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ABSTRACT 
Knowledge Graphs (KGs) form the backbone of many knowledge 
dependent applications such as search engines and digital personal 
assistants. KGs are generally constructed either manually or au-
tomatically using a variety of extraction techniques applied over 
multiple data sources. Due to the diverse quality of these data 
sources, there are likely anomalies introduced into any KG. Hence, 
it is unrealistic to expect a perfect archive of knowledge. Given how 
large KGs can be, manual validation is impractical, necessitating 
an automated approach for anomaly detection in KGs. To improve 
KG quality, and to identify interesting and abnormal triples (edges) 
and entities (nodes) that are worth investigating, we introduce 
SEKA, a novel unsupervised approach to detect anomalous triples 
and entities in a KG using both the structural characteristics and 
the content of edges and nodes of the graph. While an anomaly 
can be an interesting or unusual discovery, such as a fraudulent 
transaction requiring human intervention, anomaly detection can 
also identify potential errors. We propose a novel approach named 
Corroborative Path Algorithm to generate a matrix of semantic 
features, which we then use to train a one-class Support Vector Ma-
chine to identify abnormal triples and entities with no dependency 
on external sources. We evaluate our approach on four real-world 
KGs demonstrating the ability of SEKA to detect anomalies, and to 
outperform comparative baselines. 
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1 INTRODUCTION 
Intelligent assistants, such as Alexa and Siri, introduced Artifcial 
Intelligence based communication agents to millions of households 
worldwide. An agent requires knowledge to give a meaningful 
and logical answer to a question posted by a human. Knowledge 
representation and reasoning, inspired by human problem solving, 
represent knowledge for intelligent agents to gain the ability to 
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solve complex tasks. Hence, at present, Knowledge Graphs (KG) as 
a form of structured human knowledge representation have drawn 
research attention both from industry and academia [6]. 

When constructing a KG, it can either be manually curated by 
experts, manually generated by volunteers, automatically extracted 
from text via hand-crafted or learned rules, or automatically ex-
tracted from unstructured text using machine learning techniques. 
Irrespective of the approach, the presence of anomalies is inevitable 
as there is no perfect source of data [4]. 

While validation techniques such as Shapes Constraint Language 
(SHACL) and Shape Expressions (ShEx) ofer insights into the struc-
ture of a KG [15], not every real-world KG has a shape-based layer 
to facilitate such validation. Furthermore, these techniques propose 
what should be in a KG as opposed to what should not be in the 
KG. Similarly, rule-based reasoners and constraints engines for KG 
validation [7] only fnd common patterns of errors. Even though 
errors can be represented via pre-known patterns, an anomaly can-
not be guessed before being detected. While every error can be 
considered as an anomaly in data, not every anomaly is an error. 
Non-erroneous anomalies have the potential to uncover interesting 
information, thus discovering new knowledge from a KG. Although 
there exist other approaches to detect anomalies in KGs, they are 
either domain-specifc [26], require human involvement [8], or are 
dependent on external resources [7]. 

We propose SEKA, an unsupervised anomaly detection approach 
to identify anomalous triples and entities in a KG using both the 
structural properties and content of the graph. With the motivation 
received from our recent work in anomaly detection [20, 21], our 
aim is to discover abnormal triples and entities that provide inter-
esting, unusual, contradicting, semantically incorrect, redundant, 
invalid, incomplete, and missing information in KGs, as provided 
with examples in Table 1. With the introduction of SEKA, our main 
contribution is the improvement of data quality in KGs, thereby 
improving the reliability of applications using KGs as the backbone. 
Furthermore, we also contribute to the area of KG enhancement 
with the introduction of the Corroborative Path Algorithm (CPA), 
an algorithm dedicated for anomaly detection in KGs. 

2 PROBLEM DEFINITION 
Much of today’s data can be represented as graphs, ranging from 
social networks to bibliographic citations. Nodes in such graphs 
generally represent real-world entities, while edges represent re-
lationships between them. Both nodes and edges in a graph can 
have attributes that characterize the entities and their relationships. 
Relationships are either explicitly known (such as friendships in a 
social network or citations in bibliographic data), or they can be 
inferred using record linkage or link prediction algorithms (such as 
two babies are siblings because they have the same mother) [20]. 
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Table 1: Some examples of interesting anomalies detected by SEKA. 

Anomalous Triple Anomaly Explained 

<DonaldTrump, marriedTo, MarlaMaples> Two contradicting relationships between the same two people, while one triple is wrong.<MarlaMaples, hasChild, DonaldTrump> 
<EthelricArchbishopOfYork><hasSuccessor><AelfricPuttoc> It is unusual for one person to be both predecessor and successor of another person. However, this can 
<EthelricArchbishopOfYork><hasPredecessor><AelfricPuttoc> be a possibility in politics and religion. 
<Karl-HermannKnoblauch, hasWonPrize, KingdomOfPrussia> The predicate "hasWonPrize" is generally followed by the name of the prize won instead of the object for 

which it was awarded, thus making the predicate usage ambiguous. 
<Ain’tTooProudToBeg, isOfGenre, rock> The range of this predicate is not well defned. Hence, the same subject and predicate have diferent
<Ain’tTooProudToBeg, isOfGenre, music> objects making the predicate usage ambiguous.<Ain’tTooProudToBeg, isOfGenre, popularMusic> 
<AMGrapper><produced><BettaHaveMoney> These two facts seem to provide redundant information causing entity redundancy.<AMGrapper><produced><BettaHaveMoney2001> 
<Aristotle, bornOn, "348-##-##"> The object contains a partial date making the literal value invalid. 
<Marcelona, bornIn, Mozambique> Entity "Mozambique" is treated both as a person and location causing entity ambiguity.<Marcelona, hasSuccessor, Mozambique> 
<9thWonder, produced, TheDreamMerchantVol2> The subject is missing its corresponding "created" triple which other triples related to music albums have, 

thus making the triple sparse. 
<Neuromance, isOfGenre, hacker> "Hacker" is not a common type of genre. Hence the object seems abnormal. 
<person/11203, hasName, A.> "A." alone cannot be the name of a person, thus creating an abnormal object 
<SQL, hasDefnition, ""> A triple with a missing literal value. 
<dataset/411> This is an anomalous entity (in DSKG) as it is the only dataset with eleven creators, whereas other datasets 

have at most fve creators. 

Any graph representing real-world data likely contains both 
nodes and edges that are abnormal or unusual, and identifying these 
can be important for outlier detection in applications such as crime 
and fraud detection, viral marketing, or to identify subsets of nodes 
and edges that are useful in active learning for manual classifcation. 
At present, there exist various methods to detect anomalous nodes 
and edges based on the characteristics of the underlying structure 
of a graph, such as the density of the neighborhood of a node, 
the number of outgoing and incoming edges, to name a few. Also, 
identifying graph abnormalities based on temporal aspects is an 
active feld of study [19]. 

While existing graph anomaly detection techniques focus on 
structural properties of a KG to identify anomalies, to the best of 
our knowledge there are no approaches in the literature that aim to 
identify both abnormal nodes and edges via the data associated with 
them. Furthermore, existing techniques prioritize error detection 
over anomaly detection. Hence, detecting anomalies solely based 
on the attribute values associated with the nodes and edges of a 
KG remains less explored. 

Due to the increasing availability of large KGs, we believe it 
is important to develop mechanisms to reveal anomalies in an 
unsupervised manner, utilizing the attributes that are available in 
a KG. The essence of attribute-based graph anomaly detection is 
the knowledge that cannot be identifed from the structure of a 
graph alone, but instead can be discovered by analyzing the data 
associated with the nodes and edges of an attributed graph. 

Defnition 2.1 (Attributed graph). We consider an attributed graph 
� = (� , �, ̊ , �), where � is the set of vertices and � ∈ � is a vertex 
in � ; � ⊆ � × � is the set of edges and � = (�, �) ∈ � is an edge 
between two vertices � and � ; ˚ is the domain of attributes; and � is 
the function that assigns attributes to vertices and edges, where � 
can be any automated or manual means of generating the attributes. 
We use � (�) and � (�) to represent the attributes of vertex � and edge 
� , respectively [24]. 

Considering an edge-labelled graph which is a type of attributed 
graph with a single categorical attribute (label) for the edge [24], 
we defne a path in the graph as follows: 

Defnition 2.2 (Path). In an edge-labelled graph � , a path � is 
defned as a directed, labelled sequence of vertices and edges �1 −

p
→1 

p2 p� −1
�2 −→ ... −−−→ �� in � , where �� ∈ � denotes real-world entities, 
�� represents the predicate (edge label) of the directed edge that 
connects vertex � to � + 1, and � denotes the length of the path. 

Considering a directed edge-labelled graph as defned above, we 
defne the neighborhood of a vertex as follows [24]: 

Defnition 2.3 (Neighborhood). For an edge-labelled graph � , the 
neighborhood �� (�) of a vertex � ∈ � is its set of all neighbors of 
� , �� (�) = {� |{�, � } ∈ �}; � ∈ � . 

Considering a KG which is a directed edge-labelled graph [24], 
we now formally defne the problem under study as follows: 

Defnition 2.4 (Anomaly detection in knowledge graphs). Given 
a knowledge graph � and a statement of fact F = (�, �, �), where 
(�, �) ∈ � and � ∈ �, abnormal fact detection in � is the process of 
learning the relationship � using �� (�) of all the paths � between 

p
(�, �) with 0.5 ≤ � ≤ 2 to classify the edge � −→ � in � into one 
of the two classes normal or abnormal. Similarly, abnormal entity 
(node) detection (say for �) in � is the process of learning � (�) and 
� (�� (�)) to determine the class of � ∈ � . An entity � or a fact F 
is classifed abnormal, if the associated data deviates signifcantly 
from the rest of the data under consideration. 

Simply put, we view the anomaly detection problem as an un-
supervised learning task that validates a proposed fact F or node 
� by determining if the data associated with the fact and node is 
implied by the data within the KG. To ensure high data quality, 
and to extract accurate insights out of data, it is critical that such 
abnormalities are detected so they can be investigated. 
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3 STATE OF THE ART 
Anomaly detection in KGs has received much attention as auto-
mated methods of constructing KGs prioritize data integrity [5]. 
There exist methods for error detection in KGs, where each ap-
proach may target specifc types of information [17]. Some ap-
proaches take advantage of entity type information to perform 
clustering-based outlier detection [2], however entity types can 
either be absent or only be partially available in a KG. Another 
set of approaches use path ranking [13] or path-based rule mining 
for error checking [22]. While path ranking methods have limita-
tions in the coverage due to the probabilistic approach adopted for 
path discovery, path-based rule mining methods can only discover 
regularities in graphs as opposed to discovering abnormalities. 

Most recent studies propose employing supervised classifers 
to evaluate every triple based on diferent features, including en-
tity categories, path features, in/out-degrees, as well as embedding 
representations of entities and relations [13]. However, ground 
truth data may not be available to train such classifers. Alter-
natively, there have been eforts to utilize external information 
sources [7, 14, 25], such as related web pages [11] and annota-
tions [8, 12], to facilitate anomaly detection in KGs. While having 
external resources can be valuable for this task, acquiring such 
supplemental information can be time consuming and expensive. 
Furthermore, there are approaches that only aim to identify a single 
type of anomaly [13], approaches that are KG dependent [16, 26], 
methods requiring human intervention [8], and embedding meth-
ods that can only consider structural properties while eliminating 
the content associated with entities [1, 23, 27]. 

Even though there have been many diferent approaches pro-
posed for error/anomaly detection in KGs, they fall short in pro-
viding a sound solution either because they only perform error 
detection, or they are introduced for one specifc KG. To the best of 
our knowledge, there is no approach that can detect both anomalous 
triples and entities, detect a multitude of anomalies, domain and 
KG independent, scalable to large KGs, unsupervised, and supports 
anomaly generalization. 

4 PROPOSED APPROACH 
Our proposed approach (SEKA) performs fact anomaly detection 
considering the triples in a KG to identify anomalous triples, and 
entity anomaly detection to identify anomalous entities in a KG. 
Table 1 shows examples of some anomalies that can be detected by 
our approach. 

To construct features that highlight the structural properties of a 
KG, we introduce a variation of the Path Rank Algorithm (PRA) [10], 
named the Corroborative Path Algorithm (CPA). While PRA is 
widely used for the task of link prediction [10], CPA addresses the 
task of anomaly detection by considering corroborative (alternative) 
paths between two entities in a fact (triple) bounded by length to 
construct binary features. We mark the existence or non-existence 
of a path between two entities with a binary True/False value to 
construct a binary feature vector for each triple in the KG, therefore 
forming a matrix of binary features. To reduce complexity and to 
improve performance, CPA adopts a depth-frst search bounded by 
the maximum length of a path (default length is two) as opposed to 
random walks used in PRA. 

For entity anomaly detection, we generate content-based binary 
features by considering data quality aspects of the literals such as 
the presence/absence, validity/invalidity, and so on, of a triple [21]. 
This way, we can identify abnormal entities in a KG considering 
both structure and content. 

We then train a one-class Support Vector Machine (SVM) to 
perform unsupervised anomaly detection on the generated feature 
matrix [20]. Once we have identifed anomalies, we can remove 
the identifed abnormal triples from the KG and use the refned 
graph in a downstream task such as Knowledge Graph Completion 
(KGC), or we can perform manual validation with the involvement 
of domain experts. 

The novelty of SEKA is that it (1) can consider structure and 
content to detect both anomalous triples and entities, (2) is domain 
independent, and (3) is independent of external resources. Further-
more, to the best of our knowledge, there is no other work in the 
domain of KG validation that can detect both anomalous facts and 
entities in a KG. The novelty of CPA is that it has lower complexity 
and substantially lower run times compared to traditional PRA, 
making CPA scalable and well suited for anomaly detection in large 
KGs. Furthermore, with the generation of semantic features, CPA 
has the capability of detecting semantic anomalies as we consider 
the sequence of occurrence of paths between two entities as the 
features, which has the potential to identify rare path occurrences 
such as marriedTo—hasChild as per an example from Table 1. 

5 METHODOLOGY 
SEKA can perform two anomaly detection tasks as shown in Fig-
ure 1. The frst is fact anomaly detection which identifes anomalous 
triples using CPA, as shown by the frst (top) matrix in Figure 1. In 
this matrix (Matrix I), a row represents a triple from the KG on left, 
the features are the alternative paths between entities with a path 
length of up to two. These features are binary and indicate the exis-
tence or non-existence of a path between two entities. For example, 
the two entities John and Canada in the triple livesIn(John, Canada) 
have the alternative paths citizenOf and citizenOf—locatedIn as 
indicated by the binary value 1 (true). 

The second task is to identify anomalous entities, where we 
identify abnormal entities considering both structural properties 
and content associated with an entity, as shown by the second 
(bottom) matrix in Figure 1 (Matrix II). The aim of this task is to 
identify entities that can be anomalous even when there are no 
anomalous facts associated with them. For example, consider the 
node Mary in the KG of Figure 1, which is abnormal due to absence 
of associations compared to other nodes in the KG. In the second 
matrix, a row represents an entity from the KG on left, while the 
columns represent three types of features. The frst set of features 
(structural) indicates the predicates the entity is associated with 
within its neighborhood. The second set of features (content-based) 
highlight data quality aspects by referring to the literal-based triples 
associated with an entity. 

We obtain the third set of features (structural) via the disjunction 
of the feature vectors from Matrix I, where the entity is the subject 
of the triple. We can then either use Matrix-I or Matrix-II as input to 
a one-class SVM for unsupervised learning [20] to obtain abnormal 
triples or entities, respectively. 
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Figure 1: Overview of SEKA, the anomaly detection process to identify anomalous triples and entities in a KG, as described in 
Section 5. The abnormal triples and entities are marked in red in the KG on the left-hand side of the fgure. 

We used the four real-world KGs YAGO-11, KBpedia2, Wikidata3, 
and DSKG4 to evaluate SEKA. We selected KGs in such a way 
that they are of diferent types, data qualities, sizes, and belong 
to diferent domains. As these KGs do not have labelled data, we 
manually corrupted existing triples by replacing either of subject, 
predicate, or object in a triple by another of the same type, or 
a diferent type (semantically diferent). We corrupted diferent 
percentages of triples (10%, 20% and 30%) to evaluate the suitability 
of SEKA for anomaly detection. 

First, we conducted experiments using the three baselines of 
SEKA: (1) PaTyBRED [13] is used for the detection of relation 
assertion errors in KGs, which incorporates type and path features 
into local relation classifers; (2) SDValidate [18] relies on statistical 
distributions of types and relations, and applies outlier detection to 
detect erroneous relation assertions; (3) KGTtm [9] synthesizes the 
internal semantic information in the triples and the global inference 
information of a KG to obtain the trustworthiness measurement. 

Next, we evaluated the performance of CPA against PRA in terms 
of run time, precision, and recall. We consider PRA as the baseline 
of CPA, as CPA is a variation of PRA that is dedicated for anomaly 
detection, while PRA is widely used for link prediction [10]. We 
conducted both these experiments with synthetically generated 
anomalies. Our third experiment was to assess the performance 
of entity anomaly detection with synthetic anomalies, in terms 
of run time, precision, and recall. Next, we performed a manual 
evaluation on the four KGs without the introduction of synthetic 
anomalies, where we manually verifed the top ffty (based on 

1https://yago-knowledge.org/downloads/yago-1 
2https://kbpedia.org/ 
3https://www.wikidata.org/wiki/Wikidata:Main_Page 
4http://dskg.org/ 

one-class SVM anomaly score [20]) abnormal triples in these KGs 
as identifed by SEKA. We obtained the examples in Table 1 via 
this manual evaluation. This experiment further demonstrated the 
generalizability of SEKA, and its ability to detect any abnormalities 
not covered by the synthetically generated anomalies, as SEKA has 
no pre-defned rules or patterns defning anomalies. 

6 RESULTS 
We compared SEKA with the baselines PaTyBRED [13], SDVal-
idate [18], and KGTtm [9] using precision and recall values to 
determine how well each approach performed in identifying the 
anomalies. As per Table 2 that shows the experimental results with 
10% of the triples corrupted, SEKA performs better in comparison 
to all the baselines under consideration. In comparison to these 
baselines, SEKA achieves an increase of up to 12%, 15%, 16%, 17% in 
precision, and an increase of up to 15%, 16%, 18%, 14% in recall for 
YAGO-1, DSKG, Wikidata, and KBpedia, respectively. Hence, SEKA 
outperforms all baselines with its capability to identify anomalous 
triples. Similarly, SEKA outperformed the baselines with 20% and 
30% triples corrupted. 

To evaluate CPA versus PRA, we conducted experiments to as-
sess the run time, and the quality of the anomalies detected by 
probabilistic feature generation versus binary feature generation. 
In Table 3, we show the experimental results obtained with 10% of 
the triples corrupted in the four KGs. As can be seen from Table 3, 
CPA outperforms PRA on all four KGs with substantially reduced 
run times, and higher precision and recall values. This demonstrates 
the suitability of CPA in generating features required for anomaly 
detection, compared to PRA which is dedicated for link prediction 
task. CPA achieves an increase of up to 8% and 10% in precision 
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Table 2: Comparison of SEKA with baselines with 10% of triples corrupted. The best results are shown in bold. 

Approach 
YAGO-1 

Precision Recall 
DSKG 

Precision Recall 
Wikidata 

Precision Recall 
KBpedia 

Precision Recall 
PaTyBRED 
SDValidate 
KGTtm 

0.87 
0.82 
0.86 

0.86 
0.80 
0.84 

0.84 
0.81 
0.88 

0.83 
0.80 
0.83 

0.72 
0.70 
0.77 

0.72 
0.68 
0.77 

0.77 
0.71 
0.70 

0.75 
0.71 
0.69 

SEKA 0.92 0.92 0.93 0.93 0.81 0.80 0.82 0.81 

Table 3: Comparison of performance between PRA and CPA 
for general fact anomaly detection with 10% of triples cor-
rupted. The best results are shown in bold. 

KG Approach Run time (min) Precision Recall 

YAGO-1 
PRA 
CPA 

178 
121 

0.85 
0.92 

0.84 
0.92 

KBpedia 
PRA 
CPA 

88 
48 

0.80 
0.82 

0.79 
0.81 

Wikidata 
PRA 
CPA 

301 
232 

0.79 
0.81 

0.78 
0.80 

DSKG 
PRA 
CPA 

137 
72 

0.92 
0.93 

0.90 
0.93 

and recall, respectively, and a decrease in the run time of up to 47% 
in comparison with PRA. We obtained similar results with 20% and 
30% of the triples corrupted in each of the four KGs. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we presented an approach to study the problem of dis-
covering anomalous triples and entities in a Knowledge Graph (KG) 
in an unsupervised manner. Our approach can identify anomalies 
related to both structure and content of the KG, it is independent 
from external resources, and has the ability to identify a multitude 
of anomalies. 

We conducted diferent experiments using four real-world KGs 
with synthetic anomalies introduced to demonstrate the state-of-
the-art performance of our approach in anomaly detection. The 
results of our evaluation show how SEKA can consistently outper-
form its baselines. 

As future work, we will be improving the feature pruning step 
of CPA. We also aim to generalize the identifed anomalies with 
the use of a constraint-based language such as SHACL and Graph 
Functional Dependencies (GFD) [3], as we can use these validations 
during the process of KG construction to flter triples. Furthermore, 
we will develop a taxonomy of KG anomaly types so that the anom-
alies detected by SEKA can be automatically categorized in to one 
of the pre-defned categories for ease of correction. 

REFERENCES 
[1] Farhad Abedini, Mohammad Reza Keyvanpour, and Mohammad Bagher Menhaj. 

2020. Correction Tower: A general embedding method of the error recognition 
for the knowledge graph correction. IJPRAI 34, 10 (2020), 2059034. 

[2] Jeremy Debattista, Christoph Lange, and Sören Auer. 2016. A preliminary in-
vestigation towards improving linked data quality using distance-based outlier 
detection. In JIST. Springer, Cham, 116–124. 

[3] Wenfei Fan, Chunming Hu, Xueli Liu, and Ping Lu. 2020. Discovering graph 
functional dependencies. ACM Transactions on Database Systems (TODS) 45, 3 
(2020), 1–42. 

[4] Dieter Fensel, U Simsek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra 
Panasiuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler. 2020. Knowledge 
graphs. Springer, Switzerland. 

[5] Stefan Heindorf, Martin Potthast, Benno Stein, and Gregor Engels. 2016. Vandal-
ism detection in wikidata. In CIKM. ACM, New York, 327–336. 

[6] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard De Melo, 
Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, 
Sebastian Neumaier, et al. 2021. Knowledge graphs. CSUR 54, 4 (2021), 1–37. 

[7] Elwin Huaman, Amar Tauqeer, and Anna Fensel. 2021. Towards Knowledge 
Graphs Validation Through Weighted Knowledge Sources. In KGSW. Springer, 
Cham, 47–60. 

[8] Manuela Nayantara Jeyaraj, Srinath Perera, Malith Jayasinghe, and Nadheesh 
Jihan. 2019. Probabilistic error detection model for knowledge graph refnement. 
In CICLing (CiCLing’19). Springer, Switzerland. 

[9] Shengbin Jia, Yang Xiang, Xiaojun Chen, and Kun Wang. 2019. Triple trustwor-
thiness measurement for knowledge graph. In WWW. 2865–2871. 

[10] Ni Lao and William W Cohen. 2010. Fast query execution for retrieval models 
based on path-constrained random walks. In SIGKDD. 881–888. 

[11] Jens Lehmann, Daniel Gerber, Mohamed Morsey, and Axel-Cyrille 
Ngonga Ngomo. 2012. Defacto-deep fact validation. In International se-
mantic web conference. Springer, Berlin, 312–327. 

[12] Yezi Liu. 2021. Error Detection in Knowledge Graphs. Ph. D. Dissertation. Graduate 
and Professional School of Texas A and M University. 

[13] André Melo and Heiko Paulheim. 2017. Detection of relation assertion errors in 
knowledge graphs. In Knowledge Capture Conference. ACM, New York, 1–8. 

[14] Satoshi Nakamura, Shinji Konishi, Adam Jatowt, Hiroaki Ohshima, Hiroyuki 
Kondo, Taro Tezuka, Satoshi Oyama, and Katsumi Tanaka. 2007. Trustworthiness 
analysis of web search results. In TPDL. Springer, Berlin, 38–49. 

[15] Pouya Ghiasnezhad Omran, Kerry Taylor, Sergio Rodriguez Mendez, and Armin 
Haller. 2021. Learning SHACL Shapes from Knowledge Graphs. Semantic Web 
(2021). 

[16] Heiko Paulheim. 2017. Data-driven joint debugging of the dbpedia mappings 
and ontology. In ESWC. Springer, cham, 404–418. 

[17] Heiko Paulheim. 2017. Knowledge graph refnement: A survey of approaches 
and evaluation methods. Semantic web 8, 3 (2017), 489–508. 

[18] Heiko Paulheim and Christian Bizer. 2014. Improving the quality of linked data 
using statistical distributions. IJSWIS 10, 2 (2014), 63–86. 

[19] Anna Sapienza, André Panisson, JTK Wu, Laetitia Gauvin, and Ciro Cattuto. 2015. 
Anomaly detection in temporal graph data: An iterative tensor decomposition 
and masking approach. In AALTD. 

[20] Asara Senaratne, Peter Christen, Graham Williams, and Pouya G Omran. 2022. 
Unsupervised Identifcation of Abnormal Nodes and Edges in Graphs. JDIQ 15, 1 
(2022), 1–37. 

[21] Asara Senaratne, Pouya Ghiasnezhad Omran, Graham Williams, and Peter Chris-
ten. 2021. Unsupervised Anomaly Detection in Knowledge Graphs. In IJCKG 
(Thailand) (IJCKG’21). ACM, New York, 161–165. 

[22] Baoxu Shi and Tim Weninger. 2016. Discriminative predicate path mining for fact 
checking in knowledge graphs. Knowledge-based systems 104 (2016), 123–133. 

[23] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph 
embedding: A survey of approaches and applications. TKDE 29, 12 (2017), 2724– 
2743. 

[24] Yanhao Wang, Yuchen Li, Ju Fan, Chang Ye, and Mingke Chai. 2021. A survey of 
typical attributed graph queries. World Wide Web 24, 1 (2021), 297–346. 

[25] Yaqing Wang, Fenglong Ma, and Jing Gao. 2020. Efcient Knowledge Graph 
Validation via Cross-Graph Representation Learning. In CIKM (Ireland) (CIKM 
’20). ACM, New York, 1595–1604. 

[26] Dominik Wienand and Heiko Paulheim. 2014. Detecting incorrect numerical 
data in dbpedia. In ESWC. Springer, Cham, 504–518. 

[27] Yu Zhao, Huali Feng, and Patrick Gallinari. 2019. Embedding learning with triple 
trustiness on noisy knowledge graph. Entropy 21, 11 (2019), 1083. 

572


	Abstract
	1 Introduction
	2 Problem Definition
	3 State of the Art
	4 Proposed Approach
	5 Methodology
	6 Results
	7 Conclusion and future work
	References

