
Don’t Trust, Verify: The Case of Slashing from a Popular 
Ethereum Explorer 

Zhiguo He∗ Jiasun Li Zhengxun Wu 
University of Chicago and NBER George Mason University Independent 

Chicago, Illinois, USA Fairfax, Virginia, USA New York City, New York, USA 
zhiguo.he@chicagobooth.edu jli29@gmu.edu wuzhengxun@outlook.com 

ABSTRACT 
Blockchain explorers are important tools for quick look-ups of 
on-chain activities. However, as centralized data providers, their 
reliability remains under-studied. As a case study, we investigate 
Beaconcha.in, a leading explorer serving Ethereum’s proof-of-stake 
(PoS) update. According to the explorer, we fnd that more than 75% 
of slashable Byzantine actions were not slashed. Since Ethereum 
relies on the “stake-and-slash" mechanism to align incentives, this 
fnding would at its face value cause concern over Ethereum’s 
security. However, further investigation reveals that all the apparent 
unslashed incidents were erroneously recorded due to the explorer’s 
mishandling of consensus edge cases. Besides the usual message of 
using caution with centralized information providers, our fndings 
also call for attention to improving the monitoring of blockchain 
systems that support high-value applications. 

CCS CONCEPTS 
• Computer systems organization → Reliability; • Informa-
tion systems → Search interfaces. 

KEYWORDS 
blockchain, explorer, distributed consensus 

ACM Reference Format: 
Zhiguo He, Jiasun Li, and Zhengxun Wu. 2023. Don’t Trust, Verify: The Case 
of Slashing from a Popular Ethereum Explorer. In Companion Proceedings 
of the ACM Web Conference 2023 (WWW ’23 Companion), April 30–May 04, 
2023, Austin, TX, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/ 
10.1145/3543873.3587555 

1 INTRODUCTION 
Blockchain explorers are important tools for users to quickly query 
on-chain activities. They promote inclusiveness by allowing anyone 
to monitor a blockchain’s performance without having to incur 
the overhead of running a node. Despite blockchain explorers’ 
popularity, few studies have looked into how reliable they are. Given 
the crucial roles that explorers play in a blockchain’s ecosystem 
(and especially for proof-of-stake chains that are subject to “weak-
subjectivity" [7]), it is important to ensure explorers’ accuracy, 
expose patterns regarding how mistakes may potentially occur, and 
reemphasize the “don’t trust, verify" motto with concrete examples. 

In this paper, we take a frst look at this issue by analyzing 
beaconcha.in, a leading explorer for Ethereum’s consensus layer 
(often known as the Beacon chain) within its proof-of-stake (PoS) 
update. After briefy explaining how Ethereum’s new consensus 
layer works in Section 2, we document several empirical facts from 
the explorer’s data in Section 3. Although beaconcha.in is the more 

∗Authors are listed alphabetically. 

comprehensive and often more reliable explorer among its peers,1 

we still fnd errors with signifcant implications: for example, ac-
cording to the explorer, more than 75% of “slashable" consensus rule 
violations were left unslashed — which by appearance suggests a 
major failure of Ethereum’s consensus design, which heavily relies 
on a “stake and slash" mechanism to ensure compliance. However, 
further investigation shows that all these fndings were due to the 
explorer’s mistakes in encoding validators, which refects the negli-
gence of consensus edge cases. We provide detailed explanations 
of what went wrong to help avoid future incidents. 

While our concrete fndings come from Ethereum, we believe the 
learned lessons carry broader implications for other blockchains 
and decentralized applications (dApps) running on them. As we 
will see, the explorer errors we fnd refect a fundamental trade-of 
between computation and data availability that any blockchain 
would face when upholding decentralization: On the one hand, it is 
crucial to make on-chain data light/pruned to lower validator over-
heads; On the other hand, such eforts increase the computational 
costs for other stakeholders to monitor/verify on-chain activities 
later. Striking the right balance between the two competing forces 
is thus crucial for the security of the decentralized applications run-
ning on these chains. For many dApps, the heavy cost in the latter 
channel creates its own centralization forces, in that many high-
profle dApps rely on centralized information providers.2 Hence, 
the explorer mistake we identify again calls for more attention 
to the reliability of information providers and hopefully inspire 
community eforts toward a more robust ecosystem. 

2 CONSENSUS ON ETHEREUM POS: A BRIEF 
OVERVIEW 

This section gives a brief introduction to Ethereum’s recent upgrade 
to a proof-of-stake (PoS) system, which is often known as Ethereum 
2.0 to separate from the proof-of-work powered “Ethereum 1.0."3 

The upgrade has been planned to take place over multiple phases, 
with phase 0 creating a new PoS-based blockchain known as the 
Beacon chain. The Beacon chain went online on Dec 1, 2020, and 
merged with Ethereum 1.0 on Sept 6, 2022. Our empirical analysis 
focuses on the Beacon chain. At a high level, the PoS mechanism in 
the Beacon chain works as follows (see Figure 1 for an illustration): 

As a permissionless blockchain, anyone can stake 32 ETH and 
become an Ethereum 2.0 validator to participate in the consensus 

1Regarding comprehensiveness, beaconcha.in is the only explorer we are aware of that 
displays detailed attestation information; regarding accuracy, there are incidents where 
beaconcha.in disagrees with another major explorer beaconscan, with the former being 
correct according to running a local consensus client node.
2See the Nov 2020 Infura outage for a vivid illustration. More recently, many other 
potentially centralized critical infrastructures for dApps have also emerged, including 
e.g., 0x’s Request for Quote (RFQ), Walletconnect, Deflemma, etc.
3For exact implementation details, see Ethereum’s consensus specs [link]. 

1078

www.beaconcha.in
https://doi.org/10.1145/3543873.3587555
https://doi.org/10.1145/3543873.3587555
www.beaconcha.in
www.beaconcha.in
www.beaconcha.in
https://twitter.com/mysteryfigure/status/1499042087093907457
www.beaconcha.in
https://beaconscan.com/
https://coinmarketcap.com/alexandria/article/ethereums-infura-iating-outage-revives-decentralization-concerns
https://github.com/ethereum/consensus-specs
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3587555&domain=pdf&date_stamp=2023-04-30


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA He, Li, and Wu 

formation process, which proceeds in time units known as epochs. 
Before an epoch starts, the set of active validators are determined 
and pseudo-randomly assigned (using the chain’s state) to their 
respective roles: Some validators are chosen to propose new blocks 
while all validators (including the proposers) are assigned to make 
attestations (votes). The assignment makes sure that within a given 
epoch, each validator has the right to attest once and only once, and 
each chosen proposer has the additional right to propose one and 
only one new block. Specifcally, an epoch is divided into 32 slots 
each lasting for 12 seconds. In a given epoch, 32 out of all active 
validators are chosen as proposers, with each slot having one pro-
poser. All validators (including the proposers) are subdivided into 
32 groups so that each group of validators is assigned to attest for 
one of the 32 slots.4 Every proposed block contains certain history 
of the Beacon chain, including the hash of a previous block, past 
attestations, execution layer transactions (after the merge), or occa-
sionally slashing violation evidence (to be detailed later). Finally, 
each epoch also defnes a checkpoint block, which is typically the 
block proposed in the frst slot of the epoch.5 

Figure 1: An Illustration of the Beacon Chain Structure 

This fgure illustrates an ideal structure of the Beacon chain. Each epoch contains a 
sequence of blocks proposed by pre-scheduled block proposers. Blocks are connected 
with each other via hash pointers. The frst block of each epoch is denoted as the 
checkpoint of the epoch. Within a given epoch, each validator makes one and only one 
attestation. In the fgure, a validator makes an attestation that votes for the second-last 
block of epoch � + 3 and FFG votes for source � + 2 and target � + 3. 

An attestation contains two types of votes. First, it indicates 
which newly proposed block it votes for.6 Attesting to a block 
indicates an endorsement of the block as the latest block. Such votes 
thus follow the “longest chain" rule in Nakamoto consensus (as 
adopted by Bitcoin and Ethereum 1.0). Second, in addition to voting 
for a new block proposal, each attestation also additionally includes 
an FFG vote for checkpoints.7 An FFG vote specifes both a target 
checkpoint and a source checkpoint, with the latter necessarily 

4Each group is further divided into committees — a legacy of the deprecated “sharding" 
plan. There are discussions to remove this further division into committees.
5If the block in the frst slot is missing, then the checkpoint is defned as the latest 
preceding block (which may belong to a previous epoch).
6Ideally, all validators assigned to attest in a particular slot vote for the block proposed 
in the same slot. However, due to network latency, some validators may have not 
received the current-slot block before the slot expires, and these validators may instead 
vote for blocks proposed in earlier slots.
7FFG stands for Casper: the Friendly Finality Gadget, which is a protocol designed on 
top of a running blockchain for fnalizing blocks in a Byzantine Fault Tolerance (BFT) 
fashion. See [8]. 

proceeding the former. While FFG votes do not have apparent 
analogies in Nakamoto consensus, they can be understood at a 
high level as a specifc type of multi-round voting messages to 
help fnalize blocks in the spirit of Byzantine Fault Tolerance (BFT) 
protocols.8 All proposals and attestations are broadcast to peers 
as messages.9 Compliant proposals and attestations bring their 
respective rewards.10 

2.1 Slashing conditions 
To ensure the blockchain’s integrity, all validators are expected to 
comply with certain rules when proposing new blocks or making 
attestations. Roughly speaking, these rules require validators to 
never contradict themselves. Violators may be caught and “slashed," 
that is, be deprived of the privilege to validate (and thus collect 
rewards) anymore and stakes deducted according to a predefned 
rule. These violations can be categorized into “double proposal", 
“double vote", and “surround vote", as further explained below: 

(1) Double proposal: a proposer proposes two conficting blocks. 
A double proposal resembles “equivocating" diferent mes-
sages in a BFT context, which is prevented (with an over-
whelming probability) in Nakamoto consensus by the “proof-
of-work" requirement that makes it costly to create diferent 
proposals. Figure 2 gives an illustrative example; 

Figure 2: Illustrations of double proposals 

This fgure gives an example of double proposals: Validator � makes two proposals � 
and � with two conficting blocks at the time. 

(2) Double vote: a validator sends two diferent attestations with 
the same target epoch number. Figure 3 gives an illustrative 
example; 

(3) Surround vote: a validator casts two FFG votes � and � 
so that Source(�)< Source(�)<Target(�)<Target(�), where 
∀� ∈ {�, �}, Source(�) and Target(�) denote the epoch num-
bers of FFG vote �’ source and target, respectively. Figure 4 
gives an illustrative example. 

8Specifcally, once a checkpoint has gathered FFG votes from more than (weighted by 
stakes) 23 of all validators (reaching a supermajority), the checkpoint becomes justifed. 
Once the immediately succeeding checkpoint of a previously justifed checkpoint 
becomes justifed, the previously justifed checkpoint becomes fnalized.
9In practice, to reduce bandwidth/storage usage, validators are further grouped into 
several committees so that many communications only happen within committees. 
Ethereum 2.0 adopts the BLS threshold signature ([5]) so that within-committee com-
munications are aggregated for cross-committee communications.
10See detailed explanations on reward schedules here. 

1079

https://github.com/ethereum/consensus-specs/pull/1428
https://notes.ethereum.org/@vbuterin/single_slot_finality
https://eth2book.info/bellatrix/part2/incentives/rewards/


Verify the Explorer WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

Figure 3: Illustrations of double votes 

This fgure gives an example of double votes: Validator � casts two votes with the same 
target number but diferent attestation contents, in that attestation � votes for the 
second block of epoch � + 1, while attestation � votes for a diferent (the second last) 
block of epoch � + 1. Attestations � and � thus constitute double votes. 

Figure 4: Illustrations of surround votes 

This fgure gives an example of an FFG vote “surrounding" a previous FFG vote: 
validator �’s attestation � during epoch � + 2 specifes a source of epoch � + 1 and a 
target of epoch � + 2, while later during epoch � + 3 the same validator sends a new 
attestation � which specifes a source of epoch � and target of epoch � + 3. 

A rough intuition for slashing double or surround votes. In BFT 
protocols, “honest" behaviors, that is, to not deviate from the proto-
col’s specifed forwarding and voting strategies, ensure any record 
that has reached consensus to never be overturned under certain 
security conditions, say more than two-thirds of nodes are honest 
(see e.g. [9]; in contrast, Bitcoin does not have such a feature as 
Bitcoin blocks are never 100% fnalized). In the context of Beacon 
chain, [8] show that for two conficting checkpoints to ever get 
fnalized, it necessarily requires more than one-third of validators 
to have cast two conficting FFG votes that constitute a pair of either 
double votes or surround votes. Therefore, if fewer than one-third 
of validators commit such violations, then the Beacon chain will 
be “safe" in the sense that no conficting checkpoints will ever be 
fnalized. The threat of slashing aims to deter any validator from 
committing these violations, and thus ensure the “< 13 " condition. 

We further provide an intuitive explanation of why the absence 
of surround or double votes is sufcient for the safety of fnalized 

checkpoints. Indeed, we show that if two conficting checkpoints 
ever both get fnalized, then more than 13 validators must have cast 
either surround or double votes. 

First, recall from Footnote 8, a checkpoint becomes fnalized 
when its immediate next checkpoint becomes justifed, that is, hav-
ing received more than 23 of FFG votes from all validators as a target. 
Also recall from Footnote 4 that each epoch is divided into 32 slots. 
We then prove the argument by contradiction: Suppose two con-
ficting checkpoints � and � both get fnalized (with � (�) and � (�)
denoting the epoch number of checkpoints � and �). Discuss two 
scenarios: (1) If � and � are for the same epoch, that is, � (�) = � (�), 
then more than 23 validators have included � as target in their FFG 
votes, and (not necessarily the same set of) more than 23 validators 
have included � as target in their FFG votes. By the pigeon hole

2 1principle, at least 23 + 3 − 1 = 3 validators have included both � 
and � as targets in their FFG votes. These validators then have 
committed double votes. (2) If � and � are for diferent epochs, that 
is, � (�) ≠ � (�). Without loss of generality, assume that � has a 
smaller epoch number than �, that is, � (�) < � (�). Since � and � 
confict, � also conficts with �’s immediately next checkpoint � ′ , 
which is justifed by defnition. Then � (�) > � (� ′) = � (�) + 1. De-
note � as a justifed checkpoint that has the smallest epoch number 
among the set of all justifed checkpoints that confict with � and 
have epoch number larger than � (�). Notice that � is well-defned 
because the set is not empty (for example, � belongs to the set). 
Then all FFG votes that justify � must have � as target and a source 
checkpoint � with epoch number smaller than � (�). Therefore, 
more than 23 validators have included � as target and � as source in 
their FFG votes, while the fnalization of � upon � ′’s justifcation 
means that (not necessarily the same set of) more than 23 validators 
have included � ′ as target and � as source in their FFG votes. By

2 1the pigeon hole principle, at least 23 + 3 − 1 = 3 validators have 
included both source-�/target-� ′ and source-�/target-� in their 
FFG votes. These validators then have committed surround votes. 

2.2 Slashing detection in practice 
When any of the above violations are committed, evidence of such 
violations may be gathered by some validator (known as the whistle-
blower) and then included by a proposer in a new block to trigger 
slashing of the ofending validator. However, if no whistleblower 
detects such a violation (due to either costly detection or inadequate 
incentives),11 or if the proposed block that includes a whistleblow-
ing message fails to reach consensus (e.g., orphaned), then some 
slashable violations may be left unslashed. This theoretical possi-
bility originally motivated us to look for potentially unslashed but 
slashable violations. 

3 ERRONEOUS EXPLORER RECORDS 
To investigate the accuracy of explorer’s records on slashing events, 
we collect data from beaconcha.in, one of the most popular blockchain 
explorers of the Beacon chain. The explorer displays Beacon chain 
records in reader-friendly web pages, as well as exposes APIs to 
access their back-end data. Our data include all proposal/attestation 

11In practice, both channels may be at work. On the resource cost in detecting violations, 
see e.g. the documentation of Prysm, one of the most popular Ethereum consensus 
client software, which states that “Slasher ... uses signifcantly more disk space when 
running on mainnet." The same document also highlights the lack of incentives to 
whistleblowers: “Running a slasher is not meant to be proftable." 

1080

https://beaconcha.in/
https://docs.prylabs.network/docs/prysm-usage/slasher


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA He, Li, and Wu 

records in the frst 1.75 million blocks (from the genesis block on 
Dec 1, 2020 to August 1, 2021). 

3.1 (Correctly) recorded slashing incidents 
Slashing happens from time to time. Figure 5 chronicles by black 
solid bars all conficting proposals/attestations involved in all slash-
ing incidents in our sample (from the explorer). We are able to 
verify the signatures of these proposals/attestations, supporting 
this part of the explorer’s records.12 

Figure 5: Slashed and seemingly slashable incidents over time 

This fgure plots for every day within our sample the count of slashing incidents (black 
solid bars) and seemingly slashable (yet unslashed) violations (red dashed bars). The 
sample includes the frst 1.75 million Beacon chain blocks from genesis (December 1, 
2020 to August 1, 2021). 

Overall, as expected in the Ethereum community, slashing events 
tend to be rare: Out of the frst 1.75 million blocks, there are just 
156 recorded slashing incidents, including 15 proposer violations 
and 144 attester violations. Furthermore, slashing incidents tend 
to cluster. For example, out of all slashing incidents, 75 of them 
happened on the same day. There could be prolonged periods during 
which no slashes take place until suddenly “many things go wrong." 

3.2 Unslashed (seemingly) slashable violations 
While it may not be surprising to see detected slashing violations 
(ultimately this is what the slashing mechanism was supposed to do), 
our data from the explorer (which we later prove to be erroneous) 
also give a surprising fnding in that many slashable violations seem 
to have dodged slashing. Figure 5 chronicles by red dashed bars all 
the proposals/attestations involved in such seemingly unslashed 
incidents.13 

The number of seemingly unslashed violations is large compared 
to actual slashes: 478 unslashed violations, including 404 double 
votes and 74 surround votes (but no double proposals). In compari-
son, recall that the actual number of slashed attestation violations

478is 144. Hence, 478+144 , or more than 75% attestation violations seem 
to have dodged slashing according to the explorer. 

Before proceeding, we make a digression to highlight a separate 
methodological contribution regarding how to efciently identify 
12Appendix A further includes a more detailed list of these incidents. 
13Appendix B further includes a more detailed list of these incidents. 

surround votes, as the community has pointed out that it is a com-
putationally non-trivial task to look for slashable ofenses, and 
especially surround votes.14 The trick is to recognize that surround 
votes necessarily involves attestations whose target and source slot 
numbers difer by at least 3. By frst singling out these attestations, 
we signifcantly reduce the workload and speed up surround vote 
detection. 

3.3 (Incorrect) explorer records 
The fndings from the previous section, at face value, would seri-
ously question the efectiveness of the “stake-and-slash" mechanism 
in detecting and deterring misbehaving violations. However, two 
observations point to potential mistakes in beaconcha.in. First, as 
suggestive evidence, in each seemingly (according to the explorer) 
unslashed violation, at least one of the involved conficting attes-
tations does not appear in frst-hand data when we directly sync 
an Ethereum consensus node; Second, as defnitive evidence, none 
of these “phantom" attestations has valid signatures, indisputably 
proving that they are incorrect. 

In addition, these “phantom" attestations (345 in total) all have 
the following features: (1) each of them involves a small number 
of validators (no more than six, with 1-validator and 2-validator 
attestations being the most common; See Figure 6); (2) blocks con-
taining them are all in slots that feature orphaned blocks. These 
observations will turn out to be useful for our follow-up analysis 
in the next section. 

0

50

100

150

1 2 3 4 5 6
Number of Validators per Attestation

co
un

t

Figure 6: Validator counts per “phantom" attestation 

This fgure breaks down all “phantom" attestations by the number of validator(s) in 
each of them (ranging from 1 to 6), and then plots a histogram for the number of 
attestations within each category. 

3.4 Uncovering the cause of the explorer’s 
mistake 

We believe it is important to understand where the “phantom" came 
from to help fx any existing explorer mistakes and also expose pat-
terns for mitigating future occurrences. We thus further investigate 
14See e.g. Protolambda’s discussion on resource consumption. Various client imple-
mentations also cover similar issues, see e.g. here and here. 

1081

www.beaconcha.in
https://twitter.com/protolambda
https://github.com/protolambda/eth2-surround
https://hackmd.io/Jzmjg8KuQm24rZePQ1hU5A
https://hackmd.io/@sproul/min-max-slasher


Verify the Explorer WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

the root cause of the explorer’s mistake and uncover the explorer’s 
mishandling of a subtle consensus edge case. For ease of exposition, 
the discussion below follows our original uncovering process. 

(1) Although none of the phantom attestations has correct signa-
tures, for all 1-validator phantom attestations it is feasible to 
show that all signatures are valid once we correct attesting 
validator indices by brute force — iterating over all (∼400K) 
validators to look for one that renders a correct signature. 

(2) The last fnding suggests that all 1-validator phantom attes-
tations have indeed been created, though by validators other 
than those indicated by beaconcha.in. In other words, the 
explorer messed up validator labeling for these attestations. 
For example, according to the explorer, the second attesta-
tion in slot 608067 (containing only one validator 4219) is 
part of an unslashed double vote. This attestation does not 
have the right signature if we verify it with validator 4219’s 
public key; however, it will have the right signature if we 
replace validator 4219’s public key with validator 56119’s. 

(3) Why did the explorer mislabel validator 56119 as 4219? We 
notice that this attestation’s target number points to the 
checkpoint of epoch 19002, which is typically its frst slot, 
or slot 32*19002 = 608064. However, this attestation’s target 
root actually points to block 608004, suggesting that val-
idator 56119 likely experienced a network delay and missed 
subsequent blocks after slot 608004. According to Ethereum’s 
“lookahead" rule, a node should use information (specifcally, 
a feld known as “randao_mix") in the last available chain 
state in epoch 19002 − 2 = 19000 (which should correspond 
to slot 19000 × 32 + 31 = 608031) as a pseudo-random seed to 
calculate the attestation schedule for epoch 19002. However, 
since validator 56119’s local state likely did not update after 
slot 608004, we conjecture and then verify that it actually 
used the state information til slot 608004 and calculated a 
“stale" attestation schedule. Indeed, according to the correct 
schedule, validator 56119 should attest in slot 608090, but 
instead, it follows its own stale schedule and attested in slot 
608067. We then confrm that the explorer missed this edge 
case, and encoded the attestor in 56119’s misplaced attes-
tation using a non-stale attestation schedule, which turned 
out an innocent validator 4219. 

(4) The above example suggests that in general, when a validator 
experiences network delay, it may locally compute a stale 
attestation schedule. However, the explorer may neglect this 
case and use an up-to-date schedule to encode validators, 
leading to erroneous records. We verify this conjecture on 
all 345 “phantom" attestations and were able to confrm 262 
of them. 

(5) We hypothesize that the remaining 83 “phantom" attesta-
tions also come from the same validator encoding error, as 
they also feature stale target roots. However, we cannot di-
rectly test them since the stale target roots were themselves 
orphaned, so we can no longer fetch the corresponding state 
information to replay what schedules those involved valida-
tors used.15 

15When a consensus node syncs from peers, orphaned blocks are not transmitted. 
Unless one happens to be running a node during the event times (and happens to 
receive the misplaced attestations), such information is forever gone. 

4 CONCLUSION 
We uncover and explain an edge case in Ethereum’s consensus 
layer that has been mishandled by a leading explorer. In addition 
to helping improve it, we hope our fndings could also bring more 
attention to the reliability of major information providers, many of 
which provide critical supports to high-value DeFi applications. 

Our investigation into slashing outcomes also adds to an emerg-
ing literature on the incentive analysis of BFT-based consensus 
protocols (e.g. [16], [3] and [4]). These economic analyses in turn 
build on a large computer science literature starting from [18], 
who formulated the Byzantine generals problem, with a practical 
solution frst provided by [9]. More recent developments in BFT 
protocols include [8], [6], [25], [28], etc. See [27] for a summary.16 

Specifc to Ethereum’s PoS blockchain, see [26]. Lastly, our empiri-
cal results also relate to forensic studies of blockchains.17 

ACKNOWLEDGMENTS 
We thank Ian Gao for excellent research assistance as well as semi-
nar participants at Tsinghua University and Luohan Academy for 
helpful comments. We thank helpful comments from the Ethereum 
community, including Paul Hauner, Hudson Jameson, Raul Jordan, 
Stefan Kobrc, and Barnabé Monnot. Zhiguo He and Jiasun Li are 
grateful for research grants from the Paris-Dauphine Partnership 
Foundation. Zhiguo He acknowledges fnancial support from the 
John E. Jeuck Endowment at the University of Chicago Booth School 
of Business. 

REFERENCES 
[1] Arash Aloosh and Jiasun Li. 2019. Direct evidence of bitcoin wash trading. 

Available at SSRN 3362153 (2019). 
[2] Dan Amiram, Evgeny Lyandres, and Daniel Rabetti. 2020. Competition and 

Product Quality: Fake Trading on Crypto Exchanges. Available at SSRN 3745617 
(2020). 

[3] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara 
Tucci-Piergiovanni. 2020. Committee-based Blockchains as Games Between 
Opportunistic players and Adversaries. (2020). 

[4] Alon Benhaim, Brett Hemenway Falk, and Gerry Tsoukalas. 2021. Scaling 
Blockchains: Can Elected Committees Help? Available at SSRN 3914471 (2021). 

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. 2004. Short signatures from the 
Weil pairing. Journal of cryptology 17, 4 (2004), 297–319. 

[6] Ethan Buchman. 2016. Tendermint: Byzantine fault tolerance in the age of 
blockchains. Ph. D. Dissertation. 

[7] Vitalik Buterin. 2014. Proof of stake: how I learned to love weak subjectivity. 
Ethereum blog (2014). 

[8] Vitalik Buterin and Virgil Grifth. 2017. Casper the friendly fnality gadget. arXiv 
preprint arXiv:1710.09437 (2017). 

[9] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. Pro-
ceedings of the third symposium on Operating systems design and implementation 
(1999), 173–186. 

[10] Panagiotis Chatzigiannis, Foteini Baldimtsi, Igor Griva, and Jiasun Li. 2022. Di-
versifcation across mining pools: Optimal mining strategies under pow. Journal 
of Cybersecurity 8, 1 (2022), tyab027. 

[11] Lin William Cong, Zhiguo He, and Jiasun Li. 2021. Decentralized mining in 
centralized pools. The Review of Financial Studies 34, 3 (2021), 1191–1235. 

[12] Lin William Cong, Xi Li, Ke Tang, and Yang Yang. 2020. Crypto Wash Trading. 
working paper (2020). 

[13] Neil Gandal, JT Hamrick, Tyler Moore, and Tali Oberman. 2017. Price Manipula-
tion in the Bitcoin Ecosystem. (2017). 

16For a sample of studies more broadly related to the economic analysis of blockchain, 
see [21], [11], [23], [10], [22], [15], and [19], etc.
17For example, [14] relate the 2017 bitcoin bubble to Tether issuance from a single 
large bitcoin address; [20] explore the extent of illicit transactions on Ethereum; [13] 
relate the 2013 Bitcoin bubble to price manipulation on the now defunct Mt.Gox 
Bitcoin exchange, while [1] point to direct evidence of volume-infating wash trading 
Mt.Gox. [12] and [2] develop techniques to statistically infer wash trading, while [24] 
provide direct evidence of pump-and-dump schemes in the cryptocurrency market 
using communication records on Telegram. 

1082

www.beaconcha.in


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

[14] John M Grifn and Amin Shams. 2020. Is Bitcoin really untethered? The Journal 
of Finance 75, 4 (2020), 1913–1964. 

[15] Yang Guo, Jiasun Li, Mei Luo, and Yintian Wang. 2022. Illiquid bitcoin options. 
Available at SSRN 4149934 (2022). 

[16] Hanna Halaburda, Zhiguo He, and Jiasun Li. 2021. An Economic Model of Con-
sensus on Distributed Ledgers. Technical Report. National Bureau of Economic 
Research. 

[17] Zhiguo He, Jiasun Li, and Zhengxun Wu. 2023. Don’t Trust, Verify: The Case of 
Slashing from an Ethereum Explorer. Available at SSRN 4344299 (2023). 

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Gen-
erals Problem. ACM Transactions on Programming Languages and Systems 4, 3 
(1982), 382–401. 

[19] Jiasun Li. 2021. DeFi as an Information Aggregator. In Financial Cryptography 
and Data Security. FC 2021 International Workshops. Lecture Notes in Computer 
Science, Vol. 12676. Springer, 171–176. 

[20] Jiasun Li, Foteini Baldimtsi, Joao P Brandao, Maurice Kugler, Rafeh Hulays, Eric 
Showers, Zain Ali, and Joseph Chang. 2021. Measuring Illicit Activity in DeFi: 
The Case of Ethereum. In Financial Cryptography and Data Security. FC 2021 
International Workshops. Lecture Notes in Computer Science, Vol. 12676. Springer, 
197–203. 

[21] Jiasun Li and William Mann. 2018. Digital tokens and platform building. (2018). 
[22] Jiasun Li and William Mann. 2021. Initial coin oferings: Current research and 

future directions. The Palgrave Handbook of Technological Finance (2021), 369– 
393. 

[23] Jiasun Li and Guanxi Yi. 2019. Toward a factor structure in crypto asset returns. 
The Journal of Alternative Investments 21, 4 (2019), 56–66. 

[24] Tao Li, Donghwa Shin, and Baolian Wang. 2019. Cryptocurrency pump-and-dump 
schemes. Available at SSRN 3267041 (2019). 

[25] Rafael Pass and Elaine Shi. 2018. Thunderella: Blockchains with optimistic instant 
confrmation. In Annual International Conference on the Theory and Applications 
of Cryptographic Techniques. Springer, 3–33. 

[26] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar, 
Ertem Nusret Tas, and David Tse. 2022. Three attacks on proof-of-stake ethereum. 
In Financial Cryptography and Data Security: 26th International Conference, FC 
2022, Grenada, May 2–6, 2022, Revised Selected Papers. Springer, 560–576. 

[27] Elaine Shi. 2020. Foundations of Distributed Consensus and Blockchains. Book 
manuscript, Available at https://www.distributedconsensus.net. 

[28] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2018. HotStuf: BFT consensus in the lens of blockchain. arXiv preprint 
arXiv:1803.05069 (2018). 

A RECORDED SLASHING INCIDENTS 
We present a sample of slashed violations, separating proposer and 
attester violations:18 Due to page limits, we list 15 incidents per 
category. A full list is available in the appendix of a companion 
working paper [17] (with SSRN link here). 

(1) proposer violations: For each slashing incident, we list the 
slashed proposer’s ID, the slashing proposer’s ID, the locations of 
the slashing message (i.e. the block number at which the slash-
ing message is included in the Beacon chain), and the slashable 
proposal’s location (for which block the slashable proposal was 
made). 

(2) attester violations: For each slashing incident, we list the 
slashed attester’s ID, the slashing proposer’s ID, the locations of 
the slashing message (i.e. the block number at which the slashing 
message is included in the Beacon chain), and the slashable vote’s 
content (for which block the slashable vote was cast). 

B UNDETECTED SLASHABLE VIOLATIONS 
According to the explorer’s records, all double proposals within the 
frst 1.75 million slots were successfully slashed. The same is not 
true for attestations, and there are both unslashed double votes and 
unslashed surround votes. We again present 15 incidents for each 
category, with full lists linked after anonymous reviews. 

18After the initial circulation of our paper, beaconcha.in began to return 502 bad 
gateway for attestation information for slots 1 - 2500250 in early December 2022, so 
some links may no long work (however, it went back online as of December 9). 

He, Li, and Wu 

Table 1: Examples of Slashed Proposer Violations 

slashed slashing slashing message proposal 
proposer proposer location location 

20075 11313 6669 6668 
18177 21106 22374 22373 
25645 11117 40772 40771 
38069 24876 138164 138163 
38089 10010 138731 138730 
38130 4156 140313 140312 
38129 33452 140559 140558 
38065 33153 140811 140810 
38128 14011 140845 140844 
38117 31339 140895 140894 
38114 23929 141174 141173 
45871 32686 248186 248185 
40892 55778 343133 343132 
63338 35018 476904 476903 
169440 103269 1510279 1510278 

Table 2: Examples of Slashed Attester Violations 

slashed slashing slashing message proposal 
proposer proposer location location 

4259 19030 17112 17090 
4100 19030 17112 17090 
21574 19030 17112 17090 
4110 10689 17206 17078 
13869 10689 17206 17064 
4102 10055 17188 17082 
4086 10055 17188 17084 
4390 11111 17184 17072 
4451 11398 17227 17073 
18249 11398 17227 17073 
7635 17942 43920 43917 
1644 21844 102389 102388 
23241 15703 118136 118135 
38061 10063 138194 138163 
38105 10063 138194 138163 

(1) “unslashed" double votes. For each violation, we list the com-
mitting attester’s ID, the locations of conficting votes (i.e. the block 
number at which each vote is included in the Beacon chain), and 
the vote content (for which block the conficting votes were cast). 

(2) “unslashed" surround votes. For each vote within a surround 
vote violation, we list the committing attester’s ID, the location of 
the vote (i.e. the block number at which the vote is included in the 
Beacon chain), and the vote content (for which block, as well as for 
which source and target epochs the vote were cast). 

1083

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4344299
www.beaconcha.in
https://beaconcha.in/validator/20075
https://beaconcha.in/validator/11313
https://beaconcha.in/block/6669#proposer-slashings
https://beaconcha.in/block/6668
https://beaconcha.in/validator/18177
https://beaconcha.in/validator/21106
https://beaconcha.in/block/22374#proposer-slashings
https://beaconcha.in/block/22373
https://beaconcha.in/validator/25645
https://beaconcha.in/validator/11117
https://beaconcha.in/block/40772#proposer-slashings
https://beaconcha.in/block/40771
https://beaconcha.in/validator/38069
https://beaconcha.in/validator/24876
https://beaconcha.in/block/138164#proposer-slashings
https://beaconcha.in/block/138163
https://beaconcha.in/validator/38089
https://beaconcha.in/validator/10010
https://beaconcha.in/block/138731#proposer-slashings
https://beaconcha.in/block/138730
https://beaconcha.in/validator/38130
https://beaconcha.in/validator/4156
https://beaconcha.in/block/140313#proposer-slashings
https://beaconcha.in/block/140312
https://beaconcha.in/validator/38129
https://beaconcha.in/validator/33452
https://beaconcha.in/block/140559#proposer-slashings
https://beaconcha.in/block/140558
https://beaconcha.in/validator/38065
https://beaconcha.in/validator/33153
https://beaconcha.in/block/140811#proposer-slashings
https://beaconcha.in/block/140810
https://beaconcha.in/validator/38128
https://beaconcha.in/validator/14011
https://beaconcha.in/block/140845#proposer-slashings
https://beaconcha.in/block/140844
https://beaconcha.in/validator/38117
https://beaconcha.in/validator/31339
https://beaconcha.in/block/140895#proposer-slashings
https://beaconcha.in/block/140894
https://beaconcha.in/validator/38114
https://beaconcha.in/validator/23929
https://beaconcha.in/block/141174#proposer-slashings
https://beaconcha.in/block/141173
https://beaconcha.in/validator/45871
https://beaconcha.in/validator/32686
https://beaconcha.in/block/248186#proposer-slashings
https://beaconcha.in/block/248185
https://beaconcha.in/validator/40892
https://beaconcha.in/validator/55778
https://beaconcha.in/block/343133#proposer-slashings
https://beaconcha.in/block/343132
https://beaconcha.in/validator/63338
https://beaconcha.in/validator/35018
https://beaconcha.in/block/476904#proposer-slashings
https://beaconcha.in/block/476903
https://beaconcha.in/validator/169440
https://beaconcha.in/validator/103269
https://beaconcha.in/block/1510279#proposer-slashings
https://beaconcha.in/block/1510278
https://beaconcha.in/validator/4259
https://beaconcha.in/validator/19030
https://beaconcha.in/block/17112#attester-slashings
https://beaconcha.in/block/17090
https://beaconcha.in/validator/4100
https://beaconcha.in/validator/19030
https://beaconcha.in/block/17112#attester-slashings
https://beaconcha.in/block/17090
https://beaconcha.in/validator/21574
https://beaconcha.in/validator/19030
https://beaconcha.in/block/17112#attester-slashings
https://beaconcha.in/block/17090
https://beaconcha.in/validator/4110
https://beaconcha.in/validator/10689
https://beaconcha.in/block/17206#attester-slashings
https://beaconcha.in/block/17078
https://beaconcha.in/validator/13869
https://beaconcha.in/validator/10689
https://beaconcha.in/block/17206#attester-slashings
https://beaconcha.in/block/17064
https://beaconcha.in/validator/4102
https://beaconcha.in/validator/10055
https://beaconcha.in/block/17188#attester-slashings
https://beaconcha.in/block/17082
https://beaconcha.in/validator/4086
https://beaconcha.in/validator/10055
https://beaconcha.in/block/17188#attester-slashings
https://beaconcha.in/block/17084
https://beaconcha.in/validator/4390
https://beaconcha.in/validator/11111
https://beaconcha.in/block/17184#attester-slashings
https://beaconcha.in/block/17072
https://beaconcha.in/validator/4451
https://beaconcha.in/validator/11398
https://beaconcha.in/block/17227#attester-slashings
https://beaconcha.in/block/17073
https://beaconcha.in/validator/18249
https://beaconcha.in/validator/11398
https://beaconcha.in/block/17227#attester-slashings
https://beaconcha.in/block/17073
https://beaconcha.in/validator/7635
https://beaconcha.in/validator/17942
https://beaconcha.in/block/43920#attester-slashings
https://beaconcha.in/block/43917
https://beaconcha.in/validator/1644
https://beaconcha.in/validator/21844
https://beaconcha.in/block/102389#attester-slashings
https://beaconcha.in/block/102388
https://beaconcha.in/validator/23241
https://beaconcha.in/validator/15703
https://beaconcha.in/block/118136#attester-slashings
https://beaconcha.in/block/118135
https://beaconcha.in/validator/38061
https://beaconcha.in/validator/10063
https://beaconcha.in/block/138194#attester-slashings
https://beaconcha.in/block/138163
https://beaconcha.in/validator/38105
https://beaconcha.in/validator/10063
https://beaconcha.in/block/138194#attester-slashings
https://beaconcha.in/block/138163
https://www.distributedconsensus.net


Verify the Explorer WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

Table 3: Examples of Unslashed Double Votes 

attester vote locations vote content 

237 [1041100, 1041108] 1041099 
487 [1041103, 1041108] 1041102 
2787 [1041107, 1041108] 1041106 
3167 [1041104, 1041108] 1041103 
3644 [1267818, 1267822] 1267817 
4021 [1054792, 1054796] 1054791 
4034 [1267816, 1267822] 1267815 
4098 [1041104, 1041108] 1041103 
4219 [608067, 608085] 608065 
4220 [1041104, 1041108] 1041103 
4826 [1041100, 1041108] 1041099 
4993 [918915, 918922] 918914 
5129 [1054791, 1054791, 1054796] 1054790 
5194 [1054788, 1054788, 1054796] 1054787 
5228 [1041098, 1041108] 1041097 

Table 4: Examples of Unslashed Surround Votes 

vote content attester vote location block source_epoch target_epoch 

4155 918882 918881 28714 28715 
4155 918922 918914 28713 28716 
4219 608052 608051 19000 19001 
4219 608059 608051 19000 19001 
4219 608067 608065 18999 19002 
4993 918901 918900 28714 28715 
4993 918922 918914 28713 28716 
6666 988955 988954 30903 30904 
6666 988965 988961 30902 30905 
7412 918883 918882 28714 28715 
7412 918922 918916 28713 28716 
9018 988931 988930 30903 30904 
9018 988965 988960 30902 30905 
10740 918900 918899 28714 28715 
10740 918922 918917 28713 28716 

1084

https://beaconcha.in/validator/237
https://beaconcha.in/slot/1041100#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/487
https://beaconcha.in/slot/1041103#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/2787
https://beaconcha.in/slot/1041107#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/3167
https://beaconcha.in/slot/1041104#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/3644
https://beaconcha.in/slot/1267818#attestations
 https://beaconcha.in/slot/1267822#attestations
https://beaconcha.in/validator/4021
https://beaconcha.in/slot/1054792#attestations
 https://beaconcha.in/slot/1054796#attestations
https://beaconcha.in/validator/4034
https://beaconcha.in/slot/1267816#attestations
 https://beaconcha.in/slot/1267822#attestations
https://beaconcha.in/validator/4098
https://beaconcha.in/slot/1041104#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608067#attestations
 https://beaconcha.in/slot/608085#attestations
https://beaconcha.in/validator/4220
https://beaconcha.in/slot/1041104#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4826
https://beaconcha.in/slot/1041100#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4993
https://beaconcha.in/slot/918915#attestations
 https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/5129
https://beaconcha.in/slot/1054791#attestations
 https://beaconcha.in/slot/1054791#attestations
 https://beaconcha.in/slot/1054796#attestations
https://beaconcha.in/validator/5194
https://beaconcha.in/slot/1054788#attestations
 https://beaconcha.in/slot/1054788#attestations
 https://beaconcha.in/slot/1054796#attestations
https://beaconcha.in/validator/5228
https://beaconcha.in/slot/1041098#attestations
 https://beaconcha.in/slot/1041108#attestations
https://beaconcha.in/validator/4155
https://beaconcha.in/slot/918882#attestations
https://beaconcha.in/validator/4155
https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608052#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608059#attestations
https://beaconcha.in/validator/4219
https://beaconcha.in/slot/608067#attestations
https://beaconcha.in/validator/4993
https://beaconcha.in/slot/918901#attestations
https://beaconcha.in/validator/4993
https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/6666
https://beaconcha.in/slot/988955#attestations
https://beaconcha.in/validator/6666
https://beaconcha.in/slot/988965#attestations
https://beaconcha.in/validator/7412
https://beaconcha.in/slot/918883#attestations
https://beaconcha.in/validator/7412
https://beaconcha.in/slot/918922#attestations
https://beaconcha.in/validator/9018
https://beaconcha.in/slot/988931#attestations
https://beaconcha.in/validator/9018
https://beaconcha.in/slot/988965#attestations
https://beaconcha.in/validator/10740
https://beaconcha.in/slot/918900#attestations
https://beaconcha.in/validator/10740
https://beaconcha.in/slot/918922#attestations

	Abstract
	1 Introduction
	2 Consensus on Ethereum PoS: A Brief Overview
	2.1 Slashing conditions
	2.2 Slashing detection in practice

	3 Erroneous Explorer Records
	3.1 (Correctly) recorded slashing incidents
	3.2 Unslashed (seemingly) slashable violations
	3.3 (Incorrect) explorer records
	3.4 Uncovering the cause of the explorer's mistake

	4 Conclusion
	Acknowledgments
	References
	A Recorded slashing incidents
	B Undetected slashable violations



