2306.01012v1 [cs.LG] 1 Jun 2023

arXiv

Graph-Level Embedding for Time-Evolving Graphs

Lili Wang
Dartmouth College
Hanover, New Hampshire, USA
lili.wang.gr@dartmouth.edu

Xinyuan Cao
Georgia Institute of Technology
Atlanta, Georgia, USA
xcao78 @gatech.edu

ABSTRACT

Graph representation learning (also known as network embedding)
has been extensively researched with varying levels of granular-
ity, ranging from nodes to graphs. While most prior work in this
area focuses on node-level representation, limited research has been
conducted on graph-level embedding, particularly for dynamic or
temporal networks. However, learning low-dimensional graph-level
representations for dynamic networks is critical for various down-
stream graph retrieval tasks such as temporal graph similarity rank-
ing, temporal graph isomorphism, and anomaly detection. In this
paper, we present a novel method for temporal graph-level embed-
ding that addresses this gap. Our approach involves constructing a
multilayer graph and using a modified random walk with temporal
backtracking to generate temporal contexts for the graph’s nodes. We
then train a “document-level” language model on these contexts to
generate graph-level embeddings. We evaluate our proposed model
on five publicly available datasets for the task of temporal graph sim-
ilarity ranking, and our model outperforms baseline methods. Our
experimental results demonstrate the effectiveness of our method in
generating graph-level embeddings for dynamic networks.
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1 INTRODUCTION

Graphs, or networks, are prevalent in diverse domains such as social
networks, protein interactions, and scientific collaboration. Graph
representation learning, also known as graph embedding, enables
the representation of graphs using general-purpose vector represen-
tations, removing the need for task-specific feature engineering.

Graphs can be static, where their structure does not change over
time, or dynamic, where their structure evolves over time. Social
networks are typically dynamic due to their constantly changing
structure. Representation learning on static and dynamic networks
differs as static embeddings only need to capture network struc-
ture while dynamic embeddings must capture both structural and
temporal aspects. While static embedding methods can be applied
to dynamic networks, the resulting embeddings do not capture the
evolving aspect of these networks. Network embedding methods
are categorized by granularity, from node to graph level. Node em-
bedding is the most common method in which nodes in a given
network are represented as fixed-length vectors. While these vec-
tors preserve different scales of proximity between the nodes, such
as microscopic [8, 14, 18] and structural role [5, 15, 22, 23], they
cannot capture proximity between different networks as node repre-
sentations are learned within the context of the network they occupy.
Notably, considerable work has been done on node embedding for
dynamic graphs [7, 11, 19, 21], which preserves not only the net-
work structural information but also the temporal information for
each node.

Graph-level network embedding, unlike node embedding, allows
us to learn representations of entire graphs and directly compare
different graphs, enabling investigation of fundamental graph rank-
ing and retrieval problems such as the degree of similarity between
graphs. Graph-level embedding methods have been studied exten-
sively in the literature, but most of them focus on static networks
[4, 12, 16, 20]. However, in real-world applications, dynamic net-
works are ubiquitous. To the best of our knowledge, only one prior
method, called tdGraphEmbed [3], has been proposed for dy-
namic graph-level embedding. However, this method has a major
limitation in that it treats dynamic graphs as a collection of inde-
pendent static graph snapshots, ignoring the interactions between
them.

To address this gap, we propose a novel method called the tem-
poral backtracking random walk, which, when combined with the
doc2vec algorithm, can be used for dynamic graph-level embed-
ding. Our method smoothly incorporates both graph structural and
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temporal information. We evaluate our method on five publicly avail-
able datasets for the task of temporal graph similarity ranking and
demonstrate that it achieves state-of-the-art performance.

2 RELATED WORK

In the introduction, we discussed t dGraphEmbed as the only ex-
isting method for dynamic graph-level embedding. In this section,
we review two adjacent categories of graph embedding techniques:
temporal node and static graph-level embedding.

Temporal node embedding methods differ from static node em-
bedding methods such as node2vec [8], SDNE [17], and GAE
[10] in that they incorporate historical information to preserve both
structural and temporal information. Matrix factorization techniques
such as TMNF [24], modified random walk algorithms such as
CTDNE [13], and deep-learning-based methods such as DynGEM
[7], dyngraph2vec [6], and variations like DynAE, DynRNN,
and DynAERNN are examples of such techniques. Additionally,
DynamicTriad [25] employs the triadic closure process to de-
velop closed triads from open triads.

For static graph-level embedding, various methods have been
proposed, including the use of graph kernels (e.g., graph2vec
[12] employs graph kernels to extract features which are passed to
a language model for embedding), random walks (Sub2Vvec [1]),
multi-scale attention (UGraphEmb [2]), and the Laplacian matrix
and eigenvalues (e.g., Net LSD [16]).

3 APPROACH

In this section, we introduce our framework for the problem of
representing each snapshot of a temporal graph as a low-dimensional
vector that captures both the dynamic evolution information and
graph topology.

3.1 Problem Definition

Given a discrete temporal graph G = (V, E, T), where each temporal
edge (u,v)t € E is directed from node u to node v at time ¢t € T, a
snapshot of G at time ¢ is defined as Gt = (V;, E;), which is the graph
of all edges occurring at time t. The problem is to represent each
snapshot G; as a low-dimensional vector X; € R", where n << |V|,
that captures both the dynamic evolution information and graph
topology. We solve this problem in an unsupervised way and do not
require any task-specific information.

3.2 Our Framework

Our framework consists of two parts: (1) building a multilayer graph
and adopting temporal backtracking random walk on it (2) learning
a doc2vec language model on the output of the modified random
walk to obtain graph-level embeddings. First, we construct a multi-
layer weighted graph M(V)y, Epy) that encodes the evolution between
nodes. Each layer M;,t =0, 1,...,|T|, is constructed by the nodes of
G and the edges of snapshot G;. We build inter-layer edges between
each pair of My and M;_; by directly connecting the corresponding
nodes from ¢ to t — 1. Note that the edges between the two layers are
unidirectional. Next, we model each snapshot G; by using temporal
backtracking random walk from each node as a sentence. Then all
the sentences are concatenated to create a document representing
the entire snapshot. During each step of the temporal backtracking
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walk, the walker can either stay in the current layer to obtain struc-
tural information or move to the previous layer to obtain historical
evolving information. We define the stay constant «a such that the
probability of staying in the current layer is «, and the probability of
going to the previous layer is 1—a. A temporal backtracking walk on
M is a sequence of vertices (v, v, - - - , v ) such that (v, vi41) € Epr
for 1 < i < k, which can be derived by the transition probability
on M. Assuming that we have got (v1,0, - - - ,v;), and v; € My, the
transition probability at step i + 1 is defined as:

1—a oviy1 € M1
1% dvi,l,vi+1 = 0,041 € M;
P (vis1lvi-1,0:) =4 £ dv; 1,001 = L,0iz1 € My (1
(;LZ do;_yv0 = 2,041 € My
0 otherwise

We draw inspiration from node2vec and introduce a modified ver-
sion of the algorithm to capture temporal information. In this context,
du,» represents the length of the shortest path between node u and
v, while p and q are the return and in-out parameters, respectively.
These parameters smoothly interpolate breadth-first and depth-first
sampling. The normalizing constant Z is also used. Alias sampling
is used to perform each step of the temporal backtracking random
walk in O(1) time complexity.

The temporal backtracking random walk combines the proximity
information of nodes within a layer with the structural information
of previous timestamps. This approach is facilitated by the sray
constant, which is set to be larger than 0.5. This ensures that the
influence of older timestamps decays smoothly as the probability of
entering previous layers decreases exponentially.

We represent the context of each node in a G; snapshot as a sen-
tence. These sentences are concatenated to create a document that
represents the snapshot. As these sentences have no inherent order,
we adopt a modified doc2vec language model to learn a representa-
tion of the snapshot “documents”. In this approach, each sentence is
tagged with the corresponding timestamp (¢ of G;) as the paragraph
id of doc2vec. The final paragraph vector obtained after training is
the dynamic graph-level embedding of G;.

4 EXPERIMENTS

We evaluate the effectiveness of our dynamic graph-level embed-
dings by measuring their performance on the task of temporal graph
similarity ranking. To this end, we use five publicly available datasets
(Table 2) introduced by Beladev et al. [3] and apply the same settings
and metrics as used by them. Furthermore, we conduct scalability
experiments to showcase our model’s robustness and applicability to
large networks commonly found in real-world applications.

4.1 Experimental Setup

We compare our model with three types of baselines: static
graph-level embedding methods (represented by graph2vec,
UGraphEmb, and Sub2vec), temporal node-level embed-
ding methods (represented by node2vec aligned, SDNE
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Reddit - Game of Thrones Reddit- Formulal
p@10 p@20 T P p@10 p@20 T P
Static graph-level embedding

graph2vec 0.260 0.381 0.038 0.056 0.169 0.320 0.043 0.063
UGraphEmb 0.278 0.416 0.046 0.068 0.238 0.37 0.026 0.039
Sub2Vec 0.160 0.355 0.022 0.039 0.182 0.300 -0.030 -0.040

Temporal node-level embedding
node2vec aligned 0.336 0.431 0.069 0.103 0.214  0.361 0.047 0.083
SDNE aligned 0.352 0.457 0.120 0.197 0.262 0.388 0.044 0.078
GAE aligned 0.235 0.342 0.044 0.066 0.200  0.342 0.036 0.062
DynGEM 0.340 0.441 0.075 0.113 0.192 0.339 0.029 0.045
DynamicTriad 0.277 0.364 0.131 0.195 0.243 0.396 0.024 0.033
DynAE 0.192 0.357 0.019 0.030 0.229 0.397 0.009 0.012
DynAERNN 0.192 0.349 -0.002 -0.004 | 0.164  0.357 0.026 0.037

Temporal graph-level embedding
tdGraphEmbed 0.355 0.457 0.160 0.232 0.274  0.400 0.060 0.092
Our method 0.435 0481 0.177 0.272 0.265 0.410 0.076  0.106

Table 1: The temporal similarity results. The precision at K (p@K) metric is used to evaluate the method’s accuracy. Additionally, we
report Spearman’s (p) and Kendall’s (7) rank correlation coefficients to measure the method’s consistency in ranking similar pairs of

snapshots across different evaluation scenarios.

Dataset Nodes Edges
Reddit (Game of Thrones) 156,732 834,753
Reddit (Formulal) 38,702 254,731
Facebook wall posts 46,873 857,815
Enron 87,062 1,146,800
Slashdot 51,083 140,778

Table 2: Dataset statistics (see [3] for more detail).

aligned, GAE aligned'), and temporal graph-level em-
bedding methods (represented by DynGEM, DynamicTriad,
DynAE, DynAERNN, and the only existing state-of-the-art method,
tdGraphEmbed). For all baselines, we use the same parameter
settings as introduced by Beladev et al. and report the best results
between our experiments and the results reported by them. This is
done to ensure fairness and to err on the side of caution.

For our model, we set the number of temporal backtracking ran-
dom walks from each node to 40, with a length of 32. We set the
return parameter p to 1, the in-out parameter q to 0.5, and the stay
constant a to 0.8. For the doc2vec model training, we set the max-
imum distance between the current and predicted word within a
sentence to 5, the initial learning rate to 0.025, and the size of the
final embedding to 128.

4.2 Temporal Similarity Ranking

This task aims to test a model’s ability to capture the similarity
among each snapshot of a dynamic graph G. For a given snapshot G,
the most similar snapshot to it may not be its immediate neighbors
Gt—1 or Gy, but some other snapshot that is far away from it [3].
The temporal similarity ranking task has numerous potential real-
world applications. For example, it can be used to detect organized
influence operations on social media by analyzing the similarity of
dynamic share/reply networks.

To evaluate our model, we train it to obtain representations
for all the snapshots in five publicly available datasets introduced

Here, the term “aligned” means that each snapshot is trained separately, and the
embeddings are then rotated for alignment [9]. Since these three methods are static, we
use them to represent temporal node-level embeddings.

5.0 running time of sampling
==g== running time of training

logio of running seconds

2 3 5 6

2
logy, of edges

Figure 1: Scalability experiment results on Erdos-Renyi graphs
with an average degree of 10.

by Beladev et al. [3], using the same settings and metrics as
their work. We compare our model with three types of base-
lines: static graph-level embedding (represented by graph2vec,
UGraphEmb, and Sub2vec), temporal node-level embedding
(represented by node2vec aligned, SDNE aligned, GAE
aligned, DynGEM, DynamicTriad, DynAE, and DynAERNN),
and the only existing state-of-the-art method for temporal graph-
level embedding, t dGraphEmbed. For each snapshot G;, we rank
all the other snapshots G;, (i # t) based on the cosine similarity be-
tween their embeddings X; and Xj: cos(Xt, Xi) = % We then
use the predicted and ground truth ranking lists of G; to calculate
the average precision at 10 and 20, and Spearman’s and Kendall’s
rank correlation coefficients (p and 7). For the Slashdot dataset, we
report precision at 5 and 10 since there are only 13 time-steps.

Our model outperforms all the baselines for all the experiments,
except for three cases (out of 220) where tdGraphEmbed per-
forms best, as shown in Tables 1 and 3. We also conduct scalability
experiments to demonstrate our model’s robustness and applicability
to large networks commonly found in real-world applications.

4.3 Scalability Analysis

To evaluate the scalability of our proposed model, we conduct ex-
periments on Erdos-Renyi graphs with increasing sizes from 100 to
1,000,000 edges, where each node has an average degree of 10. We
uniformly split the edges of each graph into 10 different snapshots
and learn the temporal graph representations using our model with
default parameters. The experiments are conducted on a Lambda
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Enron Facebook-wall posts Slashdot
p@10 p@20 7 p p@10 p@20 ¢ p p@5 p@10 ¢ p
Static graph-level embedding

graph2vec .045 .059 -.033  -.046 | .423 713 120 176 | .292 .800 .026  .045
UGraphEmb .168 .269 .110 150 | .750 871 355 452 | .462 .900 215 271
Sub2Vec .073 137 .028 .044 .353 .685 012 .021 | .385 .808 .037 .074

Temporal node-level embedding
node2vec aligned 379 452 .107 139 | .680 .840 303 414 | .538 .908 229 .306
SDNE aligned 316 .400 .087 .138 .400 .645 .095  .120 | .415 .885 095 124
GAE aligned 277 .360 118 156 | .613 .820 292 397 | 492 .885 168 227
DynGEM .335 377 .103 .143 .356 .733 094 115 | .569 915 .245 314
DynamicTriad 322 425 112 153 | .733 818 271 395 | .646 .869 201 .276
DynAE .069 .145 .009 .012 .389 .743 122 163 | .473 .900 .002  .025
DynAERNN .061 .110 .004 .006 | .393 755 .065 .076 | .509 .900 .041  .088

Temporal graph-level embedding
tdGraphEmbed .385 .489 127 188 | .750 .892 398 522 | .785 915 347 463
Our method 479 532 172 251 | .806 .896 447 559 | .723 .885 400 524

Table 3: Continuation of Table 1

Deep Learning 2-GPU Workstation (RTX 2080). As shown in Figure
1, the log-log plot of the running time versus the number of nodes
demonstrates that our model’s performance is polynomial in time
with respect to the graph’s size. The slopes of the curves are less
than 1 in the log-log space, indicating that our method performs
in sub-linear time due to its use of parallel processing. Thus, our
proposed method can be efficiently scaled to handle large networks
commonly found in real-world applications.

S CONCLUSION

We introduced a novel dynamic graph-level embedding method
based on temporal backtracking random walk. Our method can cap-
ture both the structural and evolving information of dynamic graphs.
Experimental results on five publicly available datasets for tempo-
ral graph similarity ranking show the superiority of our proposed
method over several baselines. Moreover, our model is scalable to
larger networks, which makes it applicable to real-world scenarios.
Our method provides a promising solution for dynamic graph em-
bedding tasks and can be applied to various real-world applications.
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