difer-

ently to the corresponding next click behavior, i.e., the click behav-
ior which follows the user behavior path. PEM is expected to mine 
this information to learn more accurate path embeddings. In short, 
given the embeddings of each behavior path and its corresponding 
click behavior, PEM frst activates the important behaviors in a 
behavior path and then optimizes the embedding of the behavior 
path so as to obtain a more accurate behavior path representation. 

Then, PMM uses the embeddings of the current behavior path 
and historical behavior paths as input to search the � most similar 
historical behavior paths compared to the current behavior path 
and then activate the corresponding � click behaviors with the 
candidate. 

In addition, PAM aims to learn more precise and informative 
behavior path embeddings by contrastive learning. Concretely, we 
mask randomly-chosen behaviors in each historical behavior path 
to obtain two augmented paths and feed them into the embedding 
layer and PEM to calculate their embeddings and then pull embed-
dings stemming from a same behavior path close by taking the 
InfoNCE loss [10] as the contrastive loss. 

DBPMaN uses the negative log-likelihood function as the main 
loss, which is widely used in most CTR models. Finally, DBPMaN 
is trained by combining the main loss with the contrastive loss as 
the optimization objective. 

Due to the limited space, we only describe the PEM and PMM in 
detail, omitting the other parts of the model. 

3.2 Path Enhancing Module (PEM) 
For a behavior path [�� (� )−� , ..., �� (� )−2, �� (� )−1] and the follow-
ing click behavior �� , the embedding layer will generate their em-

� 
� beddings, denoted by e� (� )−� ,..., e� (� )−2, e� (� )−1, and e
� . Further, 

a sequence of embeddings [e� (� )−� , ..., e� (� )−2, e� (� )−1] is denoted 
by s� . 

We frstly apply a local activation unit on the user behavior path, 
which performs a weighted concat pooling to adaptively calculate 
the embedding of the behavior path, as shown in Eq. 1.� � 

�� � e
� (� )− � = � e� (� )− � , e� · e� (� )− � , 1 ≤ � ≤ � 

�� �� �� �� s� = [e
� (� )−� , ..., e� (� )−2, e� (� )−1] (1) 

�� �� p = concat(s )� � 

where �(·) is an a Multi-Layer Perceptron (MLP) whose output is 
used as the frst-level activation score. 

�� Then, we feed p into another MLP and learn the second-level 
�

activation score of each behavior in the behavior path by a softmax 
activation function, as shown in Eq. 2. 

�� score� = sofmax(MLP(p )) (2)� 

The score� is an �-dimensional vector, whose entries represent 
the second-level activation scores of behaviors in the behavior 
path. Then, only the top-k scores are chosen. According to the 
chosen scores, we multiply them with their corresponding behavior 

�� embeddings in s . By concatenating the embeddings scaled by 
� 

� scores, we get the enhanced path embedding p
� . 

In this way, we can obtain the sequence of the enhanced path 
� � � embeddings P� = [p1, p2, ..., p� ]. 

3.3 Path Matching Module (PMM) 
For a user, there might exist a large number of behavior paths in the 
user behavior sequence. However, only a few of them are similar 
to the current behavior path, which can indicate the user’s current 
interests. PMM is designed to search the frst � behavior paths 
most similar to the current path, and then obtain the correspond-
ing � click behaviors, which are believed to make considerable 
contributions to the user’s current interests. 

Specifcally, given the sequence of the enhanced historical path 
� � � embeddings P� = [p1, p2, ..., p� ] and the enhanced embedding of 

� � � the current behavior path p��� , we feed each p ∈ P� and p
� ��� 
� into a scoring gate and obtain a similarity score � , which refects 
�

the importance of the corresponding historical behavior path. The 
calculation of the scoring gate is shown in Eq. 3. 

� � � � � �
� = MLP(concat(p��� , p� , p��� ⊙ p� )) (3) 

where ⊙ denotes the hadamard product and MLP(·) is implemented 
as a feed forward neural network. 

� � � Thus, we can obtain a list of similarity scores �� = [�1 , �2 , ..., �� ]. 
We sort all scores and choose the top-k scores. With top-k scores, we 
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can get the corresponding historical paths and the click behaviors 
corresponding to the historical paths. For the chosen click behav-
iors, a sequence of these click behavior embeddings is denoted by 
s� = [e�1, e�2, ..., e�� ]. In addition, we multiply each chosen path 
embedding by the corresponding score and obtain the adjusted 
embeddings of chosen paths, as shown in Eq. 4. 

E� = concat(������ (�� , [�� · p�� , 1 ≤ � ≤ �], �)) (4)
� 

where the function ������ (�����, ���������, �) sorts historical be-
havior paths by score and chooses top-k paths. 

All chosen click behaviors are supposed to make diferent con-
tributions to the user’s current interests. Thus, we use the same 
way as one in Eq. 3 to calculate the scores of similarity between 
the candidate and the chosen click behaviors so as to adaptively 
calculate the representation vector of user interests by taking into 
consideration the relevance between them, as shown in Eq. 5. 

�� �� = MLP(concat(e , e�� , e�� ⊙ e�� )) � 

E� = concat( [��
� · e�� , 1 ≤ � ≤ �]) 

(5) 

, E� At last, P� , E� , e� and e�� are concatenated and then fed into 
an MLP layer which outputs the predicted CTR. 

4 EXPERIMENTAL EVALUATION 

4.1 Experimental Setup 
Datasets. We adopt the following two datasets for experiments. 
• Taobao: a public dataset [22], containing 10-day interactions. We 
preprocess the data in the same way as what CAN do in [1]. 

• Meituan: an industrial dataset collected by the Meituan Takeout 
App, which contains 14-day interactions of 100 million users. 
Table1 lists the statistics of processed datasets. 

Models for Comparison. We choose the following CTR models 
which focus on feature interaction modeling as comparison models. 
• DeepFM [6]. It combines the factorization machines and deep 
learning for low-order and high-order feature interactions. 

• xDeepFM [9]. It generates feature interactions using the proposed 
Compressed Interaction Network (CIN) and further combines a 
CIN and a basic DNN into one unifed model. 

• DIN [21]. It designs a local activation unit to learn the representa-
tion of user interests from historical behaviors w.r.t. a candidate. 

• DIEN [20]. It designs an interest extractor layer and an interest 
evolving layer to capture interests from behavior sequences. 

• ONN [17]. It learns diferent representations for diferent opera-
tions. 

• CAN [1]. It disentangles the representation learning and feature 
interaction modeling via the co-action unit. 

Metrics. We use AUC and RelaImpr [16] as the metrics in ofine 
experiments, CTR and CPM (Cost-Per-Mille) as metrics in online 
experiments. 
Implementation Details. We implement DBPMaN 1 by Tensor-
fow. For all models, we use Adam as the optimizer with a learning 
rate of 0.001. The model parameters are initialized with a Gaussian 
distribution (with a mean of 0 and a standard deviation of 0.01). 
The item embedding dimension is set to 18. 

1The code is available at https://github.com/Ethan-Yys/DBPMaN. 

Table 1: Statistics of datasets. 

Datasets #Users #Items #Categories #Interactions 

Taobao 987991 4161138 9437 100095182 

Meituan 100000000 15755909 184 5648932411 

Table 2: Performance results on ofline evaluations. 

Taobao Meituan
Model 

AUC RelaImpr AUC RelaImpr 

DeepFM 0.8125 -13.19% 0.6673 -1.55% 

xDeepFM 0.8366 -10.61% 0.6693 -1.25% 

ONN 0.8689 -7.16% 0.6705 -1.08% 

DIN 0.9308 -0.54% 0.6753 -0.37% 

DIEN 0.9324 -0.37% 0.6761 -0.25% 

CAN 0.9359 0.00% 0.6778 0.00% 

DBPMaN 0.9381 0.24% 0.6812 0.50% 

Table 3: Ablation study on Meituan dataset. 

Model AUC CTR CPM 

DBPMaN 0.6812 - -
DBPMaN w/o PEM 0.6789 -0.6% -0.5% 

DBPMaN w/o PMM 0.6769 -1.0% -1.1% 

DBPMaN w/o PAM 0.6801 -0.2% -0.2% 

4.2 Performance Comparison 
We conduct comparative experiments, comparing our model to the 
above models. The performance results of diferent models on two 
datasets are shown in Table 2. 

From the results, we fnd the performance ranking of all the 
models over two datasets is the same and our DBPMaN surpasses 
all the models for comparison. We think that the attention mecha-
nism on path-to-path activation in DBPMaN helps defeat the other 
models, including attention-based models (i.e., DIN, DIEN, and 
ONN) which employ point-to-point activation of a candidate and 
individual behavior in the historical behavior sequence. 

An interesting fnding is that our DBPMaN model achieves more 
signifcant improvement over other models on the Meituan dataset 
rather than the Taobao dataset. This may stem from the nature of the 
food takeout scenario. The relatively few food stores surrounding 
the user, combined with characteristics of user interest in food, lead 
to repetitive interactions with the same food store in the history 
of user behaviors. This makes it easy to activate historical paths 
relevant to the current path. 

4.3 Ablation Study 
We conduct an ablation study on the Meituan dataset to evaluate 
the contributions of key modules of DBPMaN. We compare our 
model to three variants, i.e., DBPMaN w/o PEM, DBPMaN w/o 
PMM, and DBPMaN w/o PAM. The results are shown in Table 3. 

From Table 3, we can fnd that three variants sufer a decrease 
in all three metrics, compared to the original DBPMaN. The perfor-
mance of DBPMaN w/o PMM declines the most, which indicates 
that PMM plays a more important role than the other two modules. 
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Table 4: Online A/B test results. 

Model CTR CPM Inference Time(ms) 

Baseline - - 48 

DBPMaN (� =8) +1.6% +1.8% +0.8 

DBPMaN (� =16) +1.3% +1.5% +2.1 

4.4 Online A/B test 
The A/B test is conducted on the Meituan food delivery platform 
and lasts for 14 days from 2022-08-10 to 2022-08-23, where the 
baseline model is our last online CTR model which only uses the 
point-to-point activation method. The results are shown in Table 
4, where � denotes the length of the behavior path. Now DBPMaN 
(�=8) has been deployed online and serves the main trafc of users. 

5 CONCLUSION 
In this paper, we propose DBPMaN, which models user behavior 
paths into CTR prediction for the frst time. Besides the excellent 
performance, DBPMaN shows the possibility of exploring user 
decision-making psychology by modeling behavior paths. 
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