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ABSTRACT
Computational notebook environments have drawn broad attention
in data-centric research applications, e.g., virtual research environ-
ment, for exploratory data analysis and algorithm prototyping.
Vanilla computational notebook search solutions have been pro-
posed but they do not pay much attention to the information needs
of scientific researchers. Previous studies either treat computational
notebook search as a code search problem or focus on content-based
computational notebook search. The queries being considered are
neither research-concerning nor diversified whereas researchers’
information needs are highly specialized and complex. Moreover,
relevance evaluation for computational notebooks is tricky and
unreliable since computational notebooks contain fragments of text
and code and are usually poorly organized. To solve the above chal-
lenges, we propose a computational notebook search system for
virtual research environment (VRE), i.e., CNSVRE, with scientific
query reformulation and computational notebook summarization.
We conduct a user study to demonstrate the effectiveness, efficiency,
and satisfaction with the system.
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1 INTRODUCTION
The virtual research environment, a collaborative platform designed
to support research activities, has been widely used for supporting
the research community with access to tools, resources, and ser-
vices [Barker et al. 2019]. Computational notebook environments,
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e.g., Jupyter notebook, are promising solutions for hosting VRE ser-
vices. Users can carry out frequent data manipulation, investigate
various data analytic approaches, and demonstrate the access and
usage of datasets, models, libraries, or APIs with computational
notebooks [Perkel 2018; Rule et al. 2018]. Collecting computational
notebooks and building a search system for VREs help scientists
discover research resources published through computational note-
books and reduce repetitive work [Zhao et al. 2022].

There are several studies on computational notebook search [Ho-
riuchi et al. 2022; Li et al. 2021]. One branch of work emphasizes
code fragments of computational notebooks and returns code snip-
pets given natural language queries [Li et al. 2021]. They essentially
treat computational notebook search as a code search problem
and aim to bridge the gap between programming language and
natural language. Nevertheless, the queries being considered are
rather programming-oriented than research-oriented, misaligned
with researchers’ sophisticated and specialized information needs.
Another line of work investigates content-based computational
notebook search (or notebook-to-notebook search), which uses
computational notebooks as queries to retrieve relevant computa-
tional notebooks [Horiuchi et al. 2022]. These methods provide a
representation for the entire computational notebook, i.e., texts and
codes, but limit the application to scenarios where users already
have a computational notebook in hand. Both studies do not touch
on the explainability of search results. Given the complexity of
computational notebook contents, the relevance judgment made
by the system varies largely depending on the underlying models.
A lack of explanations may dampen users’ satisfaction and trust in
the presented computational notebooks.

Despite the studies that have been carried out in computational
notebook search, people often resort to general-purposed search en-
gines or open-source code repositories for computational notebook
search. The need for a system that facilitates collecting computa-
tional notebooks and facilitating computational notebook search
that supports VRE is clear. Moreover, it is important to solve the
challenges of computational notebook representation and query
understanding. First, computational notebooks are long documents
comprising free-form textual descriptions and executable codes. It
is not straightforward to effectively model the entire computational
notebook. Second, user queries are usually short and made up of
several keywords that demand great efforts for query augmentation.

To solve the above challenges, we propose computational note-
book search for VRE (CNSVRE) that supports scientific query un-
derstanding and computational notebook summarization. The user
study suggests the efficiency and satisfaction of the system as well
as the effectiveness of the summarization. The main contributions
of our work are as follows. First, we collect the dataset and build
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a computational notebook search system for VRE. The system is
implemented in a Jupyter environment that provides in-site compu-
tational notebook search for convenient code copy-pasting and for
ease of code execution in the current working environment. Second,
we reformulated the query of the users to improve query diversity
and provide summarizations of the computational notebooks as the
explanation of search results. Source codes can be found here1.

2 RELATEDWORK
2.1 Query modeling for computational

notebook search
Query modeling is essential to improve query understanding and
thus boost the performance of an information retrieval system.
A VRE solution embedded in Jupyter environment has been in-
troduced by Zhao et al. [2022] which includes a computational
notebook search system as one essential component. A plain com-
putational notebook search system has been proposed by Li et al.
[2022]. However, the methods described above do not include query
modeling which is important to satisfy researchers’ information
needs. Previous methods utilize the query history by users, user
profiles, and user interaction for query modeling. Xu et al. [2008]
proposes expanding a query with terms/phrases related to enti-
ties in the query. In contrast, Bhopale and Tiwari [2021] suggests
using phrase embeddings to find semantically similar words as ex-
pansions to users’ queries. Another exploratory study [Diaz 2016]
presents query reformulation as a graph search problem. The graph
comprises queries, retrieved results, and their relationships; the
best query is obtained through graph navigation during user inter-
actions.

Unlike the above methods, we explicitly extract scientific entities,
categorized as task, dataset, method and augment the query using
entities from an external knowledge graph (KG).

2.2 Explainability of code search
An important weakness of code search methods is the lack of ex-
plainability due to the absence of metrics that provides insights into
models’ decision-making process [Liu et al. 2021]. Cito et al. [2022]
explores counterfactual explanations for models of source code,
defined as minimal changes to the source code under which the
model makes a different decision. However, counterfactual expla-
nations are unnecessarily in-depth for a computational notebook
seeker. Instead, we add a summary section on the search engine
results page (SERP) along with relevance scores outputted by the
summarization model to increase the explainability.

3 SYSTEM ARCHITECTURE
3.1 Overall system design
The overview of our framework is illustrated in Figure 1. The main
advantages of our framework compared to a vanilla computational
notebook search system [Li et al. 2022] are the improvements in
user experiences through active query understanding and content
summarization (marked as blue in Figure 1). The main building
blocks of our frameworks are explained below:

1https://github.com/QCDIS/notebook-search-helm-charts

(1) The query reformulation module receives an initial query
from a user, reformulates the query, and selects top ranked
reformulated queries to users.

(2) A text summarization unit computes a dense description
based on the texts inside the markdown cells and a code
summarization unit produces a natural language summary
for the code fractions. Both outputs will be concatenated
into a single paragraph as the summary of the computational
notebook.

(3) The computational notebook indexer and retriever processes
raw computational notebooks to generate indexes and then
uses the selected query to retrieve computational notebooks
from the index database.

(4) The result interface displays two things to users: a short
summarizing paragraph generated by the computational
notebook summarizer for users to quickly examine the rele-
vance and the original contents of computational notebooks
for more detailed information.

Figure 1: Proposed computational notebook search system
with query reformulation, text summarization and code sum-
marization.

Formally speaking, given a query 𝑞 and a computational note-
book corpus 𝐶 = {𝑥1, 𝑥2, · · · , 𝑥𝑀 }, the computational notebook
search task is to return a ranked list of notebooks [𝑥𝑖 ], 𝑥𝑖 ∈ 𝐶 based
on the relevance between 𝑥𝑖 and 𝑞. A query reformulation unit
𝐴 : 𝑞 → 𝑞 outputs an enhanced query 𝑞 for subsequent retrieval.
Additionally, a summarizer 𝑆 : 𝑥𝑖 → 𝑧𝑖 provides a short summary
𝑧𝑖 for the computational notebook 𝑥𝑖 to be displayed on the search
engine results page.

3.1.1 Query reformulation. Query understanding is crucial for de-
livering useful information to users. Our framework performs active
query understanding via query reformulation. The process can be
formulated as follows:

(1) the user sends an initial query 𝑞0 to the system;
(2) the system reformulates the query to generate 𝑁 candi-

date queries𝑄 = {𝑞1, 𝑞2, · · · , 𝑞𝑁 }, and selects top𝑀-ranked
queries to be displayed to the user,𝑀 ≪ 𝑁 ;

(3) the user clicks on one of the reformulated queries that mostly
match their information needs.

We use an entity-aware approach to generate query expansions:

𝑞 = 𝐴(𝑞,𝐺), (1)

where 𝐺 denotes an external KG containing scientific entities. We
first extract entities from the query 𝑞 using DyGIE++ [Wadden et al.
2019] and then search the KG for related entities as expansions.

https://github.com/QCDIS/notebook-search-helm-charts
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3.1.2 Text and code summarization. The summarization of com-
putational notebooks produces a compact yet informative natural
language description for the contents. The difficulty of this task
lies in the fact that both texts and codes should be summarized.
Considering a computational notebook composed of multiple cells
𝑥𝑖 = [𝑤 (𝑖 )

1 ,𝑤
(𝑖 )
2 , · · · ,𝑤 (𝑖 )

𝑚 , 𝑐
(𝑖 )
1 , 𝑐

(𝑖 )
2 , · · · , 𝑐 (𝑖 )𝑛 ], where𝑤 (𝑖 )

𝑗
denotes

a markdown cell and 𝑐 (𝑖 )
𝑘

stands for a code cell. The orders for code
cells and markdowns are retained separately. The summarization
𝑧𝑖 is computed as

𝑧𝑖 = 𝑆 (𝑥𝑖 ) = 𝑆1 ( [𝑤 (𝑖 )
𝑗

]) ⊕ 𝑆2 ( [𝑐 (𝑖 )𝑘
]) (2)

where ⊕ is a concatenation operation, 𝑆1 is a summarizer only for
texts inside markdown cells [𝑤 (𝑖 )

𝑗
] and 𝑆2 is dedicated to code sum-

marization that takes codes inside code cells [𝑐 (𝑖 )
𝑘

] as input. The
concatenated text and code summarizations becomes the summa-
rization for the computational notebook. During implementation,
we use T5 [Raffel et al. 2020] model for text summarization and
CodeTrans [Elnaggar et al. 2021] for code summarization. We also
provide a relevance score 𝑟𝑒𝑙 = 𝑆𝑖𝑚(𝑧𝑖 , [𝑤 (𝑖 )

𝑗
]) as explanations for

the summarization model. 𝑟𝑒𝑙 is computed as the cosine similarity
between TF-IDF vectors of summaries and texts in markdown cells.

3.1.3 Computational notebook indexer and retriever. The computa-
tional notebook indexer and retriever are not the main focus of our
framework. For the sake of resource efficiency, we use the basic
BM25 algorithm and use Elasticsearch to handle the indexing and
retrieval.

3.2 Dataset
In terms of the computational notebooks, we crawled 8,491 compu-
tational notebooks from Kaggle2 and successfully processed and
indexed 7,849 of them. We use data from PaperswithCode3 as the
external KG for query reformulation.

4 DEMONSTRATION
4.1 User interface
The result interface adopts a hierarchical information disclosure
method for users to assess the relevance of returned results. First,
it displays the titles of returned computational notebooks on the
SERP.When users click on one item, the system reveals more details,
including a short summary and metadata, e.g., data source, number
of cells and programming language, as shown in Figure 2. It provides
more reliable hints on the real contents, based on which users will
decide whether to peruse thewhole computational notebook.Worth
to mention that, this is done under the users’ own development
environment; they can download desired computational notebooks
directly into the working space.

Our framework is developed within a VRE [Zhao et al. 2022] as
one of the main components to support collaborative research. VRE
users are able to use our framework out of box. Apart from searching
functionality, we provide a side channel for users to submit their
usefulness judgments towards examined computational notebooks,
which will be used for further research.
2https://www.kaggle.com
3https://paperswithcode.com/

Figure 2: User interface (UI) for CNSVRE.

4.2 Query reformulation
Table 1 gives two examples for query reformulation. Given an query
“graph models”, the system first determines it as a collection entity
and then retrieves related methods entities and appends them to
the initial query.

Table 1: Query reformulation examples.

Initial query Reformulated queries

video segmentation

video segmentation bdd100k
video segmentation segtrack-v2
video segmentation conferencevideoseg-
mentationdataset
video segmentation tiktok dataset
video segmentation pp-humanseg14k
video segmentation petraw

graph models

graph models symbolic deep learning
graph models pna
graph models dualgcn
graph models graph transformer
graph models bigcn
graph models diffpool
graph models gin

5 USER STUDY
5.1 User study design
We conducted a user study to evaluate the efficiency of the pro-
posed system. We asked the participants to finish a computational
notebook search task and answer a post-task questionnaire. Instruc-
tions were provided in written form, which contained guidance for
accessing the system and performing the task. The task is described
as below:

(1) Type your query in the search bar (something related to your
research/project) and click “search”.

(2) Go through the returned results and find the most desired
notebooks for your needs.

https://www.kaggle.com
https://paperswithcode.com/
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(3) Change your query if necessary.
We only collected data for the purpose of this user study. All

the data will be published after anonymization. And we explicitly
asked for participants’ consent to collect, store, analyze and publish
their data. We recruited 6 participants (2 female and 4 male) who
are researchers. The average age is 27.7, with the youngest being
23 and the oldest 34. Their fields and research interests are listed in
Table 2.

Table 2: Research interests of participants.

Field Research Interests

Computer vision segmentation, diffusion models,
medical imaging

Computer architecture chip design and dissipation
Artificial intelligence AI for WSI analysis
Medical education equational technology
Computer science big data engineering
Computer vision computer vision

5.2 Results
5.2.1 Efficiency of the system. The consumed time and the number
of queries being used are displayed in Table 3. On average, it took
one participant 8.33 minutes to finish the task and on average 8.6
querieswere formulated to search for computational notebooks. 50%
of the participants confirmed that they successfully found desired
computational notebooks, whereas the rest said the results were
plentiful for some queries but exclusive for others. One participant
reported that “I could find some nice/relevant notebooks if I search
something general, i.e., segmentation. But if the search keywords
become more specific, i.e., video segmentation, relevant results
are scarce”, which suggests a better coverage for more specified
information needs.

Table 3: User study results.

Mean Std.

Consumed time (mins) 8.33 5.50
Number of queries 8.60 12.01

5.2.2 Satisfaction with the system. In terms of satisfaction, we
asked participants to scale 1-5 if they agreed with the following
statements:

• Statement 1: I found the system unnecessarily complex.
• Statement 2: I would imagine that most people would learn
to use this system very quickly.

The mean scaling for statement 1 is 2.83, which means they did not
find it overcomplex. 83% participants fully agree with Statement 2,
indicating that our system is easy to use.

5.2.3 Effectiveness of summarization. We asked the participants to
scale 1-5 for the degree they found “the summarization help you to
judge the relevance of the computational notebooks? ” The average
value is 3.83, suggesting that participants found the summarization
relatively useful for relevance assessment.

6 CONCLUSION AND FUTUREWORK
We propose CNSVRE, with a query reformulation module that
solves the query ambiguity challenge needs and a computational
notebook summarization module for the explainability of the search
results. Based on the proposed system, we conduct a user study and
verify the effectiveness, efficiency, and satisfaction of the system.
We believe our system is applicable to the VRE for different scientific
research domains, e.g., bioinformatics, and physiography studies.

ACKNOWLEDGMENTS
This work was partially funded by the European Union Horizon
2020 andHorizon Europe research and innovation programs through
projects CLARIFY (860627), ENVRI-FAIR (824068), BlueCloud (862409),
Blue-Cloud 2026 (101094227) and the LifeWatch ERIC.

REFERENCES
Michelle Barker, Silvia Delgado Olabarriaga, Nancy Wilkins-Diehr, Sandra Gesing,

Daniel S Katz, Shayan Shahand, Scott Henwood, Tristan Glatard, Keith Jeffery,
Brian Corrie, et al. 2019. The global impact of science gateways, virtual research
environments and virtual laboratories. Future Generation Computer Systems 95
(2019), 240–248.

Amol P Bhopale and Ashish Tiwari. 2021. Leveraging Neural Network Phrase Embed-
ding Model for Query Reformulation in Ad-hoc Biomedical Information Retrieval.
Malaysian Journal of Computer Science 34, 2 (2021), 151–170.

Jürgen Cito, Isil Dillig, Vijayaraghavan Murali, and Satish Chandra. 2022. Counter-
factual explanations for models of code. In Proceedings of the 44th International
Conference on Software Engineering: Software Engineering in Practice. 125–134.

Fernando Diaz. 2016. Pseudo-query reformulation. InAdvances in Information Retrieval:
38th European Conference on IR Research, ECIR 2016, Padua, Italy, March 20–23, 2016.
Proceedings 38. Springer, 521–532.

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer,
Silvia Severini, Florian Matthes, and Burkhard Rost. 2021. CodeTrans: Towards
Cracking the Language of Silicon’s Code Through Self-Supervised Deep Learning
and High Performance Computing. arXiv preprint arXiv:2104.02443 (2021).

Misato Horiuchi, Yuya Sasaki, Chuan Xiao, and Makoto Onizuka. 2022. JupySim:
Jupyter Notebook Similarity Search System. Open Proceedings (2022).

Na Li, Siamak Farshidi, Riccardo Bianchi, Spiros Koulouzis, and Zhiming Zhao. 2022.
Context-Aware Notebook Search in a Jupyter-Based Virtual Research Environment.
In 2022 IEEE 18th International Conference on e-Science (e-Science). IEEE, 393–394.

Xingjun Li, YuanxinWang, HongWang, YangWang, and Jian Zhao. 2021. NBSearch: Se-
mantic Search and Visual Exploration of Computational Notebooks. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–14.

Chao Liu, Xin Xia, David Lo, Cuiyun Gao, Xiaohu Yang, and John Grundy. 2021.
Opportunities and challenges in code search tools. ACM Computing Surveys (CSUR)
54, 9 (2021), 1–40.

Jeffrey M Perkel. 2018. Why Jupyter is data scientists’ computational notebook of
choice. Nature 563, 7732 (2018), 145–147.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. The Journal of Machine Learning
Research 21, 1 (2020), 5485–5551.

Adam Rule, Aurélien Tabard, and James D Hollan. 2018. Exploration and explanation
in computational notebooks. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems. 1–12.

David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. 2019. Entity, Rela-
tion, and Event Extractionwith Contextualized Span Representations. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
5784–5789.

Yang Xu, Fan Ding, and Bin Wang. 2008. Entity-based query reformulation using
wikipedia. In Proceedings of the 17th ACM conference on Information and knowledge
management. 1441–1442.

Zhiming Zhao, Spiros Koulouzis, Riccardo Bianchi, Siamak Farshidi, Zeshun Shi, Ruyue
Xin, Yuandou Wang, Na Li, Yifang Shi, Joris Timmermans, et al. 2022. Notebook-as-
a-VRE (NaaVRE): From private notebooks to a collaborative cloud virtual research
environment. Software: Practice and Experience 52, 9 (2022), 1947–1966.


	Abstract
	1 Introduction
	2 Related work
	2.1 Query modeling for computational notebook search
	2.2 Explainability of code search

	3 SYSTEM ARCHITECTURE
	3.1 Overall system design
	3.2 Dataset

	4 Demonstration
	4.1 User interface
	4.2 Query reformulation

	5 User study
	5.1 User study design
	5.2 Results

	6 Conclusion and Future work
	Acknowledgments
	References

