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ABSTRACT

Market sentiment analysis on social media content requires knowl-
edge of both financial markets and social media jargon, which
makes it a challenging task for human raters. The resulting lack of
high-quality labeled data stands in the way of conventional super-
vised learning methods. Instead, we approach this problem using
semi-supervised learning with a large language model (LLM). Our
pipeline generates weak financial sentiment labels for Reddit posts
with an LLM and then uses that data to train a small model that
can be served in production. We find that prompting the LLM to
produce Chain-of-Thought summaries and forcing it through sev-
eral reasoning paths helps generate more stable and accurate labels,
while using a regression loss further improves distillation quality.
With only a handful of prompts, the final model performs on par
with existing supervised models. Though production applications
of our model are limited by ethical considerations, the model’s com-
petitive performance points to the great potential of using LLMs
for tasks that otherwise require skill-intensive annotation.
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1 INTRODUCTION

Social media platforms such as Reddit and Twitter contain insights
about financial markets, for example in the form of posts that ex-
press financial expectations for a particular company. We define the
financial sentiment of a post about a company as positive (bullish)
if the author of the post has a favorable outlook for the company,
negative (bearish) if their outlook for the company is negative,
and neutral otherwise. Financial (market) sentiment analysis aims
to automatically extract the financial performance expectations
conveyed in the text.

One particular challenge for market sentiment analysis on social
media is the lack of high-quality labeled data, which arises because
the annotation requires both finance domain knowledge and an
understanding of social media jargon. Previous study has found
that "bearish" or "bullish" tags selected by the authors of the posts
themselves are often not accurate, and even finance experts may
hold different opinions during annotation [5]. Our in-house annota-
tion effort revealed the same issue, with raters only agreeing with
each other around 70% of the time.

In the meantime, large language models (LLMs) such as GPT-3 [4]
and PaLM [7] gained popularity in recent years for their impressive
aptitude for in-context learning [4, 20]. An LLM can perform textual
tasks with just a few examples demonstrating what needs to be
done, often achieving results similar to those of state-of-the-art
supervised models in a wide range of applications.

Inspired by this development, we investigate the use of LLMs
to bootstrap a market sentiment analysis model for social media
content with minimal human annotation efforts. We select Reddit as
the target social media platform, which, unlike other platforms used
in existing works (Twitter and Stocktwits), has a broader coverage
of topics, ranging from market events to analysis and user investing
actions, with both short user comments and long "due diligence"
posts. To annotate Reddit posts with weak financial sentiment labels,
we use LLM in-context learning [4, 7] with Chain-of-Thought [21]
reasoning and repeated generation [19] for more stable predictions.
Since the LLM is too large and slow to be used in a production
setting, we distill it into a smaller student model. We find that if we
aggregate multiple predictions for a single example into a soft score
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far. Given a post, I will give my opinion on whether I think

I am thinking about what to invest in, here is what I have so }@
the stock price should go up, down or not sure.

®

Final thoughts: I
go down

.. More Demonstrations ..

it blee: d a othe .
So what is my opinion for the company, should its stock price
go up, down or not sure

TL;DR: LLM Generation

(b)  Prompt template for in-context learning with a LLM

Figure 1: Our overall pipeline (a), and prompt design for in-context learning (b).

and use a regression loss, we can make use of more data and get a
smoother precision-recall curve. Even though we are able to serve
our student model online and control its precision by setting the
prediction threshold, the model’s application is limited by ethical
considerations stemming from the high-stakes nature of invest-
ment decisions. Nevertheless, compared with models fine-tuned on
existing market sentiment datasets, our model trained with only
weakly-labeled Reddit data not only improves on the challenging
in-domain testing data from Reddit, but also generalizes well across
datasets and performs on par with the supervised counterparts.

2 RELATED WORK

Market Sentiment Analysis. Existing work on the task of ex-
tracting opinions about financial entities from text roughly falls
into two categories: lexicon-based methods that associate individ-
ual words with sentiment labels [6, 13, 14], and machine learning
methods that train a supervised model with labeled data [2, 12, 23].
However, they either show unsatisfactory performance or demand
huge amounts of labeled data that is hard to acquire in practice.
In this work, we conduct an exploratory study of leveraging the
in-context learning ability of LLMs to overcome the data challenge.
In-context Learning with LLM. In-context learning, or prompt-
ing, refers to the capability of LLMs to perform tasks by making
predictions conditioned on a few input-output examples without
updating any model parameters [4]. Many recent works have stud-
ied the underlying mechanism of in-context learning [16, 20, 22],
and how to improve the few-shot performance [11, 19, 21, 24]. We
adapt some of these techniques for market sentiment analysis and
design a pipeline that puts them into practice.

3 METHODOLOGY
3.1 In-context Learning with LLM

Though our target task is analyzing the author’s overall financial
outlook for a company, in our target domain, social media, users
normally discuss financial performance in terms of stock price
movement. We use the domain-adapted proxy task of extracting
stock price movement expectations in our LLM prompt, as shown
in Figure 1:

Task description (D, which simulates the task setting and famil-
iarizes the LLM with the target domain.

Demonstrations ), which illustrate the task via multiple input-
output examples (3, ®). The output ® is verbalized to make it
similar to the examples seen by the model during pre-training and
then converted to actual categorical labels during post-processing.

Our preliminary study shows that while this prompt design can
already yield reasonable results, the prediction is unstable and sen-
sitive to the exact wording of the prompt. In particular, we notice
that the results vary a lot if we simply shuffle the order of demon-
strations, which means that the model struggles to truly understand
the user’s opinion [16]. To counter this instability, we incorporate
Chain-of-Thought (COT) [21] reasoning into our setting. COT
was originally designed to improve the multi-step reasoning ability
of LLMs by explicitly instructing the model to generate intermedi-
ate reasoning steps. While we do not need multi-step reasoning for
market sentiment analysis, we use COT to make the LLM summa-
rize the author’s finance-related arguments TL;DR-style (@), thus
implicitly forcing it to recall relevant financial domain knowledge
before drawing a conclusion (). Because users often cite multiple,
sometimes conflicting arguments in their posts, we use temperature
sampling [1, 8] instead of greedy decoding during generation and
repeat it multiple times to produce varying reasoning paths, giving
the model a chance to focus on different lines of argument. As a
result, each example gets assigned multiple, potentially inconsis-
tent labels [19]. We use majority voting to get the final prediction
for in-context learning, and describe how to better leverage the
multiple predictions for distillation in Section 3.2.

3.2 Bootstrapping a Market Sentiment Model
with LLM

While in-context learning with LLMs has shown impressive results
during offline evaluation [4], it is impractical to serve such large
models in production. A commonly used compression method is
to first generate a large weakly-labeled dataset using the larger
teacher model and then train a smaller student model in a super-
vised fashion [9]. We do notice that in some cases there are complex
or ambiguous posts where the LLM assigns the weak label incor-
rectly. It is also the case that for those hard examples, the LLM
makes inconsistent predictions when exploring different reasoning
paths. A straightforward way to leverage this pattern would be
to filter out weakly-labeled examples that have any inconsistency



What do LLMs Know about Financial Markets? A Case Study on Reddit Market Sentiment Analysis

Table 1: Data Statistics.

FiQA News FiQA Post Reddit Testing

# Total 370 674 100
%Neg/Neu/Pos  34/-/66 35/-/65 39/42/19
Avg. Length 9.7 13.4 83.0

among the labels assigned via different LLM reasoning paths. How-
ever, such filtering may cost us many potentially useful examples
and cause the student model to overfit to the remaining easy cases.
Instead, we view the agreement ratio between the multiple labels
of a single example as a soft score of sentiment polarity and train
the student model to predict this score with a regression loss.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup

Problem Formulation. We study market sentiment analysis as a
three-way classification task. The market sentiment of a post about
a particular company is defined as positive (bullish) if the author’s
outlook for it is favorable, negative (bearish) if their outlook is
negative, and neutral otherwise.

Datasets. For both distillation and evaluation, we use Reddit posts
labeled as finance-related by a proprietary topic classifier. We filter
posts based on the popularity of the mentioned stock in an internal
system and randomly sample 20,000 posts for distillation. Since
there are no existing datasets for market sentiment analysis on
Reddit, we sample another 100 posts for evaluation, which are
annotated by three in-house experts who have both knowledge of
investing terms and experience with Reddit.

We also experiment with the widely used FiQA benchmark [15],
which contains two subtasks: FiQA-News with news headlines, and
FiQA-Post with microblogs from Twitter and Stocktwits. We convert
it to a binary classification task with the original sentiment scores.!
Since the original testing set is private, we split the original training
set into training, validation, and testing following an 80/10/10 ratio.

Statistics for all the datasets are summarized in Table 1.
Baselines. Our backbone model is Charformer [18] (CF), a character-
level T5 [17]. We further pre-train CF on social media content. We
consider the following baselines: (i) our backbone model fine-tuned
on FiQA, (ii) PaLM in-context learning with COT and majority-vote
aggregation over 8 reasoning paths, and (iii) two widely used exist-
ing market sentiment models: FinBERT-HKUST [23] and FinBERT-
ProsusAl [2]2.

Implementation Details. We use PaLM-540B [7] as the LLM for
in-context learning and weak labeling. We randomly select 6 exam-
ples as demonstrations and remove them from the test set when
evaluating PaLM. For Reddit, we select two examples for each sen-
timent category and manually write the COT reasoning. For FiQA,
we select three examples for each category, and use the "Aspect
Snippet" in the original dataset as COT reasoning. For each input,
we run the generation 8 times with a temperature of 0.5 to produce

!Examples with sentiment scores greater than 0 are considered positive, and nega-
tive otherwise. We remove the few examples with a sentiment score of 0 and those
mentioning multiple stocks. This drops 66 examples for News and 1 example for Post.
2We use the models released on Huggingface ModelHub:
https://huggingface.co/ProsusAl/finbert,
https://huggingface.co/yiyanghkust/finbert-tone
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Table 2: Accuracy on benchmark datasets, see Section 4.1 for
more details.

FiQA News FiQA Post Reddit

CF - FiQA News 75.7 69.1 42.0
CF - FiQA Post 86.5 85.3 40.0
FinBERT-ProsusAl [2] 81.1 73.5 48.0
FinBERT-HKUST [23] 75.7 67.6 50.0
PaLM COT x 8 97.3 95.6 72.0
CF - Distilled PaLM 83.8 77.9 69.0
0.80
Model Size
0.75 5408
62B
0.70
© 0.65
g
=
0.60
0.55
0.50
No COT COT x 1 COT x3 COT x8 COT x 16

Figure 2: Ablation for In-context Learning. Here we compare
LLMs of different sizes, effect of COT, and the use of multi-
ple reasoning paths. COT x N stands for generating N reason-
ing paths with majority voting to aggregate the predictions.

different reasoning paths and predictions. For distillation, we keep
weakly-labeled examples for which the LLM makes 5 or more con-
sistent predictions, and fine-tune the Charformer model on 17K
Reddit posts labeled with soft scores aggregated from the 8 PaLM
predictions for each example. We use a learning rate of le-4 and a
batch size of 64. We apply a regression head to the final CF encoder
layer and drop the decoder. The final CF model in Table 2 has 102M
parameters while both FinBERT models have 110M parameters.
Ablations on the number reasoning paths, filtering, and fine-tuning
objectives can be found in Figure 2, 3 and Table 3.

4.2 Results

Overall. Table 2 summarizes the main results. Here we report
accuracy on all datasets. First, we can see that the Reddit dataset
is more challenging than the FiQA datasets, likely due to longer
posts and multifaceted user opinions. The PaLM model performs
very well on all datasets with only 6 demonstration examples. Our
student model fine-tuned on weakly labeled Reddit data is able to
effectively transfer the knowledge from the LLM and outperform
all supervised baselines on the Reddit dataset. At the same time,
our model generalizes well to the FIQA dataset despite only being
fine-tuned on Reddit posts. In summary, the experiments show
promising results of leveraging LLMs for market sentiment analysis.
With only a handful of labeled examples for demonstration, we can
bootstrap a small student model that performs on par with or better
than existing state-of-the-art models of servable size.

Ablation on In-context Learning. Figure 2 demonstrates the im-
portance of using chain-of-thought (COT) reasoning and repeating
the generation for in-context learning. Here we use the same demon-
stration examples but shuffle their order to get different prompts.
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Table 3: Average precision for Positive and Negative labels.
Here we compare using classification (CLS) and regression
(RGR) loss at different intra-label agreement thresholds.

Agreement 8 7 6 5

# Examples 6,240 10,474 14,152 17,456

CLS  80.5 75.8 71.4 76.9
RGR 742 78.5 81.7 84.2

CLS 68.0 64.0 47.4 57.9
RGR 543 61.8 61.7 65.5

Pos

Neg
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Figure 3: Precision-Recall curve. Here we compare models
that achieve the best average precision (as shown in Table 3)

using Classification (CLS-8) and Regression (RGR-5) loss.

First, we see that in-context learning is sensitive to the prompt
design: even with only the order of examples changed, the final
performance varies a lot. Second, using COT to have PaLM sum-
marize the post’s main arguments as a TL;DR greatly improves the
performance. Asking the LLM to generate multiple reasoning paths
and aggregating the predictions further boosts the performance, as
it allows the model to explore different aspects of the user’s opinion.
Finally, model size influences the effectiveness of COT reasoning.
While the 62B and 540B PaLM models have similar performance
with the base prompt, the 540B model benefits much more from
COT, likely because its superior generational ability allows it to
produce more useful intermediate thinking steps.

Ablation on Distillation Methods. We compare filtering the
PaLM-labeled data with different intra-label agreement thresholds.
As we can see from Table 3, exposing the student model to examples
with inconsistent labels hurts its performance even though it gets
to see more training data that way. We don’t include a full ablation
on the student model backbone but we experiment with its loss
function. Figure 3 shows that using a regression loss instead of
classification is advantageous for two reasons: it better leverages
the soft scores from the examples with inconsistent labels and it
produces a slightly smoother precision-recall curve. The latter is
important for production applications because the smoother curve
allows us to pick an operating point with the desired precision.

4.3 Error Analysis

We conduct error analysis over the Reddit testing set for our final
model (CF - Distilled PaLM). As shown in the confusion matrix in
Table 4, the majority of errors are between neutral and the other two

Xiang Deng, Vasilisa Bashlovkina, Feng Han, Simon Baumgartner, and Michael Bendersky

Table 4: Confusion Matrix for CF - Distilled PaLM on the
Reddit dataset.

Predicted
Negative Neutral Positive
—= Negative 9 10 0
ag Neutral 3 32 7
< Positive 2 9 28

labels, which is less severe than positive/negative errors. We notice
that the model struggles when the input contains contradictory
arguments or discusses advanced investing actions. Better handling
such complicated posts and dynamically incorporating relevant
finance domain knowledge could be a subject of future work.

5 ETHICAL CONSIDERATIONS

Applying our model to social media content can make its wealth
of financial information more accessible to users. For example,
bullish/bearish tags for individual posts can help novice investors
orient themselves in the language of r/wallstreetbets. However, the
model’s output should not be used to make investment decisions
due to the associated risks. First, the model predicts the wrong sen-
timent more than 30% of the time. Second, even if the model doesn’t
make a mistake, the social media posts it is applied to may convey
sentiment that prompts the user to make bad financial decisions.
Prior research has found that investors are susceptible to social
media advice [10] even though the sentiment it carries is a poor pre-
dictor of stock prices [3]. Finally, aggregating financial sentiment
from social media may amplify malicious behavior like market ma-
nipulation. In fact, our model detected a negative sentiment spike
for Pfizer in March 2021 when there seemed to be a coordinated
effort to promote a rumor that Pfizer shares were getting delisted
from NYSE3. These risks need to be thoroughly addressed and mit-
igated to ensure that the likely benefits from deploying our model
substantially outweigh the foreseeable downsides.

6 CONCLUSION

In this work, we tackle the task of financial sentiment analysis on
Reddit with an LLM distilled into a production-friendly student
model. With minimal human-annotated data, our classifier per-
forms on par with existing supervised models and generalizes well
across other datasets. The application of our model does pose a
product challenge: how can we incorporate the model’s output
responsibly, delivering value to users without misleading them or
inadvertently amplifying malicious behavior? Nevertheless, our
investigation highlights the promise of in-context learning with
LLMs for textual tasks that are hard for human raters to annotate.
Can human raters, instead of simply labeling the data, help design
a domain-knowledge-injected prompt teaching the LLM to per-
form the task, or otherwise "collaborate" with the LLM? How can
automatic prompt-tuning further optimize the human-engineered
prompt? Exploring the answers to these questions would be a com-
pelling direction for future work.

3https://factcheck.afp.com/doc.afp.com.328D4BT
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